

 [image: cover]

Computational Physics

A Practical Introduction to Computational
Physics and Scientific Computing

Konstantinos N. Anagnostopoulos

 National Technical University

 COMPUTATIONAL PHYSICS
A Practical Introduction to Computational Physics and Scientific Computing

AUTHORED BY KONSTANTINOS N. ANAGNOSTOPOULOS
Physics Department, National Technical University of Athens, Zografou Campus, 15780 Zografou,
Greece
konstant@mail.ntua.gr, www.physics.ntua.gr/~konstant/

PUBLISHED BY KONSTANTINOS N. ANAGNOSTOPOULOS
and the
NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Book Website:
www.physics.ntua.gr/~konstant/ComputationalPhysics

©Konstantinos N. Anagnostopoulos 2014, 2016

First Published 2014
Version1
1.1.20161207100600

Cover: Design by K.N. Anagnostopoulos. The front cover picture is a snapshot taken during Monte Carlo
simulations of hexatic membranes. Work done with Mark J. Bowick. Relevant video at youtu.be/Erc7Q6YXfLk

 [image: C○C] This book and its cover(s) are subject to copyright. They are licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit
creativecommons.org/licenses/by-sa/4.0/

The book is accompanied by software available at the book’s website. All the software, unless the copyright does
not belong to the author, is open source, covered by the GNU public license, see www.gnu.org/licenses/. This is
explicitly mentioned at the end of the respective source files.

ISBN 978-1-312-46441-4 (lulu.com, vol. I)
ISBN 978-1-312-46488-9 (lulu.com, vol. II)

Contents

 Foreword

 1 The Computer

 1.1 The Operating System

 1.1.1 Filesystem

 1.1.2 Commands

 1.1.3 Looking for Help

 1.2 Text Processing Tools – Filters

 1.3 Programming with Emacs

 1.3.1 Calling Emacs

 1.3.2 Interacting with Emacs

 1.3.3 Basic Editing

 1.3.4 Cut and Paste

 1.3.5 Windows

 1.3.6 Files and Buffers

 1.3.7 Modes

 1.3.8 Emacs Help

 1.3.9 Emacs Customization

 1.4 The Fortran Programming Language

 1.4.1 The Foundation

 1.4.2 Details

 1.4.3 Arrays

 1.5 Gnuplot

 1.6 Shell Scripting

 2 Kinematics

 2.1 Motion on the Plane

 2.1.1 Plotting Data

 2.1.2 More Examples

 2.2 Motion in Space

 2.3 Trapped in a Box

 2.3.1 The One Dimensional Box

 2.3.2 Errors

 2.3.3 The Two Dimensional Box

 2.4 Applications

 2.5 Problems

 3 Logistic Map

 3.1 Introduction

 3.2 Fixed Points and [image: n
2] Cycles

 3.3 Bifurcation Diagrams

 3.4 The Newton-Raphson Method

 3.5 Calculation of the Bifurcation Points

 3.6 Liapunov Exponents

 3.7 Problems

 4 Motion of a Particle

 4.1 Numerical Integration of Newton’s Equations

 4.2 Prelude: Euler Methods

 4.3 Runge–Kutta Methods

 4.3.1 A Program for the 4th Order Runge–Kutta

 4.4 Comparison of the Methods

 4.5 The Forced Damped Oscillator

 4.6 The Forced Damped Pendulum

 4.7 Appendix: On the Euler–Verlet Method

 4.8 Appendix: 2nd order Runge–Kutta Method

 4.9 Problems

 5 Planar Motion

 5.1 Runge–Kutta for Planar Motion

 5.2 Projectile Motion

 5.3 Planetary Motion

 5.4 Scattering

 5.4.1 Rutherford Scattering

 5.4.2 More Scattering Potentials

 5.5 More Particles

 5.6 Problems

 6 Motion in Space

 6.1 Adaptive Stepsize Control for Runge–Kutta Methods

 6.2 Motion of a Particle in an EM Field

 6.3 Relativistic Motion

 6.4 Problems

 7 Electrostatics

 7.1 Electrostatic Field of Point Charges

 7.2 The Program – Appetizer and ... Desert

 7.3 The Program – Main Dish

 7.4 The Program - Conclusion

 7.5 Electrostatic Field in the Vacuum

 7.6 Results

 7.7 Poisson Equation

 7.8 Problems

 8 Diffusion Equation

 8.1 Introduction

 8.2 Heat Conduction in a Thin Rod

 8.3 Discretization

 8.4 The Program

 8.5 Results

 8.6 Diffusion on the Circle

 8.7 Analysis

 8.8 Problems

 9 The Anharmonic Oscillator

 9.1 Introduction

 9.2 Calculation of the Eigenvalues of [image: Hnm (λ)]

 9.3 Results

 9.4 The Double Well Potential

 9.5 Problems

 10 Time Independent Schrödinger Equation

 10.1 Introduction

 10.2 The Infinite Potential Well

 10.3 Bound States

 10.4 Measurements

 10.5 The Anharmonic Oscillator - Again...

 10.6 The Lennard–Jones Potential

 10.7 Problems

 11 The Random Walker

 11.1 (Pseudo)Random Numbers

 11.2 Using Pseudorandom Number Generators

 11.3 Random Walks

 11.4 Problems

 12 Monte Carlo Simulations

 12.1 Statistical Physics

 12.2 Entropy

 12.3 Fluctuations

 12.4 Correlation Functions

 12.5 Sampling

 12.5.1 Simple Sampling

 12.5.2 Importance Sampling

 12.6 Markov Processes

 12.7 Detailed Balance Condition

 12.8 Problems

 13 Simulation of the [image: d = 2] Ising Model

 13.1 The Ising Model

 13.2 Metropolis

 13.3 Implementation

 13.3.1 The Program

 13.3.2 Towards a Convenient User Interface

 13.4 Thermalization

 13.5 Autocorrelations

 13.6 Statistical Errors

 13.6.1 Errors of Independent Measurements

 13.6.2 Jackknife

 13.6.3 Bootstrap

 13.7 Appendix: Autocorrelation Function

 13.8 Appendix: Error Analysis

 13.8.1 The Jackknife Method

 13.8.2 The Bootstrap Method

 13.8.3 Comparing the Methods

 13.9 Problems

 14 Critical Exponents

 14.1 Critical Slowing Down

 14.2 Wolff Cluster Algorithm

 14.3 Implementation

 14.3.1 The Program

 14.4 Production

 14.5 Data Analysis

 14.6 Autocorrelation Times

 14.7 Temperature Scaling

 14.8 Finite Size Scaling

 14.9 Calculation of [image: βc]

 14.10 Studying Scaling with Collapse

 14.11 Binder Cumulant

 14.12 Appendix: Scaling

 14.12.1 Binder Cumulant

 14.12.2 Scaling

 14.12.3 Finite Size Scaling

 14.13 Appendix: Critical Exponents

 14.13.1 Definitions

 14.13.2 Hyperscaling Relations

 14.14 Problems

 Bibliography

 Index

 This book has been written assuming that the reader executes all
the commands presented in the text and follows all the
instructions at the same time. If this advice is neglected, then
the book will be of little help and some parts of the text may seem
incomprehensible.

 The book’s website is at
http://www.physics.ntua.gr/~konstant/ComputationalPhysics/

From there, you can can download the accompanying software, which
contains, among other things, all the programs presented in the book.

 Some conventions: Text using the font shown below refers to commands
given using a shell (the “command line”), input and output of programs, code
written in Fortran (or any other programming language), as well as to names of
files and programs:

> echo Hello world

Hello world

 When a line starts with the prompt

>

 then the text that follows is a command, which can be given from the command
line of a terminal. The second line, Hello World, is the output of the
command.

 The contents of a file with Fortran code is listed below:

program add

 z = 1.0

 y = 2.0

 x = z + y

 print *, x

end program add

 What you need in order to work on your PC:

 	An operating system of the GNU/Linux family and its basic tools.

 	A Fortran compiler. The gfortran compiler is freely available
 for all major operating systems under an open source license at
 http://www.gfortran.org.

 	An advanced text editor, suitable for editing code in several programming
 languages, like Emacs2 .

 	A good plotting program, suitable for data analysis, like gnuplot3 .

 	The shell tcsh4 .

 	The programs awk5 ,
 grep, sort, cat, head, tail, less. Make sure that they are available
 in your computer environment.

 If you have installed a GNU/Linux distribution on your computer, all of the
above can be installed easily. For example, in a Debian like distribution (Ubuntu,
...) the commands

> sudo apt-get install tcsh emacs gnuplot-x11 gnuplot-doc

> sudo apt-get install gfortran gawk gawk-doc binutils

> sudo apt-get install manpages-dev coreutils liblapack3

 install all the necessary tools.

 If you don’t wish to install GNU/Linux on your computer, you can try the
following:

 	Boot your computer using a usb/DVD live GNU/Linux, like Ubuntu6 .
 This will not make any permanent changes in your hard drive but it
 will start and run slower. On the other hand, you may save all your
 computing environment and documents and use it on any computer
 you like.

 	Install Cygwin7
 in your Microsoft Windows. It is a very good solution for Microsoft-addicted
 users. If you choose the full installation, then you will find all the tools
 needed in this book.

 	Mac OS X is based on Unix. It is possible to install all the software
 needed in this book and follow the material as presented. Search the
 internet for instructions, e.g. google “gfortran for Mac”, “emacs for
 Mac”, “tcsh for Mac”, etc.

Foreword

This book is the culmination of my ten years’ experience in teaching three
introductory, undergraduate level, scientific computing/computational physics
classes at the National Technical University of Athens. It is suitable mostly
for junior or senior level science courses, but I am currently teaching its
first chapters to sophomores without a problem. A two semester course
can easily cover all the material in the book, including lab sessions for
practicing.

 Why another book in computational physics? Well, when I started teaching
those classes there was no bibliography available in Greek, so I was compelled to
write lecture notes for my students. Soon, I realized that my students, majoring in
physics or applied mathematics, were having a hard time with the technical
details of programming and computing, rather than with the physics concepts. I
had to take them slowly by the hand through the “howto” of computing,
something that is reflected in the philosophy of this book. Hoping that this could
be useful to a wider audience, I decided to translate these notes in English
and put them in an order and structure that would turn them into “a
book”.

 I also decided to make the book freely available on the web. I was
partly motivated by my anger caused by the increase of academic (e)book
prices to ridiculous levels during times of plummeting publishing costs.
Publishers play a diminishing role in academic publishing. They get an almost
ready-made manuscript in electronic form by the author. They need to
take no serious investment risk on an edition, thanks to print-on-demand
capabilities. They have virtually zero cost ebook publishing. Moreover, online
bookstores have decreased costs quite a lot. Academic books need no
advertisement budget, their success is due to their academic reputation. I don’t
see all of these reflected on reduced book prices, quite the contrary, I’m
afraid.

 My main motivation, however, is the freedom that independent publishing
would give me in improving, expanding and changing the book in the future. It is
great to have no length restrictions for the presentation of the material, as well as
not having to report to a publisher. The reader/instructor that finds the book
long, can read/print the portion of the book that she finds useful for
her.

 This is not a reference book. It uses some interesting, I hope, physics problems
in order to introduce the student to the fundamentals of solving a scientific
problem numerically. At the same time, it keeps an eye in the direction of
advanced and high performance scientific computing. The reader should follow the
instructions given in each chapter, since the book teaches by example. Several

skills are taught through the solution of a particular problem. My lectures take
place in a (large) computer lab, where the students are simultaneously doing
what I am doing (and more). The program that I am editing and the
commands that I am executing are shown on a large screen, displaying my
computer monitor and actions live. The book provides no systematic
teaching of a programming language or a particular tool. A very basic
introduction is given in the first chapter and then the reader learns whatever is
necessary for the solution of her problem. There is more than one way to do
it8
and the problems can be solved by following a basic or a fancy way, depending on
the student’s computational literacy. The book provides the necessary tools for
both. A bibliography is provided at the end of the book, so that the missing pieces
of a puzzle can be sought in the literature.

 This is also not a computational physics playground. Of course I hope that the
reader will have fun doing what is in the book, but my goal is to provide an
experience that will set the solid foundation for her becoming a high performance
computing, number crunching, heavy duty data analysis expert in the future. This
is why the programming language of the core numerical algorithms has
been chosen to be Fortran, a highly optimized, scientifically oriented,
programming language. The computer environment is set in a Unix family
operating system, enriched by all the powerful GNU tools provided by the
FSF9 .
These tools are indispensable in the complicated data manipulation needed in
scientific research, which requires flexibility and imagination. Of course,
Fortran is not the best choice for heavy duty object oriented programming,
and is not optimal for interacting with the operating system. The
philosophy10
is to let Fortran do what is best for, number crunching, and leave data
manipulation and file administration to external, powerful tools. Tools, like
awk, shell scripting, gnuplot, Perl and others, are quite powerful and

complement all the weaknesses of Fortran mentioned before. The plotting
program is chosen to be gnuplot, which provides very powerful tools to
manipulate the data and create massive and complicated plots. It can
also create publication quality plots and contribute to the “fun part” of
the learning experience by creating animations, interactive 3d plots etc.
All the tools used in the book are open source software and they are
accessible to everyone for free. They can be used in a Linux environment, but
they can also be installed and used in Microsoft Windows and Mac OS
X.

 The other hard part in teaching computational physics to scientists and
engineers is to explain that the approach of solving a problem numerically is quite
different from solving it analytically. Usually, students of this level are coming
with a background in analysis and fundamental physics. It is hard to
put them into the mode of thinking about solving a problem using only
additions, multiplications and some logical operations. The hardest part is to
explain the discretization of a model defined analytically, which can be done
in many ways, depending on the accuracy of the approximation. Then,
one has to extrapolate the numerical solution, in order to obtain a good
approximation of the analytic one. This is done step by step in the book, starting
with problems in simple motion and ending with discussing finite size
scaling in statistical physics models in the vicinity of a continuous phase
transition.

 The book comes together with additional material which can be found at the web page
of the book11 .
The accompanying software contains all the computer programs presented in the
book, together with useful tools and programs solving some of the exercises of
each chapter. Each chapter has problems complementing the material
covered in the text. The student needs to solve them in order to obtain
hands on experience in scientific computing. I hope that I have already
stressed enough that, in order for this book to be useful, it is not enough
to be read in a café or in a living room, but one needs to do what it
says.

 Hoping that this book will be useful to you as a student or as an instructor, I
would like to ask you to take some time to send me feedback for improving and/or
correcting it. I would also appreciate fan mail or, if you are an expert, a review of
the book. If you use the book in a class, as a main textbook or as supplementary
material, I would also be thrilled to know about it. Send me email at
konstantmail.ntua.gr and let me know if I can publish, anonymously or not,

(part of) what you say on the web page (otherwise I will only use it privately
for my personal ego-boost). Well, nothing is given for free: As one of
my friends says, some people are payed in dollars and some others in
ego-dollars!

 Have fun computing scientifically!

 Athens, 2014.

Chapter 1
The Computer

The aim of this chapter is to lay the grounds for the development of the
computational skills which are necessary in the following chapters. It is not an in
depth exposition but a practical training by example. For a more systematic study
of the topics discussed, we refer to the bibliography. Many of the references are
freely available in the web.

 The are many choices that one has to make when designing a computer
project. These depend on the needs for numerical efficiency, on available
programming hours, on the needs for extensibility and upgradability and so on. In
this book we will get the flavor of a project that is mostly scientifically and
number crunching oriented. One has to make the best of the available computing
resources and have powerful tools available for a productive analysis of the data.
Such an environment, found in most of today’s supercomputers, that offers
flexibility, dependability, simplicity, powerful tools for data analysis and effective
compilers is provided by the family of the Unix operating systems. The
GNU/Linux operating system is a Unix variant that is freely available
and most of its utilities are open source software. The voluntary work of
millions of excellent programmers worldwide has built the most stable,
fastest and highest quality software available for scientific computing today.
Thanks to the idea of the open source software pioneered by Richard
Stallman1
this giant collaboration has been made possible.

 Another choice that we have to make is the programming language, and this is
going to be Fortran. Fortran has been built mainly for numerical applications and
it has been used by many scientists and engineers because of its efficiency in high
performance computing. The language is simple and compilers are able to
optimize, parallelize and vectorize the code very efficiently. There is a lot of
scientific and engineering software available in libraries written in Fortran, which
has been used and tested extensively for many years. This is a crucial factor for
scientific software, so that it can be trusted to be efficient and free of errors.
Fortran is not the best choice for interacting with the operating system or for
text processing. This shortcoming can be easily overcome by the use of
external tools and Fortran can be left to do what she has been designed
for: number crunching. Its structure is simple and can be used both for
procedural and object oriented programming, in such a way that, it will not
make the life of an inexperienced programmer difficult, and at the same
time provide high level, abstract and powerful tools for high performance,

modular, object oriented, programming needed in a large and complicated
project.

