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3Ovodm

To xocpoloyxd povténo Higgs-dilaton mpofiénet uyla mAnbwpiotiny nepiodo oto Ipdiuo
Younav, xabog xan pla teplodo ot yeténeito eZENEY TOu, OTOU 1) ETUTU(UVOUEVY BIUCTONN
ogelieTan o ypovixd eEeloabuevrn Xxotewr Evépyeia. 3XT1o ouyxexpiuévo poviélo ol
0V0 aUTEC AVeEdPTNTES EMOYES CUVOEOVTOL UECK Wl U TETEWHEVNS OXEONC OVAUECT OTIC
OVOUOLOYEVELES T TOL OEYEYOVOU PACUATOS XAk TNS XATAC TUTIXAC €E[0WONE W TN LHOTEWAC
Evépyetac. Xxondg tne napodoag epyactiag slivar 1 peNétn tou poviéou Higgs-dilaton ye
texvxéc tne KPavtixic Oswplog Iedlov. Aaufdvovtag un’ 6div poc 6Tl to xevd tne Bemploc
ueTafdANeTon pe To Xpovo, uroloyiloupe TNy evépyela otny onola 1 Bewpla modetl va efvou
autoouvenic.  Aclyvouue 6Tl aUTé TO “XATWEN eVépyelag, To omolo eopTdTal Amd To
medla mou elvon mapdvTa ot Bewplar, elvon TopaUeTEWXS UEYUNITEQO Ao TIC YAULOXTNELO TIXES
evepyelaxég xAoxec xa®’ Oxn v eZéNEn Tou Miumavtog. Téhog, Biatunwvouue TiC
UTODETEL TOU YOG ETUTEENOUY VoL EXTWACOUUE TNV ETidpaon Tov xPaviixwy dopbnoeny
UE CUCTNUATIXO TEOTO, xou Vo Oloude OTL 1) OXEOT AVAUECO OTA Mg X0 W TOUEAUUEVEL
UETAPANTY.



Abstract

The Higgs-dilaton model is able to describe simultaneously an inflationary period in
the early Universe and a dark energy (DE) dominated stage responsible for the present
day acceleration. It also leads to a relation between the tilt ns of the scalar spectrum
perturbations and the equation of state w of DE. We study the self-consistency of this
model from an effective field theory point of view. Taking into account the influence of
the dynamical background fields, we determine the effective cut-off of the theory, which
turns out to be parametrically larger than all the relevant energy scales during the history
of the Universe from inflation till present time. We formulate the set of assumptions that
allow to estimate an amplitude of quantum corrections in a systematic way and show that
the connection between ns and o remains unaltered if these assumptions are satisfied.
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ITepixnn

To mpbtuno e Meydine ‘Exenine (Hot Big Bang model) eivon oe 6éon va e€nyrioet pia
TAnfopa tapatnenolox®y dedouévov. Tlap N’ autd, undpyouy dEXETd cprTAUATA Tor oTtola
0€ umopoLV va Beouv andvTNnon oo TAAoLE ToU CUYXEXPWEVOU TEOTOTOU.

Ta epwthipota o omola oyxetilovtar Ye TNV xweXn EMREBOTNTA, TNV OUOLOYEVELL XOoL
lootponior Tou LOUTavTog xolfde xou TNV EXNEWYN Loy VNTIXGY LOVOTON®Y ATOVTWVTAL GTo
ot TANBweto XY Bewplddv. Xoupova Ye auTtég, To MOUTOY XATd TIC TPWTES OTLYUES
TNE ONuLovEYlag Tou SLECTANNEL PE eXBETIXG pUBUS. MTo amAoVC TERA TANBWELO TIXE LOVTENT,
7 Ol TONY ogeileTon TNV XLyl TNG BUVOUIXNG EVOVTL TNG XVNTIXNAG EVERYELS €VOC
Babuwtol nediov, Tou inflaton.

Eougwva pe to yoviéo Higgs-inflation, to pého tou inflaton umopel vo maiel to
nedio Higgs, to onolo xatéyel Eeywptoty| Béomn oto Kabiepwpévo Ilpdtumo tov Ltoiyeiwdody
Yopatdiov. o vo undeéel oupgpovio ye Tic Staxupdvoels g Beppoxpacioc otny Kooy
Muxpoxupatiny AxtivoBolio YroBdbpou, neénel o Higgs va etvan ouleuyuévo pe tn Popbtnta
xan 1) T g avtiotoyne otabepds olleudng & va etvon peydan. H pehétn tou poviélou
auToU amhomoleitar achNTd oV TEAYUATOTOLACOVUE EVAY CUUUOPPO UETACYNUATIOUO WO TE
TO TUNUA TOU TERLYPAPEL TLC BOpUTIXES IAANAETUORACELS VO ATOXTACEL T1 GUVNOLOUEVT Lop®
e Aayxpatlovrc Einstein- Hilbert. H Oswpla mou mpoxintel dung elvor un-roAuwvuuLxy
X0l GUVETOC [UN)-0LVOXOVOVIXOTIOLACLUY), axoUaL xat Yweic TNy mapoucia tng Bapdtntac. o to
Aoyo autd meénel va Bewmpeitan we pia evepydg Bewpla tedlou, N onolo TopoUé Vel AUVTOCUVETHG
uéxpet wlo ouyxexpévn evepyetaxr) xilpoxa, t0 xatdpil A, To cbvnbec xpitrplo yia
TOV TEOGOLOPLOUO TOU XATOPALOU eivon 1) mopaflacT TS LOVABLIXOTNTUC O OXEOACELS TOU

Figure 1: Avopotoyéveieg otnv Koouuxy) Mixpoxuyotiny Axtivoforia Tropddeou.
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Napfdvouv yopa o LPNNES evépyelee.

Aemtopepnc avdhuon Qavépmoe 4Tl To XATOPAL TG Bewplog e€apTdTon and TNV oVOUEVOUEVN
T 670 xevo tou medlou Higgs, n onolo petafddiietan xobde to cbotnua petafaiver and
Tov TANBwploud oTig peTéneita @doelg g e€éNENC Tou. H twn Tou xato@hiol Beébnxe
TOEUUETEIXE UYNNOTERT] Ao TIG XURUXTNELO TIXES EVERYELIXES XN(paxes %o’ O TNy Lo Topla
Tou Younavtoc. (2¢ anoténeoua, 1 Bewpla 6mou To medio Higgs elvou umedbuvo yia tnv
exBeTinn] Blao ToNY) Tou Loumavtog Topouével plo aUuTooLVETAS evepyoc Bewpla mediou.

