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Hepirndgn

e auth) NV gpyacta Ya pehetniolv Aoeic Twyv e€lokoeny edlov Einstein ol omolec meplypd-
oLV [iot yehavt| omr o€ Blac TEANOPEVO olumay. H yvoot xa we petpwd) McVittie avarapiotd
ypovixd eaptopevn pehavr) ony) Schawarzschild oe unéfodpo Friedmann-Robertson-Walker
(FRW) ywelc mpocadinon udloc, OUOYEVAC EVEQYELUXT TUXVOTNTA XAl OVOUOLOYEVNC THEOT).
Yxomog pag ebvon 1 anddeln Vnopdng tne uetpinic McVittie we Aoon twv ediothoewy nediou
¢ levinig Lyetindtnrag, 1 oavaoxdmnoT twy Bactx®y W0THTWY TNG CUYXEXQUEVNG YEWUETEI-
g %o 1) MEAETT) TNG PopuTinng xaTdppeuong evog opoyevois BoutunTod Tediou 6Tov Yweoypeovo
McVittie.

Avodutiotepa, otov Kegdhowo 2 Siveton o oOVTOUN TEpLYpa@r] TwV WBIOTATWY X0l EQap-
HoY®V Tou ywpoypovou McVittie xou avogpépoviar ol afloonueiwTeg €peuveg Tou €youy YiveL
o710 Vépa autod. Xto Kegdhato 3, amodetxvieton 1 yetpin) McVittie xou mopadéteTton 1 yevi-
AEVUEVT LOop@Y| TNG 1) oTolor TEPLEYEL Un UNOEVIXY) Ywext| xaunuAdtnTa. Xto Kegpdhowo 4, ot
IWBLOTNTES XL TOL YOEAXTNPIO TIXG AMOOEXVIOVTOL X0 1) SUVOULXY| TOV QOVOUEVIX®Y 0ptlOVTGY
ueketdton Aemtouepws. Téhog, oto Kepdhoo 5, pehetdron 1 Poputint| xatdppeuct g UANG
o710 ywpeyeovo McVittie. To xéhugpog UAne mopauetpomole{ton amd €va yeovoeCapTouevo Pord-
HOTO Tedlo GLLELYEVO PE TNV PoedTNTo OE Vol XATAPEEMY CUUTAY PE 0OV TIXY| XOOUONOYIXN
otodepd. H cuviinn mou meénet vor woylel yua va oupPaiver 1 Boputind xatdpeeuon a(t) < 0,
émou a(t) o mopdyovtag xhipoxac. H bopopgior oynuatileton étav a(t) = 0. H Swbixacio
xatdippeuong povielomoteltar Avotvag Tic e€lonorng Einstein xou Klein-Gordon 1o yweyedvo
McVittie, apuduntixd, yenowonowwvtag to mpoyeauuo Mathematica. H Swoducoctio pehetdron

YENOWOTOLOVTOG YEUPIXES TUPAUC TUOELS.

Ynv teleutaio Tapdypago e nepiAndng Yo Hleia va euyaplothow Vepud Twv eMPBAETWY Xo-
Unyny pou, xOeto Ehevdéplo Tlomavtwvonouvro, yio tnv euxonpla mou pou €8moe va Boulédo
UE QUTOV X0l TOUG GUVEQYATES TOU, YO TNV EUTLOTOCUVY ToU €0EIEE GTO TPOCHTO UOU Yol Yid
Vv unoo THEIEN TNy omola EAafo pe yevouodnpla xadOAN Tn Bidpxela TNG EXTOVNONS TNS OLTAW-
wotixic pou epyaotac. Ernione, Yo Hleha va euyopiothow twv xadnynty 'edeyio Koutooluma
xa Tov utodrigplo dwddxtopa, Kootavtivo Nteéxn, yio tic yerowes cugBouléc toug xou tny

amhoyeen Bordetd Toug o Vépata I'evinrg LyetndTnTog xou PEAAVDY OTMV.



Abstract

In this thesis we study solutions of the Einstein’s field equations that describe a black
hole in an expanding universe. The, so-called, McVittie metric represents a time-varying
Schwarzschild black hole in a Friedmann-Robertson-Walker (FRW) background with no mass
accretion, homogeneous energy density and inhomogeneous pressure. Our purpose is to prove
the existence of McVittie’s metric as a solution of the field equations of General Relavity,
review the basic properties of this particular geometry and study the gravitational collapse
of a homogeneous scalar field in the McVittie spacetime.

In more detail, in Chapter 2 we give a brief introduction of the features and applications
of McVittie spacetime and denote remarkable previous work on the subject. In Chapter 3,
we derive McVittie’s metric by proving that it is indeed a solution to Einstein’s field equa-
tions and review its generalized form which contain non-zero spatial curvature. In Chapter
4, the properties and features are proven and the dynamics of the apparent horizons of this
geometry are reviewed in detail. Finally, in Chapter 5 we study the gravitational collapse of
matter in the McVittie spacetime. The matter shell is parameterized by a time-dependent
scalar field coupled to gravity in a collapsing universe with the presence of a negative cos-
mological constant. The condition we want to be true for us to have gravitational collapse
will be the time derivative of the scale factor to be negative. The singularity is reached
when the scale factor is equal to zero. We simulate the collapsing process in the McVittie
geometry by solving the resulting Klein-Gordon and Einstein field equation, numerically,
using Mathematica. We visualize the process by utilizing plots showing the evolution of the

scale factor, scalar field, energy density and pressure of the system with respect to time.

In the last paragraph of the abstract I would like to deeply thank my supervisor, Pro-
fessor Eleftherios Papantonopoulos, for the opportunity he gave me to work with him and
his colleagues, for the trust he has shown me and of course for the support that he generously
gave me throughout the time of my thesis preparation. I would, also, like to thank Professor
Georgios Koutsoubas and his PhD student, Kostas Drekis, for their useful advice and help
in the subjects of General Relativity and Black Holes.
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Kegdiowo 1

Avorvtixn IlepliAndn

1.1 Ewoayowyn

1.1.1 Iortopwxr Avadpoun

Metpwr| Schwarzschild (1916):

2
1-= 4
ds® = (H—2ﬂ1> dt* — (1 + 2—71) {dr} + r}dQ?},
2rq1

OTOL 71 1) CUVTETAYMEVY “ToRUTNENTH .
Metpwy| Lemaitre (1930):

U — g PO {dr2 + r2d? }

(1+ ikﬂ)?

OTOU 1" 1) "XOOUIXT) GUVTETAYUEVT.

1.1.2 Boaowd Xapaxtnelo Tixd

Metpuxy McVittie (1933):

1— 4o ’ 4
ds? = (—2 at* — (1+ @) PO {dr® 4 r2d0%),
2L r

(1.1)



6mou e?M/2 = a(t) xou pu(t) = m/a(t).
e a(t) = 1 = yetpnf Schwarzschild oe wotpomxé ouvtetayuévee
e r — 00 = ovunav FRW
® O TOVUOTYC EVEQYELNT-0pUYIC EXEL LORPT| LOAVIXOU PEUGTOU

® OUOLOYEVHC EVEQYELOXY| TUXVOTNTA, AVOUOLOYEVHS TEDT

otadepy| udlo McVittie m = dev undpyet tpocadinon

1.2 Ebgeon Metpuxrg McVittie

1.2.1 E&wowoeic Einstein

‘Eotw 1 yetpm
ds? = eSO at? — "D L dr? 4+ 12(df? 4 sin® 0d¢?)}

O€ XOOWUIXEC GUVTETAYMEVES PE ¢ = 1.

Ot eCiomoeic Einstein eltvon
G+ ANgu = KT,

, _ o l / / ’ ’
omou G, = Ry, — 5 Rgu,. H evvodontind| popor) 1wy e€lomoswy elvon

1
R, —ANgu = (T, — §Tgw,).

'Eotw o tavuothc evépyelao-opuric T)) = {p, —p1, —p2, —pa}, OUVETAC,

v
Too = pet, T =pre”,
Toy = par®e”, Tsz=pyr® sin®fe”,

T =g"T, =p—p —2p.
Tavuotrc Ricci:

—pf _1h B
RMV_R/‘LIBV_F _FB/—LJ/

B o B o
vu,B + 10, — Fuarﬁw

Ba™ vu

(1.2)

(1.4)

(1.5)



61OV Ffw o oUPPoAa Christoffel.
Y0uPora Christoffel:

1
Flrja = §gﬂ>\(g)\1/,0 + 9row — gl/g,)\)-

To un-undevixd ovuBoho Christoffel yia tnv petpwer (1.2) ebvou:

1. 1
Too = §C Loy =T = §C’
v 2 v
o _ € . o e,
Pn= 2¢e¢” P = 2¢¢ "
rZsin? fe” e
Lo =% 7 Lo = 5e¢
L. 1
Por =T = oY Iy = §V/
Fl—_rr_ﬁyl Fl_ '20 12~20/
22 — 9 33 = —TIsin — 57‘ s~ ov
1. 1 1
I, = 30:§V F§2:F§1:;+§V/
1
I3, = —cosfsinf I3, =T5 = 51)
1 1 cos 6
F??;:Fgl:;—i_éyl Fg?’:Fg?:_sinG

Ot un-undevixol épot tou tavue Ty Ricci yio ty petpwer| (1.2) ebvou:

eS ¢ <</>2 v 3. 3., 3.

Roo = (5 + =+ + 20— G+ 100" = 70),
_eVﬁ 3-2 L. Loy 1/2 L., 7 v/
R = (5 + 1 (0)7 = 200 = (5¢7+ 1(¢)" = V¢ + v+ =),

e v 3., ¢ VoW v (V)P
AT Ly R At i i Fi s S

' v 3 l)é C/ CIVI 3/ 4 (y/)Q
Ry = r”sin® [ — (= + 2i* — 22) — (= =+
s R L A F A s R B
DI
R ="

O medoxéc eClomoeic Einstein eivau:




K " 1\ 2 /V/ / 3 3 3
o A+ §(p+p1 +2py) = e”(% + () + <4 + %) — 674(51/—1- Z(V)Q - Z—lg‘y)
K B 1" (CI)Q V/C Y4
A - 2 _ _ — vis _ /"
. +2(p2 p—p) =e (2+ 1 1 +V+r)
] 3 1
o _C v s 2__-
(2 - i)
K v 3 v (V)? v 3 vC
A v o — visS el v o ¢ ce2 TS
© Atgi=p) ST S T A NS R LAY
v¢
[} /iT()l:?C—V/
Do Wovind pevotéd pe Ty = {p, —p, —p, —p}:
K ¢ ')? v ! 3. 3. 3.
3 A+§(p—|—3p1):e (%+<C4> +<4 +%)—e C(§V+ZV2_ZCV) (1.7)
K _ 1! 1\ 2 V/ !/ V/ _ I/ 3 . .
o At olp—p)=e (%‘F (<4) - f +V”+7)—€ C(g ZV2_1_1VC) (1.8)
K ¢y 3w v (V)2 v 3., 1.
A+ =(p1—p) =e V(= ) e (=4 1.
A

1.2.2  ExniAvon E€wowocswyv nou Kadopilouvv tn Meteuxn
Ané tic (1.8) xau (1.9) mpoximrer:

Q B (l//)2

1! /i
C+V+2 5

/- %(1/ +¢) =0,

O e€iowoeic mov xoopilouv toug cuvteheatée g petpwic (1.2), ¢ xa v, elvou:

z)’—%zo, (1.11)
7\2 2 1
H (1.11) Moveton edxoha:
v= /a(t)eC(’"’t)/th + a(r) (1.13)



‘Eotw 6t ¢ e€optdrar povo and to r. Tote,
v =B1)ez*®) + a(r), (1.14)

omou B(t) = [ a(t)dt. Avixathotoupe tny (1.14) oty (1.12).

Trdpyouv 600 mdavéc Aoeic:
o [ otadepd = otatint| Ao Schwarzschild.

o [ audoipeto = ¢ otadepd, afr) = —2log (1 + 1kr?) = petpixd| Lemaitre.

Yovenwe, ((r,t) xou a(r) = 0, agod 10 a(r) eaptdton omd TNV XUUTUAGTNTA TOU YMOEOU.

Avantioooupe ta ¢, v ¢ SuVoUooEelpég Tou 1/7

eC/ZZ’Y: I+ aiu™ + agu™ + azu™ + ..., (1.15)
=B+ Butyum, (1.16)
s=1

émou u = 1/r, a, ocuvaptAcelc Tou ¢, ot SUVAUELS Tou u elvat o€ 0)E0VOO GELRE, ot

B(t) = / a(t)dt, (1.17)
By(t) = / a(t)a,(t)dt. (1.18)

ANdCovtog YetoBAnTy| omd 1 ot u xon avTXaloTOVTUS TO ( WG TEOE TO Y OTNV (1.12):

0*v ov 0Py Oy oyov 1 ov,

Avtxohotdviae tic (1.15), (1.16) oty (1.19) tpoxdnte:
Zums’l [Bsm(ms — 1) + 3B,my + 2a5my(my — 1) + 6agm,]
s=1
+ Z u2m3_1 [ﬁsasms(ms - ]-) + 365msas

s=1

1 T |
_2Bsasm§ - 555”@] + ;ug ot |: - 555777/3&8] =0



H younidtepn dOvaun tou u ebvan 7 ™ Tws =1 TEOXUTTEL:

mq(my + 2)(2a; + p1) = 0. (1.20)

2mi—1

Or 800 emdueveg duVAELS elvon oL U wou w2 ‘Apa, Mg = 2my %o YEVIXE My = SMy.

Ané v (1.20) mopatneeiton 6t my = 1 xou
2a; + B = 0. (1.21)

Ané v (1.21) poli pe nic (1.17), (1.18) mpoxintel:

ai 1.
— = —=0. 1.22
h_ (122
A6 tic emdpevec duvdpele u?™ T xon w2t npoxinTel:
1
2a9 + Py = 50@ = cpal. (1.23)

Hopaywyilovtac wg mpog t o yenotwonowsvtog T (1.17), (1.18) npoximntet:

2
Ao = C20q,

62 = —Cga%.