 Fortran, as well as other languages like C, C++ and Java, is a language that
needs to be compiled by a compiler. Other languages, like perl, awk, shell
scripting, Macsyma, Mathematica, Octave, Matlab, [image: ...], are interpreted
line by line. These languages can be simple in their use, but they can be
prohibitively slow when it comes to a numerically demanding program. A
compiler is a tool that analyzes the whole program and optimizes the
computer instructions executed by the computer. But if programming time is
more valuable, then a simple, interpreted language can lead to faster
results.

 Another choice that we make in this book, and we mention it because it is not the
default in most Linux distributions, is the choice of shell. The shell is a program that
“connects” the user to the operating system. In this book, we will teach how to use a
shell2
to “send” commands to the operating system, which is the most effective way to
perform complicated tasks. We will use the shell tcsh, although most of the
commands can be interpreted by most popular shells. Shell scripting is simpler in
this shell, although shells like bash provide more powerful tools, mostly needed
for complicated system administration tasks. That may cause a small
inconvenience to some readers, since tcsh is not preinstalled in Linux
distributions3 .

 1.1 The Operating System

The Unix family of operating systems offer an environment where complicated
tasks can be accomplished by combining many different tools, each of which
performs a distinct task. This way, one can use the power of each tool, so that
trivial but complicated parts of a calculation don’t have to be programmed. This
makes the life of a researcher much easier and much more productive, since
research requires from us to try many things before we understand how to
compute what we are looking for.

 In the Unix operating system everything is a file, and files are organized in a
unique and unified filesystem. Documents, pictures, music, movies, executable
programs are files. But also directories or devices, like hard disks, monitors, mice,
sound cards etc, are, from the point of view of the operating system, files. In order
for a music file to be played by your computer, the music data needs to be written
to a device file, connected by the operating system to the sound card. The
characters you type in a terminal are read from a file “the keyboard”,
and written to a file “the monitor” in order to be displayed. Therefore,
the first thing that we need to understand is the structure of the Unix
filesystem.

 1.1.1 Filesystem

There is at least one path in the filesystem associated with each file. There
are two types of paths, relative paths and absolute paths. These are two
examples:

bin/RungeKutta/rk.exe

/home/george/bin/RungeKutta/rk.exe

 The paths shown above may refer to the same or a different file. This
depends on “where we are”. If “we are” in the directory /home/george,
then both paths refer to the same file. If on the other way “we are” in a
directory /home/john or /home/george/CompPhys, then the paths
refer4
to two different files. In the last two cases, the paths refer to the files

/home/john/bin/RungeKutta/rk.exe

/home/george/CompPhys/bin/RungeKutta/rk.exe

 respectively. How can we tell the difference? An absolute path always begins with
the / character, whereas a relative path does not. When we say that “we are in a
directory”, we refer to a position in the filesystem called the current directory, or
working directory. Every process in the operating system has a unique current
directory associated with it.

[image: pict]

Figure 1.1: The Unix filesystem. It looks like a tree, with the root directory / at the top
and branches that connect directories with their parents. Every directory contains files,
among them other directories called its subdirectories. Every directory has a unique parent
directory, noted by .. (double dots). The parent of the root directory is itself.

 The filesystem is built on its root and looks like a tree positioned upside down.
The symbol of the root is the character / The root is a directory. Every directory
is a file that contains a list of files, and it is connected to a unique directory, its
parent directory . Its list of files contains other directories, called its subdirectories,
which all have it as their parent directory. All these files are the contents
of the directory. Therefore, the filesystem is a tree of directories with
the root directory at its top which branch to its subdirectories, which in
their turn branch into other subdirectories and so on. There is practically
no limit to how large this tree can become, even for a quite demanding
environment5 .

 A path consists of a string of characters, with the characters / separating its
components, and refers to a unique location in the filesystem. Every component
refers to a file. All, but the last one, must be directories in a hierarchy, from
parent directory to subdirectory. The only exception is a possible / in the
beginning, which refers to the root directory. Such an example can be seen in
figure 1.1.

 In a Unix filesystem there is complete freedom in the choice of the location of the
files6 .
Fortunately, there are some universally accepted conventions respected by almost
everyone. One expects to find home directories in the directory /home,
configuration files in the directory /etc, application executables in directories
with names such as /bin, /usr/bin, /usr/local/bin, software libraries in
directories with names such as /lib, /usr/lib etc.

 There are some important conventions in the naming of the paths. A single
dot “.” refers to the current directory and a double dot “..” to the parent
directory. Similarly, a tilde “~” refers to the home directory of the user. Assume,
e.g., that we are the user george running a process with a current directory
/home/george/Music/Rock (see figure 1.1). Then, the following paths refer to the
same file /home/george/Doc/lyrics.doc:

../../Doc/lyrics.doc

~/Doc/lyrics.doc

~george/Doc/lyrics.doc

./../../Doc/lyrics.doc

 Notice that ~ and ~george refer to the home directory of the user george
(ourselves), whereas ~mary refer to the home directory of another user,
mary.

 We are now going to introduce the basic commands for filesystem navigation and
manipulation7 .
The command cd (=change directory) changes the current directory, whereas the
command pwd (=print working directory) prints the current directory:

> cd /usr/bin

> pwd

/usr/bin

> cd /usr/local/lib

> pwd

/usr/local/lib

> cd

> pwd

/home/george

> cd -

> pwd

/usr/local/lib

> cd ../../

> pwd

/usr

 The argument of the command cd is an absolute or a relative path. If the path is
correct and we have the necessary permissions, the command changes the current
directory to this path. If no path is given, then the current directory changes to
the home directory of the user. If the character - is given instead of a path,
then the command changes the current directory to the previous current
directory.

 The command mkdir creates new directories, whereas the command rmdir
removes empty directories. Try:

> mkdir new

> mkdir new/01

> mkdir new/01/02/03

mkdir: cannot create directory ‘new/01/02/03’: No such file or

 directory

> mkdir -p new/01/02/03

> rmdir new

rmdir: ‘new’: Directory not empty

> rmdir new/01/02/03

> rmdir new/01/02

> rmdir new/01

> rmdir new

 Note that the command mkdir cannot create directories more than one level
down the filesystem, whereas the command mkdir -p can. The “switch” -p makes
the behavior of the command different than the default one.

 In order to list the contents of a directory, we use the command ls
(=list):

> ls

BE.eps Byz.eps Programs srBE_xyz.eps srB_xyz.eps

B.eps Bzy.eps srBd_xyz.eps srB_xy.eps

> ls Programs

Backup rk3_Byz.f90 rk3.f90

plot-commands rk3_Bz.f90 rk3_g.f90

 The first command is given without an argument and it lists the contents of the
current directory. The second one, lists the contents of the subdirectory of the
current directory Programs. If the argument is a list of paths pointing to regular
files, then the command prints the names of the paths. Another way of giving the
command is

[literate={-}{{\texttt{-}}}1]%[basicstyle=\ttfamily]

> ls -l

total 252

-rw-r--r-- 1 george users 24284 May 1 12:08 BE.eps

-rw-r--r-- 1 george users 22024 May 1 11:53 B.eps

-rw-r--r-- 1 george users 29935 May 1 13:02 Byz.eps

-rw-r--r-- 1 george users 48708 May 1 12:41 Bzy.eps

drwxr-xr-x 4 george users 4096 May 1 23:38 Programs

-rw-r--r-- 1 george users 41224 May 1 22:56 srBd_xyz.eps

-rw-r--r-- 1 george users 23187 May 1 21:13 srBE_xyz.eps

-rw-r--r-- 1 george users 24610 May 1 20:29 srB_xy.eps

-rw-r--r-- 1 george users 23763 May 1 20:29 srB_xyz.eps

 The switch -l makes ls to list the contents of the current directory together with
useful information on the files in 9 columns. The first column lists the permissions
of the files (see below). The second one lists the number of links of the
files8 .
The third one lists the user who is the owner of each file. The fourth one lists the
group that is assigned to the files. The fifth one lists the size of the file in bytes
(=8 bits). The next three ones list the modification time of the file and the last
one the paths of the files.

 File permissions9
are separated in three classes: owner permissions, group permissions and other
permissions. Each class is given three specific permissions, r=read, w=write and
x=execute. For regular files, read permission effectively means access to the file
for reading/copying, write permission means permission to modify the contents of
the file and execute permission means permission to execute the file as a

command10 .
For directories, read permission means that one is able to read the names of the
files in the directory (but not make it as current directory with the cd command),
write permission means to be able to modify its contents (i.e. create, delete, and
rename files) and execute permission grants permission to access/modify the
contents of the files (but not list the names of the files, this is granted by the read
permission).

 The command ls -l lists permissions in three groups. The owner (positions
2-4), the group (positions 5-7) and the rest of the world (others - positions 8-10).
For example

[literate={-}{{\texttt{-}}}1]

-rw-r--r--

-rwxr-----

drwx--x--x

 In the first case, the owner has read and write but not execute permissions and
the group+others have only read permissions. In the second case, the user has
read, write and execute permissions, the group has read permissions and others
have no permissions at all. In the last case, the user has read, write and execute
permissions, whereas the group and the world have only execute permissions. The
first character d indicates a special file, which in this case is a directory. All
special files have this position set to a character, while regular files have it set to
-.

 File permissions can be modified by using the command chmod:

> chmod u+x file

> chmod og-w file1 file2

> chmod a+r file

 Using the first command, the owner (u[image: ≡] user) obtains (+) permission to
execute (x) the file named file. Using the second one, the rest of the world (o[image: ≡]
others) and the group (g[image: ≡]group) loose (-) the write (w) permission to the files
named file1 and file2. Using the third one, everyone (a[image: ≡]all) obtain read (r)
permission on the file named file.

 We will close this section by discussing some commands which are used for
administering files in the filesystem. The command cp (copy) copies the contents
of files into other files:

> cp file1.f90 file2.f90

> cp file1.f90 file2.f90 file3.f90 Programs

 If the file file2.f90 does not exist, the first command copies the contents of
file1.f90 to a new file file2.f90. If it already exists, it replaces its
contents by the contents of the file file2.f90. In order for the second
command to be executed, Programs needs to be a directory. Then, the
contents of the files file1.f90, file2.f90, file3.f90 are copied to
indentical files in the directory Programs. Of course, we assume that
the user has the appropriate privileges for the command to be executed
successfully.

 The command mv “moves”, or renames, files:

> mv file1.f90 file2.f90

> mv file1.f90 file2.f90 file3.f90 Programs

 The first command renames the file file1.f90 to file2.f90. The second
one moves files file1.f90, file2.f90, file3.f90 into the directory
Programs.

 The command rm (remove) deletes
files11 .
Beware, the command is unforgiving: after deletion, a file cannot be restored into the
filesystem12 .
Therefore, after executing successfully the following commands

> ls

file1.f90 file2.f90 file3.f90 file4.csh

> rm file1.f90 file2.f90 file3.f90

> ls

file4.csh

 the files file1.f90, file2.f90, file3.f90 do not exist in the filesystem
anymore. A more prudent use of the command demands the flag -i. Then, before
deletion we are asked for confirmation:

> rm -i *

rm: remove regular file ‘file1.f90’? y

rm: remove regular file ‘file2.f90’? y

rm: remove regular file ‘file3.f90’? y

rm: remove regular file ‘file4.csh’? n

> ls

file4.csh

 When we type y, the file is deleted, when we type n, the file is not deleted.

 We cannot remove directories the same way. It is possible to use the command
rmdir in order to remove empty directories. In order to delete directories together
with their contents (including subdirectories and their contents) use the
command13
rm -r. For example, assume that the contents of the directories dir1 and
dir1/dir2 are the files:

./dir1

./dir1/file2.f90

./dir1/file1.f90

./dir1/dir2

./dir1/dir2/file3.f90

 Then the results of the following commands are:

> rm dir1

rm: cannot remove ‘dir1’: Is a directory

> rm dir1/dir2

rm: cannot remove ‘dir1/dir2’: Is a directory

> rmdir dir1

rmdir: dir1: Directory not empty

> rmdir dir1/dir2

rmdir: dir1/dir2: Directory not empty

> rm -r dir1

 The last command removes all files (assuming that we have write permissions
for all directories and subdirectories). Alternatively, we can empty the
contents of all directories first, and then remove them with the command
rmdir:

> cd dir1/dir2; rm file3.f90

> cd .. ; rmdir dir2

> rm file1.f90 file2.f90

> cd .. ; rmdir dir1

 Note that by using a semicolon, we can execute two or more commands on the
same line.

 1.1.2 Commands

Commands in a Unix operating system are files with execute permission. When
we write a sentence on the command line, like

> ls -l test.f90 test.dat

 the shell reads its and interprets it. The shell is a program that creates a interface
between a user and the operating system. The first word (ls) of the sentence is
interpreted as a command. The rest of the words are the arguments of the
command and the program can use them (or not) at the discretion of its
programmer. There is a special convention for arguments that begin with a - (e.g.
-l, --help, --version, -O3). They are called options or switches, and they act as
virtual switches that make the program act in a particular way. We have
already seen that the program ls gives a different output with the switch
-l.

 In order for a command to be executed, the shell looks for a file that has the
same name as the command (here a file named ls). In order to understand where
the shell looks for such a file, we should digress a little bit and explain the use
of shell variables and environment variables. These have a name, which
is a string of permissible characters, and their values are obtained by
preceding their name with the $ character. For example the variable PATH has
value $PATH. The values of the environment variables can be set with the
command14
setenv and of the shell variables with the command set:

> setenv MYVAR test-env

> set myvar = test-shell

> echo $MYVAR $myvar

test-env test-shell

 Two special variables are the variables PATH and path:

>echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/X11/bin

>echo $path

/usr/local/bin /usr/bin /bin /usr/X11/bin

 The first one is an environment variable and the second one is a shell variable.
Their values are set by the shell, and we don’t need to worry about them, unless
we want to change them. Their value is a string of characters whose components
should be valid paths to directories. In the first case, the components are
separated by a :, while in the second case, by one or more spaces. In the
example shown above, the shell searches each component of the path or
PATH variables (in this order) until it finds a file ls in their contents. If
it succeeds and the file has execute permissions, then the program in
this file is executed. If it fails, then it prints an error message. Try the
commands:

> which ls

/bin/ls

> ls -l /bin/ls

-rwxr-xr-x 1 root root 93560 Sep 28 2006 /bin/ls

 We see that the program that the ls command executes the program in the file
/bin/ls.

 The arguments of a command are passed on to the program that the command
executes for possible interpretation. For example:

> ls -l test.f90 test.dat

 The argument -l is the switch that results in a long listing of the files. The
arguments test.f90 and test.dat are interpreted by the program ls as paths
that it will look up for file information.

 You can use the * (wildcard) character as a shorthand notation for a group of
files. For example, in the command shown below

> ls -l *.f90 *.dat

 the shell will expand *.f90 and *.dat to a list of all files whose names end with
.f90 or .dat. Therefore, if the current directory contains the files test.f90,
test1.f90, myprog.f90, test.dat, hello.dat, the arguments that will be
passed on to the command ls are

> ls -l myprog.f90 test1.f90 test.f90 hello.dat test.dat

 For each command there are three special files associated with it. The first
one is the standard input (stdin), the second one is the standard output
(stdout) and the third one the standard error (stderr). These are files
where the program can print or read data from. By default, these files are
the terminal that the user uses to execute the command. In this case,
when the program reads data from the stdin, then it reads the data that
we type to the terminal using the keyboard. When the program writes
data to the stdout or to the stderr, then the data is written to the
terminal.

 The advantage of using these special files in order to read/write data is that
the user can redirect the input/output to these files to any file she wants. Using
the character > at the end of a command redirects the stdout to the file whose
name is written after >. For example:

> ls

file1.f90 file2.f90 file3.f90 file4.csh

> ls > results

> ls

file1.f90 file2.f90 file3.f90 file4.csh results

 The first of the above commands, prints the contents of the current working
directory to the terminal. The second command redirects data written to
the stdout to the file results. After executing the command, the file
results is created and its contents are the names of the files file1.f90
file2.f90 file3.f90 file4.csh. If the file results does not exist
(as in the above example), the file is created. If it already exists, it is
truncated and its contents replaced by the data written to the stdout of the
command. If we want to append data without erasing the existing contents,
then we should use the string of characters >>. Therefore, if we give the
command

> ls >> results

 after executing the previous commands, then the contents of the file results will
be

file1.f90 file2.f90 file3.f90 file4.csh

file1.f90 file2.f90 file3.f90 file4.csh results

 The redirection of the stdin is accomplished by the use of the
character < while that of the stderr by the use of the string of
characters15
>&. We will see more examples in section 1.2.