To oevdplo Higgs-inflation evoouatddnxe oc éva euplhtepo mAACLO, TO XOOUONOYLXO
uovtého Higgs-dilaton. XopoxtneioTtind yvopiopa autold eival 1 avoANOWOTNTA 0S TEOS
HETAOYNUATIONO0S XA ionag

di(z) = 0% di(0x) | (1)

omou @ () elvon T medla e Bewploc, o plo Tuyada otadepd xou dg: 1) SidoTaon xhipoxac Twv
nedlwy. ot vo emitdyovye cuppetpio w¢ Tpoc Toug etaoynuoatiopole (1) xow mopdAAn\a 1
Bewplo mou mpoxiTTEL Var efvan pouvouevoroyd Budotun, efvan avamdgeux Tt 1 eloarywyy| EVOC
véou Babuntol cwpatidlou, Tou dilaton, Tou onolou N avauevOUEVT TIUYH OTO XEVO AMOUTOVUE
vou efvan g Undevixy] . Moy amOTENECUA, ONEC OL XAUAXES EMAYOVTOL UECK TN TopaflacTg
TN CUUMETELNC WS PO TOUC HETACYNUATIOLOVC XA {Hoxac , xat To tedio dilaton, mou elvon To
unolovio Goldstone tne mapaflocuévng ocuupetpelog, nopouével dualo xat 1 AIANANAETIDpAON
TOL Ue TNV UAN elvon ToNO achevric.

ITapdXo nov 1 ouppetpla (1) Oe pog emtpénel vo elodryouye pntd évay dpo Koopohoyinic
Ytabepdc ot Bewpla, Tov avtioTtoio polo mallel 1 mapduetpog B mou TEPLYPAPEL TNV
oNAN\enidpaon tou dilaton pe tov cowtd Tou. AV auTh N moEduETPOoS emAEYEl Vo Elvou
undéyv, wlo exageld tponoroinor e Ievixic Uyetixdtntac odnyel oty eu@PavIon xeovixd
eCaptmuevng Uxotewrg Evépyelag, 1 onola elvan €€’ oNoxhipou unedBuvn yior TNV Bl TONN
Tou Lounoavtog mou mopatneolue. o cuyxexpéva, av emPBdilovue oty opilovoca g
NG METEXAC TOU YwedYEeovou To deoud g = —1, tdte autdpata eupovileton éva exfetind
duvouxo yia to dilaton, xdvovtde to xatdAAnio unodrplo yio tedlo quintessence.

To povtého Higgs-dilaton nepiypdgper pio meplodo maAndwpiopol oto oo Xoumoav
xabog xon po tepiodo xupapylac Xxotewic Evépyelag, otnyv onola ogeiletar 1 Slac TONY
Tou TapaTneoLuE ohucpa. Elvow o Béom va ouvdéoel autég Tig 800 aveddpTnteg TEELOdOUG,
%4l oL XAveL T Oewplor ot ®ATOL0 TEOTO LOVUBLXY.

O oxondg tne mapoloag cpyaciag elvol 1) UENETN TOU GUYXEXPLIEVOU UOVTENOU OTO
) oxonia e KPavtinic Oswplag Iedlov. Apyixd unoloyilouue To Sdpopa evepyetaxd
XOTOEAO TOV oYeTICOVToL UE OIANANAETOPAOELS avipeca o€ Pabuwtd nedlo, tn Papbtnta, To
dlavuouoTixd medlar xou tar peputdvia. Aelyvoupe OTL 1) TWH TOU XATWTEPOU Amd oY, Elvor
TOUEUUETEIXE UPNNOTERT] OO TIG X APUXTNELO TIXES EVERYELOXES XNHAXES OE ONEC TIC QATELC
e e€éNEne tou Xoumavtoc. ‘Eneita peketdue tig xPoviixéc Sopbuoeic. E¢’ bcov 7
Bewpla elvan un-avoxavovixomotiowun, anouteltar 1 elcoywyn vog dnelpou aptduold dpnv yia
TNV AmoEEOPNOT TV UTERLWOWY ATELOOU®Y TIou eugoaviCovtal. Aelyvouue 6Tl av To oyud
avoxavovixornoinong céfeton Tic axpPelc xou xatd TEOCEY YO CUUMETPIEC TNG XNAGOIXAC
Bewploc, ol tpofAédeic Tou LOVTENOL TaEUUEVOUY AVIANOIWTES.



Chapter 1

Introduction

The shortcomings of the hot big bang model can be solved in an elegant way if we assume
that the Universe underwent an inflationary period in its early stages. The easiest way
for this scenario to be realized is by a scalar field slowly rolling towards the minimum of
its potential [1].

In [2] it was shown that this scalar - the inflaton - can be the Higgs field of the
Standard Model (SM) with the mass lying in the interval where the SM can be considered
a consistent effective theory up to the inflationary scale. More precisely, if the Higgs boson
is non-minimally coupled to gravity and the value of the corresponding constant &, is
large, it is able to describe an inflationary period followed by the hot Big Bang. The
implications of this scenario have been extensively studied in the literature [4, 7, 6, 5, 11,
3, 10, 12, 13, 14, 18, 15, 19, 8, 9, 16, 17, 20]. Earlier studies of non-minimally coupled
fields in the context of inflation can be also found in [21, 22, 23|.

When the theory with non-minimal coupling of the Higgs field to Ricci scalar is
rewritten in the Einstein frame, it becomes essentially non-polynomial and thus non-
renormalizable, even if the gravity part is dropped off. Therefore, it should be understood
as an effective field theory valid up to a certain cut-off energy scale. The usual criterion
for determining the cut-off of the theory is based on the violation of tree level unitarity
in high-energy scattering processes.

The tree-level scattering amplitudes above the electroweak vacuum state appear to
hit the unitarity bound at energies A ~ Mp/&, [8, 9, 16, 17]. At that scale perturba-
tion theory breaks down. Whether the theory is self-consistent and just enters into the
non-perturbative strong-coupling regime or requires an ultraviolet completion at higher
energies remains unknown. In spite of the fact that A is smaller than the inflationary
scale Mp/+/&,, the Higgs inflation scenario is self-consistent. As it has been shown in [24]
(see also [25]), the cutoff of the theory depends on the Higgs background, making the
theory weakly coupled for all the relevant energy scales in the evolution of the Universe.
In other words, the SM with large non-minimal coupling to gravity represents a viable
effective field theory for inflation, reheating, and subsequent evolution of the Universe.

The Higgs inflation scenario was incorporated into a larger framework, the Higgs-
dilaton model [27, 28]. The key element of this extension is scale-invariance (SI). No
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6 CHAPTER 1. INTRODUCTION

dimensional parameters, such as masses, are allowed to appear in the action. All scales are
induced by the spontaneous breaking of SI. This is achieved by the introduction of a new
scalar degree of freedom, the dilaton x. As a consequence, the physical dilaton becomes
the Goldstone boson of the broken symmetry, remaining exactly massless. The coupling
of the dilaton to matter is weak and takes place only through derivative couplings, not
contradicting therefore any 5th force experimental bounds [30].