YuveyiCovtag v idta Sraduasior yio UYNAOTERES DUVANELS TOU U EYOUE:

2¢y,
an, = cpay, B = —%a’f, (1.24)

Av n oon nou (dyvoupe umdpyet, Vo elvor g popyhc (ue my = 1, my = smy, u =
L/r, ay = p)

y=1+Y aum™ =1+ awr =1+ caiut =1+ ¢ (@) (1.25)
s=1 s=1 s=1 s=1

L UED WA URF R I E R URE) DE <) NI ED
s=1 s=1 s=1

S r

ue

10



'Eotw,

v
or ot 7
emopévoc, 1 (1.12) yivetow:

O¢twvtog r = e” 1 (1.28) yiveton

Py Dy

@—7%—7(72—1):0-
H (1.29) éyer 800 pepixéc Moeic:

%2l 2
— - 1=0
or ! * ’
%2l 2
27l 12 1=
ox L
Amé v (1.31) mpoxUmntet:
1 — kO
V=
14 52
Emmiéoy,
v _2(y-1) p(t) 4
peei) .
v B B_ B
A | PSP O
ot ,ufy 2

i
Avtxohotodvrag Tic (1.32), (1.33) oty (1.2) npoxinte:

2
1 _ ﬂ(t) t
d82 — <1 N MQ(T‘) dt2 . e/)’(t) <1 + IU’( )

t
2r

4
o ) {dr? + r*(d6* + sin® 0d¢?*)}

Amo v (1.34) €youue

11

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)



omou P2 = q(t). Tehxd,

2
1 _m_ m A4
ds? = | — 20} 2 _ (1 2(0{dr? + 12(d6? + sin? 0d¢?)}. 1.
s (1 - (+2a(t)r>a(){7‘+r( + sin® 9dg?)} (1.37)

Edv dev Vétope ar) = 0 oy (1.13) xaw axohoudoloope ta iBo Briuota, Yo tpoéxumnte:

2 4
11— 1 -+ lk'TQ (1 + % 1+ lk??“2>
d82 _ 2a(t)r'\/ 4 dt2 _ 2a(t)r'\/ 4 a2

5 () {dr® + r2dQ*}, (1.38)
1+ 5 /14 Lk (1+ 3hr?)

ME k TNV XOUTUAGTNTA TOU YWOEOU.

1.3 Xoapaxtneiotixd tou Xweoyeodvou McVittie

1.3.1 Boaoweg Ioiotnteg
‘Ectw 1 dpdon
R 1
5= [ v=gdiag - S 0.00.0) - V(o). (1.39)

AuapopilovTog we Teog Tov avTtoTeoYo UeTed TavucTh, g', TEOXUTTOLY oL eCloMOELS
Einstein:

G;Ll/ = T;Ll/; (140)

ornov G, = Ry — %gWR O

1
T/w = _éguugaﬁaaqbaﬁgb + augbaugb - guuv(¢) (141)

Oewpmvtag Wovind peucto, Ty = (—p,p,p,p), 070 ywpoypdvo McVittie e petpind npo-
onuo (—,+,+,+) ot ypnowornowdvrog ty (1.41) mpoxintet:

14+ -m \?%
oty = L[ 20} G2 v, (1.42)
2\1- 2a(t)r
m 2
o) = (BT ) G — v, (1.43)
2\ 1~ 2a78€)r

12



Or eCiomoeic Einstein efvon:

o (it): 322—% =p
(2a(t)r — 5m)a®(t) + 2a(t)a(t)(2a(t)r +m)
o (rr,00,00): — =p

a?(t)(2a(t)r —m)

H (1.45) unoget vo ypogpel g

omov H(t) = a(t)/a(t).
To Padunwtéd Ricei ebvou:

[(za(t)r — 3m)a2(t) + a(t)a(t) (2a(t)r + m)]
a?(t)(2a(t)r —m)

R=¢"R, =6 &

(]‘ + 2;(’;)1") :

R =12H*(t) + 6——29"C
(1= 57)

Amé v (1.47) éyoupe:

o a(t) = 0 = Blopoppio e AMELRN EVEQYELONXH TUXVOTNTA XL TEST

o m = 2a(t)r = xoouohoywxt| Wiopoppla Meydhne Expnine ye dnepn nieon
o H(t) =0 = dev UTAPYEL XOOUOAOYLXY| LOLOMOPPLO Xol YIdL...

o ... H =0 = petpuxr} Schwarzschild

o ... H # 0 = petpwr} Schwarzschild-de Sitter

1.3.2 Meiétn Pauwvopevixo Opilovta

M petaoynuatiouevn Lopgr tng ueteiic McVittie (1.37) etvou:

ds® = —fdt* + dRdt + R*dQ?,

IR? — 2H(t)R
1= 2m

_ 2m
R 1 =

13

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)



2
6mov f =1—2m/R — H*(t)R?* xou R(r,t) = (1 + 2;(’;)7,) a(t)r n enwpavetonr| oxtiva wiog
ogaipoc Ye epfadov emipdvelog 41 R?.

To Poduntd Ricel o 1 mleon yivovton

p=—3H*(t) — 2———H (1), (1.49)

R =12H?(t) 4+ 6 ——=H (1), (1.50)

6oL 1) xoopoloYLXT Wlopoppia eupaviCeTton Yoo R = 2m.
H Misner-Sharp pdCo etvon o peudo-tomxr udlo Baputinod ediou, oplopévn 610 GUVOROo

ULOC TIEQLOY G TOU Y WEOYEOVOU. L€ GQPAULOIXE CUUUETEXO Ywpeoyeovo 1 Misner-Sharp udla etvou:
R 5
mars(t,r) = E(l — ¢*?0,RO3R), (1.51)

émou R(t,r) n empaveianr| oxtivor xou o, F tpéyouv amd to 0 uéyet to 1.
Mo var eupedel o gouvouevind opiCovtag (apparent horizon) avalntolue morydeuuéves emi-

pdvetee (trapped surfaces). Kéde empdvela péoo otny naydevuévn meptoyh Yo ixavorotel ™

oyEon
T ={(t,r): R(t,r) < 2mus(t,r)}. (1.52)

Amé v (1.51) éyoupe:

2mys = R(l — gRR(E?RR)Q) =
2m

2mars = R(1 — (1 — - H*(t)R?)) <

2myrs = 2m + H*(t)R®.

Mo tov gawvopevind opiCovta:

2
1- %‘ ~H*OR* =0 & (1.53)
gt = 0. (1.54)

14



Xenowonowvtoc v uédodo tou Nickalls, n (1.53) €yer pilec:

2
V3H(t)

Ry(t) = sin 6, (1.55)

1 1 )
= mcos&— msm@, (1.56)

1 1 .
R3(t) = 0] cosf — \/§T(t) sin 6, (1.57)

6mou sin(360) = 3v/3mH (t).

T va undipyouv opilovtee mpéner 0 < sin(30) < 1 = mH(t) < 1/(3v/3). H ypovixn
oy 6mou mH (t) = 1/(3v/3) etvor povodued yio a(t) oc t2/3, H(t) = a(t)/a(t) = 2/(3t), xu
Vv oupfoiilovue w¢ t, = 2/3m.

o t <ty TpAIOUC YpbVoUS m > #H(t) = Ri(t), Ra(t) uryadixéc xou dpa urh-Quoréc

Nooewg. Aev undpyouv opiCovec.

ot =t m= m = Ri(t) = Ra(t) mparypatinr) hoon. Yrdpyer évac opilovtac ot
1
V3H(t)"

Véo

ot > {0 Yyl 0pYOTEPOUC YpOVOUC M < m = Ri(t), Ra(t) mporypotinée MooeLc.

Trdpyouv 600 opilovtec.
R(t)

— Cosmological Apparent Horizon

[ — Black Hole Apparent Horizon
20

10/

P
5 10 15 20 25 30

Yy 1 Yuuneotpopd TV QUIVOUEVIX®OY 0pllOVTInY 6To yweoyedvo McVittie o dust-

dominated vroBadeo yoe m = 1.
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1.4 Boputixn Katdepeuon

1.4.1 Evpeon E&lowong Klein-Gordon

‘Ectw 7 6pdon

R 1
5= [VEgdta[g - A= 5"0.00,0) - V(o) (1.58)
Aragopilovtag w¢ mpog to Palduntd nedio ¢(t) éyoude:
1
——0,(¢"0,0v/—q) — V, = 0. 1.59
\/_—g M(g Cb g) o} ( )

Oewpnvtag ywpoypedvo McVittie n e&iowon Klein-Gordon yivetou:

m 72
1 0| v—g| — M Q| — V=0
o' 1 - 2&73)7’ 7
Telxd,
T a(t)(2a(t)r +m)? ~a(t)(2a(t)r + m)? B a(t)(2a(t)r + m)
Vo=d()3 Oar —m) " a®)@atr —mp alt) 2alt)r — m)Q]
- 2a(t)r +m\?2
+o(t) <2a£t§r - m) (1.60)
1.4.2 Evpeon Ewowoeswyv Einstein
Awgopilovtac we mpog gM madpvoupe Tic e€lomoeic Einstein:
G +ANg =T, (1.61)
ue Gy = Ry — 39 R xou tov Tavuo T evépyelao-opunic
1
T;uz = _§guugaﬁaa¢aﬁ¢ + au¢au¢ - gw/v(¢) (162)
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a*(t)
a?(t)
[(Qa(t)r —5m)a?(t) + 2a(t)a(t)(2a(t)r +m)

o (rr00,60): - a2(1)(2a(t)r —m) =p=A

o (it): 3 =p+A

Avtixohotdvrag Tic (1.42) xou (1.43) mpoxintouv ot eiodoeic Einstein:

1 2a(t)r+m}\ .
. ! _§<at) ) (1) +V(6) + A

[@a(t)r = sm)a(0) + 20(0i(r) a(t)r +m)|

a?(t)(2a(t)r —m)

1.4.3 Boaputixr Katdppsuon pe Mndevixd Avvouixd

To un yeauuxd duvouixd cvotnua tou xoopllel Ty eZéNEn v a(t), ¢(t) e V(¢) = 0 ebvou:

e tt Einstein field equation

ol (e Lo

e Klein-Gordon equation

_ o [3e®Ca®)r +m)* a(t)Ra®)r +m)* - a(t)a(t)r +m)

0=0lt) [3a(t)(2a(t)r T e @atr —mB el 2altr — m)?
+9(t) (;Zg%) (1.64)

H evepyelnr) muxvotnta o 1 tieon urohoyilovtal and Tig oyEoelc:
p(t) = 3H*(t) — A, (1.65)
- 2 (1 + ZaT(r;)r) .
p(t) = =3H(t) — 25— < H(t) + A. (1.66)
(1 B 2a(t)'r)
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H ouvixn Baputinic xotdppevong ewvon a(t) < 0 xou 1 dopoppio oynuotileton dtay a(t,) =

0.
14 4 7 7 7’
o Boputiny| xatdppeuct ogoyevoig Boduwtol nedlov ye m = 1 xou r = 5:
a(t
(t) a'(t)
04 -
a4
s — A =-0.001 0.2 — A =-0.001
— A =-0.0012 — A =-0.0012
, — A=-0.0015 - = = 2t — A=-00015
— A =-0.0017 — A =-0.0017
1 -0.2 -
0 1‘0 2‘0 3‘0 4‘0 50 60 t -04L
— A =-0.001
— A =-0.0012
— A =-=0.0015
— A =-0.0017
10 20 30 0 50 ot
o Boputu| xatdippeuor opoyevois Padumtol medlov ye A = —0.0015 xon r = 5:
a(t)
a'(t)
—_—m=1 —_m=1
— m=1.5
— m=1.5
— N =
—m=2
— N = — m=3
—_—m=1 —_—m=1
— m=15 — m=15
—m=2 —m=2
—_—m=3 —_—m=3
10 20 ) 20 50 ot
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e Boputu| xatdppeuorn ogoyevois Padumtol medlouv ye A = —0.0015 xou m = 1:

20 a't)

—r=2 —_r=2
—1r=5
— r=10
— r=30
— r=50

—r=5
—r=10
— r=30
— =50

(1)
4
—_r=2 —_r=2
3 —r=5 —1r=5
— r=10 —r=10
2+ — r=30 — r=30

— r=50 — =50

1.4.4 Xvunepdopata

H a0&nomn tng xoouohoyinic otodepds A emitoyOver Ty Baputiny| xatdpeeuot).

H a0Znon e pdlag McVittie m emBpadiver tny Poputiny| xatdppeeuct).

H od&non e axtivag 7 emitaydvel v Poputins xatdppeuon).

Dot peydheg axtiveg 1 Poputinn xatdppeuon 6eV ETITOY UVETOL TEQAUTEQRW.

H éxhewdn duvopxod "xatacteégel” tnv avogoloyévela Tng Teong
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Chapter 2
Introduction

Finding solutions to Einstein’s equations describing anything beyond the simplest and most
symmetric configurations of matter or gravity is a hard and uncertain affair. When available
they can provide new insights into the nature of gravity beyond the linearized regime or
be used in describing objects of astrophysical relevance. For both reasons any solution
potentially describing a black hole embedded in an expanding universe is of considerable
interest.

Solutions representing time-varying black holes are of great interest in themselves and
the first spacetime of this kind is the 1933 McVittie solution [1] of the Einstein equations
constructed to study the effect of the cosmic dynamics on a local system. It is thus sur-
prising that a proper understanding of a class of solutions found over 70 years ago is still
lacking. These solutions have many of the features one would expect of a black hole embed-
ded in a FRW cosmology: they are spherically symmetric with a singularity at the center,
parametrized by a function a(t) and a mass parameter m, reduce to FRW cosmology with
scale factor a(t) at large radius, and reduce to known black hole metrics or standard FRW
cosmology in all the appropriate parametric limits. More precisely, the properties of the

McVittie spacetime are the following:
(a) The near-field limit a(t) — 1 is Schwarzschild in isotropic coordinates,
(b) The far-field limit 7 — oo is a FRW spacetime,
(c) The energy-momentum tensor has a perfect fluid form.

Moreover, the energy density of this solution is homogeneous while the pressure is inho-

mogeneous.
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These properties make them not only interesting in their own right as non-linear solutions,
but potentially significant and physically relevant for describing real gravitating objects or
holes in the universe. On the other hand, there is no accretion, the mass m is constant, an
odd property for a physical black hole in a universe full of matter and radiation.

One of the most thorough examinations of the properties of the McVittie metric was
attempted in a series of papers by Nolan [13], which review past work on the metric and
describe many of its features. Because it is spherically symmetric and asymptotically FRW,
the McVittie metric can be used to describe external fields of finite size objects, or exteriors
of bubbles or shells separating different regions of spacetime. In these applications the
McVittie metric is replaced by a different geometry at small radius. Nolan argued that the
would-be null black hole horizon of the McVittie metric is at infinite distance and therefore
constitutes a null boundary rather than a horizon, and hence that the metric outside this
surface is geodesically complete and cannot describe a black hole at all.

The most recent work by Kaloper [3] on McVittie spacetime, though, clearly contradicts
Nolan’s speculations and proves that the null surface is at a finite distance and therefore
renders the standard form of McVittie metric geodesically incomplete, a conclusion that
validates the black hole interpretation in at least some cases.

In conclusion, the purpose of this thesis is to study the features and properties of the
McVittie metric and investigate the gravitational collapse of matter in this geometry. In
Chapter 2 we derive the McVittie metric as a solution of the Einstein field equations, in
Chapter 3 we prove the basic feature and properties of McVittie metric and in Chapter 4 we

study the gravitational collapse of a homogeneous scalar field in the specific spacetime.