 It is possible to redirect the stdout of a command to be the stdin of
another command. This is very useful for creating filters. A filter is a
command that creates a flow of data between two or more programs.
This process is called piping. Pipes are creating by using the character
|

> cmd1 | cmd2 | cmd3 | ... | cmdN

 Using the syntax shown above, the stdout of the command cmd1 is redirected to
the stdin of the command cmd2, the stdout of the command cmd2 is redirected
to the stdin of the command cmd3 etc. More examples will be presented in
section 1.2.

 1.1.3 Looking for Help

Unix got itself a reputation for not being user friendly. This is far from the truth.
Although there is a steep learning curve, detailed documentation for almost
everything is available online.

 The key for a comfortable ride is to learn how to use the help system available
on your computer and on the internet. Most of the commands are self
documented. A simple test, like the one shown below, will help you with the basic
usage of most of the commands:

[literate={-}{{\texttt{-}}}1]

> cmd --help

> cmd -h

> cmd -help

> cmd -\?

 For example, try the command ls --help. For a window application, start from
the menu “Help”. You should not be afraid and/or lazy and you should proceed
with careful searching and reading.

 For example, let’s assume that you have heard about a command that sounds
like printf, or something like that. The first level of online help is the man
(=manual) command that searches the “man pages”. Read the output of the
command

> man printf

 The command info usually provides more detailed and user friendly
documentation. It has basic browsing capabilities like the browsers you use to
read pages from the internet. Try the command

> info printf

 Furthermore, the commands

> man -k printf

> whatis printf

 will inform you that there are other, possibly related, commands with names like
fprintf, fwprintf, wprintf, sprintf...:

> whatis printf

printf (1) - format and print data

printf (1p) - write formatted output

printf (3) - formatted output conversion

printf (3p) - print formatted output

printf [builtins] (1) - bash built-in commands, see bash(1)

 The second column printed by the whatis command is the “section” of the man
pages. In order to gain access to the information in a particular section, you have
to give it as an argument to the man command:

> man 1 printf

> man 1p printf

> man 3 printf

> man 3p printf

> man bash

 Section 1 of the man pages contains information of ordinary command line
commands, section 3 contains information on functions in libraries of
the C language. Section 2 contains information on commands used for
system administration. You may browse the directory /usr/share/man, or
read the man page of the man command (use the command man man for
that!).

 By using the command

[literate={-}{{\texttt{-}}}1]

> printf --help

 we obtain plenty of memory refreshing information. The command

> locate printf

 shows us many files related to the command printf. The commands

> which printf

> where printf

 give information on the location of the executable(s) of the command
printf.

 Another useful feature of the shell is the command or it filename completion.
 This means that we can write only the first characters of the name
of a command or filename and then press simultaneously the keys
[Ctrl-d]16
(i.e. press the key Ctrl and the key of the letter d at the same time). Then the shell will
complete the name of the command up to the point that is is unique with the given string of
characters17 :

> pri[Ctrl-d]

printafm printf printenv printnodetest

 Try to type an x on the command line and then type [Ctrl-d]. You will learn all
the commands that are available and whose name begins with an x: xterm,
xeyes, xclock, xcalc, ...

 Finally, the internet contains a wealth of information. Google your blues... and
you will be rewarded!

 1.2 Text Processing Tools – Filters

For doing data analysis, we will need powerful tools for manipulating data in text
files. These are files that consist solely of printable characters. Some tools that can
be used in order to construct complicated and powerful filters are the programs
cat, less, head, tail, grep, sort and awk.

 Suppose that we have data in a file named
data18
which contains information on the contents of a food warehouse and their
prices:

bananas 100 pieces 1.45

apples 325 boxes 1.18

pears 34 kilos 2.46

bread 62 kilos 0.60

ham 85 kilos 3.56

 The command

> cat data

 prints the contents of the file data to the stdout. In general, this command
prints the contents of all files given in its arguments or the stdin if none is given.
Since the stdin and the stdout can be redirected, the command

> cat < data > data1

 takes the contents of the file data from the stdin and prints them to the stdout,
which in this case is the file data1. This command has the same result as the
command:

> cp data data1

 The command

> cat data data1 > data2

 prints the contents of the file data and then the contents of the file data1 to the
stdout. Since the stdout is redirected to the file data2, data2 contains the data
of both files.

 By giving the command

> less gfortran.txt

 you can browse the data contained in the file gfortran.txt one page at a time.
Press [space] in order to “turn” a page, [b] to turn back a page. Press the up
and down arrows to move one line backwards/forward. Press [g] in order to
jump to the beginning of the file and press [G] in order to jump to the
end. Press [h] in order to get a help message and press [q] in order to
quit.

 The commands

> head -n 1 data

bananas 100 pieces 1.45

> tail -n 2 data

bread 62 kilos 0.60

ham 85 kilos 3.56

> tail -n 2 data | head -n 1

bread 62 kilos 0.60

 print the first line, the last two lines and the second to the last line of the file
data to the stdout respectively. Note that, by piping the stdout of the command
tail to the stdin of the command head, we are able to construct the filter “print
the line before the last one”.

 The command sort sorts the contents of a file by comparing each line of its
text with all others. The sorting is alphabetical, unless otherwise set by using
options. For example

> sort data

apples 325 boxes 1.18

bananas 100 pieces 1.45

bread 62 kilos 0.60

ham 85 kilos 3.56

pears 34 kilos 2.46

 For reverse sorting, try sort -r data. We can also sort by comparing specific
fields of each line. By default, fields are words separated by one or more spaces.
For example, in order to sort w.r.t. the second column of the file data, we can use
the switch -k 2 (=second field). Furthermore, we can use the switch -n for
numerical sorting:

> sort -k 2 -n data

pears 34 kilos 2.46

bread 62 kilos 0.60

ham 85 kilos 3.56

bananas 100 pieces 1.45

apples 325 boxes 1.18

 If we omit the switch -n, the comparison of the lines is performed based on
character sorting of the second field and the result is

> sort -k 2 data

bananas 100 pieces 1.45

apples 325 boxes 1.18

pears 34 kilos 2.46

bread 62 kilos 0.60

ham 85 kilos 3.56

 The last column contains floating point numbers (not integers). In order to sort
by the values of such numbers we should use the switch -g:

> sort -k 4 -g data

bread 62 kilos 0.60

apples 325 boxes 1.18

bananas 100 pieces 1.45

pears 34 kilos 2.46

ham 85 kilos 3.56

 The command grep processes a text file line by line, searching for a given
string of characters. When this string is found anywhere in a line, this line is
printed to the stdout. The command

> grep kilos data

pears 34 kilos 2.46

bread 62 kilos 0.60

ham 85 kilos 3.56

 prints each line containing the string “kilos”. If we want to search for all line not
containing the string “kilos”, then we add the switch -v:

> grep -v kilos data

bananas 100 pieces 1.45

apples 325 boxes 1.18

 We can use a regular expression for searching a whole family of strings of
characters. These monsters need a full book for discussing them in detail! But it is
not hard to learn how to use some simple forms of regular expressions. Here are
some examples:

> grep ^b data

bananas 100 pieces 1.45

bread 62 kilos 0.60

> grep ’0$’ data

bread 62 kilos 0.60

> grep ’3[24]’ data

apples 325 boxes 1.18

pears 34 kilos 2.46

The first one, prints each line whose first character is a b. The second one, prints
each line that ends with a 0. The third one, prints each line contaning the strings
32 or 34.

 By far, the strongest tool in our toolbox is the awk program. By default, awk
analyzes a text file line by line. Each word (or field in the awk jargon) of these
lines is stored in a set of variables with names $1, $2, The variable $0
contains the full line currently processed, whereas the variable NF counts the
number of fields in the current line. The variable NR counts the number of lines of
the file processed so far by awk.

 An awk program can be written in the command line. A set of commands
within { ... } is executed for each line of input. The constructs BEGIN{ ... }
and END{ ... } contain commands executed, only once, before and after the
processing of the file respectively. For example, the command

> awk ’{print $1,"total value= ",$2*$4}’ data

bananas total value= 145

apples total value= 383.5

pears total value= 83.64

bread total value= 37.2

ham total value= 302.6

 prints the name of the product (1st column = $1) and the total value stored in
the warehouse (2nd column = $2) [image: ×] (4th column = $4). More examples are
given below:

> awk ’{value += $2*$4}END{print "Total= ",value}’ data

Total= 951.94

> awk ’{av += $4}END{print "Average Price= ",av/NR}’ data

Average Price= 1.85

> awk ’{print $2^2 * sin($4) + exp($4)}’ data

 The first one calculates the total value of all products: The processing of each line
results in the increment (+=) of the variable value by the product of the second
and fourth fields. In the end (END{ ... }), the string Total= is printed, together
with the final value of the variable value. This is an easy way for computing
the sum of the values calculated for each line. The second command,
calculates and prints an average. The sum is calculated in each line and stored
in the variable av. In the end, we print the quotient of the sum of all
values by the number of lines that have been processed (NR). The last
command shows a (crazy) mathematical expression based on numerical values
found in each line of the file data: It computes the square of the second
field times the sine of the fourth field plus the exponential of the fourth
field.

 There is much more potential in the commands presented above. Reading the
documentation and getting experience by using them will provide you with very
strong tools in order to accomplish complicated tasks.

 1.3 Programming with Emacs

For a programmer that spends many hours programming every day, the
environment and the tools available for editing the commands of a large and
complicated program determine, to a large extent, the quality of her life! An
editor edits the contents of a text file, that consists solely of printable characters.
Such editors, available in most Linux environments, are the programs gedit,
vim, pico, nano, zile... They provide basic functionality such as adding,
removing or changing text within a file as well as more complicated functions,
such as copying, pasting, searching and replacing text etc. There are many
functions that are particularly useful to a programmer, such as detecting and
formatting keywords of a particular programming language, pretty printing,

closing scopes etc, which can be very useful for comfortable programming and for
spotting errors. A very powerful and “knowledgeable” editor, offering many
such functions for several programming languages, is the GNU Emacs
editor19 .
Emacs is open source software, it is available for free and
can be used in most available operating systems. It is
programmable20
and the user can automate most of her everyday repeated tasks and configure it to
her liking. There is a full interaction with the operating system, in fact Emacs has
been built with the ambition of becoming an operating system. For example, a
programmer can edit a Fortran file, compile it, debug it and run it, everything
done with Emacs commands.

 1.3.1 Calling Emacs

In the command line type

> emacs &

 Note the character & at the end of the line. This makes the particular command
to run in the background. Without it, the shell waits until a command exits in
order to return the prompt.

 In a desktop environment, Emacs starts in its own window. For a quick and
dirty editing session, or in the case that a windows environment is not
available21 ,
we can run Emacs in a terminal mode. Then, we omit the & at the end of the line
and we run the command

> emacs -nw

 The switch -nw forces Emacs to run in terminal mode.

[image: pict]

Figure 1.2: The Emacs window in a windows environment. The buttons of very basic
functions found on its toolbar are shown and explained.

[image: pict]

Figure 1.3: Emacs in a non-window mode running on the console. In this figure, we
have typed the command save-buffers-kill-emacs in the minibuffer, a command that
exits Emacs after saving edited data from all buffers. The same command can be given
using the keyboard shortcut C-x C-c. We can see the mode line and the name of the buffer
toy.f written on it, the percentage of the buffer (6%) shown in the window, the line and
columns (33,0) where the point lies and the editing mode which is active on the buffer
(Fortran mode (Fortran), Abbreviation mode (Abbrev), Auto Fill mode (Fill)).

 1.3.2 Interacting with Emacs

We can interact with Emacs in various ways. Newbies will prefer buttons and
menus that offer a simple and intuitive interface. For advanced usage, however, we
recommend that you make an effort to learn the keyboard shortcuts. There are
also thousands of functions available to be used interactively. They are
called from a “command line”, called the minibuffer in the Emacs jargon.

 Keyboard shortcuts are usually combinations of keystrokes that
consist of the simultaneous pressing of the Ctrl or Alt keys together
with other keys. Our convention is that a key sequence starting with a C-
means that the characters that follow are keys simultaneously pressed
with the Ctrl key. A key sequance starting with a M- means that the
characters that follow are keys simultaneously pressed with the Alt
key22 .
Some commands have shortcuts consisting of two or more composite keystrokes.
For example by C-x C-c we mean that we have to press simultaneously the Ctrl
key together with x and then press simultaneously the Ctrl key together with c.
This sequence is a shortcut to the command that exits Emacs. Another example is
C-x 2 which means to press the Ctrl key together with x and then press only the
key 2. This is a shortcut to the command that splits a window horizontally to two
equal parts.

 The most useful shortcuts are M-x (press the Alt key siumutaneously with the
x key) and C-g. The first command takes us to the minibuffer where we can
give a command by typing its name. For example, type M-x and then
type save-buffers-kill-emacs in the minibuffer (this will terminate
Emacs). The second one is an “SOS button” that interrupts anything Emacs
does and returns control to the working buffer. This can be pretty handy
when a command hangs or destroys our work and we need to interrupt
it.

[image: pict] [image: pict] [image: pict] [image: pict]

Figure 1.4: The basic menus found in Emacs when run in a desktop environment. We
can see the basic commands and the keyboard shortcut reminders in the parentheses. E.g.
the command File [image: →] Visit New File can be given by typing C-x C-f. Note the
commands File [image: →] Visit New File (open a file), File[image: →]Save (write contents of a
buffer to a file), File[image: →]Exit Emacs, File [image: →] Split Window (split window in two),
File[image: →]New Frame (open a new Emacs desktop window) and of course the well known
commands Cut, Copy, Paste, Undo from the Edit menu. We can choose different buffers
from the menu Buffers, which contain the contents of other files that we have opened for
editing. We recommend trying the Emacs Tutorial and Read Emacs Manual in the Help
menu.

 The conventions for the mouse events are as follows: With Mouse-1, Mouse-2
and Mouse-3 we denote a simple click with the left, middle and right buttons of
the mouse respectively. With Drag-Mouse-1 we mean to press the left button of
the mouse and at the same time drag the mouse.

 We summarize the possible ways of giving a command in Emacs with the
following examples that have the same effect: Open a file and put its contents in a
buffer for editing.

 	By pressing the toolbar button that looks like a white sheet of paper
 (see figure 1.2).

 	By choosing the File[image: →]Visit New File menu entry.

 	By typing the keyboard shortcut C-x C-f.

 	By typing the name of the command in the minibuffer: M-x find-file

The number of available commands increases from the top to the bottom of the above
list.

 1.3.3 Basic Editing

In order to edit a file, Emacs places the contents of a file in a buffer. Such a buffer
is a chunk of computer memory where the contents of the file are copied and it is
not the file itself. When we make changes to the contents of a buffer, the file
remains intact. For our changes to take effect and be written to the file, we
have to save the buffer. Then, the contents of the buffer are written back
to the file. It is important to understand the following cycle of events:

 	Read a file’s contents to a buffer.

 	Edit buffer contents.

 	Write (save) buffer’s contents back into the file.

Emacs may have more than one buffers open for editing simultaneously. By default, the
name of the buffer is the same as the name of the file that is edited, although this is not
necessary23 .
The name of a buffer is written in the modeline of the window of the buffer, as
can be seen in figure 1.3.

 If Emacs crashes or exits before we save our edits, it is possible to recover
(part of) them. There is a command M-x recover-file that will guide us
through the necessary recovery steps, or we can look for a file that has the same
name as the buffer we were editing surrounded by two #. For example, if we were
editing the file file.f90, the automatically saved changes can be found in the file
#file.f90#. Auto saving is done periodically by Emacs and its frequency can be
controlled by the user.

 The point where we insert text while editing is called “the point”. This is right before the
blinking cursor24 .
Each buffer has another position marked by “the mark”. A point and the
mark define a “region” in the buffer. This is a part of the text in the
buffer where the functions of Emacs can act (e.g. copy, cut, change case,
spelling etc.). We can set the region by setting a point and then press
C-SPC25
or give the command M-x set-mark-command. This defines the current point to
be the mark. Then we can move the cursor to another point which will define
a region together with the mark that we set. Alternatively we can use
Drag-Mouse-1 (hold the left mouse button and drag the mouse) and
mark a region. The mark can be set with Mouse-3, i.e. with a simple click
of the right button of the mouse. Therefore by Mouse-1 at a point and
then Mouse-3 at a different point will set the region between the two
points.

 We can open a file in a buffer with the command C-x C-f, and then by typing
its path. If the file already exists, its contents are copied to a buffer, otherwise a
new buffer is created. Then:

 	We can browse the buffer’s contents with the Up/Down/Left/Right
 arrows. Alternatively, by using the commands C-n, C-p, C-f and C-b.

 	If the buffer is large, we can browse its contents one page at a
 time by using the Page Up/Page Dn keys. Alternatively, by using the
 commands C-v, M-v.

 	Enter text at the points simply by typing it.

 	Delete characters before the point by using the Backspace key and
 after the point by using the Delete key. The command C-d deletes a
 forward character.