The dilatation symmetry does not allow adding a cosmological constant to the action.
Still, the cosmological constant problem is not solved, as it reappears, being now related
to the dilaton self-coupling 3 (see below) in the Jordan frame [27]. However, even if
is chosen to be zero (or required to vanish due to some unknown yet reason), a slight
modification of general relativity (GR) leads to dynamical DE in accordance with obser-
vations of accelerating Universe. Namely, the scale-invariant Unimodular Gravity (UG)
gives rise to a “run-away” dark energy potential for the dilaton [27], which plays the role
of a quintessence field. The strength of such a potential is determined by an integra-
tion constant that appears in the Einstein equations of motion due to the unimodular
constraint ¢ = —1, where ¢ is the determinant of the metric in the Jordan frame.

The Higgs-dilaton scenario was shown be able to explain simultaneously the early and
late Universe in a consistent way. The common origin of the inflationary and dark energy
dominated stages allowed to derive extra bounds on the initial inflationary conditions,
as well as potentially testable relations between the early and late Universe observables
[28].

Our purpose here is to study, following [24], the self-consistency of the Higgs-dilaton
model by adopting an effective field theory point of view. We will estimate the field-
dependent cut-offs associated to the different interactions among scalars fields, gravity,
vector bosons and fermions. We will identify the lowest cut-off as a function of the value
of the background fields and show that its value is higher than the energy scales de-
scribing the Universe during different epochs. The issue concerning quantum corrections
generated by the loop expansion is also addressed. Since the model is non-renormalizable,
an infinite number of counter-terms have to be added in order to absorb the divergences.
We adopt the “minimal setup” for construction of a theory with all ultraviolet divergences
removed by an infinite number of counter-terms. In this procedure no new degrees of free-
dom are introduced, and renormalization procedure keeps the exact and approximative
symmetries of the classical action intact. We will show that the relations connecting the
inflationary and the dark energy domination periods, hold in the presence of quantum
corrections within this approach.

The structure of the thesis is as follows. In Section 2 we briefly review the Higgs-
dilaton model. In Section 3 we calculate in detail the cut-off of the theory in the Jordan
frame and compare it with the other relevant energy scales in the evolution of the Uni-
verse. In Section 4 we propose a “minimal setup” which removes all the divergences
and discuss the sensitivity of inflationary and the dark energy predictions to radiative
corrections. Section 5 contains the conclusions.



Chapter 2

Higgs-dilaton cosmology

We start by reviewing the main results of [27, 28], where the Higgs-dilaton model was
proposed and studied in detail. The two main ingredients of the theory are outlined
below. The first one is the requirement of invariance of the action under scale transfor-
mations, which leads to the absence of any dimensional parameters. If we denote with
®(x) the fields of a theory, with o¢® their scaling dimensions and ¢ an arbitrary constant,
scale transformations can be written as global transformations!

G (x) = gu(oz) , P(z) — o d (o) . (2.1)

To achieve invariance under the above transformations, we let masses and dimensional
couplings to be induced dynamically by replacing them with a field. The simplest choice
would be to use the SM Higgs field for the appearance of the scales. However, this
would contradict experimental constraints since the excitations of the Higgs field become
massless, decouple completely from the other SM particles and interact only with the
gravitational field [29].

The next simplest option is to introduce a new scalar singlet under the SM gauge
group, the dilaton y. The coupling between the new singlet and all the SM particles
with exception of the Higgs boson is forbidden by quantum numbers. The corresponding
Lagrangian is

L= 6 280 + Lo — 2 Dxdx—V(xd) (22)
\/—_g ) xX h SM[A—0] 29 uwXOv X X ) .
where ¢ is the SM Higgs field doublet, R the scalar curvature, and &, ~ 1072, &, ~ 10°

are respectively the non-minimal couplings of the dilaton and Higgs field to gravity,
whose values are determined from CMB observations [27, 28]. The term Zg\—q is the

'For a theory invariant under all diffeomorphisms, scale transformations can be rewritten as local
transformations:
G () = 0 2gu(z), ®(z) = o d(z) .
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SM Lagrangian without the Higgs potential, which in the present scale-invariant theory
becomes

Vix ) = A (616 - o) 4By (23)

with A > 0 being the Higgs self-coupling. In order for this theory to be phenomenologi-
cally viable, we have to demand that there exist symmetry-breaking ground states with
non-vanishing background values for the dilaton and the Higgs field?. These are

] 4
=2+ %R, with R= 2 g

PR 5 2.4
3 e )\5x+a€h><, (2.4)

where the bar denotes the background value of the fields. All scales induced will be
proportional to the non-zero background value of the dilaton field. For example, we can
identify the physical SM Higgs mass as

(14 6&) + $(1+6&,)
(1 + 6€x)§x + %(1 + 6€h)£h

2 _ 2
my = 2aMp

+0O(5) . (2.5)
Note also that depending on the value of the dilaton self-coupling 3, there exist ground
states for the model that correspond to flat (§ = 0), deSitter (5 > 0) or anti-deSitter
(8 < 0) spacetimes, with cosmological constant

BMj

1
A= -M2*R = . (2.6)
4777 (g + 2a)2 + 48

It is important to notice that physical observables, corresponding to dimensionless
ratios between scales or masses, are independent of the particular value of the background
field xy. The parameters of the model must be fixed in such a way that the correct ratios
between the different scales are reproduced. From Eq. (2.5) it is clear that in order to
account for the difference between the electroweak and Planck scales, we must require
a < 1 3. Similarly, the hierarchy between the cosmological and the electroweak scales,
cf. Eq. (2.6), implies § << «. Both hierarchies remain unexplained within the theory
under consideration.

The second ingredient is the replacement of GR with UG. Unimodular Gravity is
a particular case of a much more general set of theories invariant under the group of
transverse diffeomorphisms TDiff. TDiff theories generically contain an extra scalar
degree of freedom on top of the massless graviton (see for example [39]). UG reduces the
dynamical components of the metric by requiring the metric determinant ¢ to take some
fixed constant value, conventionally |g| = 1. Unimodular gravity is then invariant only

2If ¥ = 0 the Higgs field is massless, and if h = 0 there is no electroweak symmetry breaking.

30ne could argue that in order to reproduce the correct ratio between my and Mp we could choose a
large value for the non-minimal coupling &, of the dilaton to the Ricci scalar, instead of requiring o <« 1.
This choise however is not phenomenologically acceptable, since &, ~ 1073, in order for the predictions of
the model to be in agreement with the CMB observations.



under volume-preserving diffeomorphisms. It can be shown [27] that the solutions of a
theory subject to the unimodular constraint § = det(g,,) = —1

jUG = g[guw aguu» CI)) 8(1)] ) (27>

coincide with those ones obtained from a theory which is invariant under the full group
of diffeomorphisms (Diff) but with modified action

Loist

V=g

From the point of view of UG, the parameter Aq is just a conserved quantity associated

to the unimodular constraint and it should not be understood as a cosmological constant.

As was shown in [27] (see also below), for Ay > 0, due to the non-minimal couplings of

the fields to gravity, an exponential “run-away” potential for the physical dilaton appears

automatically, making it responsible for dark energy. These types of potential have been
already considered in pioneering works on quintessence in [33, 34, 35].

Since the two formulations are equivalent, we stick to the Diff invariant language.