21



Chapter 3

Derivation of the McVittie Metric

3.1 Introduction

In the astronomical applications of General Relativity two types of metrics for the universe
are used. For discussing the motion of planets around the Sun, the statical Schwarzschild

metric is employed, which may be written in isotropic coordinates as

2
1 - 4
ds? — (ﬁ) dt* — (1+2ﬂﬁ) {dr? + r2d0?}. (3.1)
2ry

On the other hand, for dealing with the phenomenon of the recession of the spiral nebulae

non-statical metrics are used, which can be subdivided into two classes: the Lemaitre class,

in which 0 202
+r
ds? = d2 — P J 4 T 3.2
’ Ve [ (3.2)
and the de Sitter class, in which
ds? = dt* — ¥ {dr* + r*dQ?), (3.3)

where dQ? = df? + sin® §d¢? is the metric of the 2-sphere and ¢ = 1. In (3.2) the constant k,
which may be positive or negative, gives the curvature of space as a whole, local irregularities
being disregarded. In (3.3) the curvature of space is zero.
One important respect in which the metric (3.1) differs from (3.2) and (3.3) is that in
Al

the former the coordinate r; is what we shall call an "observer’s" coordinate, i.e. it is one

based on the assumption that the distance between two points in space at relative rest is
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independent of the time. In (3.2) and (3.3) the coordinate r is one which will be called
"cosmical". It is used when the system of nebulae is taken as the basis of reference. An
observer in the field uses a coordinate r; = re®(1)/2 at the instant ¢;, so that the "observer’s"
coordinate for a fixed value of r is not independent of the time.

When we consider that we are compelled to observe the universe from the near neigh-
bourhood of a mass-particle (the Sun) it becomes of some interest to find a form of metric
which will reduce to the statical metric (3.1) in terms of observer’s coordinates, but which
can be also expressed, approximately at least, in one of the forms (3.2) and (3.3) when cos-
mical coordinates are used. Some solutions of the problem have already been proposed. G.
Lemaitre! has put forward one type of metric. Unfortunately his solution appears to depend
on the assumption that the pressure of the matter outside the mass-particle is negative if
the density is positive and vice versa. This condition is true whatever the coordinate system
used. It is difficult to see how such a case should be applied to the actual universe unless,
indeed, both pressure and density were zero. But this reduces Lemaitre’s result to the well
known one of a mass-particle in an, otherwise empty, de Sitter universe. An alternate type
of metric put forward by W. H. McCrea and G. McVittie? is also open to critisism on the
ground that it implies that the matter in the universe outside the Sun is flowing toward it
with a high velocity which is certainly not observed.

Hitherto it has been assumed that the problem can be solved by the choice of any set
of polar coordinates, with origin at the mass-particle, by assuming that it is evenly spread
through space as if it were a gas. It will thus be characterized by (i) its density Ty, (ii) its
pressure components, T}, T2, T3 and (iii) its momentum T}y, if it is flowing towards or away
from the mass-particle. These are the only non-zero components of the energy-momentum
tensor when spherical symmetry is assumed. Both density and pressure may, however, be
in part due to the presence of radiation. It appears to us axiomatic that in any spacetime
model applicable to the actual universe, the density and pressure cannot be negative but
may, of course, be zero in a first approximation.

The solution to the problem now follows if the observer makes the general assumption
that the mass-particle does not occupy a peculiar point in the distribution of matter in the
universe. This leads him to conclude that, firstly, the pressure is everywhere isotropic, and
secondly, that the matter is "at rest" with respect to his coordinate system. By this is

meant that it has, on the whole, zero coordinate velocity, and therefore zero momentum, in

1G. Lemaitre, M.N., 91, 490-501, 1931
2W.H.McCrea and G.C.McVittie, M.N. 91, 128-133; ibid., 92, 7-12, 1932
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his system. It might be thought that, in the actual universe, this could not be true because
of the phenomenon of the recession of the nebulae. But it must be emphasized that we
do not observe a velocity in this connection, but only a shift to the red of the lines of the
spectrum in the light emitted by distant objects. It is the whole object of the expanding
universe theory to show that even if an observer assigns zero velocity to the nebulae at each
instant, yet this red-shift will be observed owing to the properties of space.

In arriving at the generalized Schwarzschild field we do not employ observer’s coordinates,
in the first instance. Instead we obtain the metric using cosmical coordinates analogous to
those used in (3.2) and (3.3).

3.2 Equations determining the metric of spacetime

We consider an observer engaged in setting up a coordinate system in the neighbourhood of
a mass-particle, which he takes as his origin of spatial coordinates. He is provided with rigid
measuring rods and makes use of lights triangulations for dealing with points he cannot reach

with his measuring rods. He works under the assumption made by terrestrial observers, i.e.:

(a) The length of a measuring rod is constant in time and independent of orientation

around a given point,
(b) The backwards and forwards velocity of light between any two points is the same,
(c) The velocity of light is the same in every direction around a given point.

Under these circumstances he sets up an "observer’s" coordinate system of the orthogonal
and isotropic type, in terms of which he expresses the metric applicable to the whole universe.
In order to determine the coefficients of this metric he will have to make some assumptions
regarding the distribution of matter in the universe. If he believes that his part of the universe
is similar to every other part (except for the singularity corresponding to the mass-particle),

he will be entitled to assume the following:

(i) The matter in the universe is distributed with the spherical symmetry around the

origin where there is a mass-particle,

(ii) There is no flow of the matter as a whole either towards or away from the origin, other-
wise it would be necessary to postulate that, at some time or other, the neighbourhood

of the origin had been the scene of an explosion great enough to set the matter in the
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whole universe in motion away from that point. Until some physical process, capa-
ble of producing an upheaval of such magnitude, is discovered, our observer will be

constrained to postulate (ii),

(iii) At any point in the universe the pressure is isotropic. This seems a natural consequence
of (ii) since there is now no preferential direction towards which the velocities of the

particles, or the flow of radiation, might be directed.

Our object is now to find, by means of Einstein’s equations, the metric which the observer
assigns to the universe in this way. We shall not, however, determine it in terms of observer’s
coordinates directly, but instead find a metric which satisfies the requirements (i) to (iii) in
terms of isotropic cosmical co-ordinates. It can be shown then that, on transforming this
metric into observer’s coordinates, the properties (a)-(c) and (i)-(iii) are all found to hold
[1]. He deduces that this metric is the one actually used by our observer.

Consider the most general form of metric which is orthogonal, isotropic in the space
coordinates and which expresses the condition for spherical symmetry around the origin.

Using cosmical coordinates, it can be written as

ds® = eSrBat? — e’ {dr? 4 r?(df* + sin’ 0dp?)}, (3.4)

where we set ¢ = 1. The distribution of energy density and pressure is given by the Einstein’s
field equations
Guu + Agul/ = KT;LV; (35>

where G, = R — %ng,, the Einstein tensor, R,,, R, the Ricci tensor and Ricci scalar,
respectively, A the cosmological constant, g,, the metric tensor, s a constant that is related
to the gravitational constant, G, and 7}, the energy-momentum tensor. It is easy to find

the alternate form of the Einstein’s field equations

1
Rp,l/ - Ag;w = //”'(T},Ll/ - iTg;u/)a (36)
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where T is the proper density. From (3.4)

goo = 64,
14
Jin = —¢€,
goz = —17¢€”,
gs3 = —r2 sin?fe”,

and the inverse components are, respectively,

We write

so, using the equation

we get

Therefore,

0 _ o~
gll — —G_V,
—V
22 €
g =—- PR
T
—v
33 €
g = - 2 o 2 .
r2sin“ 0
73 = p,
Tll = —D1,
T22 - T33 = —P2,
T: = T;wc.gowa
Tua = T:gay-

Too = Tc?goo = pe<7

Ty = ngu =D €V7

2 2 v
Tog =T5Ggo2 = par-e”,

T33 = Tg)ggg = P2 T2 sin2 fe”.
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The proper density is

T =g"T, =g"Too + " T11 + ¢ Toe + g% T33 (3.9)
_ —CC —v v - 2 v e’ 2 .2 v

=e tetp—eYep — r“e’py — ————1r°sin” fe 3.10

p p1 2 P2 220 D2 ( )

=p—p1— 2ps. (3.11)

The only thing missing from equation (3.6) is the Ricci tensor. The Ricci tensor is a con-
traction of the Riemann curvature tensor, as shown below:

Ry =Ry, =T, ,—T}

B8 pa 8 1o
B Buy T I, 1'% — FUQFW (3.12)

Ba™ v
where ', are the Christoffel symbols of the first kind and the comma denotes partial deriva-
tion with respect to the parameter that follows the comma. The Christoffel symbols are

defined as follows:

1
Fllja = §gu>\(g)\u,0 + row — gua,)\)- (313)

First, we calculate all the non-vanishing Christoffel symbols. Differentiation with respect to
t will be denoted with a dot and differentiation with respect to r will be denoted with a
dash. The property that we use to make half of the calculations is the symmetry that holds

when we interchange the two lower indices, i.e. I' =T1"% .
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Finally, the non-vanishing Christoffel symbols are:
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Now, we compute the non-vanishing components of the Ricci tensor:
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2eS 2 e%¢ 4eb 2 4 2 4eS
vVr o (V)*?  —sinfsinf — cosfcosf  cos?
2 4 sin® 6 sin? 6
7’2€V TQGV . T26V . ,',.261/ . CIT <,l/,7“2 7,2 7’2€V V/T
— . 2 . . ___—_1_ / _// .2__
S W WL R W R 4 i A walCl
(V)2r? 1 cos? 0
4 sin?f  sin®0
726113 §2_I/_§_£ CII 3 l/_” (I//)2
=izl ty 1) (27‘+4+2T+2+ el
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Ray =T33 — 503 + I53T00 + I33T%g + T33T50 + T35 — T30Tgs — T3pl'Ys — T50T'55 — T35
+ D0 = Tau + Tagloy + Tggl'hy + T, + Tgl'ay — 151 Tgg — Ty i — T3, T — Ty T
+ TS50 — Dip + T30y + DTy + T35 + T3l — Tl — Taalls — [l — Tl
+ T35 — [ig5 + I35 + DT + T33T55 + T3sT55 — Tgsls — Taglis — I35 — T

r?sin e’ . r?sin?6 e’ — (e” r?sin® fe? _ . o r?sin?f , ('

= ( ot VT TV )+ 1 v¢ + (—rsin Q—TV)E
2 o3 29 2 20 v 2 o 29 !
+ Op(—rsin? 0 — 4 81211 V) TSZ#I)Q-F(—TSHIQG— 4 81211 v')%+89(— cos fsin §)
e

— cot O(— cos @ sin0)

r2sin®fe” . r?sin®fe” . r?sin®fe” . r?sin?fe” . rsin?6¢  r?sin?0¢V
¥ L L o e

e e e e
28' 28 " QS' 20 v gi 29 ! 2S' 29V/2 )

—sin20 — rsin? 0 — - H; . 121; e 1n2 . 1n4 — (—sin? 6 + cos® 0)
+ cos? 0

P C N 2 VC ¢ v 3 V! (V/)Q
— | P Bt R . K N NI G

Pl G ) Tt e Ty )

Roy = F81,0 - F81,0 + 0100 + Toa T + T51 20 + 161150 — Toolor — Tool'1h — Tool'21 — Tool's:
+ F(1J1,1 - 1ﬂ(1)1,1 + 00 Tor + Tou Ly + T8 oy + Toily — Do Toy — TouTay — 500y — T Ty
+ F(Qn,z - F(Q)m + 000 + Tor T + T 15 + T51T3, — Tooley — Toolhy — Tool's; — [Ty
+ Fgl,g - Fg?),l + T T + Doy Tis + T T35 + T T35 — TosTor — TasThy — Tl — Tos s
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2
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The rest of the components of the Ricci tensor are equal to zero, so the Einstein’s field
equations (3.6) reduce to the following five:

1
Roo — Agoo = k(Too — égooT) &

K
Roo = ¢*(A + 52— ptpit2p)) &
¢ #n 12 i !
¢ K I S (S S S SRS P PIC R B
e (A+2(p+p1+2p2)) V(2 + + + r) (2u+4(1/) 4Cu)<:>
K L CH ( /)2 47 C/ ¢ 3. 3 9 3.
A+2(p+p1+2p2)—e (2+ + +r) e (2V+4(V) 4Cy)

1
Rii — Agn = K(Tn - 5911T) s

K
Ru=e"(-A+50@p+p—p—2p)) &

e’ v 3 1.. 1 1 1 v
e (A 52 =i - P>>=—<<§+z<> — 0 = GO = ) e
k _ _ 1/2_1// " V,__CD 3.2_1.'
At B - ) = e b - v Dy e B - Lo
1
Ros — Agog = k(Tsy — §gggT) N
K
Roy = TQe”(—A + 5(2])2 +p—p1— 2p2)) =
ev v 3 "

v / 1 N2
e S =) =G ) - G S e T e

¢’ % 3/ A (V/)2 U 3. I)C'
A e S22
+2(p1 pl=e (gt ot ) et (gt )

1
Rss — Agss = k(T35 — -ga3T) <

2
R33——T’ sin? fe” <A+ 2(2]92 p+p1—2p2))<:>
‘ v b 3 VC C/ C/V/ 3/ 4 (V/)Q
—r2¢in? Be”’ (A R — — Voo M5y S5 SV v VW)
r* sin” fe” +2(p1 p)) = rsm&[ (2+4u 4) (27’+4+27’+2+ 4)]<:>

K ¢ 3w v (V)P ., v 3 ¢

A i _ — v el - _ ¢z “r2 TS

o) =g Tt ) e 1)
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and finally,

1
Ro1 — Agor = k(Th1 — 5901T) =

A

FJTOl:?—I/.

Altogether, the Einstein’s field equations are

K L, C// (C/)2 C/V/ C’ . 3 . 3 N2 3. .
o A+ 2(p+p1+2p2) =e (2 + +ot r) e (21/+ 4(V) 4C1/) (3.14)
K B _ L C” (C/)2 B V/CI " / e U 3 > 1. .
(3.15)
K PR G G N A 7 (V)2 oV, 3, e
. A+2(p1 p)=e (2r+ 1 +27’+2+ 1 )—e (2—|—4u 4) (3.16)
o Ty = % — v/ (3.17)

Considering the conditions (ii) and (iii) the energy-momentum tensor has a perfect fluid

fOI'Hl, that is T/l; = (p7 —D, =D, _p) < D1 = p2 = p3 = p, we get:

K G (O NS S 3. 3.9 3
A+l — (S Sy e 2y 1
. +2(p—|—3p1) e (2+ T +r) e (2y—|—4u 4@) (3.18)
R Iy C” (<,)2 V/C, " v —¢ v 3 -2 .
e Mg —p) =G+ -tV ) —et (G = i) (3.19)
K ¢ 3 v (V)P eV 3., 1o
0A+§(p1—p)—€ (2—T+T+2—T+?+T>_e (5"‘11/—1’/0 (3.20)
v
. VQC )0 (3.21)

From (3.19) and (3.20) we see that the left hand sides are equal. Since the left hand sides are
equal, the right ones must be equal, too. For the right hand sides to be equal, the coefficients

of e™” must be equal, i.e.

C” (C/)2 V/C, " I// C/ C/V/ 31// l/” (V/)Q
2 _ = 2 _ _ =
SR /s i S R s > S
C// V// (C/)2 (V/)2 V/C/ I// C/ B
s Tty 1 5 o g V€
1\ 2 1\ 2
1
CH + (Cz) . (VZ) B V/g/ . —(V’ + CI) -0
T
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Our two fundamental equations for determining the coefficients of the metric (3.4) are

(2 _ )

1
C//+V//+____V/C/_;(V/_'_C/):0.

2 2

3.3 Solutions of the equations

(3.22)

(3.23)

We shall now show that v and ¢ can be determined by the use of (3.22) and (3.23) alone.