 	Erase all the characters in a line that lie ahead of the point by using
 the command C-k.

 	Open a new line by using Enter or C-o.

 	Go to the first character of a line by using Home and the last one by using
 End. Alternatively, by using the commands C-a and C-e, respectively.

 	Go to the first character of the buffer with the key C-Home
 and the last one with the key C-End. Alternatively, with M-x
 beginning-of-buffer and M-x end-of-buffer.

 	Jump to any line we want: Type M-x goto-line and then the line
 number.

 	Search for text after the point: Press C-s and then the text you
 are looking for. This is an incremental search and the point jumps
 immediately to the first string that matches the search. The same search
 can be repeated by pressing C-s repeatedely.

 When we finish editing (or frequently enough so that we don’t loose our work
due to an unfortunate event), we save the changes in the buffer, either by pressing
the save icon on the toolbar, or by pressing the keys C-s, or by giving the
command M-x save-buffer.

 1.3.4 Cut and Paste

Use the instructions below for slightly more advanced editing:

 	Undo! Some of the changes described below can be catastrophic. Emacs
 has a great Undo function that keeps in its memory many of the changes
 inflicted by our editing commands. By repeatedely pressing C-/, we
 undo the changes we made. Alternatively, we can use C-x u or the
 menu entry Edit[image: →]Undo. Remember that C-g interrupts any Emacs
 process currently running in the buffer.

 	Cut text by using the mouse: Click with Mouse-1 at the point before
 the beginning of the text and then Mouse-3 at the point after the end.
 A second Mouse-3 and the region is ... gone (in fact it is written in the
 “kill ring” and it is available for pasting)!

 	Cut text by using a keyboard shortcut: Set the mark by C-SPC at the
 point before the beginning of the text that you want to cut. Then move
 the cursor after the last character of the text that you want to cut and
 type C-w.

 	Copy text by using the mouse: Drag the mouse Drag-Mouse-1 and
 mark the region that you want to copy. Alternatively, Mouse-1 at the
 point before the beginning of the text and then Mouse-3 at the point
 after the end.

 	Copy text by using a keyboard shortcut: Set the mark at the beginning
 of the text with C-SPC and then move the cursor after the last character
 of the text. Then type M-w.

 	Pasting text with the mouse: We click the middle button26
 Mouse-2 at the point that we want to insert the text from the kill ring
 (the copied text).

 	Pasting text with a keyboard shortcut: We move the point to the desired
 insertion point and type C-y.

 	Pasting text from previous copying: A fast choice is the menu entry
 Edit[image: →]Paste from kill manu and then select from the copied
 texts. The keyboard shortcut is to first type C-y and then M-y
 repeatedly, until the text that we want is yanked.

 	Insert the contents of a file: Move the point to the desired place and
 type C-x i and the path of the file. Alternatively, give the command
 M-x insert-file.

 	Insert the contents of a buffer: We can insert the contents of a whole
 buffer at a point by giving the command M-x insert-buffer.

 	Replace text: We can replace text interactively with the command M-x
 query-replace, then type the string we want to replace, and then the
 replacement string. Then, we will be asked whether we want the change
 to be made and we can answer by typing y (yes), n (no), q (quit the
 replacements). A , (comma) makes only one replacement and quits
 (useful if we know that this is the last change that we want to make).
 If we are confident, we can change all string in a buffer, no questions
 asked, by giving the command M-x replace-string.

 	Change case: We can change the case in the words of a region with
 the commands M-x upcase-region, M-x capitalize-region and M-x

 downcase-region. Try it.

We note that cutting and pasting can be made between different windows of the same
or different buffers.

1.3.5 Windows

Sometimes it is very convenient to edit one or more different buffers in two or
more windows. The term “windows” in Emacs refers to regions of the same Emacs
desktop window. In fact, a desktop window running an Emacs session is referred
to as a frame in the Emacs jargon. Emacs can split a frame in two or
more windows, horizontally or/and vertically. Study figure 1.5 on page
81 for details. We can also open a new frame and edit several buffers
simultaneously27 .
We can manipulate windows and frames as follows:

[image: pict]

Figure 1.5: In this figure, the Emacs window has been split in three windows. The
splitting was done horizontally first (C-x 2), and then vertically (C-x 3). By dragging the
mouse (Drag-Mouse-1) on the horizontal mode lines and vertical lines that separate the
windows, we can change window sizes. Notice the useful information diplayed on the mode
lines. Each window has one point and the cursor is on the active window (in this case the
window of the buffer named ELines.f). A buffer with no active changes in its contents
is marked by a --, an edited buffer is marked by ** and a buffer in read only mode with
(%%). With a mouse click on a %%, we can change them to -- (so that we can edit) and
vice versa. With Mouse-3 on the name of a mode we can activate a choice of minor modes.
With Mouse-1 on the name of a mode we ca have access to commands relevant to the
mode. The numbers (17,31), (16,6) and (10,15) on the mode lines show the (line,column)
of the point location on the respective windows.

 	Position the point at the center of the window and clear the screen
 from garbage: C-l (careful: l not 1).

 	Split a window in two, horizontally: C-x 2.

 	Split a window in two, vertically: C-x 3.

 	Delete all other windows (remain only with the current one): C-x 1.

 	Delete the current windows (the others remain): C-x 0.

 	Move the cursor to the other window: Mouse-1 or C-x o.

 	Change the size of window: Use Drag-Mouse-1 on the line separating
 two windows (the mode line). Use C-^, C-} for making a change of the
 horizontal/vertical size of a window respectively.

 	Create a new frame: C-x 5 2.

 	Delete a frame: C-x 5 0.

 	Move the cursor to a different frame: With Mouse-1 or with C-x 5 o.

You can have many windows in a dumb terminal. This is a blessing when a dekstop
environment is not available. Of course, in that case you cannot have many
frames.

 1.3.6 Files and Buffers

 	Open a file: C-x C-f or M-x find-file.

 	Save a buffer: C-x C-s or M-x save buffer. With C-x C-c or M-x
 save-buffers-kill-emacs we can also exit Emacs. From the menu:
 File[image: →]Save. From the toolbar: click on the save icon.

 	Save buffer contents to a different file: C-x C-w or M-x write-file.
 From the menu: File[image: →]Save As. From the toolbar: click on the
 “save as” icon.

 	Save all buffers: C-x s or M-x save-some-buffers.

 	Connect a buffer to a different file: M-x set-visited-filename.

 	Kill a buffer: C-x k.

 	Change the buffer of the current window: C-x b. Also, use the menu
 Buffers, then choose the name of the buffer.

 	Show the list of all buffers: C-x C-b. From the menu: Buffers [image: →]
 List All Buffers. By typing Enter next to the name of the buffer, we
 make it appear in the window. There are several buffer administration
 commands. Learn about them by typing C-h m when the cursor is in
 the Bufer List window.

 	Recover data from an edited buffer: If Emacs crashed, do not despair.
 Start a new Emacs and type M-x recover-file and follow the
 instructions. The command M-x recover-session recovers all unsaved
 buffers.

 	Backup files: When you save a buffer, the previous contents of the file
 become a backup file. This is a file whose path is the same as the
 original’s file with a ~ appended in the end. For example a file test.f90
 will have as a backup the file test.f90~. Emacs has version control,
 and you can configure it to keep as many versions of your edits as you
 want.

 	Directory browsing and directory administration commands: C-x d or
 M-x dired. You can act on the files of a directory (open, delete, rename,
 copy etc) by giving appropriate commands. When the cursor is in the
 dired window, type C-h m to read the relevant documentation.

 1.3.7 Modes

Each buffer can be in different modes. Each mode may activate different
commands or editing environment. For example each mode can color keywords
relevant to the mode and/or bind keys to different commands. There
exist major modes, and a buffer can be in only one of them. There are
also minor modes, and a buffer can be in one or more of them. Emacs
activates major and minor modes by default for each file. This usually
depends on the filename but there are also other ways to control this. The
user can change both major and minor modes at will, using appropriate
commands.

 Active modes are shown in a parenthesis on the mode line (see figures 1.3 and
1.5.

 	M-x f90-mode: This mode is of special interest in this book since we will

 edit a lot of Fortran code. We need it activated in buffers that contain a
 Fortran program and its most useful characteristics are automatic code
 alignment by pressing the key TAB, the coloring of Fortran commands,
 variables and other structural constructs (subroutines, if statements, do
 loops, variable declarations, statement labels etc). Another interesting
 function is the one that comments out a whole region of code, as well
 as the inverse function.

 	M-x c-mode: For files containing programs written in the C
 language. Related modes are the c++-mode, java-mode, perl-mode,
 awk-mode, python-mode, makefile-mode, octave-mode,
 gnuplot-mode, mathematica-mode and others.

 	latex-mode: For files containing LATEX text formatting commands.

 	text-mode: For editing simple text files (.txt).

 	fundamental-mode: The basic mode, when one that fits better doesn’t
 exist...

 Some interesting minor modes are:

 	M-x auto-fill-mode: When a line becomes too long, it is wrapped
 automatically. A related command to do that for the whole region is
 M-x fill-region, and for a paragraph M-x fill-paragraph.

 	M-x overwite-mode: Instead of inserting characters at the point,
 overwrite the existing ones. By giving the command several times, we
 toggle between activating and deactivating the mode.

 	M-x read-only mode: When visiting a file with valuable data that
 we don’t want to change by mistake, we can activate this mode so
 that changes will not be allowed by Emacs. When we open a file with
 the command C-x C-r or M-x find-file-read-only this mode is
 activated. We can toggle this mode on and off with the command C-x
 C-q (M-x toggle-read-only). See the mode line of the buffer jack.c
 in figure 1.5 which contains a string %%. By clicking on the %% we can
 toggle the read-only mode on and off.

 	flyspell-mode: Spell checking as we type.

 	font-lock-mode: Colors the structural elements of the buffer which are
 defined by the major mode (e.g. the commands of a Fortran program).

 In a desktop environment, we can choose modes from the menu of the mode
line. By clicking with Mouse-3 on the name of a mode we are offered options
for (de)activating minor modes. With a Mouse-1 we can (de)activate
the read-only mode with a click on :%% or :-- respectively. See figure
1.5.

 1.3.8 Emacs Help

Emacs’ documentation is impressive. For newbies, we recommend to follow the
mini course offered by the Emacs tutorial. You can start the tutorial by typing
C-h t or select Help [image: →] Emacs Tutorial from the menu. Enjoy... The Emacs
man page (give the man emacs command in the command line) will give you a
summary of the basic options when calling Emacs from the command
line.

 A quite detailed manual can be found in the Emacs info
pages28 .
Using info needs some training, but using the Emacs interface is quite intuitive
and similar to using a web browser. Type the command C-h r (or choose
Help[image: →]Emacs Tutorial from the menu) and you will open the front page of
the emacs manual in a new window. By using the keys SPC and Backspace we can
read the documentation page by page. When you find a link (similar to web page
hyperlinks), you can click on it in order to open to read the topic it refers to.
Using the navigation icons on the toolbar, you can go to the previous or to
the next pages, go up one level etc. There are commands that can be
given by typing single characters. For example, type d in order to jump to
the main info directory. There you can find all the available manuals in
the info system installed on your computer. Type g (emacs) and go to
the top page of the Emacs manual. Type g (info) and read the info

manual.

 Emacs is structured in an intuitive and user friendly way. You will learn a lot
from the names of the commands: Almost all names of Emacs commands consist
of whole words, separated by a hyphen “-”, which almost form a full sentence.
These make them quite long sometimes, but by using auto completion of their
names this does not pose a grave problem.

 	auto completion: The names of the commands are auto completed
 by typing a TAB one or more times. E.g., type M-x in order to go
 to the minibuffer. Type capi[TAB] and the command autocompletes
 to capitalize-. By typing [TAB] for a second time, a new window
 opens and offers the options for completing to two possible commands:
 capitalize-region and capitalize-word. Type an extra r[TAB]
 and the command auto completes to the only possible choice
 capitalize-region. You can see all the commands that start with
 an s by typing M-x s[TAB][TAB]. Sure, there are many... Click on the
 Completions buffer and browse the possibilities. A lot will become
 clear just by reading the names of the commands. By typing M-x
 [TAB][TAB], all available commands will appear in your buffer!

 	keyboard shortcuts: If you don’t remember what happens when you
 type C-s, no problem: Type C-h k and then the ... forgotten key
 sequence C-s. Conversely, have you forgotten what is the keyboard
 shortcut of the command save-buffer? Type C-h w and then the
 command.

 	functions: Are you looking for a command, e.g. save-something
 -I-forgot? Type C-h f and then save-[TAB] in order to browse over
 different choices. Use Mouse-2 in order to select the command you are
 interested in, or type and complete the rest of its name (you may use
 [TAB] again). Read about the function in the *Help* buffer that opens.

 	variables: Do the same after typing C-h v in order to see a variable’s
 value and documentation.

 	command apropos: Have you forgotten the exact name of a command?
 No problem... Type C-h a and a keyword. All commands related to the
 keyword you typed will appear in a buffer. Use C-h d for even more
 information.

 	modes: When in a buffer, type C-h m and read information about the
 active modes of the buffer.

 	info: Type C-h i

 	Have you forgotten everything mentioned above? Just type C-h ?

 1.3.9 Emacs Customization

You can customize everything in Emacs. From key bindings to programming your
own functions in the Elisp language. The most common way for a user to
customize her Emacs sessions, is to put all her customization commands in the
file [image: ∼]/.emacs in her home directory. Emacs reads and executes all
these commands just before starting a session. Such a .emacs file is given
below:

; Define F1 key to save the buffer

(global-set-key [f1] ’save-buffer)

; Define Control-c s to save the buffer

(global-set-key "\C-cs" ’save-some-buffers)

; Define Meta-s (Alt-s) to interactively search forward

(global-set-key "\M-s" ’isearch-forward)

; Define M-x is to interactively search forward

(defalias ’is ’isearch-forward)

; Define M-x fm to set fortran-mode for the buffer

(defun fm() (interactive) (f90-mode))

; Define M-x sign to sign my name

(defun sign() (interactive) (insert "K. N. Anagnostopoulos"))

 Everything after a ; is a comment. Functions/commands are enclosed in
parentheses. The first three ones bind the keys F1, C-c s and M-s to the
commands save-buffer, save-some-buffers and isearch-forward
respectively. The next one defines an alias of a command. This means that,
when we give the command M-x is in the minibuffer, then the command
isearch-forward will be executed. The last two commands are the definitions of
the functions (fm) and (sign), which can be called interactively from the
minibuffer.

 For more complicated examples google “emacs .emacs file” and you will see
other users’ .emacs files. You may also customize Emacs from the menu
commands Options[image: →]Customize Emacs. For learning the Elisp language, you
can read the manual “Emacs Lisp Reference Manual” found at the address

www.gnu.org/software/emacs/manual/elisp.html

 1.4 The Fortran Programming Language

In this section, we give a very basic introduction to the Fortran programming
language. This is not a systematic exposition and you are expected to learn what
is needed in this book by example. So, please, if you have not already done it, get

in front of a computer and do what you read. You can find many good
tutorials and books introducing Fortran in a more complete way in the
bibliography.

 1.4.1 The Foundation

The first program that one writes when learning a new programming language is
the “Hello World!” program. This is the program that prints “Hello World!” on
your screen:

program hello

!print a message to the world:

 print *, ’Hello World!’ !this is a comment

end program hello

 Commands, or statements, in Fortran are strings of characters
separated by blanks (“words”) that we are allowed to write from
the 1st to the 132nd column of a file. Each line starts a new
command29 .
We can put more than one command on each line by separating them with a
semicolon (;). Everything after an exclamation mark (!) is a comment.
Proliferation of comments is necessary for documenting our code. Good
documentation of our code is an integral part of programming. If the code is
planned to be read by others, or by us at a later time, make sure to explain in
detail what each line is supposed to do. You and your collaborators will save a
lot of time in the process of debugging, improving and extending your
code.

 The main entry to the program is defined by the command program
name, where name can be any string of alphanumeric characters and an
underscore. When the program runs, it starts executing commands at
this point. The end of the program, as well as of any other program unit
(functions, subroutines, modules), is defined by the line end program
name.

 The first (and only) command given in the above program is the print
command. It prints the string of characters “Hello World!” to the stdout. The
“*,” is part of the syntax and it is not printed, of course. Fortran does not
distinguish capital from small letters, so we could have written PRINT, Print,
prINt, ... A string of characters in Fortran is enclosed in single or double quotes
(’Hello World!’ or "Hello World!" is equivalent).

 In order to execute the commands in a program, it is necessary to compile it.
This is a job done by a program called the compiler that translates the

human language programming statements into binary commands that
can be loaded to the computer memory for execution. There are many
Fortran compilers available, and you should learn which compilers are
available for use in your computing environment. Typical names for Fortran
compilers are gfortran, f90, ifort, g95, You should find out
which compiler is best suited for your program and spend time reading
its documentation carefully. It is important to learn how to use a new
compiler so that you can finely tune it to optimize the performance of your
program.