Expressing the theory resulting from the combination of the above ideas in the unitary
gauge in the SM sector ¢7 = (0, h/v/2) we have
Z 1 9 1 1
— = RHR — = (0x)* — =(0h)?> = U(x, h 2.

where the potential is now given by

= L9, 09, ®,0P] + Ay . (2.8)

2
Ulx,h) =V(x,h) + A = 2 (h2 — %)f) + Bx* + A . (2.10)
Let us notice at this point an important property of the previous Lagrangian that will turn
out to be essential in further developments. As discussed above, in order to reproduce
the hierarchy of scales, the parameters o and § must satisfy § <€ a << 1. This, together
with the small value of the non-minimal coupling §, < 1 between the dilaton field and
gravity, gives rise to an approximate shift symmetry for the dilaton field at the classical
level, x — x + const. This symmetry would be exact for « = 8 = £, = 0. This fact
has important consequences for analysis of quantum effects. We will come back to it in
Section 4, where the “minimal” renormalization procedure will be formulated.

Let us discuss the phenomenological implications of the model. For this end it is more
convenient to rewrite the Lagrangian in the Einstein frame, where the gravity part takes
the usual Einstein-Hilbert form. This is achieved by performing a conformal redefinition
of the metric [42]

G = Q29W ; (2.11)

with conformal factor Q% = My?(&,x% + &,h?). Using

VEg=0NG  and  R=0(R+6000 - 63,0,000,00) ,  (212)
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we get
Z ME - 1~ ~

—— ="PR__K(x,h)-U(x,h 2.13
where the non-canonical kinetic term K (y, h) in the basis (¢!, ¢?) = (x, h) is given by
Kij - 5 ;020,02
2! 2 02 '
Note that the kinetic term could be cast into canonical form if and only if the two minimal
couplings of the scalar fields to gravity were equal &, = &, which is not consistent with
observations [28]|. The potential is given by

Ul h) _ M4 )\ 2

The action (2.9) does not contain any dimensional parameters, except the one pro-
portional to Ay. The divergency of the dilatational Noether’s current associated to scale
transformations will be therefore proportional to Ag. As shown in [28], the whole in-
flationary period takes place inside the domain of field space where the contribution of
Ay is negligible. We will refer to this domain as the “scale invariant region” and assume
that it is maintained even when quantum corrections are taken into account. This will
be justified in Section 4. As a consequence, the current is approximately conserved and
there exists a set of variables (r,6') in terms of which the scale transformation acts as a
shift on r only. Since this transformation is a symmetry of the theory when Ag = 0, r
will appear only through the part of the potential which is proportional to Ag and terms
with derivatives. We can also choose #' in a way that the kinetic terms are diagonal. We

K(x,h) = 225"0,0'0,¢ , with k= (5 MP (2.14)

U(x, h) =

- Mp . [(1+6£)x° + (1 +68)h?
r= 2 log { X MI% } |
0] = 22 tannt \/ (1= ¢)(1+66,)x> ] | (2.16)
‘ (1+ 66 )x% + (1 + 6&,)h?
with

o €x x(1=5) 1+ 6§h>§x
RET -y T4 6606 (2.17)

The physical interpretation of these variables is stralghtforward. They are simply ad-
equately rescaled polar variables in the (h, x) plane. The angular variable is therefore
periodic and defined in the compact interval 8’ € [—0y, 6], where 6, is given below in eq.
(2.19). In terms of these variables the Lagrangian (2.13) takes a very simple form

< MI%R— ¢ cosh?[af/ Mp]
V=g 2 2
In this work the definition of the angular variable  is slightly different than in [28]. The parametriza-

tion we use shifts the minimum of the potential and therefore simplifies the study of the (p)reheating
period of the Universe.

(Or)” — %(80)2 —T(0) - T, (r,0) , (2.18)
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where M
0=00—10|, with 6 =—"tanh™' [V1—¢] . (2.19)
a

The potential is naturally divided into a scale-invariant and a scale-invariance break-
ing parts, given respectively by

~ AME
U(f) = ——— (c— acoslr12[a9/Mp])2
(1<) (2.20)
(14667 9 2
+ BMp (1 — cosh®[af/Mp])" ,
fh - fx
and A
Us, (r,0) = —5<* cosh*[af/ Mple=1m/Mr | (2.21)
i
where we have defined
al+6&, al+ 6,
=1+ =+~ : 2.22
D SR NP RS (2:22)

Inflation takes place between 0; = Mp/«a tanh ™' y/1 — ¢ and 6; ~ 0, where, as can be seen
in Fig.2.1 , the potential U has the same shape as the one in the Higgs inflation. For
later convenience we present the analytical expressions for the amplitude and spectral

tilt of the scalar perturbations produced during inflation in the case f << 1. At order
O(&y» 1/&h, 1/N*) we have

Asinh?[4¢, N*]
Fe(ko) = 1152m%€267
ns(ko) — 1 >~ —8&, coth(4&,N™) , (2.24)

(2.23)

where N* denotes the number of e-folds between the moment at which the pivot scale
ko/ag = 0.002 Mpc™! exited the horizon and the end of inflation. In the parameter space
where 1 < 4§, N* < 4N*, the expression for the tilt becomes linear in &, and is given by

ns(ko) — 1 >~ —8&, . (2.25)

An interesting cosmological phenomenology arises with the peculiar choice 3 = 0°.
In this case, the DE dominated period in the late Universe depends only on the dilaton
field r, and non-trivial relations between the inflationary and the DE domination periods
can be established. Once the system reaches the minimum of the potential, i.e. for
tanh? [af/Mp] ~ 1 — o, a “run-away” potential for the dilaton appears, making it suitable
for playing the role of quintessence. Let us assume that the scale-invariance breaking term
U Ao (7, 0) is negligible during the radiation and matter dominated stages, but responsible
for the present accelerated expansion of the Universe. In this case it is possible to write

’Some arguments in favour of the 3 = 0 case can be found in Ref. [54, 28, 39].
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the following relation between the equation of state parameter w, of the r field and its
relative abundance €, [43|

627 1 1/1 1+/9.1°
ldtw=—L | — — (= —1)log— Y| | 2.26
Ter= [\/_Q, > (Q ) Ogl—\/QJ (2.26)

Since dark energy is due to the quintessence field r only, we can identify w, as wpg. For
the observed value of €2, ~ 0.74, the above expression yields

1+ WDE = < . (227)

From equations (2.25) and (2.27) follows that the deviation n, of the scalar spectrum from
the scale-invariant one is proportional to the deviation of dark energy from a cosmological
constant® [2§]

ns — 1~ —3(1+wpg), for

1 1. 2.2
3N*< + wpp <K (2.29)

It is important to notice that the above condition is a non-trivial prediction of Higgs-
dilaton cosmology, relating two a priori completely independent periods in the history
of the Universe. This has interesting consequences from an observational point of view’
and makes the Higgs-dilaton scenario rather unique. We will be back to equation (2.29)
in Section 4, where we will show that it still holds even in the presence of quantum
corrections within the “minimal setup”.