The equation (3.22) can be solved immediately. Dividing throughout by v, we get

Dl B C/
)
C/

(logr)" = 5 ®

d(logv) , 1 [0C
/ o dr = 5 Grdr &

1
log v = 5{(7", t)+b(t) <
b LD/ 20D o

b= POLED (1)) o

v= /a(t)eC(r’t)/th + a(r)

(3.24)

where, we set a(t) = ¢*® and in the integral, r is treated as a constant and «(r) is a function

of r alone. We shall show that the generalized Schwarzschild field we are seeking cannot be

included amongst those solutions for which ( is a function of r alone. For, in such a case,

v =B(t)ex*") + a(r),

(3.25)

where (t) = [ a(t) dt. Substitution into (3.23) shows that we can have two possibilities: (1)

B is constant, in which case we can only arrive at the statical Schwarzschild solution, or (2)

3 is arbitrary, ( is a constant, and «(r) is given by
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whence

a(r) = —2log (1 + %lk;r?) : (3.27)

This merely brings us back to the case of solutions of the Lemaitre class. It therefore appears
that there is no generalization of the Schwarzschild metric (in terms of cosmical coordinates)
in which the mass of the central object enters as a constant independent of time.

Turning to solution of (3.22) in which ¢ is a function of both r and ¢, we consider cases
in which a(r) = 0. This function is evidently dependent on the curvature of space as a
whole, so that putting it equal to zero is equivalent to dealing with metrics analogous to
(3.3), where there is zero spatial curvature.

The solution we require must have a singularity at the origin similar to that possessed
by the Schwarzschild metric in isotropic coordinates. ( and v must therefore be expressible

as power series in 1/r. We assume

eS/? = v =14 au™ + au™ + azu™ + ..

N (3.28)

where u = 1/r, as are functions of ¢ and the powers of u are arranged in ascending order.
Substituting into (3.24) we get

v = /a(t)dt(l + au™ + asu™ 4 azu™ + . ..)

= /a(t)dt + /a(t)dit(alum1 + agu™? + azu™ +...)

= B(t) + > Bu(tyu™, (3.29)

s=1

where

B(t) = / a(t)dt. (3.30)
Bu(t) = / a(t)as(t)dt. (3.31)

The equation (3.23) can be written, on changing the independent variable from 7 to u and
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substituting for  in terms of ~, in a new form using the chain rule. First, we write

o =~y (=2Iny

1<:>au 1 9
o U= — —_— = —— = —1U
or 72

0%*u 2 3
R

87 87 ou L0y
o Oudr — Ou
D*y 0%y (EM) —1—@@_%827 .
ar2 ~ Ou?'or ou Or? ou? ou

and then we compute the following terms that are present in (3.23):

¢ 20y 2u? Oy

*C= or 787’ __%
., 0% 0 20y 2 0y, 2 0%y 2ut Oy .,  2utd?y  4dud oy
T (- R T R L B R
or Oor "~y Or or ~ Or ou v Ou (9u
,  Ov  Ovdu ay
e = = =
ar  duor 8u
v 0*v Ou., Ovdu 482 50V
”:—:— —_ g —_— 2
V= T o ey Tauar  Vae T o

Equation (3.23), now, becomes

I/,/_FCH_UV/_UC/_V/CI_‘__E+@:0@

2 2
T gt B Wy iy O 2o iy
or? ou ~v2 *0u 8u2 ou ou v Ou v Oudu

ut 8y 4u4 0
(o) s () =
2 \0u 272 0u

Multiplying throughout by —-J; we get

0?v dv 0y Oy oyov 1 Ov

ou? ou oudu 2
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We now substitute from (3.28) and (3.29) into (3.32). We first compute

[}
ou

v - me
5. =0 fathdt + ;/a(t)as(t)dtauu

82y ms—2
s Z/a(t)as(t)dtms(ms 1y
s=1

627 - ms—2
«— = Zasms(mS — Du™
ou —

Therefore (3.32) becomes

(14 a;u™ + asu™? + azu™ +

)[Z/a(t)as(t)dtms(ms — 1)u™! +3Z/&(t)as(t)dtmsumsl}

—l-QZasms ms— 1) m‘_l—i-GZasms -1 QU(Zasms ma—1y Z/ Yag(t)dt mgu™ 1)

> Bemi
s=1

s=1 s=1

1
—5(u+ aru™ M + au™ ! 4 agu™ T 4L )(Z / a(t)as(t)dt mau™ )2 = 0 <

my = D™+ Z Beagm(ms = D™t 3% famau™ 43 Z Boasmu®m !
s=1

+2 Z asms(ms — Du™ =" +6 Z asmsu -2 i Bsagmu®mst — Z B2m2u>ms !
s=1

s=1

1 00
_ - ﬂzmQa u3ms—1
2 s s'S
s=1
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Z u™! [ﬁsms(ms — 1)+ 38sms + 2asmg(ms — 1) + 6asms] + Zuzms_l [Bsasms(ms — 1) + 3fsmsas
s=1

s=1

1 e 1
2B = gAmE] + 3 ! [ gmian] =0
(3.33)

mi1—1

The lowest power of u turns out to be u . On equating its coefficient to zero we obtain

for s =1

fimy(my — 1) 4+ 368ymq + 2a;my(mq — 1) + 6aym; = 0 &
m%ﬁl —mq B+ 3Bimq + 2a1mf —2a1my; + 6aym; =0 &
m%ﬁl + 261mq + 2a1m% +4a1m; =0 &
mi(my +2)(2a; + 1) =0 (3.34)

2Zmi=1 and ™ ~!. Hence we have my = 2m, and, in general

The next two powers of u are u
ms = smy. It therefore follows from the indicial equation (3.34) that the only way in which
we can obtain a solution as a power series in u, is by taking m; = 1 and 2a; + f; = 0. This

relation, together with (3.30) and (3.31), gives

1

ay = —551 ~

. 1.

ay = —gﬁl g

. 1

a; = —5((1(11) 4

aq 1.
— = ——0. 3.35
D3 (335)

The coefficient of u?>™s~1 for s = 1 when equated to zero gives
2 Lo o
—Blalml + Qﬁlmlal — §ﬂlm1 =0.

Using my; = 1 and 31 = —2a; we get 4a? = 0. The coefficient of u™=~! for s = 2 when

equated to zero gives, as before,
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We see that

ma(my + 2)(2az + B2) = 4ai,

2mq—1 and umgfl

because the powers of u, u , must be equal. Proceeding with the calculation

while using mo = 2my and m; = 1 we get

2my (2my + 2)(2ay + Bo) = daf <
8(2as + Bo) = 4a} &
1
2as + P2 = 5&% = cyal.

Differentiating this relation with respect to ¢ and using (3.35) we get

209 + (B9 = Cza% &

d
2d2 + E a(t)ag(t)dt = 202(11@1 =
209 + aay = 2c0a101 &
261.2 -+ BCLQ = 262@1@1 =4
a 2
209 — 2—1(12 = 2ca101 & —(—
ay a1
a a
f2 _ 2 CoQ <=
ap ap
as2a7 — A2a
207 : 201 = Coa; &
a1aq
G207 — Q2a
207 5 201 :Czdl PN
ay
d a9 d
—(—)dt = [ —(coaq)dt &
/dt<a1) /dt( 21)
a9 — Cza%

So,

2a9 + ﬁg = Co0] <=
By = cgaf - 2cgaf &

By = —coa]
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Proceeding in this manner it soon becomes apparent that

2¢y,
a, = cpal, B, = —%a?, (3.37)

where the ¢, are constants. Hence, if the solution we are seeking exists at all, it must be of

the following form (using m; = 1, my = smy, u=1/r, a1 = p)

vy=1 —i—iasums =1 +§:asus =1 +§:csa‘ius =1 —l—ics (M>S (3.38)
s=1

s=1 s=1 s=1 r
= m = s scS = Cs (t) ’
v=B(t)+ ) _umB(t) = B(t) —2) wai =50 -2) (=~ (3.39)
s=1 s=1 s=1
with 1 .
[t
—pf=—-=. 3.40
5 p (3.40)
We can now show that 7, v given by (3.38) and (3.39) can be expressed in finite form. By

differentiating (3.39) with respect to r we get:
ov X e, (1)} 1
T 9N 2 TN
or ;ss(r> (t) < 7“2)
—  (p)\°1
—9 () =
()

(),

where we used (3.38) in the final step. By differentiating (3.39) with respect to ¢ we get:

RN
= 50) 22( )mt)
PN (O]
2 20 Ve
o hlt)
pult)
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where we used (3.38) and (3.40) in the final steps. Finally, we have

o 2(y—1) ov 20

hence,

0%v 2 20y 2 20y 2(v-1)

‘T TR e T E T e T T
g 1o, o 1. 24 0¢ 20,0y, p OC | OC 20y
.V—QUC<:>8r—2( 7>8r<:>( /L)a’f’—( )0r<:>0r v or
.a_QC 8(287) 2(87) 20%y
or?2  Or v or or v Or?

Hence, (3.23) becomes

0*¢ 0*v 1,0v OC o¢ov  1,0v, 1,0C,
o "o rar Tar) Tarer 2tar) T2l 0@
2@ 20,200 M) Ho) 2oy db-bon Lo 4o,
23 Or ~yOr?  ror 72 72 ~yr Or yr or 2 72 23 Or
2 _ _ _1)\2 2
20 20y A=l 20y 4=y 2=V L 07
v or2 ' ror 72 yr Or yro o Or r2
0%y oy Oy oy
2 A . . o A _1)2 —
" or? +7r8r T@r 29y = 1) = 2r(y 1)87“ vy =1 0=
0%y 0y oy
2 _ v . zr _ o _1)\2 —
v +r(y 1)(% 2r(y 1)8r 29(y =1 —y(v-1)"=0%
Py Iy
2077 97 2 1y _
raa =g - 1) =0 (3.42)

We solve this equation as if v were a function of r alone and then treat the constants of
integration as functinos of ¢. If we set

r=e¢* < x=Inr,
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then, we have

01‘ T,
*or 7 °©
82 1 —2x

‘o2 T 2T "
87 B'y ox 87
*or dzor oz

. Py 0%y (833) oy 0%x _ _ Py
or2 0z or Ox Or2 ~ Ox?

Substituting the above in equation (3.42) we get
2
eQx%e—Qa: . 6235%6—23: . e;t,yg;/ —x + e g;/

A particular solution of this equation is 7 satisfying

vy 2
N |
o Y )

—2x __

Iy
ox

—2x

-1 -1 =0

(3.43)

(3.44)

but this leads to a solution of Einstein’s equations, albeit involving just one function of ¢ of

integration, which is regular at » = 0. The general solution is found as follows. Let

W:%—yzﬂ, (3.45)
and assume W # 0. Using (3.43) we find
0? 0
8_;_78_7_ (¥-1)=0s
0%y o0y O
02 oy T Var (V¥-1)=0%
Py O O _
@—F (%—’Y —|—1)—2”ya—x—0<:>
0%y Iy
0w o= WE
Lo
Wiz~ o’ T
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But
oW 9%y 5 0y

0r 02 ox

So, the previous equation becomes

1 oW

TS TWoar

0
= —%(logW).

Putting this back to the right hand side of (3.45), we obtain

W= L (log W) — (2 (log W))? + 1
o 1w 1 oW,
“owa)  Uwas) !

Multiplying throughout by W we get

O*W

W2
* 02

- W =0.

We now multiply throughout by %—VX and integrate for x

2
/awawdxju/a—ww%—/a—wwczx:o@

Or 0z2 0x ox
1L,ow., W3 Ww?2
(2 O
) T3 T e
ow. ., 2W3 )
s _ — t
(G + e —wr =)

where C(t) is a function of integration. We see from (3.47) that

1 ,0W oW
2 = (Ve (O 2 oy
7_I/VQ((%U) (830) 7
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(3.47)
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Substituting into (3.48) from equation (3.47), we obtain

Low

2 _ =
o)t g =Ce
3
2W2+22V ~-W?=0C) &
oW C
2
B I
ot T e

30z 3 T3Tur "
o1, 200 C
3 3 30r W2
oy 9 3C
2— —1=—
8:1:+ Wz(:)
oy 2 oy 2 2
2— —1)(=— — 1) =3C
(8$+ )(ax 7 +1)

(3.49)

The expression (3.38) for 7 involves one "arbitrary constant", u(t), with respect to integra-

tions by r. It must, therefore, be obtained by means of a particular solution of (3.43). We

notice from (3.49) that the particular solution (3.44) is the singular solution of that equation.

The particular solution we require is, therefore, the alternative one provided by (3.49), i.e.

v 2
2— —1=0.
ox +
The above differential equation is easily solvable:

)
27 L 1=0s
ox

2 0Oy
/1_72%dx—/dx<:>

2arctanh(vy) =z + C; &

C
arctanh(y) = :v+2 !
C
v = tamh(gg+ N e
1— 6_2(z+2cl)
T e
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-C1 _

If we set the constant of integration as e £, then the previous equation becomes

_ bz
1 5€

T —
1+‘2—Le

Reverting to the variable r we, finally, have

1w

where now p is regarded as an arbitrary function of ¢. To write v in finite form we use

implied equation

v 2(y—1)
— = 7 &
or r
1_#(7:.) 1_;'_&?
L
— =
or r
Ov —t5
/B | RN
or 1+
ov 1 1
—dr =4 —)(——)d
/67’r /1—1—%(2)( r2)r<:>
I
v = 4log(1 + 1) 4+ (1)
Therefore,
t
v =[(t) +log(l+ %)4. (3.52)
The second implied equation is satisfied if

v [t

— =2 &

ot 7

P

27y I
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Using equation (3.24) we finally get

+)eb/2 y
at)e”” _ b
2y 7
By _ R
27 L
B p
= (3.53)

We can therefore say that, in terms of cosmical coordinates, the Schwarzschild field has the

form

ds? = eSrat? — e’ {dr? 4 r?(df* + sin’® 0d¢?)} <
ds® = 87 dt? — e {dr? + r2(d6? + sin® 0d¢?)} <
J40)

1m0 )\ 4
ds? — <1 5(;)) dt? — f®) (1 + %) {dr* + r*(d6* + sin® 0d¢p*)}, (3.54)
+ 5

which is known as the McVittie metric. The curvature of space is here supposed to be zero.