 We are going to use the open source and freely available compiler
gfortran, which can be installed on most popular operating
systems30 .
The compilation command is:

> gfortran hello.f90 -o hello

 The switch -o defines the name of the executable file, which in our case is hello.
If the compilation is successful, the program runs with the command:

> ./hello

 Hello world!

 Now, we will try a simple calculation. Given the radius of a circle we
will compute its length and area. The program can be found in the file
area_01.f90:

program circle_area

 PI = 3.141593

 R = 4.0

 print *,’Perimeter= ’,2.0*PI*R

 print *,’Area= ’,PI*R**2

end program circle_area

 The first two commands define the values of the variables PI and R. These
variables are of type REAL, which are floating point numbers. Fortran
has implicit rules that can be used to define the type of variables. By
default, variables whose name starts with i, j, k, l, m and n are of
INTEGER type. These are exact whole numbers. All other variables are of type
REAL31 .
We can override these implicit rules by explicitly declaring the type of a variable
or by changing the implicit rules with the use of the implicit statement. The
following two commands have two effects: Computing the length [image: 2πR]
and the area [image: 2
πR] of the circle and printing the results. The expressions
2.0*PI*R and PI*R**2 are evaluated before being printed by the print
command. The multiplication and raising to a power operators are * and **,
respectively. Note the explicit decimal points at the constants 2.0 and 4.0.
If we write 2 or 4 instead, then these are going to be constants of the
INTEGER type and by using them the wrong way we may obtain surprising
results32 .
We compile and run the program with the commands:

> gfortran area_01.f90 -o area

> ./area

 Perimeter= 25.13274

 Area= 50.26548

 We will now try a process that repeats itself for many times. We will calculate
the length and area of 10 circles of different radii [image: Ri = 1.28 + i], [image: i = 1,2,...,10].
We will store the values of the radii in an array R(10) of the REAL type. The code
can be found in the file area_02.f90:

program circle_area

 dimension R(10)

 PI = 3.141593

 R(1) = 2.28

 do i=2,10

 R(i) = R(i-1) + 1.0

 enddo

 do i = 1,10

 perimeter = 2*PI*R(i)

 area = PI*R(i)**2

 print *,i,’) R= ’,R(i),’ perimeter= ’,perimeter

 print *,i,’) R= ’,R(i),’ area = ’,area

 enddo

end program circle_area

 The command dimension R(10) defines an array of length 10. This way, the
elements of the array are referred by an index that takes value from 1 to 10. For
example R(4) is the fourth element of the array.

 Between the lines

 do i = 2, 10

 ...

 enddo

 we can write commands that are repeatedly executed while the
INTEGER variable i takes values from 2 to 10 with increasing
step33
equal to 1. The command:

 R(i) = R(i-1) + 1.0

 defines the i-th radius to have a value which is larger by the (i-1)-th by 1. For the loop
to work correctly, we must define the initial value of R(1), otherwise the final result is
undefined34 .
The second loop uses the defined R-values in order to do the computation and
printing of the results.

 Now, we will write an interactive version of the program. Instead of hard
coding the values of the radii, we will interact with the user asking her to
give her own values. The program will read the 10 values of the radii
from the standard input (stdin). The program can be found in the file
area_03.f90:

program circle_area

 implicit none

 integer,parameter :: N=10

 real ,parameter :: PI=3.141593

 real ,dimension(N) :: R

 real :: area,perimeter

 integer :: i

 do i=1,N

 print*,’Enter radius of circle: ’

 read *, R(i)

 print*,’i= ’,i,’ R(i)= ’,R(i)

 enddo

 open(UNIT=13,FILE=’AREA.DAT’)

 do i = 1,N

 perimeter = 2*PI*R(i)

 area = PI*R(i)**2

 write(13,*)i,’) R= ’,R(i),’ area= ’,area,&

 ’ perimeter= ’,perimeter

 enddo

 close(13)

end program circle_area

 The first statement in the above program is implicit none! This statement
deactivates the implicit rules of Fortran, and the programmer is obliged to declare
all variables in a program unit. It is highly recommendable that you always use
this option... You might spend a little more time typing the declarations, but this
effort cannot be compared to the pain looking for bugs due to typos in the names of

variables35 !
We will follow this practice throughout the book.

 The declarations of the variables follow this statement. The variables
N and i are declared to be of the INTEGER type, whereas the variables
PI, area, perimeter and R(N) are declared to be of the REAL type.
The variables PI and N are specified to be parameters. Parameters are
given specific values which cannot be changed during the execution of the
program.

 The array elements R(i) are read using the command read:

 read *, R(i)

 The command read reads from the stdin. The user types the values at the
terminal and then presses [Enter]. We can read more than one variables with one
read command.

 In order to print data to a file, we have to connect it to a unit. Each unit is
represented by any number between 0 and 99. Some numbers are reserved for special
units36 .
The connection of a unit to a file is done with the open
command. When this is done, we can write to the file with the
command37
write(n,*), where n is the unit number. When we are done writing to a file we
should use the command close(n). Then the unit number is available to be used
for a different file. The flow of commands is like

 open(UNIT=13,FILE=’AREA.DAT’)

 ...

 write(13,*)

 ...

 close(13)

 The name of the file is determined by the option FILE=’AREA.DAT’ of the open
statement. Uppercase or lowercase characters in the filename make a difference.
The option FILE=’path’ can use any valid path in the filesystem, provided that
we have the necessary permissions.

 The line

 write(13,*)i,’) R= ’,R(i),’ area= ’,area,&

 ’ perimeter= ’,perimeter

 shows us how to continue a line containing a long statement to the next one. We
place a & at the end of the line and then continue writing the statement to the
next. This can happen up to 39 times.

 The next step will be to learn how to define and use functions and subroutines.
The program below shows how to define a subroutine area_of_circle, which
computes the length and area of a circle of given radius. The following program
can be found in the file area_04.f90:

program circle_area

 implicit none

 integer,parameter :: N=10

 real ,parameter :: P=3.141593

 real ,dimension(N):: R

 real :: area,perimeter

 integer :: i

 do i=1,N

 print*,’Enter radius of circle: ’

 read *, R(i)

 print*,’i= ’,i,’ R(i)= ’,R(i)

 enddo

 open(UNIT=13,FILE=’AREA.DAT’)

 do i = 1,N

 call area_of_circle(R(i),perimeter,area)

 write(13,*)i,’) R= ’,R(i),’ area= ’,area,&

 ’ perimeter= ’,perimeter

 enddo

 close(13)

end program circle_area

subroutine area_of_circle(R,L,A)

 implicit none

 real :: R,L,A

 real,parameter :: PI = 3.141593 , PI2 = 2.0*PI

 L= PI2*R

 A= PI*R*R

 return

end subroutine area_of_circle

 The calculation of the length and the area of the circle is performed by the call
to the subroutine:

 call area_of_circle(R(i),perimeter,area)

 The command call calls a subroutine and transfers the control of the
program within the subroutine. The above subroutine has the arguments
(R(i),perimeter,area). The argument R(i) is an input variable. It provides the
necessary data to the subroutine in order to perform its computation. The
arguments perimeter and area are intended for output. Upon return of the
subroutine to the main program, they store the result of the computation. The
user of a subroutine must learn how to use its arguments in order to be able to
call it in her program. These must be documented carefully by the programmer of
the subroutine.

 The actual program executed by the subroutine is between the lines:

subroutine area_of_circle(R,L,A)

 ...

end subroutine area_of_circle

 The arguments (R,L,A) must be declared in the subroutine and need not have the
same names as the ones that we use when we call it. A change of their values within
the subroutine will change the values of the corresponding variables in the calling
program38 .
Therefore, the statements L=PI2*R and A=PI*R*R change the values of the
variables perimeter and area to the desired values. The command return
returns the control to the calling program. The parameters PI and PI2 are
“private” to the subroutine. Their names and values are invisible outside the
subroutine. Similarly, the variables i, N, ..., defined in the main program, are
invisible within the subroutine.

 We summarize all of the above in a program trionymo.f90, which computes
the roots of a second degree polynomial:

! ===

! Program to compute roots of a 2nd order polynomial

! Tasks: Input from user,logical statements,

! use of functions,stop

! Accuracy in floating point arithmetic

! e.g. IF(x.eq.0.0)

!

! Tests: a,b,c= 1 2 3 D= -8

! a,b,c= 1 -8 16 D= 0 x1= 4

! a,b,c= 1 -1 -2 D= 9. x1= 2. x2= -1.

! a,b,c= 2.3 -2.99 -16.422 x1= 3.4 x2= -2.1

! But: 6.8(x-4.3)**2 = 6.8 x**2 -58.48*x+125.732

! a,b,c= 6.8 -58.48 125.73199

! D= 0.000204147349 x1= 4.30105066 x2= 4.29894924

! a,b,c= 6.8 -58.48 125.732, D= -0.000210891725 < 0!!

! ===

program trionymo

 implicit none

 real :: a,b,c,D

 real :: x1,x2

 real :: Discriminant

 print*,’Enter a,b,c:’

 read *,a,b,c

! Test if we have a well defined polynomial of 2nd degree:

 if(a .eq. 0.0) stop ’trionymo: a=0’

! Compute the discriminant (= diakrinousa)

 D = Discriminant(a,b,c)

 print *, ’Discriminant: D= ’,D

! Compute the roots in each case: D>0, D=0, D<0 (no roots)

 if(D .gt. 0.0)then

 call roots(a,b,c,x1,x2)

 print *,’Roots: x1= ’,x1,’ x2= ’,x2

 else if (D .eq. 0.0) then

 call roots(a,b,c,x1,x2)

 print *,’Double Root: x1= ’,x1

 else

 print *,’No real roots’

 endif

end program trionymo

! ===

! This is the function that computes the discriminant

! A function returns a value. This value is assigned with the

! statement:

! Discriminant = <value>

! i.e. we simply assign anywhere in the program a variable with

! the name of the function.

! ===

real function Discriminant(a,b,c)

 implicit none

 real :: a,b,c

 Discriminant = b**2 - 4.0 * a * c

end function Discriminant

! ===

! The subroutine that computes the roots.

! ===

subroutine roots(a,b,c,x1,x2)

 implicit none

 real :: a,b,c

 real :: x1,x2

 real :: D, Discriminant

 if(a .eq. 0.0) stop ’roots: a=0’

 D = Discriminant(a,b,c)

 if(D.ge.0.0)then

 D = sqrt(D)

 else

 print *,’roots: Sorry, cannot compute roots, D<0=’,D

 stop

 endif

 x1 = (-b + D)/(2.0*a)

 x2 = (-b - D)/(2.0*a)

end subroutine roots

 The program reads the coefficients of the polynomial [image: ax2 + bx + c]. After a
check whether [image: a ⁄= 0], it computes the discriminant [image: D = b2 − 4ac] by calling the
function Discriminant(a,b,c). The only difference between a function and a
subroutine is that the first one returns a value of a given type. We don’t need to
use the command call in order to run the commands of a function, this
is done by computing its value in an expression. The type of the value
returned must be declared both in the program that uses the function
(real :: Discriminant) and at the entry point of its program unit (real
function Discriminant(a,b,c)). The value returned to the calling
program is the one assigned to the variable that has the same name as the
function:

real function Discriminant(a,b,c)

 ...

 Discriminant = b**2 - 4.0 * a * c

 ...

end function Discriminant

 Notice the use of the comparison operators .gt. (strictly greater than) and .eq.
(equal to)39 :

 if(D .gt. 0.0)then

 ...

 else if (D .eq. 0.0) then

 ...

 else

 ...

 endif

 1.4.2 Details

You may skip this paragraph during a first reading of the book. It is intended
mainly to be a reference when reading the later chapters.

 There are more types of variables built in Fortran. In the program listed
below, we show how to use CHARACTER variables, floating point numbers of double
precision REAL(8) and complex numbers of single and double precision, COMPLEX
and COMPLEX(8) respectively:

program f90_vars

 implicit none

 character(100) :: string

 real(4) :: x !single precision, same as real :: x

 real(8) :: x8 !equivalent to: double precision x8

!real(16) :: x16 !may not be supported by all compilers

!Complex Numbers:

 complex(4) :: z !single precision, same as complex :: z

 complex(8) :: z8 !double precision

!A string: a character array:

 string = ’Hello World!’ !string smaller size, leaves blanks

 !TRIM: trim blanks

 print *,’A string ::’, string, ’::’,TRIM(string),’::’

 print *,’join them::’, string // string ,’::’

 print *,’join them::’, TRIM(string) // TRIM(string),’::’

!Reals with increasing accuracy: Determine PI=3.14159...

 x = 4.0 *atan(1.0)

!Use D for double precision exponent

 x8 = 4.0D0*atan(1.0D0)

!Use Q for quadriple precision exponent

!x16 = 4.0Q0*atan(1.0Q0)

 print *,’x4= ’,x,’ x8= ’,x8 !,’ x16= ’,x16

 print *,’x4: ’,range(x),precision(x),EPSILON(x),&

 TINY(x),HUGE(x)

 print *,’x8: ’,range(x8),precision(x8),EPSILON(x8),&

 TINY(x8),HUGE(x8)

!Complex numbers: single precision

 z = (2.0,1.0)*cexp((3.0,-1.0))

 print *,’z= ’,z,’ Re(z)= ’,REAL(z),’ Im(z)= ’,IMAG(z),&

 ’ |z|= ’,ABS(z),’ z*= ’,CONJG(z)

!Complex numbers: double precision

 z8 = (2.0D0,1.0D0)*cdexp((3.0D0,-1.0D0))

 print *,’z= ’,z8,’ Re(z)= ’,DBLE(z8),’ Im(z)= ’,DIMAG(z8),&

 ’ |z|= ’,CDABS(z8),’ z*= ’,DCONJG(z8)

 print *,’z4: ’,range(z),precision(z)

 print *,’z8: ’,range(z8),precision(z8)

end program f90_vars

 Some interesting points of the program above are:

 	The number K in the declaration REAL(K):: x refers to the number of
 bytes allocated to the variable x. For K=4 we have single precision (same
 as REAL), for K=8 double precision and for K=16 quadruple precision.
 The latter is not always available. In the declarations COMPLEX(K), K
 refers to the number of bytes allocated to the real and imaginary parts
 of the complex number.

 	We always use the exponent notation D in double precision constants,
 even if the exponent 0. Otherwise the constants are of single precision
 and we loose the desired accuracy.

 	When we want to state the precision of the return value of an intrinsic
 function explicitly, we usually add a d at the beginning of its name
 (e.g. exp[image: →]dexp, ABS[image: →]DABS. When we want to use the complex
 version of a function, we usually add a c at the beginning of its name
 (e.g. exp[image: →]cexp, ABS[image: →]CABS). Modify the program in order to
 achieve higher accuracy in the calculation of [image: π] and [image: z = (2 + i)e3−i],
 by using double precision variables.

 	The maximum number of characters in the CHARACTER variable string
 is 100, and this is declared by the statement CHARACTER(100).

 	When we print a CHARACTER variable, all its characters are printed,
 including trailing blanks. This is very annoying and we can use the
 function TRIM in order to remove them.

 	The operator // joins two CHARACTER variables or constants. Notice the
 effect of the function TRIM in the above program.