60utside this region of parameter space, the relation connecting n, to wpg is somehow more complicated
and given by
- 12(1 + wDE)
= 4—9(1 4 wpg)

Ty — (2.28)

coth [ G6N"(1 +wp) }

4 —9(1 + wpg)

"Similar consistency relations relating the rate of change of the equation of state parameter w(a) =
wp + we (1 — a) with the logarithmic running of the scalar tilt can be also derived, cf. [28]. The practical
relevance of those consistence conditions is however much more limited than that of Eq. (2.29), given the
small value of the running of the scalar tilt in Higgs-driven scenarios.
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Figure 2.1: Comparison between the Higgs-dilaton inflationary potential (blue dashed
line) obtained from (2.20) in the scale-invariant region and the corresponding one for

the Higgs Inflation model (red continuous line). The amplitudes are normalized to the
AME

asymptotic value Uy ~ BT
h
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Chapter 3

The dynamical cut-off scale

Following [24], we now turn to the determination of the energy domain where the Higgs-
dilaton model can be considered as a predictive effective field theory. This domain is
bounded from above by the field-dependent cut-off A(®), i.e. the energy where perturba-
tive tree-level unitarity is violated [44]. At energies above that scale, the theory becomes
strongly-coupled and the standard perturbative methods fail.

In order to determine this (background dependent) energy scale, two related methods,
listed below, can be used.

1. Expand the generic fields of the theory around their background values
P(x,t) = & +6P(x,1) , (3.1)
such that all sorts of higher-dimensional non-renormalizable operators of the form

0 2n02) (3.2)
[A(®)]

with ¢, ~ O(1) appear in the resulting action. These operators are suppressed by

appropriate powers of the field-dependent coefficient A(®), which can be identified

as the cut-off of the theory. This procedure gives us only a lower estimate of the

cut-off, since it does not take into account the possible cancelations that occur

between the different scattering diagrams.

2. Calculate at which energy each of the N-particle scattering amplitudes hit the
unitarity bound. The cut-off will then be the lowest of these scales.

In what follows we will apply these two methods to determine the effective cut-off
of the theory. We will start by applying the prescription 1) to determine the cut-off
associated with the gravitational and scalar interactions. The cut-off associated to the
gauge and fermionic sectors will be obtained via the prescription 2).

15
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3.1 Cut-off in the scalar gravity sector

We choose to work in the original Jordan frame where the Higgs and dilaton fields are non-

minimally coupled to gravity. Expanding these fields around a static scalar background
g;wzguu_"ég;w; X:X—{_éXv h:FL—F(Sh, (33)

we obtain the following kinetic term for the quadratic Lagrangian of the gravity and
scalar sectors

G+S éxiz + ghﬁz v v v
Ty = BT (0g""00g + 20,69 0764, — 20,69 0,69 — 6g0dg)
(3.4)
1 1 -
—5(55X)2 - 5(35}1)2 + (EX0X + EnhdR) (020,097 — Odg) .
The leading higher-order non-renormalizable operators obtained in this way are given by

&(6x)°0ég , &, (6h)*0dg . (3.5)

Note that these operators are written in terms of quantum excitations with non-diagonal
kinetic terms. In order to properly identify the cut-off the theory, we should determine
the normal modes that diagonalize the quadratic Lagrangian (3.4). After doing so and
using the equations of motion to eliminate artificial degrees of freedom, we find that the
metric perturbations depend on the scalar fields perturbations, a fact that is implicit in
the Lagrangian (3.4). The gravitational part of the action (3.4) can be cast into canonical
form in terms of a new metric perturbation dg,, given by

5§uv = \/ﬁ [(5)022 + gh}?)éguv + 2§MV(§X>_(6X + fhﬁéhﬂ : (3-6)

The cut-off scale associated to purely gravitational interactions becomes in this way the
effective Planck scale in the Jordan frame

A =€+ Eh° (3.7)

The remaining non-diagonal kinetic term for the scalar fields is given in compact matrix
notation by

1 . .
HF = = SR80 000 (3.8)
where R;; is given by (2.14), but now depends only on the background values of the fields,

i.e. - 7
) 1 (fxx2(1+6£x)+€hh2 66, XEnh ) (3.9)

T et G 66, XEnh EXC + Euh?(1+661)

In order to diagonalize the above expression we make use of the following set of variables

X EXC(L+68,) + Eh*(1+68,) /. _ .
Sy = X — 0 )

' \/ @ B E 1 Glr) X HERo) o0
et (—&nhdx + £ X6h)

/ )2(22_,_5}2#‘12
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Before going on let us note here that this is precisely the change of variables (up to
an appropriate rescaling with the conformal factor 2) needed to diagonalize the kinetic
terms for the scalar perturbations in the Einstein frame. To see this, it is enough to start
from (2.14) and expand the fields around their background values ¢' — ¢’ +d¢’. Keeping
the terms with the lowest power in the excitations, K = Q2F;0,00' 01007 + O(6¢%), it
is straightforward to show that the previous expression can be diagonalized in terms of

h 2 X0 héh
(f;%XQ + &2h?) (&, X2 + Enh?) <§xX X+ &n ) ,

1

—————(—GhIX + &xoh)
Jex+an

The effective cut-off of the theory at a given value of the background fields will be
the lowest of the scales suppressing the operators in eq. (3.5). Written in terms of the
canonically normalized variables (3.6) and (3.10) these operators read
1

A (h)00g, -(0%)"005, -(0X) ()08 (3.11)

M:04¢&VO+QQ+&W0+%M

Sh=Q"!

where the different cut-off scales are given by

SN+ &b

A = _ 3.12
L GGVER T o ) 12
A (E2X2 4+ E1h2) (E (1 + 6y ) + Enh*(1 4 68))
, = (3.13)

(E3X2 + Eh2)\/E X + &2 ’
A (X ER(ER(L+ 66 + &b (1 + 66))
y = . (3.14)

foth ‘Sh - £x| V 5)(9_(2 + ghBQ

3.2 Cut-off in the gauge and fermionic sectors

Let us move now to the cut-off associated with the gauge sector. Since we are working
in the unitary gauge for SM fields, in order to determine the cut-off associated to the
gauge sector of the theory, it is sufficient to look at the tree-level scattering of non-abelian
vector fields with longitudinal polarization. It is well known that in the SM the “good”
high energy behaviour of these processes is a result of cancellations that occur when we
take into account the interactions of the gauge bosons with the excitations dh of the
Higgs field [45, 46].