From (3.53) we find
s, L du)

%B(t) = —logpu(t) +c&

u(t) = % (3.55)

Substituting the previous in (3.54) we get

2
1— 5 m A\ 4
d2: 2a(t)r dt?_l e 2t d2 2d92 ‘29d2 3.56
s <—1 - (+2a<t>r>“<>“+” +sin?0d¢?)},  (3.56)

which is a more common form of the McVittie metric. This result can be generalized to take

account of the curvature of space when this is different than zero. For it is evident that in

48



a small region near the origin in which the curvature of space is negligible, the field must
be given approximately by (3.56), whilst in distant regions it must be (3.2). Thus, finally,
when the curvature of space is not zero, the Schwarzschild field in cosmical coordinates has
the form

2 4
1= mo 14 L2 (14 smy/1+ 302
ds® = 20 - dt* 200 ! a®(t){dr?+r*(df*+sin® 6d¢?)},

2
1t gy J1+ Lhr? (1+ fhr?)
(3.57)

where k represents the spatial curvature. For k = 0, it is evident that (3.57) reduces to
(3.56).
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Chapter 4
Properties of the McVittie Spacetime

In this chapter we will study the features and properties of the McVittie geometry. We begin
with a brief review of the McVittie solutions. As we saw earlier, in their simplest form they
have zero spatial curvature in the asymptotically FRW region, but can be easily generalized
to include non-zero positive or negative spatial curvature and even electric charge. We do
not expect that the spatial curvature of the FRW geometry to significantly alter the behavior
of the metric near a mass source as long as the gravitational radius of the mass m, or the
spatial extent of the region occupied by it, whichever is larger, is smaller than the radius of
curvature. Since this is presumably the case for astrophysical masses, we specialize to the
case of zero spatial curvature.

As a reminder, the McVittie solution is given by the metric

2
1 _m_ m A4
ds? = — | — 20} 24 (1 2(0{dr? + 12(d6? + sin® 0d¢? 4.1
s (HQJE?» +(+2a(t)r)a(){r+r( +sin?0dg?)},  (4.1)

where a(t) is the asymptotic cosmological scale factor, m is the mass of the source, and using
spatial translations we have chosen r = 0 as the center of spherical symmetry. We will first
prove that (4.1) is an exact solution of the field equations of Einstein’s General Relativity

for an arbitrary mass m provided that a(t) solves the Friedmann equation
SH2() = p(t). (4.2)

where p is the energy density T and H(t) = a(t)/a(t), the Hubble parameter.
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4.1 Basic features

The first thing we need to do to study the properties of the McVittie metric is to find the
field equations resulting from this particular geometry which describe the distribution of

energy density and pressure. Let the simplest action be
o, [B1
S = [ V=gd'z|5 = 56" 0,00,6) = V(9)]. (43)

which describes a time-dependent scalar field coupled to gravity with ¢ = det(g,,), R the
Ricci scalar and V' (¢) the potential of the scalar field. We assume a geometrized unit system,
i,e. ¢ = G = 1. In this unit system time is measured by the unit of distance which light
travels in this time (1sec = 3 * 10®m) and mass is measured by the unit of distance which
is half of the Schwarzschild radius of the mass (1kg = 7.4 x 1072®m), so to convert time in
seconds we multiply with 1/c and mass in kilograms with ¢?/G. Due to the action pinciple,
(4.3) will be invariant under variations with respect to the inverse of the metric tensor.

Variating with respect to the metric tensor we get:

0=145
_ / 2o [LOBY=9) 10(/=99"8,00,0) a(V(aﬁ)\/—_g)} S
L2 Jgw 2 dgh g g
[t —OR | OV=g, 10(/=99"0u,00,0) OV(O)V=9)]
_ / de|5(V=05m T R ) — 5 s S o9
_ [ L, O0R R Oy=g, 1 0=99"0ud¢) 1 OV(OV=9] 5 w
- /d "5 ggm V=g 9g ) 2V—yg 89“”u v=g  Og™ }ﬂag '

For the equation to be zero it has to be

OR R 0v=g _ 1 0(y=99"0,00,6) 2 0(V($)y=g) (4.4)
dgr V=g g™ =g Ogr V=g og™ '

(4.4) is the equation of motion of the metric field. The right hand side which contains the

scalar field is proportional to the energy-momentum tensor 7),,. For the left hand side, the

first term can be easily calculated to be

OR
Oghv = Ry,

(4.5)

where R, is the Ricci tensor. The second term can be calculated by using the Jacobi formula
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for the variation of the determinant of the metric tensor

077 V7

g g I

Thus, (4.4) becomes

where

1
G,uu = R,uzz - §guuR

is the Einstein tensor. The energy-momentum tensor is

oL 0V=99"0,00,9) 2 0(V(¢)V=9)
- dgh” V=g  Og"

oN—9 ., gt
[ g 9" OuB0u0 & 5 o/ =90,:60,0 +

[552: @)+ 53 =]

mﬁmm

1
= _§guvgaﬁaa¢aﬁ¢ + au¢au¢ - gu,,V(gb)

(4.6)

a<a ¢al/¢) ynz
V99"

2

[_ =99y ¢aﬂ¢+\/_au¢ay¢} +\/—_g[— SV =99uV (¢ )]

(4.9)

We suppose a spherically symmetric expanding universe that is described by the McVittie

solution (4.1). The components of the metric tensor are

m 2
Goo = 1 - 2a(t)r
00 —"\7, m |
L+ 2a(t)r

g = a*(t) <1 + %)4,
=01+ o'
g3 = r?sin” 0 a®(t) (1 + 2a721)r>4’
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while the components of the inverse metric tensor are

m 2
00 L+ 2a(t)r
g =- 1_ _m_ |
" 2a(t)r
m

" =a o)1+ 2a(t)'r>_4’

g =r"2a7%(t) (1 + ﬁ){

33 _ -2 ~2g 2 m_\*
g>” =r"“"sin"“fa (t)<1+2a(t)r> :

The next step is to calculate the energy-momentum tensor, the non-vanishing Ricci tensor
components and the Ricci scalar. Due to the assumption of the perfect fluid form of the

energy-momentum tensor

we get

. R
2a(t)r
Too = T goo = <1+—7(,?> p
2a(t)r

Ty = Tlgn = a*(0)(1+ >4p
H LI 2a(t)r

Toy = T22922 = r2a2(t) (1 + L>4P
2a(t)r

. m\4
Tss = T35 g33 = r*sin® 0 a*(t) (1 + 2a(t)'r’> D

T = g"T), = —p+3p.

Connecting the previous relations with (4.9) we find

14+-m \?
o) = (0T iy v, (4.11)
2 1—W
1+ 5o\
p(t) = L[ 1207 ) G2y (), (4.12)
2 1—W

which are the energy density and pressure, respectively. To calculate the non-vanishing com-
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ponents of the Ricci tensor we use the relation (3.12). For that, we have to find the Christoffel

symbols. After some algebra, the non-vanishing Christoffel symbols are the following:

0 dmra(t) 0 dmaf(t)
Foo (2a(t)r + m)(2a(t)r —m) For =T (2a(t)7’ +m)(2a(t)r —m)
ro _ _ t)Qa(t)r +m) 0 a(t)(2a(t)r + m)°

1 16r4a3(t) (2a(t)r — m) 27 1672 a3(t)(2a(t)r —m)
o _ sin? 0a(t)(2a(t)r +m)? ro_ 64ma®(t)r*(2a(t)r — m)

3B 16r2a3(t) (2a(t)r — m) 00 (2a(t)r +m)7

_a(t)(2a(t)r —m) o 2m
(2a(t)r +m) 1 r(2a(t)r +m)
rsin® 0(2a(t)r — m)

F(1)1—F0—F2—F%0:F33:F§o

I, = _w Tl = —
(2a(t)r +m) (2a(t)r +m)
(2a(t)r —m) .
[, =T% =0, =0%= rQalt)r +m) [, = —sinfcosf
cos 6
F%S - F32 - E

Knowing the Christoffel symbols we can derive the non-vanishing components of the Ricci

tensor which are the following:

R — 3(2a(t)r — m) [2ma®(t) — a(t)a(t)(2a(t)r + m)]
% (1) 2a(t)r + m)? )
R — (2a(t)r +m)*[a(t)(2a(t)r + m)a(t) + a*(t)(da(t)r — 4m)]
1674at(t)(2a(t)r —m) ’
Ry, — p2 (200 +m) [6(t) 2a(t)r +ma(t) + & (1) (da(t)r — 4m)]
16r*a’(t)(2a(t)r — m) ’

R —rzsnf@[@“( )r 4 m)!(t) (20 <t>r+m>a<t>+a2<t><4a<t>r_4m”]
we 16r4at(t)(2a(t)r —m) '

The Ricci scalar can easily be calculated:

[(2a(t)r — 3m)a2(t) + a(t)a(t) (2a(t)r + m)]

R=g"R,, =6 a?(t)(2a(t)r —m)

(4.13)
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The non-vanishing components of the Einstein tensor (4.8) are:

L (m— 2a(t)r)*a*(t)
Goo =3 5y (m + 2a{)r )2

o artm [(2a(t)r = 5m)a2(t) + 2a(t)a(t) 2a(t)r + m)|
e 16r4a’(t)(2a(t)r — m) ’
a0 £ m)* [ Ga(tr - Sm)il(t) + 20(t)it) 2a(t)r + m)
2 16r4at(t)(2a(t)r — m) ’
e 2attr £ m)’ [(2a(t)r = 5m)a(t) + 2a(t)a(t) 2a(t)r + m)]

16rat(t)(2a(t)r —m)

Using (4.7) we prove that there are four Einstein field equations, the tt,rr, 00 and ¢¢, where
rr, 00, ¢¢ are identical:

o (tt): SZzEg =p (4.14)
(2a(t)r — 5m)a®(t) + 2a(t)a(t)(2a(t)r +m)
o (rr,00,00): — =p (4.15)

a?(t)(2a(t)r —m)

We have proven that McVittie solution is an exact solution of Einstein’s field equations for
an arbitraly mass provided that a(t) solves the Friedmann equation (4.14). Surprisingly, the
energy density is constant along slices of ¢. It scales with the cosmic scale factor and controls
the overall expansion rate of the universe exactly as in a standard FRW geometry with scale
factor a(t) and Hubble parameter H (t).

The pressure on fixed t—slices of the geometry (4.1) is not homogenous. From (4.15) we
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get

_ [(2a(t)r = 5m)a() + 2a(t)a(t) 2a(t)r + m)] o
p= a?(t)(2a(t)r —m)

o (a(t)r —5m) () (2a(t)r + m)
p=—H(1) (2a(t)r — m) 2a(t) (2a(t)r —m) -

_ 2 (2a(t)r +m) a(t) (2a(t)r +m)
p=—H() [3 *@alt)yr - m)} ~ 20 @atr—m)

s pfialt) — @) 2a(t)r +m)
p=—3H(t)—2 a(t (2a(t)r —m) <

9 (1 + Qan:)r) :
b _aE 2 i), (4.16)
(1 -zt

where H(t) = a(t)/a(t) is the Hubble parameter. We observe that the pressure has two
contributions: a homogenous term o H2, and an inhomogenous part o< H. To understand
the role of the second part, note that one expects the mass to break the homogeneity of the
energy-momentum on spatial slices. It should pull matter in from the FRW fluid around it,
making the energy density inhomogenous. This does not happen in the McVittie solution
cause the energy density (4.14) is a function of the cosmic time alone'. Therefore, something
must cancel the gravitational attraction of the mass, and that non-gravitational balancing
force is provided by the gradient of the pressure (4.16).

The Ricci scalar (4.13) can be brought in a simpler form as follows:

. |(2a(t)r = 3m)a(1) + a(t)a(t) 2a(t)r + m)|
- 2 (1) 2a(t)r —m) <
_a*(t) (2a(t)r +m) (2a(t)r +m) a(t)
R=G(12- S 2t = m)) 0 Gty —myat) ©
@) @) al)r +m) | (2a(t)r +m)a(t)
R=1250 7520 @awyr =m) T @atyr—m)at) ©
_ @) | (2a@®)r +m) (a(t)a(t) — a*(1))
B=P00  amr—m e
R =12H*(t) + 6MH@). (4.17)
(1 o Qa?;)r)

'We call this time coordinate the "cosmic time" since it reduces to the usual comoving FRW time when
the mass source is absent, and asymptotes to it far away from the source when the mass doesn’t vanish.
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From the above form of the Ricci scalar we see that the McVittie solution has two
curvature singularities, one at a(t) — 0, which describes the singularity at the center of
spherical symmetry with infinite energy density and pressure, and one at m = 2a(t)r, where
the pressure goes to infinity, the singularity is spacelike, extends all the way to spatial infinity
and should be viewed as a cosmological big bang singularity.

The McVittie solution should be thought of as a special case of a larger class of geome-
tries describing masses in FRW. McVittie is the special case where the mass parameter is
constant, the energy density is homogenous, and its inhomogenous pressure is the necessary
and sufficient price one pays for these features.

The initial big bang singularity is absent when H = 0, and in fact the geometry (4.1)
reduces to the Schwarzschild or Schwarzschild-de Sitter solutions (for H = 0 and H # 0
respectively). The hypersurface m = 2a(t)r is perfectly regular in those cases, being the
event horizon in the Schwarzschild case, and a spacelike hypersurface inside the event horizon
in the Schwarzschild-de Sitter geometry. Their black hole singularities remain censored by

the event horizon and cannot be seen by exterior observers.

4.2 Coordinate transformation

In the case a(t) = 1 the McVittie solution reduces to a black hole in flat space. It can easily
be shown that setting @ = 1 in the metric (4.1) gives the Schwarzschild solution in isotropic
coordinates. These coordinates have the unfortunate feature that the coordinate r covers
the exterior of the black hole twice: m/2 < r < 0o covers the same region, the exterior of
the black hole, as 0 < r < m/2.

For this purpose, we use another coordinate choice which more closely imitates the famil-
iar static form of the Schwarzschild or Schwarzschild-de Sitter metric and helps us to easily

study McVittie’s causal structure. The new radial coordinate is defined by

Rir.t) = (1+ ﬁra(t)r, (4.18)

where R turns out to be the spherical area coordinate, i.e. the areal radius of a sphere with

surface area 4mR% To transform (4.1) with respect to the new radial component we first
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have to calculate the differential dR:

dder(a(le%)Z—Zar(l—i-ﬂ)( m )) +dt<dr(1+%)2 —2ar(1+ﬂ)( ma ))

2ar’ *2ar? 2ar’ \2a?r
m m m m m
m m

Finally, we have that
dR

Ca(l+3n) (- 5)

Before we substitute (4.19) into (4.1), we have to calculate the following; by using (4.18),

dr

— Hrdt. (4.19)

the time component coefficient becomes:

2
Loom N\ fq me(ta) N2
(—Hﬁ) :( o[t 2) (4.20)
2ar 1_}_%a(1+ﬁ)

R

If we evaluate the previous as » — oo and perform a series expansion, we get:

1 m\’ m 2
(ﬁ) :1—%+O<(}%)>. (4.21)

We can, also, calculate the following as r — oc:

2 2
14 1_m 1 14 _m 1
| ) T md () = il :
1= 1+ 3% 1-% 1= 2 T+ar) J1i—2zm

(4.22)
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By substituting (4.19), (4.21) and (4.22) into (4.1) we get:

2
1 _m_ m N4
ds? — — [ —200r ) g2 (1 ) 2t<d2 2d92>
i <1+—m * +2a(t)7“ a’(t){dr 4

2a(t)r

2 2 2
(=g R—Q( ir — Hrdt)" + R0

R r2 \a(1+ %) (1 - 5%)

2 2 2 2H
= —(1-)de* + %( Yemm L L — H2r%dt?) + R2d52?

a1t o) (- i) o ag) (- )
2

2 14 2= 1+
= (1= 22 eRyae o+ (2 ) ar? —omR( <2 ) aRdt + R0

R - -

1 2H (1

= —fdt* + dR? ﬂd}zdt + R*dO?, (4.23)

2m
B N
where f =1 —2m/R — H?(t)R? and dQ? = df? + sin®@d¢?. When H = const, this is the
Schwarzschild-de Sitter metric in coordinates which are analogous to outgoing Eddington-
Finkelstein coordinates for a flat space Schwarzschild black hole.