 Another important point to discuss is how to be able to access the same variables
from different program units. So far, we simply mentioned that variables have a scope
within each function and subroutine. If we wish to have access to the same location of
memory40
from different program units, then we use the COMMON statement which defines a
common block. See the following example:

! ---------------------------------------

program f90_common

 implicit none

 real :: k1=1.0,k2=1.0,k3=1.0

 common /CONSTANTS/k1,k2

 print *,’main: k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3

 call s1 !prints k1 and k2 but not k3

 call s2 !changes the value of k2 but not k3

 print *,’main: k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3

end program f90_common

! ---------------------------------------

subroutine s1()

 implicit none

 real k1,k2,k3

 common /CONSTANTS/k1,k2

 print *,’s1: k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3

end subroutine s1

! ---------------------------------------

subroutine s2()

 implicit none

 real k1,k2,k3

 common /CONSTANTS/k1,k2

 k2 = 2.0

 k3 = 2.0

end subroutine s2

 The common block has the name CONSTANTS and we can refer to it from any
program unit. Each program unit that uses this common block must use the same
declaration, although the names of variables are allowed to be different. The
common block CONSTANTS points to the same location in the computer memory,
where we expect to find the values of two real variables. These variables (k1 and
k2) are used and have their values changed in the subroutines s1 and s2. The
variable k3, is a different variable in each program unit. The program

prints

 main: k1= 1.000000 k2= 1.000000 k3= 1.000000

 s1: k1= 1.000000 k2= 1.000000 k3= -2.8117745E-05

 main: k1= 1.000000 k2= 2.000000 k3= 1.000000

 One of the weaknesses of Fortran is that it does not have a convenient control for
Input/Output (I/O). For complicated I/O and text manipulation we will use
other programs that can do a better job, like awk, perl, shell scripting, or
programs written in C/C++. It is important to know some details about I/O
commands in Fortran, mainly the specifications that control the accuracy of
printed floating point numbers. So far, I/O commands, like print, write, read,
used a * in order to control the printing of numbers. But we can replace the *
with explicit format directives as follows:

program f90_format1

 implicit none

 integer :: i

 real :: x

 real, dimension(10) :: a

 real(8) :: x8

 i = 123456

 x = 2.0 *atan2(1.0,0.0)

 print ’(A5,I6,F12.7)’,’x,i= ’,i,x

 x8 = 2.0D0*atan2(1.0D0,0.0D0)

 write(6,’(F18.16,E24.17,G24.17,G24.17)’) x8,x8,&

 1.0D15*x8,1.0D18*x8

 write(6,’(3F20.16)’) x8,x8/2.0,cos(x8)

 write(6,’(200F12.6)’)(a(i), i=1,10)

end program f90_format1

 Note the parentheses within the single quotes: (A5,I6,F12.7) is a format
directive for the print statement. The A is for printing a CHARACTER, the I for
printing an INTEGER and the F for printing a floating point number. The numbers
after the letter declare the number of spaces used for printing each one.
Beware! If the printing space is not enough, Fortran will not print and
you will find a series of * in place of the value of your result! Bummer...
In order to estimate the number of spaces needed for a floating point
number, you have to include the space taken by the decimal point, the sign,
the exponent character, the sign of the exponent and the digits needed
for the exponent. Plus a space to separate the numbers in between...
So, be generous and give plenty of printing space. In the example shown
above, A5 denotes a character of 5 spaces, I6 and integer of 6 spaces and
F12 a floating point number of 12 spaces. The decimal point in F12.7
means that we want a floating point with the accuracy of 7 significant
digits.

 The format directive (F18.16,E24.17,G24.17,G24.17) shows how to print
double precision variables. These provide an accuracy of 16-17 significant
digits and there is no need for keeping more digits. The command E prints
a number in scientific form with an exponent. The command G prints
the exponent when it is needed. The numbers before the letters denote

multiplicity. Therefore 3F20.16 instructs the printing of 3 floating point
numbers by reserving 20 spaces and using 16 significant digits for each one of
them.

 The command write(6,’(200F12.6)’)(a(i), i=1,10) shows how to print a
large array using an implicit loop. We used many more spaces than actually
needed (200F12.16) which is OK. If the array gets larger by increasing the
range of i, then we will have enough room for printing in the same line.
The program prints (we have folded the long line in order to make it
visible):

x,i= 123456 3.1415927

3.1415926535897931 0.31415926535897931E+01 3141592653589793.0

 0.31415926535897933E+19

 3.1415926535897931 1.5707963267948966 -1.0000000000000000

 0.000000 0.000000 0.000000

 We can organize the format commands by using the FORMAT statement.
Then, we use labeled statements in order to refer to them. Labels are
numbers put in the beginning of a line which should be unique to a program
unit and are within the range 1-99999. We can transfer the control of the
program to such a line with a goto command or by using the label in
the I/O statements print, write and read as in the example shown
below:

program f90_format2

 implicit none

 integer i

 real x, a(10)

 real*8 x8

 i = 123456

 x = 2.0 *atan2(1.0,0.0)

 print 100,’x,i= ’,i,x

 x8 = 2.0D0*atan2(1.0D0,0.0D0)

 write(6,123) x8,x8,&

 1.0D15*x8,1.0D18*x8

 write(6,4444) x8,x8/2.0,cos(x8)

 write(6,9999)(a(i), i=1,10)

100 FORMAT(A5,I6,F12.7)

123 FORMAT(F18.16,E24.17,G24.17,G24.17)

4444 FORMAT(3F20.16)

9999 FORMAT(200F12.6)

end program f90_format2

 The reader should also study the Fortran intrinsic functions shown in table
1.2, page 181.

 1.4.3 Arrays

You may skip this section during the first reading of this book. It will be useful to
come back here later.

 Arrays are related data of the same type which can be accessed by using one
or more indices. For example, after a declaration real, dimension(10) :: A,
the expressions

A(1), A(2), ... , A(10)

 refer to its 10 real values. The indices can be integer expressions, for
example

A(i), B(2*i+3), C(INT(x+y(j)))

 where in the last case we used the integer value of the intrinsic function INT(x),
which returns the integer part of x. Note that, arrays and functions enclose indices
and arguments between parentheses (...) which are of the same style, and the
compiler must look at their declarations in order to tell the difference. Examples
of array declarations are

 real, dimension(10) :: a,b

 real, dimension(20) :: c,d

 which declare the arrays a, b, c, d, which are of the real kind, with elements
a(1) ... a(10), b(1) ... b(10), c(1) ... c(20) and d(1) ... d(20). An
equivalent declaration is

 real :: a(10), b(10), c(20), d(20)

 or

 integer, parameter :: n1 = 10, n2 = 20

 real, dimension(n1) :: a, c(n2)

 real :: b(n1), d(n2)

 In the last form, we show how to use constant parameters for declaring the size of
arrays. For the declarations shown above, the lower bound of all arrays is 1 and
the upper bound for a and b is 10 and for c and d is 20. The upper and
lower bound of arrays can be explicitly determined. The declarations

 integer, parameter :: n1 = 10, n2 = 20

 real, dimension(0:n1) :: a

 real, dimension(-n1:n2) :: c

 define the real array a with 11 values a(0) ... a(10) and the array c with 31
values c(-10) c(-9) ... c(-1) c(0) c(1) ... c(20).

 The arrays shown above have dimension 1 and they are like vectors.
We can declare arrays of more than one dimension. This means
that we need more than one indices in order to determine an array
element41 .
Therefore, the declaration

integer, dimension(2,2) :: a

 defines an integer array with values a(1,1), a(1,2), a(2,1) and a(2,2).
The following declarations define two three dimensional real arrays a and
b:

 integer, parameter :: n1 = 10, n2 = 20, n3 = 2*n1+n2

 real, dimension(n1,n2,n3) :: a

 real, dimension(-n1:n1,0:n2,13:n3) :: b

 Some important definitions used in the bibliography are:

 	array: Variables of the same type to which we refer with one or more
 indices. Variables with only one value are called scalar.

 	An array’s dimension has an upper bound and a lower bound
 which define the allowed range of index values. If the lower bound is
 omitted in a declaration, then it takes the value 1.

 	The rank of an array is the number of its dimensions, i.e. the number
 of indices needed to determine its values.

 	The extent of a dimension it the number of its elements. It is equal to
 (upper bound)-(lower bound)+1.

 	The size of an array is the total number of its elements. For a one
 dimensional array, its size is equal to its extent, whereas for a multi
 dimensional one, it is equal to the product of the extents of all of its
 dimensions.

 	The shape of an array is its rank and extents of all its dimensions.

 The values of arrays can be set the same way as scalars:

 integer :: i

 real :: a(4), b(2,2)

 b(1,1) = 2.0 ; b(1,2) = 4.0

 b(2,1) = 3.4 ; b(2,2) = 7.8

 do i=1,4

 a(i) = 1.0

 enddo

 Alternatively we can use the name of the array as one object:

 a = (/ 1.0, 2.0, 3.0, 4.0 /)

 b = 0.0

 The first line defines the values of an array by using an array constructor. The
second line defines all elements of the array b to be equal to 0. This is an
example of a very convenient feature of the Fortran language. If all the
arrays in an expression are conformable, then we can use the intrinsic
Fortran operations to act on whole arrays. Two arrays are conformable if
they have the same shape or if one of them is a scalar. Therefore the
program

 integer :: i,j

 real :: x,y,a(10),b(10),c(4,4),d(4,4)

 do i=1,10

 a(i) = b(i)

 enddo

 do j=1,4

 do i=1,4

 c(i,j) = x*d(i,j)+y

 enddo

 enddo

 is equivalent to

 integer :: i,j

 real :: x,y,a(10),b(10),c(4,4),d(4,4)

 a = b

 c = x*d+y

 Many Fortran intrinsic functions are elemental. This means that their arguments
can be arrays, in which case the function acts on each array element separately.
For example, the commands

 integer :: i,j

 real :: x,y,a(10),b(10),c(4,4),d(4,4)

 c = sin(d) + x*exp(-2.0*d)

 call random_number(a)

 set c(i,j) = sin(d(i,j))+x*exp(-2.0*d(i,j)) for all i and j, and the
elements of a(i) equal to a random number uniformly distributed in the interval
[image: [0,1)]. We should stress that in order for two arrays to be conformable, it is not
necessary that they have the same lower and upper bounds. For example, the
command b=c*d in the following program has the same effect as the do
loop:

 integer :: i

 real :: b(0:19), c(10:29), d(-9:10)

 b = c*d

 do i=1,20

 b(i-1) = c(i+9) * d(i-10)

 enddo

 In the following, we mention some useful functions that act on arrays. Assume
that

 real :: a(-10:10), b(-10:10), c(10,10), d(10,10), e(10,10)

 then

 	LBOUND(a) and UBOUND(a) return the lower bound and the upper
 bound of the array a. In the above example LBOUND(a) = -10 and
 UBOUND(a) = 10.

 	c = TRANSPOSE(d) sets c(i,j)=d(j,i).

 	e = MATMUL(c,d) sets the array e equal to the matrix product c, d.
 I.e. e(i,j)=[image: ∑10
 k=1]c(i,k)*d(k,j). Be careful, the command e=c*d
 sets e(i,j)=c(i,j)*d(i,j).

 	SUM(a) computes the sum of all the elements of a.
I.e. SUM(a) = [image: ∑10
 i= −10]a(i)

 	PRODUCT(a) computes the product of all the elements of a.
I.e. PRODUCT(a) = [image: ∏10
 i=−10]a(i)

 	DOT_PRODUCT(a,b) computes the inner product of a, b.
I.e. DOT_PRODUCT(a,b) = [image: ∑10
 i=− 10]a(i)*b(i)

 	MAXVAL(a) and MINVAL(a) return the maximum and minimum values
 in the array a respectively.

You can find more functions and documentation in the bibliography [11, 10]. In the
following, we provide some information related to the Input/Output (I/O) of
arrays. Input (“reading”) and output (“writing”) of array values can be
done by reading and writing their elements in any order we want. In the
example below, we read the array a and write the array b in two different
ways:

 integer :: i,j

 real :: a(4), b(2,2)

 do i=1,4

 read *,a(i)

 enddo

 read *, (a(i), i=1,4)

 do j=1,2

 do i=1,2

 print *,b(i,j)

 enddo

 enddo

 print *,((b(i,j), i=1,2), j=1,2)

 Inside the do loops, input and output is done one element per line from/to
standard input/output. The commands (a(i), i=1,4) and ((b(i,j) i=1,2),
j=1,2) are implied do loops and read/write from/to the same line. During input,
if the number of values for a are exhausted, then the program tries to read
values from the following line(s). Similarly, if the output of b exhausts the
maximum number of characters per line, then the output continues in the next
line42 .
Try it...

 We can also preform I/O of arrays without explicit reference to their elements.
In this case, the arrays are read/written in a specified order. For example, the
program

 real :: a(4), b(2,2)

 read *, a

 read *, b

 print *, a,b

 reads the values a(1) a(2) a(3) a(4) from the stdin. Then, it continues
reading b(1,1), b(2,1), b(1,2), b(2,2) from the next line (record). Notice
that the array b is read in a column major way. Printing a and b, will print a(1)
a(2) a(3) a(4) and b(1,1), b(2,1), b(1,2), b(2,2) in two different records
(also in column major mode).

 Finally, we summarize some of the Fortran capabilities in array manipulation.
More details can be found in the bibliography. Read the comments in the program
for a partial explanation of each command:

program arrays

 implicit none

 integer :: i,j,n,m

 real :: a(3), b(3,3), c(3,3)=-99.0, d(3,3)=-99.0, s

 integer :: semester(1000),grade(1000)

 logical :: pass(1000)

 !construct the matrix: use the RESHAPE function

 !|1.1 -1.2 -1.3|

 !|2.1 2.2 -2.3|

 !|3.1 3.2 3.3|

 b = RESHAPE((/ 1.1, 2.1, 3.1, & !(notice rows<->columns)

 -1.2, 2.2, 3.2, &

 -1.3, -2.3, 3.3 /),(/3,3/))

 !same matrix, now exchange rows and columns: ORDER=(/2,1/)

 b = RESHAPE((/ 1.2, -1.2, -1.3, &

 2.1, 2.2, -2.3, &

 3.1, 3.2, 3.3 /),(/3,3/),ORDER=(/2,1/))

 a = b(:,2) !a assigned the second column of b: a(i)=b(i,2)

 a = b(1,:) !a assigned the first row of b: a(i)=b(1,i)

 a = 2.0*b(:,3)+sin(b(2,:))!a(i)= 2*b(i,3)+sin(b(2,i))

 a = 1.0+2.0*exp(-a)+b(:,3)!a(i)= 1+2*exp(-a(i))+b(i,3)

 s = SUM(b) !returns sum of all elements of b

 s = SUM(b,MASK=(b.gt.0))!returns sum of positive elements of b

 a = SUM(b,DIM=1) !each a(i) is the sum of the columns of b

 a = SUM(b,DIM=2) !each a(i) is the sum of the rows of b

 !repeat all the above using PRODUCT!

 !all instructions may be executed in parallel at any order!

 FORALL(i=1:3) c(i,i) = a(i) !set the diagonal of c

 !compute upper bounds of indices in b:

 n=UBOUND(b,DIM=1);m=UBOUND(b,DIM=2)

 !log needs positive argument, add a restriction ("mask")

 FORALL(i=1:n,j=1:m, b(i,j).gt.0.0) c(i,j) = log(b(i,j))

 !upper triangular part of matrix:

 !careful, j=i+1:m NOT permitted

 FORALL(i=1:n,j=1:m, i .lt. j) c(i,j) = b(i,j)

 !each statement executed BEFORE the next one!

 FORALL(i=2:n-1,j=2:n-1)

 !all right hand side evaluated BEFORE the assignment

 !i.e., the OLD values of b averaged and then assigned to b

 b(i,j)=(b(i+1,j)+b(i-1,j)+b(i,j+1)+b(i,j-1))/4.0

 c(i,j)=1.0/b(i+1,j+1) !the NEW values of b are assigned

 END FORALL

 ! assignment but only for elements b(i,j) which are not 0

 WHERE (b .ne. 0.0) c = 1.0/b

 !MATMUL(b,c) is evaluated, then d is assigned the result only

 !at positions where b>0.

 WHERE (b .gt. 0.0) d = MATMUL(b,c)

 WHERE (grade .ge. 5)

 semester = semester + 1 !student’s semester increases by 1

 pass = .true.

 ELSEWHERE

 pass = .false.

 END WHERE

end program arrays

 The code shown above can be found in the file f90_arrays.f90 of the
accompanying software.

 1.5 Gnuplot

Plotting data is an indispensable tool for their qualitative, but also quantitative,
analysis. Gnuplot is a high quality, open source, plotting program that
can be used for generating publication quality plots, as well as for heavy
duty analysis of a large amount of scientific data. Its great advantage is
the possibility to use it from the command line, as well as from shell
scripts and other programs. Gnuplot is programmable and it is possible to
call external programs in order manipulate data and create complicated
plots. There are many mathematical functions built in gnuplot and a fit
command for non linear fitting of data. There exist interactive terminals
where the user can transform a plot by using the mouse and keyboard
commands.

 This section is brief and only the features, necessary for the
following chapters, are discussed. For more information visit the official
page of gnuplot http://gnuplot.info. Try the rich demo gallery at

http://gnuplot.info/screenshots/, where you can find the type of
graph that you want to create and obtain an easy to use recipe for it.
The book [14] is an excellent place to look for many of gnuplot’s
secrets43 .

 You can start a gnuplot session with the gnuplot command:

> gnuplot

 G N U P L O T

 Version X.XX

 The gnuplot FAQ is available from www.gnuplot.info/faq/

Terminal type set to ’wxt’

gnuplot>

 There is a welcome message and then a prompt gnuplot> is issued waiting for
your command. Type a command an press [Enter]. Type quit in order to quit
the program. In the following, when we show a prompt gnuplot>, it is
assumed that the command after the prompt is executed from within
gnuplot.