In our case, even though purely gauge interactions remain unchanged, the graphs
involving the Higgs field excitations are modified due to the non-canonical kinetic term.
This changes the pattern of the cancellations that occur in the standard Higgs mechanism,
altering therefore the asymptotic behaviour of these processes and lowering the energy
scale where this part of the theory becomes strongly coupled.
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To illustrate how this happens, let us consider the W, W, — W, W/, scattering in the
s—channel. The relevant part of the Lagrangian is

gmw W W 5h (3.15)

where my, ~ gh. After diagonalizing the kinetic term for the scalar fields with the change
of variables (3.10), the above expression becomes

g mwW,EWSh + g"my W IW 6y (3.16)
where the effective coupling constants ¢’ and ¢’ are given by

/ §X

g =9—F—,
\/ §2X? + Enh?
/i h

(3.17)
ng +§hh2
252 + gh2 | EC(L+68) + Enh?(1+66)

From the requirement of tree unitarity of the S-matrix, it is straightforward to show
that the scattering amplitude of this interaction hits the perturbative unitarity bound at
energy

. \/ EX(1+ 6£X>6—£,3£hh2(1 +6&) (3.18)

In the limiting cases, the above expression simplifies to

B for 5}()22 < £h77'2 )
AG ~

E V3 _ —
EhXX for £,x% > &,h%

(3.19)

in agreement with the Higgs inflation model.

To identify the cut-off of the fermionic part of the Higgs-dilaton model, we consider
the chirality non-conserving process f f — W;Wy. This interaction receives contributions
from diagrams with v and Z exchange (s—channel) and from a diagram with fermion
exchange (t—channel). In the asymptotic high-energy limit, the total amplitude of these
graphs grows linearly with the energy at the center of mass. Once again, the s—channel
diagram with the Higgs excitations unitarizes the associated amplitude [47, 48, 49]. Fol-
lowing therefore the same steps as in the calculation of the gauge cut-off, we find that
this part of the theory enters into the strong-coupling regime at

~y 15}()22(1 + 66)() + fhh2(1 + 6511)

A

(3.20)

where y is the Yukawa coupling constant. The above cut-off is higher than the one for
the SM gauge interactions (3.18) during the whole evolution of the Universe.
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Figure 3.1: Dependence of the different cut-off scales for a fixed value of the dilaton field y
as a function of the Higgs field A in the Jordan frame. The cut-off (3.14) is parametrically
above the other energy scales (A, Ay, Ap, Ag and Ap) during the whole history and
it is therefore not included in the figure. The effective field theory description of scalar
fields is applicable for typical energies below the thick blue solid line, which correspond
to the minimum of the scalar cut-off scales at a given field value. This is given by Ay and
A1 in the scalar sector, for large and small Higgs values respectively. The red solid line
correspond to the gravitational cut-off (3.7), while the red dashed one corresponds to the
gauge cut-off (3.18). They coincide with the effective scalar sector cut-off for large and
small Higgs values respectively. The scale M, is defined as My = /&, x and corresponds
to the value of the effective Planck mass at low energies.

3.3 Comparison with early universe energy scales

In this section we compare the cut-offs found above with the characteristic energy scales
in the different periods during the evolution of the Universe. If the typical momentum
involved in the different processes is sufficiently small, the theory will remain in the weak
coupling limit, making the Higgs-dilaton scenario self-consistent.

Let us start by considering the inflationary period, characterized by &, x* < &,h%.
As shown in Fig. 3.1 the lowest cut-off in this region is the one associated with the
gauge interactions Ag. The typical momenta of the scalar perturbations produced during
inflation are of the order of the Hubble parameter at that time. This quantity can be
easily estimated in the Einstein frame, where it is basically determined by the energy
stored in the inflationary potential (2.20). We obtain H ~VAMp /&n. When transformed
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to the Jordan frame (H = Qﬁ) this quantity becomes H ~ ,/?hﬁ, which is significantly

below the cut-off scale Ag in that region. The same conclusion is obtained for the total
energy density, which terns out to be much smaller than A},. Moreover, the cut-off
A¢ exceeds the masses of all particles in the Higgs and dilaton background, allowing a
self-consistent estimate of radiative corrections (see below).

After the end of inflation the field 6 starts to oscillate around the minimum of the
potential with a decreasing amplitude due to the expansion of the Universe and due
to particle production. This amplitude varies between M;/+/&, and \/gMO /&n, where
My = \/g)_( is the asymptotic Planck scale in the low energy regime. As shown in
Fig. 2.1, the curvature of the Higgs-dilaton potential around the minimum coincides
(up to corrections of O(§,)) with that of the Higgs-inflation scenario. All the relevant
physical scales, including the effective gauge and fermion masses, agree, up to small
corrections, with those of Higgs-inflation. This allows us to directly apply the results of
[4, 5, 26] to the Higgs-dilaton scenario. According to these works, the typical momenta
of the gauge bosons produced at the minimum of the potential in the Einstein frame
is of order k ~ (ia/M)23M, with m, the mass of the gauge bosons in the Einstein
frame and M = \/\/3Mp/&, the curvature of the potential around the minimum. After
Agt
48¢),
constant. The typical momenta of the created gauge bosons are therefore parametrically
below the gauge cut-off scale (3.19) in that region.

At the end of the reheating period the system settles down to the minimum of the
potential (2.4). In that region the effective Planck mass coincides with the value M.
The cut-off scale becomes Ay ~ /&, x/& ~ Mp/&,, since & * = M3 > &h?. This
value is much higher than the electroweak scale m? ~ 2a/§, Mp (cf. Eq. (2.5)) where
all the physical processes take place. We conclude therefore that perturbative unitarity
is maintained for description of all relevant processes during the whole evolution of the
Universe.

1/6
transforming to the Jordan frame we obtain k ~ ( ) Ag, with g the weak coupling



Chapter 4

Quantum corrections

In this section we concentrate on the quantum corrections which are generated by the
loop expansion and on their influence on the predictions of the model.

Our strategy is as follows. We regularize the quantum theory in such a way that
all multi-loop diagrams are finite, whereas the exact symmetries of the classical action
(gauge and diffeomorphism transformations as well as scale invariance) are intact. More-
over, we require that the approximate shift symmetry of the dilaton field in the Jordan
frame, associated with the smallness of the parameters o, § and &, and discussed in
Section 2, is respected by the regularization. Then we add to the classical action (2.9)
an infinite number of counter-terms (including the finite parts as well) which remove all
the divergences from the theory and do not spoil the exact and approximate symmetries
of the classical action. Since the theory is not renormalizable, these counter-terms will
have a different structure from that of the classical action. In particular, terms that
are non-analytic with respect to scalar fields will appear [50]. They can be considered as
higher-dimensional operators, suppressed by the field-dependent cut-offs. For consistency
with the analysis made earlier in this work, we demand that these cut-offs exceed those
found in Section 3.

An example of the subtraction procedure which satisfies all the requirements for-
mulated above has been constructed in [54] (see also earlier discussion in [51]). It is
based on dimensional regularization in which the t’Hooft-Veltman normalization point p
is replaced by some combination of the scalar fields with an appropriate dimension,
u?> — F(x,h) (we underline that we use the Jordan frame here for all definitions).
The infinite part of counter-terms is defined as in MS prescription, i.e. by subtract-
ing the pole terms in €, where the dimensionality of space-time is D = 4 — 2¢. The finite
part of counter-terms has the same operator structure as the infinite part, including the
parametric dependence on the coupling constants. The requirement of the structure of
higher-dimensional operators, formulated in the previous paragraph, puts an important
constraint on the choice of the function F(yx,h), as it is this combination which appears
in the denominator of counter-terms [54, 50|. The simplest (but not unique) choice is
F(x,h) = &> + &.h?, identifying the normalization point with the gravity cut-off (3.7)
(this corresponds to GR-SI prescription of [54]).