The last important quantities that we need to transform in order to study the causal
structure are the energy density, pressure and Ricci scalar. Of course, the energy density
does not change through the transformation. By using (4.22), the inhomogenous pressure
(4.16) and Ricci scalar (4.17) become

p=—3H(t) — Q;H(t), (4.24)
-

R =12H*(t) + 6;}'](15). (4.25)
-2

We see directly that after the coordinate transformation, there are still two singularities in
our spacetime; as before, a(t) — 0 is a singular point where the energy density, pressure and
Ricci scalar diverge and R = 2m is the singular point of spacetime equivalent to m = 2ar,
where the pressure and Ricci scalar diverge and this is the point of the so called McVittie

big bang singularity in the causal past.
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4.3 McVittie’s apparent horizons

A feature of the geometry often helpful in understanding its causal structure is the appar-
ent horizon, a surface where at least one congruence of null geodesics changes its focusing
properties. As it crosses the apparent horizon this family of geodesics flips from converging
to diverging (or vice versa).

To better understand the dynamical apparent horizons of McVittie geometry it is impor-
tant to first study the Schwarzschild-de Sitter-Kottler black hole which has almost the same

apparent horizon solutions.

4.3.1 The Schwarzschild-de Sitter-Kottler black hole

The Schwarzschild-de Sitter-Kottler solution is the prototypical solution representing a black
hole embedded in a cosmological background (for a certain range of parameter values). We
will discuss the McVittie metric by using an analogy with the Schwarzschild-de Sitter-Kottler
metric, even though the latter corresponds to a very special situation by admitting only a
static black hole in the de Sitter background.

The spherically symmetric Schwarzschild-de Sitter-Kottler solution of the Einstein equa-

tions has line element

ds* = —(1— ZTm — H*r*)dt* + (1 - QTm — Hzrz)flalr2 + 7r2dQ?, (4.26)
where r is the areal radius of a sphere with surface area 4712, dQ? = d6? + sin? #d¢? is the
metric on the unit 2-sphere, the constant H = \/A_/3 is the Hubble parameter of the de
Sitter background, A > 0 is the cosmological constant and m > 0 is a second parameter
describing the mass of the central inhomogeneity.

To calculate the location of the apparent horizon we utilize the Misner-Sharp mass.
Misner-Sharp mass is a quasilocal mass of a gravitational field, i.e. defined on a boundary
of a given region in spacetime. To find the Misner-Sharp mass of a spherically symmetric

spacetime we use the definition
R B
mM5<t,7’) = 5(1 — g 8QR85R), (427)

where R is the areal radius and o, run from 0 to 1. To find the apparent horizon we

search for marginally trapped surfaces. Any surface inside the trapped region must satisfy

60



the relation

T =A{(t,r): R(t,r) <2mpys(t,r)}, (4.28)

where the outermost trapped surface, i.e. the apparent horizon, occurs when the equality
R(t,r) = 2mp5(t,r) holds. The areal radius of the Schwarzschild-de Sitter-Kottler metric
is r, therefore

mys = g(l — g“béar(?br) =
2mars = (1 — g™ (0,1)%) &

2
2mpys =r(1 — (1 — il H*r?))
r
2mMg:2m+H2r3.

The outermost trapped region occurs when r = 2m),g, therefore

r=2m+ Hr’

2

|y L ) IR (4.29)
T
g7 =0. (4.30)

In general, the location of apparent horizons for a spherically symmetric system can be
calculated from (4.30). Thus, the apparent horizons for the Schwarzschild-de Sitter-Kottler
solution are defined by the positive roots of the cubic equation (4.29).

Equation (4.29) can be solved by using the method outlined by Nickalls [12]. Following
his method the roots may be written as

2y
ry= sin 6,
YT BH
L osf— 1 ing (4.31)
To = — COS — S1n s .
‘T H V3H
Lo,
rg = —— Cos ) — sin 0,
T H V3H

where sin(36) = 3v3mH. Since m and H are both necessarily positive cause we consider an
expanding universe, r3 is negative and therefore unphysical. We thus refer to this spacetime
as having only two apparent horizons. We refer to r; as the black hole apparent horizon,

since it reduces simply to Schwarzschild horizon at 2m if there is no background expansion
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(H — 0), and we refer to ry as the cosmological apparent horizon, since it reduces to the
static de Sitter horizon at 1/H if there is no mass present (m — 0). The metric (4.26) is
static in the region covered by the coordinates (¢,r,6, ¢), which is comprised between these
two horizons.

A number of interesting observations can be made. First, both apparent horizons only
actually exist if 0 < sin(30¢) < 1. In this case, since the metric is static between these
two horizons, the apparent black hole and cosmological horizons are also event horizons
and, therefore, null surfaces. Second, if sin(360) = 1 it is easy to show that these horizons
coincide at 7, = ry = 1/(v/3H). This case corresponds to the Nariai black hole. Finally, for
sin(30) > 1 both horizons become complex-valued and therefore unphysical, and one is left

with a naked singularity. These results can be summarized as follows:

mH < 1/(3V3) — 2 horizons 7, and 7,
mH =1/(3v3) — 1 horizon ry =, = 1/(v/3H),
mH >1/(3v/3) — no horizons.

The Hubble parameter for an idealized de Sitter background is a constant, whereas more
realistic models, like the McVittie solution, incorporate a time-dependent Hubble parameter.
With a clear understanding of the static horizons in the Schwarzschild-de Sitter-Kottler
spacetime, we may now study the dynamical horizons which emerge by considering the
McVittie solution.

4.3.2 Apparent horizons of the McVittie metric

We now consider the McVittie metric for a black hole embedded in an FRW background
which is expanding with the Hubble flow. Here the Hubble parameter is H(¢) = exp(~/A/3t),
where the McVittie metric actually corresponds to the Schwarzschild-de Sitter-Kottler solu-
tion via a simple transformation of the time coordinate.

To calculate the location of the apparent horizon we utilize the Misner-Sharp mass, as
before. To find the Misner-Sharp mass of a spherically symmetric spacetime we use equation
(4.27) where R is the areal radius and «, § run from 0 to 1. To find the apparent horizon we
search for marginally trapped surfaces. Any surface inside the trapped region must satisfy

the relation
T =A{(t,r): R(t,r) <2mpys(t,r)}, (4.32)
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where the outermost trapped surface, i.e. the apparent horizon, occurs when the equality
R(t,r) = 2myss(t,r) holds. The areal radius of the transformed McVittie metric (4.23) is

R(t,r) =a(t)r(1+ QGE)T)2, therefore

muys = §<1 — g“baaRabR) ~

ZmMs = R(l — gRR((?RR)2).

To continue the above calculation, we first have to find the inverse metric tensor of the

tranformed McVittie solution. The metric tensor is

[ (1 _ 2m _ g2 2y _ _H@®HR ]
(1 = H*()R ) Jiom/R 0 0
____HMR 1 0 0
G = V1—2m/R 1-2m/R (4.33)
0 0 R? 0
i 0 0 0 RZsin? 0

thus, the inverse metric tensor will be

1-2m/R \/1-2m/R
—AWR (-2 2R 0 0
g = | T 2min (1— 2% (t)R?) (4.34)
0 L0
R2
L 0 0 R? slinﬁe_
Therefore,
2m 9 9
2mys = 2m + H*(t)R>.
The outermost trapped region occurs when R = 2m,g, therefore
R=2m+ H*t)R® &
2
1 %‘ ~H*OR* =0 & (4.35)
gt =0. (4.36)

Equations (4.35) and (4.29) are almost identical but with the replacement H — H ()
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and r — R. Therefore the roots of (4.35) can be writen as

2
Ry(t) = N0 7
1 1 .
Ry(t) = 0] cosf — m sin 6, (4.37)
Rs(t) = b cosf — ! sin 6,

H(t) V3H(t)

where sin(30) = 3v/3mH (t). Of course, we set aside the solution R3(t) as it is negative, thus
unphysical. Since the apparent horizons for the McVittie metric are dynamical, rather than

static, their relative locations now depend on the cosmic time.

4.3.3 Dynamics of the apparent horizons

Analogous to the Schwarzschild-de Siter-Kottler case, sin(30) = 3v/3mH (t) and the condition
for both horizons to exist is 0 < sin(30) < 1, which corresponds to mH (t) < 1/(3v/3) and
of course mH(t) > 0, which is always satisfied. However, unlike the former case where the
Hubble parameter is constant, this inequality will only be satisfied at certain times during
the cosmological expansion, and not at others. The time at which mH(t) = 1/(3v/3) is
unique for a dust-dominated background with a(t) oc t¥3, H(t) = 2/(3t), and we denote it

t, = 2¢/3m. The three cases may then be characterized as:

(i) t <t.: at early times m > 5 fH( , so both Ry (t) and Ry(t) are complex and therefore

unphysical. There are no apparent horizons.

(ii) ¢t = t,: at this time m = 3fH and the horizons R;(t) and Ry (t) coincide at a real,

(t)
physical location. There is a single apparent horizon at \/i’;;H(t)

(i) t > t.: at late times m < 3fH( , so both Ry(t) and Ry(t) are real and therefore

physical. There are two apparent horizons.
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— Cosmological Apparent Horizon

— Black Hole Apparent Horizon

Figure 1: The behavior of McVittie apparent horizons versus time in a dust-dominated
background universe. m = 1 is arbitrarily fixed, hence time and radius are measured in units
of m. We observe that the coincidence of the apparent horizons happens at t, = 2v/3 = 3.46.
The black dashes denote the cosmological horizon R(t) = 1/H(t) = 3t/2 and the green
dashes the black hole horizon R = 2m.

The qualitative dynamical picture which emerges from this analysis is the following. The lack
of apparent horizons for ¢ < t, leaves a naked singularity at R = 2m, where the Ricci scalar

and pressure also diverge. This is explained by the divergence of the Hubble parameter H ()

in the early universe, causing the mass m to remain supercritical, i.e. causing m > m to

be satisfied. Analogous to the Schwarzschild-de Sitter-Kottler solution, a black hole cannot
be accommodated in such a small universe.

At the critical time t, a black hole apparent horizon appears and coincides with the

1
V3H(t)
background this may by given as Ry = Ry = 3m. This is analogous of the Nariai black hole

cosmological apparent horizon at Ry (t) = Ra(t) = . For a dust-dominated cosmological
in the Schwarzschild-de Sitter-Kottler solution, but it is instantaneous.

As time progresses, t > t,, the single horizon splits into a dynamical black hole apparent
horizon surrounded by a time-dependent cosmological horizon. This solution can progres-
sively constitute a better and better toy model for a spherical, non-accreting astrophysical
black hole in the late universe mH (t) < ﬁg ~ 0.192. The black hole apparent horizon
shrinks, asymptoting to the spacetime singularity at 2m from above as ¢ — oo, while the
cosmological apparent horizon expands monotonically, tending to 1/H () in the same limit
(Figure 1). Of course, the actual universe is not dust-dominated but the previous toy model

provides some theoretical insight.
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Chapter 5

Gravitational Collapse of a
Homogeneous Scalar Field in the

McVittie Spacetime

In the final chapter of this thesis we study the gravitational collapse of a homogeneous scalar
field in the McVittie geometry. In the following, we derive the Einstein field equations and

Klein-Gordon equation that arise from McVittie’s metric. We consider the following action

5= [ vEadta[g - A= 5(00,00,0) - V(o) (5.1)

which describes a time dependent scalar field coupled to gravity with cosmological constant
A, g = det(g,,) and R the Ricci scalar. We assume a geometrized unit system, i.e. ¢ =G = 1.
Again, let us point out that in this unit system time is measured by the unit of distance
which light travels in this time (1sec = 3 % 10%m) and mass is measured by the unit of
distance which is half of the Schwarzschild radius of the mass (1kg = 7.4 * 1072®m), so to
convert time in seconds we multiply with 1/c and mass in kilograms with ¢?/G. Due to the
action principle, (5.1) will be invariant under variations with respect to the metric tensor
and the scalar field ¢.
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5.1 Derivation of Klein-Gordon equation

To find the equation of motion of the scalar field we must variate with respect to the field

¢. Variating the action with respect to the scalar field we get:

0=105
[ a J1O(RV=g) I(Ay/—g) 19(y/~g9" 0,90,9) 19(y/—99" 0,¢0,9)
B / d x[ﬁ By %9 = By 0-3 oo 0-3 D(0x0) 0(0:9)
ROV
06
_ 19(y/~99"0,90,9) IV (6)v/—9g)
- [ 3700 - S
But we know that
IV=99"0,90,0) . \ . (9(v/=99" 0,00, 0) I(\/—g9" 0,00,9)
T ame o) =T g )T o)
So,
0=05
(11, (9(/=99"0,.90,9) 1, (90(v/~99"0,900,0) OV (p)v/—9)
= / 50 ( 9(0.0) )36~ 50:( 9(0.0) 59) = =G0

The second term of the above relation can be set equal to zero because it is a total derivative

that gets out of the integral and vanishes at the boundaries. We then see that

0=08
- / 19, (A0 000,00y OVON D)1,
27 D(0x0) 96
For the variation of the action to be zero the following equation must hold
Ly (AW=5970,60,0)y OV (9)v=g) _
§8H< 8(5’,@@?)) > B B =0 (5.2>
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The first terms can be simplified as follows:

2

1 (0(V=99"8,00,0)\ 1. (00u8) o  —  000®) s
50x( 50 ) = aﬁ(—(m@g 20V=9+ 550579 OuiV/=9)

1
- §am(5;mglwau¢\/ —g + 5Vngw/8u¢\/ _g)

= SO D0V + "0/ )

1
= §an(gﬁuau¢\/__g + g'lmau¢\/__g)

1
= S0:(200,07/=9)

= 9u(9"" 0V =)
= 9u(9" v/ —9)

The second term is simply:

O(V(d)y—yg) _ 9V(¢) V=Y
- 96 Sy \/—_Q—V(¢)3—¢

= —v—=9Vs

where axg((;s) = V. Substituting the previous in (5.2) we get the Klein-Gordon equation for

the scalar field

0u(g" 00V —g) =V =gV =0 &

00 0,0v0) Vo =0 (5.3)

We suppose a spherically symmetric expanding universe with cosmological constant that is

described by the McVittie solution (4.1). The components of the metric tensor are

m 2
Joo = 1_2at)r
o0o=—"\—7""—"70"1">
L+ 2a(t)r

g11:a2(t)<1+ m )4,

2a(t)r
4
— 2220 (1 m
922 ra (t>< + QG(t)T') )
_ 2020 2 mo 4
gz =r"sin"fa (t)<1+ 2a(t)r> ,
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while the components of the inverse metric tensor are

2

00 __ 1+2a()

g == 1 _m |
2a(t)r

11 72
= 14—
g ¢ < 2at'r

g* =1 (1 * 2aZ)r>4’