 Plotting a function is extremely easy. Use the command plot and x as the independent variable
of the function44 .
The command

gnuplot> plot x

 plots the function [image: y = f(x) = x] which is a straight line with slope 1. In order to
plot many functions simultaneously, you can write all of them in one
line:

gnuplot> plot [-5:5][-2:4] x, x**2, sin(x),besj0(x)

 The above command plots the functions [image: x], [image: x2], [image: sinx] and [image: J0(x)].
Within the square brackets [:], we set the limits of the [image: x] and [image: y] axes,
respectively. The bracket [-5:5] sets [image: − 5 ≤ x ≤ 5] and the bracket
[-2:4] sets [image: − 2 ≤ y ≤ 4]. You may leave the job of setting such
limits to gnuplot, by omitting some, or all of them, from the respective
positions in the brackets. For example, typing [1:][:5] changes the lower
and upper limits of [image: x] and [image: y] and leaves the upper and lower limits
unchanged45 .

 In order to plot data points [image: (xi,yi)], we can read their values from files.
Assume that a file data has the following numbers recorded in it:

x y1 y2

0.5 1.0 0.779

1.0 2.0 0.607

1.5 3.0 0.472

2.0 4.0 0.368

2.5 5.0 0.287

3.0 6.0 0.223

 The first line is taken by gnuplot as a comment line, since it begins with a #. In
fact, gnuplot ignores everything after a #. In order to plot the second column as a
function of the first, type the command:

gnuplot> plot "data" using 1:2 with points

 The name of the file is within double quotes. After the keyword using, we
instruct gnuplot which columns to use as the [image: x] and [image: y] coordinates, respectively.
The keywords with points instructs gnuplot to add each pair [image: (xi,yi)] to the plot
with points.

 The command

gnuplot> plot "data" using 1:3 with lines

 plots the third column as a function of the first, and the keywords with
lines instruct gnuplot to connect each pair [image: (x ,y)
 i i] with a straight line
segment.

 We can combine several plots together in one plot:

gnuplot> plot "data" using 1:3 with points, exp(-0.5*x)

gnuplot> replot "data" using 1:2

gnuplot> replot 2*x

 The first line plots the 1st and 3rd columns in the file data together with
the function [image: e−x∕2]. The second line adds the plot of the 1st and 2nd
columns in the file data and the third line adds the plot of the function
[image: 2x].

 There are many powerful ways to use the keyword using. Instead of column
numbers, we can put mathematical expressions enclosed inside brackets, like
using (...):(...). Gnuplot evaluates each expression within the brackets and
plots the result. In these expressions, the values of each column in the
file data are represented as in the awk language. $i are variables that
expand to the number read from columns i=1,2,3,.... Here are some
examples:

gnuplot> plot "data" using 1:($2*sin($1)*$3) with points

gnuplot> replot 2*x*sin(x)*exp(-x/2)

 The first line plots the 1st column of the file data together with the value
[image: yisin(xi)zi], where [image: yi], [image: xi] and [image: zi] are the numbers in the 2nd, 1st and
3rd columns respectively. The second line adds the plot of the function
[image: 2x sin(x)e−x∕2].

gnuplot> plot "data" using (log($1)):(log($2**2))

gnuplot> replot 2*x+log(4)

 The first line plots the logarithm of the 1st column together with the logarithm
of the square of the 2nd column.

 We can plot the data written to the standard output of any command. Assume
that there is a program called area that prints the perimeter and area of a circle
to the stdout in the form shown below:

> ./area

R= 3.280000 area= 33.79851

R= 6.280000 area= 123.8994

R= 5.280000 area= 87.58257

R= 4.280000 area= 57.54895

 The interesting data is at the second and fourth columns. These can be plotted
directly with the gnuplot command:

gnuplot> plot "< ./area" using 2:4

 All we have to do is to type the full command after the < within the double
quotes. We can create complicated filters using pipes as in the following
example:

gnuplot> plot \

 "< ./area|sort -g -k 2|awk ’{print log($2),log($4)}’" \

 using 1:2

 The filter produces data to the stdout, by combining the action of the
commands area, sort and awk. The data printed by the last program is in two
columns and we plot the results using 1:2.

 In order to save plots in files, we have to change the terminal that gnuplot
outputs the plots. Gnuplot can produce plots in several languages (e.g. PDF,
postscript, SVG, LATEX, jpeg, png, gif, etc), which can be interpreted and
rendered by external programs. By redirecting the output to a file, we can save
the plot to the hard disk. For example:

gnuplot> plot "data" using 1:3

gnuplot> set terminal jpeg

gnuplot> set output "data.jpg"

gnuplot> replot

gnuplot> set output

gnuplot> set terminal wxt

 The first line makes the plot as usual. The second one sets the output to
be in the JPEG format and the third one sets the name of the file to
which the plot will be saved. The fourth lines repeats all the previous
plotting commands and the fifth one closes the file data.jpg. The last
line chooses the interactive terminal wxt to be the output of the next
plot. High quality images are usually saved in the PDF, encapsulated
postcript or SVG format. Use set terminal pdf,postscript eps or svg,
respectively.

 And now a few words for 3-dimensional (3d) plotting. The next example uses
the command splot in order to make a 3d plot of the function [image: f (x, y) = e−x2−y2].
After you make the plot, you can use the mouse in order to rotate it and view it
from a different perspective:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1

gnuplot> set isosamples 50

gnuplot> splot [-2:2][-2:2] exp(-x**2-y**2)

 If you have data in the form [image: (xi,yi,zi)] and you want to create a plot of
[image: zi = f(xi,yi)], write the data in a file, like in the following example:

-1 -1 2.000

-1 0 1.000

-1 1 2.000

 0 -1 1.000

 0 0 0.000

 0 1 1.000

 1 -1 2.000

 1 0 1.000

 1 1 2.000

 Note the empty line that follows the change of the value of the first column. If
the name of the file is data3, then you can plot the data with the commands:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1

gnuplot> splot "data3" with lines

 We close this section with a few words on parametric plots. A parametric
plot on the plane (2-dimensions) is a curve [image: (x(t),y(t))], where [image: t] is a
parameter. A parametric plot in space (3-dimensions) is a surface [image: (x(u, v)]
[image: ,y(u, v),] [image: z (u, v))], where [image: (u,v)] are parameters. The following commands
plot the circle [image: (sin t,cost)] and the sphere [image: (cos ucos v,] [image: cosu sinv,]
[image: sin u)]:

gnuplot> set parametric

gnuplot> plot sin(t),cos(t)

gnuplot> splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

 1.6 Shell Scripting

Complicated system administration tasks are not among the strengths of the
Fortran programming language. But in a typical GNU/Linux environment, there
exist many powerful tools that can be used very effectively for this purpose. This
way, one can use Fortran for the high performance and scientific computing part
of the project and leave the administration and trivial data analysis tasks to
other, external, programs.

 One can avoid repeating the same sequence of commands by coding them in a
file. An example can be found in the file script01.csh:

#!/bin/tcsh -f

gfortran area_01.f90 -o area

./area

gfortran area_02.f90 -o area

./area

gfortran area_03.f90 -o area

./area

gfortran area_04.f90 -o area

./area

 This is a very simple shell script. The first line instructs the operating
system that the lines that follow are to be interpreted by the program
/bin/tcsh46 .
This can be any program in the system, which in our case is the tcsh shell.
The following lines are valid commands for the shell, one in each line.
They compile the Fortran programs found in the files that we created in
section 1.4 with gfortran, and then they run the executable ./area. In
order to execute the commands in the file, we have to make sure that the
file has the appropriate execute permissions. If not, we have to give the
command:

> chmod u+x script01.csh

 Then we simply type the path to the file script01.csh

> ./script01.csh

 and the above commands are run the one after the other. Some of the versions of
the programs that we wrote are asking for input from the stdin, which, normally,
you have to type on the terminal. Instead of interacting directly with
the program, we can write the input data to a file Input, and run the
command

./area < Input

 A more convenient solution is to use the, so called, “Here Document”.
A “Here Document” is a section of the script that is treated as if it
were a separate file. As such, it can be used as input to programs by
sending its “contents” to the stdin of the command that runs the
program47 .
The “Here Document” does not appear in the filesystem and we don’t need to
administer it as a regular file. An example of using a “Here Document” can be
found in the file script02.csh:

#!/bin/tcsh -f

gfortran area_04.f90 -o area

./area <<EOF

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

EOF

 The stdin of the command ./area is redirected to the contents between the
lines

./area <<EOF

...

EOF

 The string EOF marks the beginning and the end of the “Here Document”, and
can be any string you like. The last EOF has to be placed exactly in the beginning
of the line.

 The power of shell scripting lies in its programming capabilities: Variables,
arrays, loops and conditionals can be used in order to create a complicated
program. Shell variables can be used as discussed in section 1.1.2: The value of a
variable name is $name and it can be set with the command set name = value.
An array is defined, for example, by the command

set R = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)

 and its data can be accessed using the syntax $R[1] ... $R[10].

 Lets take a look at the following script:

#!/bin/tcsh -f

set files = (area_01.f90 area_02.f90 area_03.f90 area_04.f90)

set R = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)

echo "Hello $USER Today is " ‘date‘

foreach file ($files)

 echo "# ----------- Working on file $file "

 gfortran $file -o area

 ./area <<EOF

$R[1]

$R[2]

$R[3]

$R[4]

$R[5]

$R[6]

$R[7]

$R[8]

$R[9]

$R[10]

EOF

 echo "# ----------- Done "

 if(-f AREA.DAT) cat AREA.DAT

end

 The first two lines of the script define the values of the arrays files (4 values)
and R (10 values). The command echo echoes its argument to the stdin. $USER is
the name of the user running the script. ‘date‘ is an example of command
substitution: When a command is enclosed between backquotes and is part of
a string, then the command is executed and its stdout is pasted back
to the string. In the example shown above, ‘date‘ is replaced by the
current date and time in the format produced by the date command.

 The foreach loop

foreach file ($files)

 ...

end

 is executed once for each of the 4 values of the array files. Each time the
value of the variable file is set equal to one of the values area_01.f90,
area_02.f90, area_03.f90, area_04.f90. These values can be used by
the commands in the loop. Therefore, the command gfortran $file
-o area compiles a different file each time that it is executed by the
loop.

 The last line in the loop

 if(-f AREA.DAT) cat AREA.DAT

 is a conditional. It executes the command cat AREA.DAT if the condition -f
AREA.DAT is true. In this case, -f constructs a logical expression which is true
when the file AREA.DAT exists.

 We close this section by presenting a more complicated and advanced
script. It only serves as a demonstration of the shell scripting capabilities.
For more information, the reader is referred to the bibliography
 [16, 17, 18, 19, 20]. Read carefully the commands, as well as the
comments which follow the # mark. Then, write the commands to a file
script04.csh48 ,
make it an executable file with the command chmod u+x script04.csh and give
the command

> ./script04.csh This is my first serious tcsh script

 The script will run with the words “This is my first serious tcsh script” as its
arguments. Notice how these arguments are manipulated by the script.
Then, the script asks for the values of the radii of ten or more circles
interactively, so that it will compute their perimeter and area. Type them on the
terminal and then observe the script’s output, so that you understand the
function of each command. You will not regret the time investment!

#!/bin/tcsh -f

Run this script as:

./script04.csh Hello this is a tcsh script

#--

‘command‘ is command substitution: it is replaced by stdout of command

set now = ‘date‘ ; set mypc = ‘uname -a‘

Print information: variables are expanded within double quotes

echo "I am user $user working on the computer $HOST" #HOST is predefined

echo "Today the date is : $now" #now is defined above

echo "My home directory is : $home" #home is predefined

echo "My current directory is: $cwd" #cwd changes with cd

echo "My computer runs : $mypc" #mypc is defined above

echo "My process id is : $$ " #$$ is predefined

Manipulate the command line: ($#argv is number of elements in array argv)

echo "The command line has $#argv arguments"

echo "The name of the command I am running is: $0"

echo "Arguments 3rd to last of the command : $argv[3-]" #third to last

echo "The last argument is : $argv[$#argv]" #last element

echo "All arguments : $argv"

Ask user for input: enter radii of circles

echo -n "Enter radii of circles: " # variable $< stores one line of input

set Rs = ($<) #Rs is now an array with all words entered by user

if($#Rs < 10)then #make a test, need at least 10 of them

 echo "Need more than 10 radii. Exiting...."

 exit(1)

endif

echo "You entered $#Rs radii, the first is $Rs[1] and the last $Rs[$#Rs]"

echo "Rs= $Rs"

Now, compute the perimeter of each circle:

foreach R ($Rs)

 # -v rad=$R set the awk variable rad equal to $R. pi=atan2(0,-1)=3.14...

 set l = ‘awk -v rad=$R ’BEGIN{print 2*atan2(0,-1)*rad}’‘

 echo "Circle with R= $R has perimeter $l"

end

alias defines a command to do what you want: use awk as a calculator

alias acalc ’awk "BEGIN{print \!* }"’ # \!* substitutes args of acalc

echo "Using acalc to compute 2+3=" ‘acalc 2+3‘

echo "Using acalc to compute cos(2*pi)=" ‘acalc cos(2*atan2(0,-1))‘

Now do the same loop over radii as above in a different way

while(expression) is executed as long as "expression" is true

while($#Rs > 0) #executed as long as $Rs contains radii

 set R = $Rs[1] #take first element of $Rs

 shift Rs #now $Rs has one less element:old $Rs[1] has vanished

 set a = ‘acalc atan2(0,-1)*${R}*${R}‘ # =pi*R*R calculated by acalc

 # construct a filename to save the result from the value of R:

 set file = area${R}.dat

 echo "Circle with R= $R has area $a" > $file #save result in a file

end #end while

Now look for our files: save their names in an array files:

set files = (‘ls -1 area*.dat‘)

if($#files == 0) echo "Sorry, no area files found"

echo "--"

echo "files: $files"

ls -l $files

echo "--"

echo "And the results for the area are:"

foreach f ($files)

 echo -n "file ${f}: "

 cat $f

end

now play a little bit with file names:

echo "--"

set f = $files[1] # test permissions on first file

-f, -r, -w, -x, -d test existence of file, rwxd permissions

the ! negates the expression (true -> false, false -> true)

echo "testing permissions on files:"

if(-f $f) echo "$file exists"

if(-r $f) echo "$file is readable by me"

if(-w $f) echo "$file is writable by be"

if(! -w /bin/ls) echo "/bin/ls is NOT writable by me"

if(! -x $f) echo "$file is NOT an executable"

if(-x /bin/ls) echo "/bin/ls is executable by me"

if(! -d $f) echo "$file is NOT a directory"

if(-d /bin) echo "/bin is a directory"

echo "--"

transform the name of a file

set f = $cwd/$f # add the full path in $f

set filename = $f:r # removes extension .dat

set extension = $f:e # gets extension .dat

set fdir = $f:h # gets directory of $f

set base = ‘basename $f‘ # removes directory name

echo "file is: $f"

echo "filename is: $filename"

echo "extension is: $extension"

echo "directory is: $fdir"

echo "basename is: $base"

now transform the name to one with different extension:

set newfile = ${filename}.jpg

echo "jpeg name is: $newfile"

echo "jpeg base is:" ‘basename $newfile‘

if($newfile:e == jpg)echo ‘basename $newfile‘ " is a picture"

echo "--"

Now save all data in a file using a "here document"

A here document starts with <<EOF and ends with a line

starting exactly with EOF (EOF can be any string as below)

In a "here document" we can use variables and command

substitution:

cat <<AREAS >> areas.dat

This file contains the areas of circle of given radii

Computation done by ${user} on ${HOST}. Today is ‘date‘

‘cat $files‘

AREAS

now see what we got:

if(-f areas.dat) cat areas.dat

You can use a "here document" as standard input to any command:

use gnuplot to save a plot: gnuplot does the job and exits...

gnuplot <<GNU

set terminal jpeg

set output "areas.jpg"

plot "areas.dat" using 4:7 title "areas.dat",\

 pi*x*x title "pi*R^2"

set output

GNU

check our results: display the jpeg file using eog

if(-f areas.jpg) eog areas.jpg &

 	
	

	 awk 	search for and process patterns in a file,

	 cat 	display, or join, files

	 cd 	change working directory

	 chmod 	change the access mode of a file

	 cp 	copy files

	 date 	display current time and date

	 df 	display the amount of available disk space

	 diff 	display the differences between two files

	 du 	display information on disk usage

	 echo 	echo a text string to output

	 find 	find files
	 grep 	search for a pattern in files

	 gzip 	compress files in the gzip (.gz) format (gunzip to uncompress)

	 head 	display the first few lines of a file

	 kill 	send a signal (like KILL) to a process

	 locate 	search for files stored on the system (faster than find)

	 less 	display a file one screen at a time

	 ln 	create a link to a file
	 lpr 	print files

	 ls 	list information about files

	 man 	search information about command in man pages

	 mkdir 	create a directory

	 mv 	move and/or rename a file

	 ps 	report information on the processes run on the system

	 pwd 	print the working directory

	 rm 	remove (delete) files

	 rmdir 	remove (delete) a directory

	 sort 	sort and/or merge files

	 tail 	display the last few lines of a file

	 tar 	store or retrieve files from an archive file

	 top 	dynamic real-time view of processes

	 wc 	counts lines, words and characters in a file

	 whatis 	list man page entries for a command

	 where 	show where a command is located in the path (alternatively: whereis)

	 which 	locate an executable program using ”path”

	 zip 	create compressed archive in the zip format (.zip)

	 unzip 	get/list contents of zip archive

	
	

	

 Table 1.1: Basic Unix commands.