21
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In what follows we will use this “minimal” setup for analysis of the radiative correc-
tions. It will be more convenient to work from now on in the Einstein frame (2.18), where
the coupling to gravity is minimal and all non-linearities are moved to the SM sector.
First, we will consider the effective action for the background fields corresponding to the
“early universe”, including inflation and reheating, and then will turn to the accelerating
“late universe”.

4.1 Early Universe

The inflationary period of the Universe expansion corresponds to background field values
(in the Jordan frame) &, x? < &,h?, whereas the reheating ends at &, x* ~ £2h?. The initial
value of the dilaton field has to be sufficiently large, to keep its present contribution to
DE at the appropriate level [28]. The latter fact allows us to neglect all contributions
to effective action proportional to Ay in the early universe, stemming from U, Ao given by
(2.20). As a result, all corrections due to the dilaton will emerge from its non-canonical
kinetic term, whereas all corrections due to Higgs field will emerge from its potential.

The construction of the effective action for the theory is most easily done in the
following way: expand the action (2.18) near the constant background of the dilaton and
the Higgs fields and drop the linear terms in perturbations. After that, compute all the
vacuum diagrams to account for the potential-type corrections and all the diagrams with
external legs to account for the kinetic-type corrections.

4.1.1 Dilaton

Let us consider first the quantum corrections to the dilaton itself. Since our subtraction
procedure respects the symmetries of the classical action (scale invariance in particular,
corresponding to the shift symmetry of the dilaton field r in the Einstein frame), no po-
tential terms for the dilaton can be generated. Thus, the loop expansion can only create
two types of contributions, both stemming from its kinetic term . The first type are
corrections to the propagator of the field, and as we will show below they are effectively
controlled by (my/Mp)?*, with m3, = U”() and k the number of loops under consid-
eration. The second type are operators with more derivatives of the field suppressed by
appropriate powers of the cut-off associated to the scalar sector of the theory, i.e. Mp.
One should bear in mind that the appearance of these operators to the effective action is
expected and consistent with the analysis made in the previous section. Their presence
does not affect the dynamics of the model, since the scalar cut-off is much larger than
the characteristic momenta of the particles involved in all physical processes throughout
the whole history of the Universe.

To demonstrate explicitly what we described above, let us consider some of the asso-
ciated diagrams. Following the ideas of [54], we perform the computations in dimensional
regularization in D = 4 — 2¢ dimensions. We avoid therefore the use of other regulariza-
tions schemes, such as cut-off regularization, where the scale invariance of the theory is



4.1. FARLY UNIVERSE 23

badly broken at tree level!. The structure of the corrections becomes apparent already
from the one-loop order

= Q— - N <% +f> ct'y(0) (%)Q(ar)z ,
_m_ ~ (%H") S0 [(%)Z (A_?P)?] o

where we represent the dilaton (Higgs) with a dashed (solid) line. To keep the expressions
short we denoted with f and f’ the finite parts of the diagrams, whose values depend on
the normalization point ;1 and cannot be determined a priori. We also absorbed numer-
ical factors into the background-dependent coefficients chV(é), which are combinations
of hyperbolic functions. Their form is complicated because of the non-canonically nor-
malized kinetic term of the dilaton and it depends on the particular diagram d; under
consideration, the number of loops k, as well as the number of vertices V2. Their values
are always smaller than unity, and vary slightly with the value of the angular variable 6.

In two-loops the situation is somehow similar. The divergent (and finite) part of the
corrections (consider for example the diagrams presented in Fig. 4.1) is proportional to

s (0) [(%)4 + (%)2 (Mipy + (]\%)1 (or)?, V<4, (4.1)

Notice that the operator with two powers of derivatives that is present already from the
first order, reappears suppressed by (my/Mp)? in addition to the cut-off of the theory.

It is not difficult to convince oneself that this happens in the higher order diagrams
as well. The structure of the corrections is therefore proportional to

. g \ % me\F2 [ 9 \2 mg\2 [ 8 \ 22 o \ 2 ,
(0 — — — — — — or)” .
e (©) (MP) i (MP> (MP) e (MP) (MP> i (MP> o)
(4.2)
Note that the corrections from diagrams with gauge bosons and fermions running

inside the loops are given also by (4.2), by consistently replacing my with the mass of
the particle considered.

'Similar arguments about the artifacts created by regularization methods that explicitly break scale
invariance can be found for instance in Ref. [52].

2We introduce the index d; to distinguish between the diagrams with the same number of vertices but
different combinations of hyperbolic functions that appear in higher loops.
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O OG- D

Figure 4.1: Some of the two-loop diagrams for the dilaton.

4.1.2 Higgs

We now turn to the corrections to the Higgs field. Once again we consider first the
potential-type contributions. The situation now is more complicated, since the effective
potential for the Higgs field 6 will be modified by terms stemming from the scale-invariant
part of the tree-level potential as well as from the non-canonical kinetic term of the dilaton
field r, with the latter starting from the second order in perturbation theory.

To keep the notation as simple as possible, we express the scale-invariant part of the
potential given by eq. (2.20) in the following compact form

2
~ M4
UB)=Uy | uyg+ Uy, cosh|2nab /M . Uy=—-1L— 4.3
( ) 0 ( 0 nZ:l [ / P]) 0 4&21(1 _ §)2 ( )
where
302 34 o o> B 1466,
Ug = 02—004—?—1- 26 up = ?—00—26' ) Up = % , with g = § (1 +6§Z)
(4.4)
We expand the field around its background value, so the above yields
2 %) a l
~ cosh(2naf/Mp] [ 2nad6
AU(0 4 00) = A
00 +00) = X003 3 (MP)
2 2 20+1
= AUO;;un [cml cosh[2naf / Mp) (%) + d,,; sinh[2naf / Mp) (%) ] :
(4.5)

where ¢,; and d,; account for numerical coefficients and combinatorial factors. Since
the theory is non-renormalizable, the perturbative expansion creates terms which do not
have the same background dependence of the original potential. The contributions turn
out to be of the form?

)\i-&-ij‘;
4E (1 —<)?

where we have left aside numerical factors, denoted with f;; the (finite) integration
constant, and ¢g(1/¢) is a function of the divergent terms. Note that if we set § = 0, we

i { ( ) + fm] Zu w! cosh’[2naf/Mp) sinh’[2mad/Mp] ,  (4.6)

3 We choose not to express the corrections in terms of my/Mp, because here the combinations of the
hyperbolic function are much simpler than the ones that appear from the dilaton’s kinetic term.
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Figure 4.2: Characteristic diagrams coming from the non-canonical kinetic term of the
dilaton field r. The dashed (solid) line represents the dilaton (Higgs). From the one-loop
diagrams in (a), the first one vanishes in dimensional regularization since the dilaton is
massless, whereas the second contributes only terms with more than two derivatives of
the Higgs. In (b) we consider two and three loop diagrams which, apart from generating
higher dimensional operators, contribute to the effective potential once we amputate
them.

make sure that terms which contribute to the cosmological constant given by Eq. (2.6)
will not be generated by the loop expansion.