—4

33 _ -2 ~2g 2 m o\
g>” =r"“"sin"“fa (t)<1+2a(t)r> :

Due to the time dependence of the scalar field, the Klein-Gordon equation becomes

1 + 2am ) ’

2 o
T 2a()r

m

_ 2a()r \ 2. 3 m_\©
V—g=+/—detg, = <1+ — >r sin fa <t><1+2a(t)r> :

2a(t)r

—V, =0,

-

1
NS

where

After some algebra we get final form of the Klein-Gordon equation

a(t)a(t)r +m)*  a(t)(2a(t)r +m)? a

2a(t)r + m) 2

Vo =t )<2a(t)r —m

+¢“ﬁ%ﬂﬂ@qu—mﬁ‘””Ma@awr—nnB_ﬁ”q

69



5.2 Derivation of Einstein’s field equations

To find the Einstein’s field equations from the action (5.1) we must variate with respect to

the inverse metric tensor g"”. Variating with respect to the metric tensor we get:

0=0S
_ /d4I -1 a(‘R\/ _g) . a(/x\/ _g) o la(\/ _ggwjaugbaugb) - 8(V(¢>) V _g)]5 uv
= g
L2 Ogw gt 2 gt gt
B 1 OR IN—=g ov=9) 10(/=99"0,$0,0) OV (OIV=9)«
= /d41‘ -5(\/ _g_aguy + R 89/“’ ) —A 89“” - 5 89“” — agMV i|(5g'”‘
— /d4I -1( OR + R a\/ _g) . A a(\/ _g) o 1 a(\/ _gglwaugbaugb)
L2 0g  \/—g Og* V—g Og 2\/—g dghv

1 0(V(é)v=9) o
V=g Ogv ]\/__959 '

For the equation to be equal to zero it must hold

OR R ov=g 2A 0v=g) 1 0(V=99"0,¢0,¢) 2 OV($)v—9g)
Ogr =g 0g" =g Og" =g g V=g ogv
(5.5)

(5.5) is the equation of motion of the metric field. As before, the right hand side which
contains the scalar field is proportional to the energy-momentum tensor 7). For the left

hand side, we know that

OR
g =R, (5.6)
and
N
agwj - 2 g,uu (5 7)
Thus, (5.5) becomes
R —qg 2A —qg
Rt —oe (<Y g, - 2 (Vg )1,
V=g 2 V=g 2
1
Ry, — §gWR + Mg = T
G + Mg =Ty, (5.8)
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where
1

Gul/ = R/Ll/ - §QWR (59)
is the Einstein tensor and (5.8) are the Einstein’s field equations with cosmological constant

A. The energy-momentum tensor remains the same as (4.9):

1
T = —égﬂugaﬁ o050 + 0,00,¢ — 9,0V (¢) (5.10)

We have already calculated the energy-momentum tensor components, the energy density
and pressure associated with the energy-momentum tensor, the non-vanishing Christoffel
symbols, the Ricci tensor components, the Ricci scalar and the Einstein tensor on Chapter

3. Using the above, the Einstein’s field equations (5.8) reduce to the following:

o (it): 3238; =p+A
[(2@(15)7“ —5m)a®(t) + 2a(t)a(t)(2a(t)r + m)
o (rr,00,¢0): — =p—A

a?(t)(2a(t)r —m)

Utilizing (4.11) and (4.12) we get the final form of Einstein’s field equations:

. i (1) a(tyr+m\’
(tt) : 3a2(t) ( 2a(t) = ) *(t) + V(p) + A (5.11)
' [(2&( )r —5bm)a*(t) + 2a(t)a(t)(2a(t )7‘+m)} 1 2a(t)r +m c
o (rr,00,0¢) : — 20 2alDr —m) =3 (m) ¢°(t) = V(p) — A

5.3 Gravitational collapse with zero potential

We are going to study the case of the collapsing spacetime to be flat, that is £ = 0, and the
scalar field to not have self interaction terms, that is V(¢) = 0. The system of differential

equations that we have to solve is the one consisting of the tt Einstein field equation and the
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Klein-Gordon equation. In this case the system will be:

e tt Einstein field equation

REON. (Qa(t)r +m

2(t) 2

=5\ 22— m) PP(t) + A (5.13)

e Klein-Gordon equation

- 2a(t)r +mN2 . a(t)(2a(t)r +m)? a(t)(2a(t)r +m)? a(t)2a(t)r +m) 7

o(t) (Za(t)r ) o [ga(t)(Qa(t)r o " @ar —mp " a(t) (2a(t)r — m)2] =0
(5.14)

To solve the above system we solve (5.13) for ¢(t) and substitute the result into (5.14). Thus,
we have an equation that depends only on a(t) and its respective derivatives and we solve
it numerically. The gravitational collapse condition will be a(t) < 0, and the singularity
will form at a(ts) = 0, where t; denotes the time that the singularity is reached. We can
also see the evolution of the scalar field with respect to time. To do that, we substitute a(t)
and its respective derivatives, that we have found numerically, in (5.14) and solve for ¢(t),

numerically. Finally, we can calculate the energy density and pressure

p(t) = 3H?(t) — A, (5.15)

p(t) = —3H*(t) - 27 H(t) + A, (5.16)
where H(t) = a(t)/a(t). Of course, we see that p(t) = p(t) from (4.11), (4.12), in the case
where V(¢) =0, so (5.15) and (5.16) must be equal too.

For example, by choosing » = 5, A = —0.0015 and m = 1 we get the following figures
describing the behaviour of the scale factor a(t), the scalar field ¢(t), the energy density and
pressure p(t), p(t) with respect to time.
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-1

-2

Figure 3: Behaviour of the derivative of the scale factor a(t). Gravitational collapse is

starting when a(t) < 0.
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T e R L
Figure 4: Behaviour of the scalar field ¢(t). ¢(t) — oo as the singularity is reached.

From the previous figures it is evident that when a(t) < 0 the gravitational collapse be-
gins and when a(t) = 0 the singularity is formed. When the singularity is formed ¢(t)

diverges, which is consistent with the singularity formation.

Energy Density

----- Pressure

Figure 5: Evolution of energy density and pressure with respect to time.

We observe that the energy density and pressure are, indeed, identical as we stated above
for the case where V(¢) = 0. It is obvious from (4.11) and (4.12) that if we switch on the
potential the energy density and pressure will start to deviate from each other depending
on the strength of the potential and, of course, the form of the potential that we would

introduce to the system.
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5.3.1 Singularity formation with respect to the cosmological con-
stant
We, firstly, run our simulations for McVittie mass m = 1, radius r = 5 and choose various

values for the cosmological constant A. In the following figures we see the behaviour of the

scale factor and scalar field as the singularity is reached.

a(t)

— A =-0.001

— A =-0.0012
— A =-0.0015
— A =-0.0017

Figure 6: Behaviour of the scale factor for various cosmological constants. The singularity
is reached at a(t) = 0.

0.2

— A =-0.001

— A =-0.0012
00— — A =-0.0015

— A =-0.0017

-0.4

Figure 7: Behaviour of the derivative of the scale factor for various cosmological constants.

Gravitational collapse is starting when a(t) < 0.
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— A =-0.001

— A =-0.0012
A =-0.0015
— A =-0.0017

Figure 8: Behaviour of the scalar field ¢(t) for various cosmological constants. ¢(t) — oo

as the singularity is reached.

From the previous figures we observe that as the absolute value of the cosmological con-
stant A increases the collapse and singularity formation time decreases (Figure 6, 7). We
understand that A acts as a dynamical term in the system. That happens due to the at-
tracting nature of the negative cosmological constant, that we introduced, that accelerates
the collapse of the scalar field and as its absolute value increases the gravitational collapse
happens faster. If we consider the cosmological constant as A = —3/I%, then it defines a scale
[ in the AdS, space, therefore the decrease of the collapse and singularity time is understood
as the result of the scalar field having less distance to travel through the AdS, space.

In this situation, it is redundant to plot the behaviour of pressure and energy density
because the changes on the cosmological constant are so small that make the deviations on
the plots negligible. All the pressures and energy densities coincide for the values that we

have chosen for the cosmological constant.

5.3.2 Singularity formation with respect to the McVittie mass

We, now, run our simulations for cosmological constant A = —0.0015, radius » = 5 and
choose various values for the McVittie mass m. In the following figures we see the behaviour

of the scale factor, scalar field, energy density and pressure as the singularity is reached.
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3 3 3 3
I
W N =2 -

Figure 9: Behaviour of the scale factor for various McVittie masses. The singularity is
reached at a(t) = 0.

‘Jt —

60

3 3 3 3
n
W N = -

Figure 10: Behaviour of the derivative of the scale factor for various McVittie masses.

Gravitational collapse is starting when a(t) < 0.
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3 3 3 3
I
W N =2 -

|
60t

Figure 11: Behaviour of the scalar field ¢(¢) for various McVittie masses. ¢(t) — oo as the

singularity is reached.

p(t)

3 3 3 3
nonon
W N =2 -

2:0
Figure 12: Behavior of the inhomogenous pressure p(t) for various McVittie masses.

We observe that as the McVittie mass increases the collapse time as well as the singularity
formation time also increase (Figure 9, 10). This behaviour can be understood from the fact
that the McVittie mass plays the role of a friction term in the collapsing process. So, as mass
increases, the singularity formation and gravitational collapse of the scalar field is delayed.
Moreover, we see from Figure 12, that as mass increases, pressure and energy density get
larger, which is expected from (4.11) and (4.12).
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5.3.3 Singularity formation with respect to the radius

Finally, we run our simulations for cosmological constant A = —0.0015, McVittie mass m = 1
and choose various values for the radius r. In the following figures we see the behaviour of

the scale factor, scalar field, energy density and pressure as the singularity is reached.

a(t)

—_r=2
—Tr=5
—r=10
— =30
— =50

60

Figure 13: Behaviour of the scale factor for various radii. The singularity is reached at
a(t) = 0.

—_r=2
—r=5
— r=10
— r=30
— =250

Figure 14: Behaviour of the derivative of the scale factor for various radii. Gravitational

collapse is starting when a(t) < 0.
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_r=2

—1r=5
r=10
— r=30
r=50

Figure 15: Behaviour of the scalar field ¢(t) for various radii. ¢(t) — oo as the singularity

is reached.

p(t)
—r=2
—r=5
r=10
— r=30
r=50

Figure 16: Behavior of the inhomogenous pressure p(t) for various radii.

In this situation, we observe that as the radius decreases the collapse time and singularity
formation time increase (Figure 13, 14). Furthermore, we see that as the radius increases
further, the singularity formation time seems to reach a minimum threshold value around
t ~ 46. This can be explained from the fact that as r tends to large values, the McVittie
metric tends to its FRW limit, where there is no r» dependence. Finally, we see that as the
radius increases, energy density and pressure get smaller, which is expected from (4.11) and
(4.12).
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5.3.4 Conclusions

In this chapter we studied the gravitational collapse of a homogeneous scalar field coupled
to gravity in the McVittie spacetime with zero potential. The most important conclusions

are stated below:

(i) The increment of the absolute value of the cosmological constant causes the reduction
of the collapsing time and singularity formation time. That happens because A is a

dynamical term that attracts the scalar field faster as its absolute value increases.

(ii) The increment of McVittie mass causes the increase of the collapsing time and singu-
larity formation time. That happens because McVittie mass acts as a friction term

and as it increases it is more difficult for the scalar field to form a singularity.

(iii) The increment of the radius r causes the collapsing time and singularity formation
time to decrease. From a point on, the increment of radius does not play a role in the

collapsing process because the metric tends to its FRW limit.

(iv) The absence of potential "destroys" the inhomogeneity of the pressure.
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Appendix A

Mathematica Code

A.1 Gravitational Collapse for Various Cosmological Con-
stants

(* Gravitational Collapse for Various Cosmological Constants x*)

radius = 5;

mass = 1;

time = 100;

Lambdal = —0.001; Lambda2 = —0.0012; Lambda3 = —0.0015;

Lambda4d = —0.0017;
Do|Lambda = j;

(xxxxxxxxx Tt Finstein equation — xxxxxxx)

Friedmann = —-L + (3 a’[t]"2)/
alt]”2 — (1/2) ((m+ 2 a[t] r)/(m— 2 af[t] r))"2 f’[t]"2;

(*xxxxxxxx Klein—Gordon equation — xxxxxx*x**)
KG=f""[t] ((2 alt] r +m)/(2 a[t] r —m))"2 +
el (3 (a’[t] ((2 alt] r +m)"2)/(alt] (2 a[t] r —m)"2)) —
m ((a’[t] (2 a[t] r +m)~2)/(a[t] (2 a[t] r —m)"3)) —
Tm ((a’[t] (2 al[t] r +m))/(alt] (2 a[t] T —m)"2)));
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nF = Friedmann /. f’[t| — q[t] // Simplify;
nKG = KG /. f7[t] — q’'[t] /. £'[t] — q[t]:

chi[t | = q[t] /. Solve[{nF — 0}, q[t]][[1]];

sKG =KG /. f'7[t] — q’[t] /. £'[t] — q[t] /. q[t] — chi[t] /.
q’|t] — chi’[t] // FullSimplify;

(##xxxxx%%  Numerical calculation of the scale factor —sxs¥xxxx)
soll = NDSolve|{sKG =— 0 /. L — Lambda /. m —> mass /. r —> radius,

al0] = 1, a’[0] — 1}, {a[t], a’[t]}, {t, O, time }[[[1]];
nalt | = af[t] /. soll;
nad[t | = a’[t] /. soll;

Hlt_] = (na’[t]/naft]);

(x++% Numerical calculation of the energy density and pressure
* kA A K )
plt_] = =3 (H[t])"2 -
2 ((1 +m/(2 aft] r))/(1 —m/(2 a[t] r))) H'[t] + Lambda /.
m —> mass /. r —> radius /. a[t] —> nalt];
rho[t_| = 3 (H[t])"2 — Lambda;

(##xxxxx%%  Numerical calculation of the scalar field —sxxs¥xxxx)
sKG2 = KG /. a[t| — na[t] /. a’[t] — na’[t];

sol2 = NDSolve[{sKG2 =— 0 /. L — Lambda /. m —> mass /.
r — radius, f[0] = 1, f’[0] = 1}, {f[t|}, {t, O, time }|[[1]];

nf[t | = f[t] /. sol2;

(##*x Transformation of interpolating functions to matrices #%#*x)
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datal|[j]| = Table[{t, na[t]|}, {t, 0, time, 0.1}];
data2|j| = Table[{t, nad|[t]}, {t, 0, time, 0.1}];
data3|j] = Table[{t, nf[t]}, {t, O, time, 0.1}];
data4[j]| = Table[{t, p[t]}, {t, 0, time, 0.1}];
datab|j| = Table[{t, rho[t]}, {t, 0, time, 0.1}];
valLL|j] = Lambda;

, {j, {Lambdal, Lambda2, Lambda3, Lambda4}}]|;

(#*xxxxxxx Scale factor plots —s¥xxxxx)
ListLinePlot [{ datal [Lambdal|, datal|Lambda2|, datal|Lambda3],
datal [Lambda4|}, PlotRange — {{0, 60}, {0, 4}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },
AxesLabel —> {Style|["t", FontSize — 16],
Style["a(t)", FontSize —> 16|}, LabelStyle — {Bold},
PlotLegends —>
LineLegend [{SequenceForm | "L_=_" ,valL [Lambdal]|]| ,
SequenceForm | "L_=_"  valL [ Lambda2] ,
SequenceForm | "L_=_" ,valL [Lambda3]] ,
SequenceForm | "L_=_" valL | Lambda4||} ,

LegendFunction —> "Frame" ||

ListLinePlot [{ data2|[Lambdal|, data2|Lambda2|, data2|Lambda3],
data2|Lambda4|}, PlotRange — {{0, 60}, {—0.4, 0.4}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },
AxesLabel — {Style|["t", FontSize — 16],
Style["a’(t)", FontSize —> 16|}, LabelStyle — {Bold},
PlotLegends —>
LineLegend [{SequenceForm | "L_=_" ,valL [Lambdal || ,
SequenceForm [ "L_=_"  valL [Lambda2]| ,
SequenceForm | "L_=_" ,valL [Lambda3]] ,
SequenceForm | "L_=_" valL [ Lambda4]]|} ,
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LegendFunction —> "Frame" ||

(#*xxxsxxxx Scalar field plot — sxxsxsxxxx)
ListLinePlot [{ data3 |[Lambdal|, data3|Lambda2|, data3|Lambda3],
data3|Lambda4]}, PlotRange —> {{0, 60}, {0, 4.5}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },
AxesLabel — {Style|["t", FontSize — 16],
Style["f(t)", FontSize —> 16|}, LabelStyle — {Bold},
PlotLegends —>
LineLegend [{ SequenceForm|"L_=_" ,valL [ Lambdal || ,
SequenceForm | "L_=_" ,valL [Lambda2]] ,
SequenceForm | "L_=_" ,valL [Lambda3]] ,
SequenceForm | "L_=_" valL [ Lambda4]]|} ,

LegendFunction —> "Frame" ||

(#%#x4xxxx Pressure plot ssss¥¥x*x)
ListLinePlot [{ data4 [Lambdal|, data4|Lambda2|, data4|Lambda3],
data4 [Lambda4|}, PlotRange — {{0, 5}, {0, 3}},
PlotStyle —> {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },
AxesLabel —> {Style|["t", FontSize — 16],
Style["p(t)", FontSize — 16|}, LabelStyle — {Bold},
PlotLegends —>
LineLegend [{SequenceForm|"L_=_" ,valL [ Lambdal || ,
SequenceForm [ "L_=_" valL [Lambda2]| ,
SequenceForm | "L_=_" ,valL [ Lambda3|| ,
SequenceForm |"L_=_"  valL [Lambda4]|} ,

LegendFunction —> "Frame" ||

A.2 Gravitational Collapse for Various McVittie Masses

(¥ Gravitational Collapse for Various McVittie Masses x)
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radius = 5;

time = 100;

Lambda = —0.0015;

massl = 1; mass2 = 1.5; mass3d = 2; massd = 3;
Do|mass = j;

(*xsxsxx5%%x tt Einstein equation #xxxxxxx)

Friedmann = —-L + (3 a’[t]"2)/
alt]”2 — (1/2) ((m+ 2 a[t] r)/(m— 2 at] r))~2 f’[t]"2;

(#+x %5555 Klein—Gordon equation — #xxxxxxx)
KG=f"’[t] ((2 a[t] r + m)/(2 a[t] r —m))"2 +
Erre] 3 (a’fe] ((2 aft] v +m)~2)/(aft] (2 a[t] r —m)"2)) -
m ((a’[t] (2 a[t] v +m)"2)/(a[t] (2 a[t] r —m)"3)) —
Tm ((a’[t] (2 alt] v +m))/(alt] (2 at] r —m)"2)));

nF = Friedmann /. f’[t] — q[t]| // Simplify;
nKG = KG /. f27[t] — q’[t] /. f7[t] — q[t];

chi[t | = q[t] /. Solve[{nF — 0}, q[t]][[1]]:

sKG =KG /. f2[t] — q’[t] /. £[t] — q[t] /. q[t] — chi[t] /.
q’|t] = chi’[t] // FullSimplify;

(xxxxxxxx%x  Numerical calculation of the scale factor —sxsssssx)

soll = NDSolve[{sKG =— 0 /. L — Lambda /. m —> mass /. r —> radius,

al0] = 1, a’[0] = 1}, {a[t], a’[t]}, {t, O, time }[[[1]];
nalt | = al[t] /. soll;
nad[t | = a’[t] /. soll;

Hlt_| = (na’[t]/naft]);
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(#+%% Numerical calculation of the energy density and pressure
A Kk K )
plt_] = =3 (H[t])"2 -
2 ((I +m/(2 aft] r))/(1 —m/(2 aft] r))) H'[t] + Lambda /.
m —> mass /. r —> radius /. a|t| —> na|t];
rho[t | = 3 (H[t])"2 — Lambda;

(##xxxxx%%  Numerical calculation of the scalar field —sxs¥xxxx)
sKG2 = KG /. a|[t| — na[t] /. a’[t] — na’[t];

sol2 = NDSolve[{sKG2 =— 0 /. L — Lambda /. m —> mass /.
r — radius, f[0] = 1, f’[0] = 1}, {f[t]}, {t, O, time }|[[1]];

nf[t | = f[t] /. sol2;
(+#*x Transformation of interpolating functions to matrices #%#*x)

datal|j| = Table[{t, na|[t]|}, {t, 0, time, 0.1}];
data2|j] = Table[{t, nad|[t]}, {t, 0, time, 0.1}];
data3|[j| = Table[{t, nf[t]}, {t, 0, time, 0.1}];
data4[j| = Table[{t, p[t]}, {t, 0, time, 0.1}];

data5[j] = Table[{t, rho[t]}, {t, O, time, 0.1}];
valL|j] = mass;

, {j, {massl, mass2, mass3, massd}}|;

(*%#xxxxxxx Scale factor plots sxxxxxxx)
ListLinePlot [{ datal [massl|, datal|mass2]|, datal|[mass3|, datal|mass4]|},
PlotRange — {{0, 55}, {0, 4.5}},
PlotStyle —> {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },
AxesLabel —> {Style|["t", FontSize — 16],
Style["a(t)", FontSize — 16|}, LabelStyle — {Bold},
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PlotLegends —>

LineLegend [{ SequenceForm | "m_=_", valL |[massl]],

"

SequenceForm | "m_=_", valL [mass2|],

!

SequenceForm | "m_=_", valL [mass3|],

SequenceForm | "m_=_", valL |mass4]||}, LegendFunction —> "Frame"|]

ListLinePlot [{ data2[massl|, data2|mass2|, data2|mass3]|, data2|mass4]|},
PlotRange — {{0, 55}, {—0.4, 0.4}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },
AxesLabel — {Style["t", FontSize — 16],
Style["a’(t)", FontSize —> 16|}, LabelStyle — {Bold},
PlotLegends —>

LineLegend [{ SequenceForm | "m_=_", valL [massl|],

SequenceForm | "'m_=_", valL [mass2]],

"

SequenceForm | "m_=_", valL [mass3]|],

SequenceForm|"m_=_", valL [mass4||}, LegendFunction —> "Frame"|]|

(#xxxxxxxx Scalar field plot —xxxxx¥¥x)

ListLinePlot [{ data3 [massl|, data3|mass2]|, data3|[mass3|, data3|mass4]|},
PlotRange — {{0, 55}, {0, 5}},

PlotStyle —> {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },

AxesLabel — {Style["t", FontSize — 16],
Style["f(t)", FontSize — 16|}, LabelStyle — {Bold},

PlotLegends —>

LineLegend [{ SequenceForm | "m_=_", valL [massl|],

n

SequenceForm | "m_=_", valL |[mass2]],

n

SequenceForm | "m_=_", valL [mass3|],

SequenceForm|"m_=_", valL [mass4||}, LegendFunction —> "Frame"|]|

(# %xxxx%xx Pressure plot ssskkkx*x)
ListLinePlot [{ data4 [massl|, datad4|mass2|, datad|mass3],
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data4 [mass4|}, PlotRange — {{0, 5}, {0, 3}},
PlotStyle —> {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} },
AxesLabel — {Style|["t", FontSize — 16],
Style["p(t)", FontSize — 16|}, LabelStyle — {Bold},
PlotLegends —>
LineLegend [{ SequenceForm | "m_=_" ,valL [ mass1|] ,
SequenceForm | "m_=_" ,valL [mass2]] ,
SequenceForm | "'m_=_" ,valL [mass3]] ,
SequenceForm | "m_=_" valL [mass4 ||} ,

LegendFunction — "Frame" ||

A.3 Gravitational Collapse for Various Radii

(¥ Gravitational Collapse for Various Radii *)

mass = 1;
time = 100;
Lambda = —0.0015;

radiusl = 2; radius2 = 5; radius3 = 10 ; radius4 = 30; radiusb = 50;
Do|[radius = j;

(#+xxxx5%% Gt Einstein equation  #xxxxxx+)
Friedmann = —-L + (3 a’[t]"2)/
alt]”2 — (1/2) ((m+ 2 af[t] r)/(m— 2 a[t] r))"2 f’[t]"2;

(#xxxxxx%% Klein—Gordon equation — #xxxxxxx)
KG=f""[t] ((2 a[t] r +m)/(2 a|t] r —m))"2 +
el 3 (arfe] ((2 aft] v +m)~2)/(alt] (2 a[t] r —m)"2)) -
m ((a’[t] (2 al[t] r +m)"2)/(a[t] (2 a[t] r —m)"3)) -
Tm ((a’[t] (2 alt] v +m))/(aft] (2 a[t] v —m)"2)));

nF = Friedmann /. f’[t] — q[t] // Simplify;

90



nKG = KG /. £77[t] — q'[t] /. £7[t] — q[t];
chift_] = q[t] /. Solve[{nF — 0}, a[t[[[[1]];

sKG = KG /. £'7[t] — q’[t] /. £'[t] — q|[t] /. q[t] — chi[t] /.
q’|t] — chi’[t] // FullSimplify;

(#+xxxx%%%x  Numerical calculation of the scale factor —#xxxxxxx)

soll = NDSolve[{sKG =— 0 /. L — Lambda /. m —> mass /. r —> radius,

al0] = 1, a’[0] = 1}, {a[t], a’[t]}, {t, O, time }[[[1]];
nalt | = al[t] /. soll;
nad[t | = a’[t] /. soll;

Hlt_| = (na’[t]/naft]);

(##%x  Numerical calculation of the energy density and pressure

KAk k)
plt_] = =3 (H[t])"2 -
2 ((1 +m/(2 a[t] r))/(1 —m/(2 a[t] r))) H'[t] + Lambda /.
m —> mass /. r —> radius /. a[t| —> nalt]|;
rho[t_| = 3 (H[t])"2 — Lambda;

(#+xxx4%%%x  Numerical calculation of the scalar field —#¥xxxxxx)

sKG2 = KG /. a|t| — na|t] /. a’[t] — na’[t];

sol2 = NDSolve|[{sKG2 — 0 /. L — Lambda /. m —> mass /.
r — radius, f[0] = 1, f’[0] = 1}, {f[t]}, {t, O, time }|[[1]];

nf[t | = f[t] /. sol2;
(#+% Transformation of interpolating functions to matrices #%%)

datal|j] = Table[{t, na[t]}, {t, O, time, 0.1}];
data2|j] = Table[{t, nad|[t]}, {t, O, time, 0.1}];
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data3|j] = Table[{t, nf[t]}, {t, O, time, 0.1}];
data4[j]| = Table[{t, p[t]}, {t, 0, time, 0.1}];

datab|j| = Table[{t, rho|[t]}, {t, 0, time, 0.1}];
valL [ j]
, {j, {radiusl, radius2, radius3, radius4, radiusb }}|;

radius;

(##xxxxxxx Scale factor plots —ws¥xxxxx)
ListLinePlot [{datal |[radiusl|, datal|radius2|, datal]|radius3]|,

datal [radius4 ]|, datal|radius5]|}, PlotRange — {{0, 55}, {0, 5}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,

Magenta} ,{ Thick, Orange}},
AxesLabel — {Style|["t", FontSize —> 16],

Style["a(t)", FontSize —> 16|}, LabelStyle — {Bold},
PlotLegends —>

LineLegend |[{SequenceForm|"r_=_", valL|[radiusl]|],
SequenceForm|"r_=_"  valL|[radius2]],
SequenceForm|["r_=_", valL[radius3]],
SequenceForm | "r_=_", valL|[radius4]],

SequenceForm | "r_=_" ,valL [radius5 ||}, LegendFunction —> "Frame"|]

ListLinePlot [{ data2|radiusl|, data2|radius2|, data2|radius3]|,
data2[radius4 |, data2|radius5]|}, PlotRange — {{0, 55}, {-0.4, 0.4}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,

Magenta} ,{ Thick, Orange}},

AxesLabel — {Style|["t", FontSize — 16],

Style["a’(t)", FontSize —> 16|}, LabelStyle — {Bold},

PlotLegends —>

LineLegend |[{SequenceForm|"r_=_", valL|radiusl]|]|,
SequenceForm|"r_=_"  valL|[radius2]],
SequenceForm | "r_=_", valL[radius3]],
SequenceForm|"r_=_", valL|[radius4 ||,

SequenceForm | "r_=_" ,valL [radius5 ||}, LegendFunction —> "Frame"]|]

(#xxxxxxxx Scalar field plot —xxxxxxxx)
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ListLinePlot [{ data3|radiusl|, data3|radius2|, data3|radius3]|,
data3 [radius4 |, data3|[radius5]}, PlotRange — {{0, 55}, {0, 4.5}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} ,{ Thick, Orange}},
AxesLabel —> {Style|["t", FontSize — 16],
Style["f(t)", FontSize —> 16|}, LabelStyle — {Bold},
PlotLegends —>

LineLegend [{SequenceForm|"r_=_", valL|[radiusl]|]|,
SequenceForm|["r_=_"  valL|[radius2]],
SequenceForm | "r_=_", valL[radius3]],
SequenceForm|"r_=_", valL|[radius4 ||,

SequenceForm | "r_=_" ,valL [radius5 ||}, LegendFunction —> "Frame"]|]

(#xxxxxxxx Pressure plot s#sssss+)
ListLinePlot [{data4 [radiusl]|, data4|[radius2]|, data4|radius3]|,
datad [radius4|,datad [radius5]|}, PlotRange — {{0, 5}, {0, 3}},
PlotStyle — {{Thick, Blue}, {Thick, Red}, {Thick, Green}, {Thick,
Magenta} ,{ Thick, Orange}},
AxesLabel — {Style|["t", FontSize — 16],
Style["p(t)", FontSize — 16|}, LabelStyle — {Bold},
PlotLegends —>
LineLegend [{ SequenceForm|"r _—=_" ,valL [radiusl |],
SequenceForm |"r_=_" valL [radius2 ||,
SequenceForm | "r_=_"  vallL [radius3]],
SequenceForm |"r_=_" valL [radius4 ||,

SequenceForm|"r_=_" valL [radius5 ||}, LegendFunction —> "Frame"|]|
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