By inspection of the structure of divergences, we can see that the leading corrections
are those appearing with the lowest power in ¢. To gain insight on their contribution, we
calculate the finite part of Eq. (4.6) when the hyperbolic functions take their maximal
values, which happens for 6,,.,x = 6y = Mp/atanh™ [\/ —¢]. Then we get

)\H‘]

[4€i(1 -

_ . _ A i+j
2 fij Zu ul Cosh [2nab/ Mp)] sinh][ZmaG/Mp]lezem ~ (4—;%) fij

(4.7)
making the corrections coming from the order i + j + 1 negligible compared to the ones
from i 4+ j order. In the last step we have set ¢ = 1, o = ¢, which, given the small value
of the parameter o appearing in (2.22), constitutes a very good approximation.

As we mentioned earlier, potential-type corrections to the Higgs field are also gen-
erated from diagrams associated to the kinetic term of the dilaton r, starting from two
loops. This happens because the first order vacuum diagrams with dilaton running in the
loop, vanish. If we consider higher loop diagrams, like those in fig. 4.2(b) but without
momenta in the external legs, we see that even though the background dependence of
the corrections is complicated due to the non-canonically normalized dilaton that runs
inside the loops, their contributions to the effective action are of the same order as those
in eq. (4.7).

We now turn to the kinetic-type corrections to the Higgs field. By that we mean
corrections to the propagator of the Higgs, as well as terms with more derivatives of the
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field suppressed by the scalar cut-off. The first type of contributions come only from the
scale-invariant part of the potential given by (4.3) , when the momenta associated to the
external legs are considered. It is not difficult to show that these are precisely of the same
form as the ones in (4.6). The second type of contributions, i.e. the higher dimensional
operators, are generated both from the potential of the Higgs in higher loops, as well
as from the non-vanishing diagrams associated to the non-canonical kinetic term of the
dilaton. The terms we get are proportional to

2, ot
Z_(90)2, —(00)* ... (4.8

so they can be safely neglected for the typical momenta in the different epochs of the
evolution of the Universe.

Before moving on, we would like to comment on the appearance of mixing terms with
derivatives of the fields. These manifest themselves when we consider diagrams with
both fields in the external legs. They are higher dimensional operators, and it can be
shown that they appear suppressed by the scalar cut-off of the theory, as was the case
before.

Since the kinetic-type operators do not modify the dynamics of the model, to un-
derstand how the predictions of the model are altered it is sufficient to consider the
potential-type corrections. In one-loop, it is straightforward to show that [53]

~ N atMR 1 o {1+ cosh[4af/Mp]
AU S i — o (E o 2’0) [g ( 2 )

_ 3 (1 + cosh[4af | Mp]
2

1 + cosh[4af/ Mp]
4
e

+ cosh[2af / Mp)] cosh[4a§/Mp])

7] 7] 1 h[8af /M

+ 2. cosh[2a0/ Mp] cosh[daf/ Mp] + —3 [QC‘ / P]> |
(4.9)

where we sorted the corrections by increasing powers of ¢, and defined 1/eé = 1/e — v +

log 47 for convenience.

For the Higgs-dilaton model to be viable, scale-invariance as well as the asymptotic
shift symmetry should be preserved at the level of the UV-complete theory. It is therefore
necessary to use the “Sl-prescription” formulated in [54], which is practically implemented
by replacing the renormalization point p with a field-dependent effective cut-off. Even
though the following result is rather insensitive to the choice of the renormalization
point, in our calculation we identified y as the Planck mass, which corresponds to the
renormalization scheme I in [2, 7]. This is of course not a unique choice, since the
requirement for SI cannot fix the details of the renormalization prescription, but it is in
a way favoured since it has the same form of the non-minimal coupling of the fields to
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the scalar curvature. With this choice, the finite constant f, will be given by

3 U6
f2,o = 5 log (2 )
a p=Mp
3 Aa? _ ) _ _
== —log | =5 [~2¢ cosh[2af/Mp] + ¢*(cosh[2af / Mp] + cosh[4af/Mp])]
2 28,(1 = <)?

(4.10)
If we use the M.S scheme, the remaining (logarithmic) corrections will be suppressed by
an overall factor of the order of O(107!°) as well as powers of ¢, making the contribution
negligible and allowing us to approximate the value of # at the end of inflation by its
classical value 6; ~ 0.
Taking into account the one-loop correction to the effective potential the tilt ng of
the primordial scalar spectrum becomes

\ 2
ns(ko) -1~ _8§X + 967‘['—52)22]?2’0 s for 1 5 4§XN* <K 4N s (411)
h

and therefore hardly modified compared to the one given by Eq. (2.25), calculated only
with the tree-level potential.

4.2 Late Universe

When the reheating period of the Universe ends, the system is outside the scale-invariant
region and the field # has almost settled down at the minimum of the potential. i.e.
tanh?[af/Mp] ~ 1 — 0. As a consequence, there is only one almost massless degree of
freedom, the physical dilaton r. From Egs. (2.18) and (2.21) we see that the action is

or)? A
o 0L Bz iy (412)

2 Y

where we absorbed the contributions of the hyperbolic functions associated to the value of
0 field at the minimum of the potential into the redefinition of Ag. From the expansion of
the potential around the background, it is clear that all the contributions to the effective
action will once again be suppressed by powers of the exponent e /M~ in addition to
powers of Mp, and therefore will not affect the predictions of the model concerning the
dark energy equation of state parameter given by Eq. (2.27). Taking into account the
results of Sections 4.1 and 4.2 we conclude the quantum corrections do not modify the
classical consistency relation (2.29) characterizing Higgs-dilaton cosmology.
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Chapter 5

Conclusions

The purpose of this easy was to study the self-consistency of the Higgs-dilaton cosmologi-
cal model. We determined the field-dependent UV cut-offs and studied their evolution in
the different epochs throughout the history of the Universe. We showed that the cut-off
value is higher than the relevant energy scales in the different periods, making the model
a viable effective field theory describing inflation, reheating, and late-time acceleration
of the Universe.

Since the theory is non-renormalizable, the loop expansion creates an infinite number
of divergences, something that may challenge the classical predictions of the Higgs-dilaton
model. We showed that this is not the case if the UV-completion of the theory respects
scale-invariance and the approximate shift symmetry for the dilaton field. We used the
“SI-prescription” of [54], with a field-dependent renormalization point which in the Ein-
stein frame coincides with Mp and concluded that the most important contribution to
the theory comes from the one-loop corrections to the effective potential. This modifica-
tion leaves practically intact the relation which allows us to connect the tilt of the scalar
spectrum to the deviation of the dark energy from a cosmological constant.
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