	 Table 1.2: Some intrinsic functions in Fortran.

	
	

	Function	
Description

	
	

	

	 	

	 ABS 	
modulus of a complex number, absolute
value of number

	 ACOS 	
arccosine of a number

	 ADJUSTL 	
moves non blank characters of a string to the
left

	 ADJUSTR 	
moves non blank characters of a string to the
right

	 AIMAG 	
imaginary part of a complex number

	 AINT 	
truncates fractional part but preserves data
type

	 ANINT 	
rounds to nearest whole number but
preserves data type

	 ASIN 	
arcsine of a number

	 ATAN 	
arctangent of a number

	 ATAN2 	
arctangent of arg1 divided by arg2 resolved
into the correct quadrant

	 CMPLX 	
converts to the COMPLEX data type arg1
+ i arg2

	 CONJG 	
complex conjugate of a complex number

	 COS 	
cosine of an angle in radians

	 COSH 	
hyperbolic cosine

	DATE_AND_TIME	
returns current date and time

	 DBLE 	
converts to the real(8) data type

	 DIM 	
if arg1 [image: >] arg2, then returns arg1 - arg2;
otherwise 0

	 DPROD 	
double precision product of two single
precision numbers

	 EXP 	
exponential

	 EPSILON 	
Returns a positive number that is negligible
compared to 1.0

	

	 HUGE 	
Returns the largest number of the same kind
as the argument

	 INT 	
converts to the INTEGER data type by
truncation

	 KIND 	
Returns the KIND value of argument

	 LEN 	
Returns the length of a string

	 LEN_TRIM 	
returns the length of a string without trailing
blanks

	LGE,LGT,LLE,LLT	
string comparison functions

	 LOG 	
natural logarithm

	 LOG10 	
common logarithm

	 MAX 	
maximum value of arguments

	 MAXEXPONENT 	
returns the maximum exponent of the same
kind as the argument

	 MIN 	
minimum value of arguments

	 MINEXPONENT 	
returns the minimum exponent of the same
kind as the argument

	 MOD 	
arg1 modulo arg2

	 NINT 	
converts to the INTEGER data type by
rounding

	 RANDOM_NUMBER 	
returns pseudo-random numbers [image: 0 ≤ r < 1]

	 RANDOM_SEED 	
starts random number generator or returns
generator parameters

	 PRECISION 	
returns the decimal precision of the same
kind as the argument

	 REAL 	
real part of a complex number

	 REAL 	
converts to the REAL data type

	 SIGN 	
if arg2 [image: <] 0, then returns -arg1; else +arg1

	

	 SIN 	
sine of an angle in radians

	 SINH 	
hyperbolic sine

	 SQRT 	
square root

	 TAN 	
tangent of an angle in radians

	 TANH 	
hyperbolic tangent

	 TINY 	

returns the smallest positive number of the
same kind as the argument

	 TRIM 	

returns string with trailing blanks removed

	
	

	Array functions

	
	

	 ALL 	
true if all values are true

	 ALLOCATED 	

array allocation status

	 ANY 	
true if any values are true

	 COUNT 	
number of elements in an array

	DOT_PRODUCT	
dot product of two rank-one arrays

	 LBOUND 	
lower dimension bounds of an array

	 MATMUL 	
matrix multiplication

	 MAXLOC 	
location of a maximum value in an array

	 MAXVAL 	
maximum value in an array

	 MERGE 	
merge arrays under mask

	 MINLOC 	
location of a minimum value in an array

	 MINVAL 	
minimum value in an array

	

	 PACK 	
pack an array into an array of rank one under
a mask

	 PRODUCT 	
product of array elements

	 RESHAPE 	
reshape an array

	 SHAPE 	
shape of an array or scalar

	 SIZE 	
size of an array

	 SPREAD 	
replicate an array by adding a dimension

	 SUM 	
sum of array elements

	TRANSPOSE	
transpose an array of rank two

	 UBOUND 	
upper dimension bounds of an array

	 UNPACK 	
unpack an array of rank one into an array
under a mask

	

	

	

	

	

	
	

	

	

	 Table 1.3: Basic Emacs commands.

	
	
	

	

			

	
	
	

	Leaving Emacs

	
	
	

	suspend Emacs (or iconify it under X) 	C-z 	

	exit Emacs permanently 	C-x C-c 	

	
	
	

	Files

	
	
	

	read a file into Emacs 	C-x C-f 	

	 save a file back to disk 	C-x C-s 	

	save all files 	C-x s 	

	insert contents of another file into this buffer	C-x i 	

	toggle read-only status of buffer 	C-x C-q 	

	
	
	

	Getting Help

	
	
	

	The help system is simple. Type C-h (or F1) and follow the directions. If you
are a first-time user, type C-h t for a tutorial.

	remove help window 	C-x 1 	

	apropos: show commands matching a string 	C-h a 	

	describe the function a key runs 	C-h k 	

	describe a function 	C-h f 	

	get mode-specific information 	C-h m 	

	
	
	

	Error Recovery

	
	
	

	abort partially typed or executing command 	C-g 	

	recover files lost by a system crash 	M-x recover-session	

	undo an unwanted change 	C-x u, C-_ or C-/ 	

	

	restore a buffer to its original contents	M-x revert-buffer	

	redraw garbaged screen 	C-l 	

	
	
	

	Incremental Search

	
	
	

	search forward 	C-s 	

	search backward 	C-r 	

	regular expression search 	C-M-s 	

	abort current search 	C-g 	

	Use C-s or C-r again to repeat the search in either direction. If Emacs is still
searching, C-g cancels only the part not matched.

	
	
	

	Motion

	
	
	

	entity to move over 	backward 	forward

	character 	C-b 	C-f

	word 	M-b 	M-f

	line 	C-p 	C-n

	go to line beginning (or end) 	C-a 	C-e

	go to buffer beginning (or end) 	M-< 	M->

	scroll to next screen 	C-v 	

	scroll to previous screen 	M-v 	

	scroll left 	C-x < 	

	scroll right 	C-x > 	

	scroll current line to center of screen 	C-u C-l 	

	

	
	
	

	Killing and Deleting

	
	
	

	entity to kill 	backward 	forward

	character (delete, not kill) 	DEL 	C-d

	word 	M-DEL 	M-d

	line (to end of) 	M-0 C-k 	C-k

	kill region 	C-w 	

	copy region to kill ring 	M-w 	

	yank back last thing killed 	C-y 	

	replace last yank with previous kill	M-y 	

	
	
	

	Marking

	
	
	

	set mark here 	C-@ or C-SPC 	

	exchange point and mark 	C-x C-x 	

	mark paragraph 	M-h 	

	mark entire buffer 	C-x h 	

	
	
	

	Query Replace

	
	
	

	interactively replace a text string 	M-% or M-x query-replace	

	using regular expressions 	M-x query-replace-regexp	

	
	
	

	Buffers

	
	
	

	select another buffer 	C-x b 	

	list all buffers 	C-x C-b 	

	

	kill a buffer 	C-x k 	

	
	
	

	Multiple Windows

	
	
	

	When two commands are shown, the second is a similar command for a frame
instead of a window.

	delete all other windows 	C-x 1 	C-x 5 1

	split window, above and below 	C-x 2 	C-x 5 2

	delete this window 	C-x 0 	C-x 5 0

	split window, side by side 	C-x 3 	

	switch cursor to another window 	C-x o 	C-x 5 o

	grow window taller 	C-x ^ 	

	shrink window narrower 	C-x { 	

	grow window wider 	C-x } 	

	
	
	

	Formatting

	
	
	

	indent current line (indent code etc)	TAB 	

	insert newline after point 	C-o 	

	fill paragraph 	M-q 	

	
	
	

	Case Change

	
	
	

	uppercase word 	M-u 	

	lowercase word 	M-l 	

	capitalize word 	M-c 	

	uppercase region 	C-x C-u 	

	

	lowercase region 	C-x C-l 	

	
	
	

	The Minibuffer

	
	
	

	The following keys are defined in the minibuffer.

	complete as much as possible 	TAB 	

	complete up to one word 	SPC 	

	complete and execute 	RET 	

	abort command 	C-g 	

	Type C-x ESC ESC to edit and repeat the last command that used the
minibuffer. Type F10 to activate menu bar items on text terminals.

	
	
	

	Spelling Check

	
	
	

	check spelling of current word 	M-$ 	

	check spelling of all words in region 	M-x ispell-region	

	check spelling of entire buffer 	M-x ispell-buffer	

	On the fly spell checking 	M-x flyspell-mode	

	
	
	

	Info – Getting Help Within Emacs

	
	
	

	enter the Info documentation reader	C-h i 	

	scroll forward 	SPC 	

	scroll reverse 	DEL 	

	next node 	n 	

	previous node 	p 	

	move up 	u 	

	

	select menu item by name 	m	

	return to last node you saw	l	

	return to directory node 	d	

	go to top node of Info file 	t	

	go to any node by name 	g	

	quit Info 	q	

	

	

	

	

	

	
	
	

	

	

Chapter 2
Kinematics
 In this chapter we show how to program simple
kinematic equations of motion of a particle and how to do basic analysis of
numerical results. We use simple methods for plotting and animating trajectories
on the two dimensional plane and three dimensional space. In section 2.3 we study
numerical errors in the calculation of trajectories of freely moving particles
bouncing off hard walls and obstacles. This will be a prelude to the study of the
integration of the dynamical equations of motion that we will introduce in the
following chapters.
 2.1 Motion on the Plane

When a particle moves on the plane, its position can be given in Cartesian
coordinates [image: (x(t),y(t))]. These, as a function of time, describe the particle’s
trajectory. The position vector is [image: ⃗r(t) = x(t)xˆ+ y(y)ˆy], where [image: ˆx] and [image: ˆy] are the
unit vectors on the [image: x] and [image: y] axes respectively. The velocity vector is
[image: ⃗v(t) = vx(t)ˆx + vy(t)ˆy] where

[image: ⃗v(t) = d⃗r(t)
 dt
 dx (t) dy (t)
vx (t) = ----- vy(t) = ----- , (2.1)
 dt dt
]

The acceleration [image: ⃗a(t) = ax(t)ˆx + ay(t)ˆy] is given by

[image: d⃗v(t) d2⃗r(t)
 ⃗a(t) = ----- = ------
 dt dt2
 dvx-(t) d2x(t) dvy(t) d2y(t)
ax (t) = dt = dt2 ay(t) = dt = dt2 . (2.2)
]

[image: pict]

Figure 2.1: The trajectory of a particle moving in the plane. The figure shows its
position vector [image: ⃗r], velocity [image: ⃗v] and acceleration [image: ⃗a] and their Cartesian components in the
chosen coordinate system at a point of the trajectory.

 In this section we study the kinematics of a particle trajectory, therefore we
assume that the functions [image: (x(t),y(t))] are known. By taking their derivatives, we
can compute the velocity and the acceleration of the particle in motion. We will
write simple programs that compute the values of these functions in a time
interval [image: [t0,tf]], where [image: t0] is the initial and [image: tf] is the final time. The continuous
functions [image: x(t),y(t),vx (t),vy(t)] are approximated by a discrete sequence
of their values at the times [image: t0,t0 + δt,t0 + 2δt,t0 + 3δt,...] such that
[image: t0 + nδt ≤ tf].

[image: pict]

Figure 2.2: The flowchart of a typical program computing the trajectory of a particle
from its (kinematic) equations of motion.

 We will start the design of our program by forming a generic template to be
used in all of the problems of interest. Then we can study each problem of particle
motion by programming only the equations of motion without worrying about the
less important tasks, like input/output, user interface etc. Figure 2.2 shows a
flowchart of the basic steps in the algorithm. The first part of the program
declares variables and defines the values of the fixed parameters (like
[image: π = 3.1459 ...], [image: g = 9.81], etc). The program starts by interacting with
the user (“user interface”) and asks for the values of the variables [image: x0],
[image: y
 0], [image: t
 0], [image: t
 f], [image: δt...]. The program prints these values to the stdout
so that the user can check them for correctness and store them in her
data.

 The main calculation is performed in a loop executed while [image: t ≤ tf]. The values
of the positions and the velocities [image: x(t),y(t),vx(t),vy(t)] are calculated and
printed in a file together with the time [image: t]. At this point we fix the format
of the program output, something that is very important to do it in a
consistent and convenient way for easing data analysis. We choose to
print the values t, x, y, vx, vy in five columns in each line of the output
file.

 The specific problem that we are going to solve is the computation of the
trajectory of the circular motion of a particle on a circle with center [image: (x0,y0)]
and radius [image: R] with constant angular velocity [image: ω]. The position on the
circle can be defined by the angle [image: 𝜃], as can be seen in figure 2.3. We
define the initial position of the particle at time [image: t
 0] to be [image: 𝜃(t) = 0
 0].

[image: pict]

Figure 2.3: The trajectory of a particle moving on a circle with constant angular velocity
calculated by the program Circle.f90.

 The equations giving the position of the particle at time [image: t] are

[image: x(t) = x0 + R cos(ω (t − t0))
y(t) = y0 + R sin (ω(t − t0)) . (2.3)
]

Taking the derivative w.r.t. [image: t] we obtain the velocity

[image: vx(t) = − ωR sin (ω(t − t0))
v (t) = ωR cos(ω (t − t)), (2.4)
 y 0
]

and the acceleration

[image: ax(t) = − ω2R cos(ω(t − t0)) = − ω2(x (t) − x0)
 2 2
ay(t) = − ω R sin (ω(t − t0)) = − ω (y(t) − y0). (2.5)
]

We note that the above equations imply that [image: ⃗
R ⋅⃗v = 0] ([image: ⃗
R ≡ ⃗r − ⃗r0], [image: ⃗
⃗v ⊥ R],
[image: ⃗v] tangent to the trajectory) and [image: ⃗a = − ω2 ⃗R] ([image: R⃗] and [image: ⃗a] anti-parallel,
[image: ⃗a ⊥ ⃗v]).
 The data structure is quite simple. The constant angular velocity [image: ω] is stored
in the REAL variable omega. The center of the circle [image: (x ,y)
 0 0], the radius [image: R] of the
circle and the angle [image: 𝜃] are stored in the REAL variables x0, y0, R, theta. The
times at which we calculate the particle’s position and velocity are defined
by the parameters [image: t0,tf ,δt] and are stored in the REAL variables t0,
tf, dt. The current position [image: (x(t),y (t))] is calculated and stored in the
REAL variables x, y and the velocity [image: (vx(t),vy(t))] in the REAL variables
vx, vy. The declarations of the variables are put in the beginning of the
program:

 real :: x0,y0,R,x,y,vx,vy,t,t0,tf,dt

 real :: theta,omega

 real, parameter :: PI=3.1415927

 were we defined the value1
of [image: π = 3.1415927] by using the parameter specification.

 The user interface of the program is the interaction of the program with the
user and, in our case, it is the part of the program where the user enters the
parameters omega, x0, y0, R, t0, tf, dt. The program issues a prompt
with the names the variables expected to be read. This is done using
simple print statements. The variables are read from the stdin by simple
read statements and the values entered by the user are printed to the
stdout2 :

 print *,’# Enter omega:’

 read *,omega

 print *,’# Enter center of circle (x0,y0) and radius R:’

 read *,x0,y0,R

 print *,’# Enter t0,tf,dt:’

 read *,t0,tf,dt

 print *,’# omega= ’,omega

 print *,’# x0= ’,x0,’ y0= ’,y0,’ R= ’,R

 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

 Next, the program initializes the state of the computation. This includes checking
the validity of the parameters entered by the user, so that the computation will be
possible. For example, the program computes the expression 2.0*PI/omega, where
it is assumed that omega has a non zero value. We will also demand that
[image: R > 0] and [image: ω > 0]. An if statement will make those checks and if the
parameters have illegal values, the stop statement will stop the program
execution3 .
The program opens the file Circle.dat for writing the calculated values of the
position and the velocity of the particle.

 if(R .le. 0.0) stop ’Illegal value of R’

 if(omega .le. 0.0) stop ’Illegal value of omega’

 print *,’# T= ’,2.0*PI/omega

 open(unit=11,file=’Circle.dat’)

 If [image: R ≤ 0] or [image: ω ≤ 0] the corresponding stop statements are executed which end
the program execution. The optional error messages are included after the stop
statements which are printed to the stdout. The value of the period [image: T = 2 π∕ω]
is also calculated and printed for reference.

 The open statement uses unit 11 for writing to the file Circle.dat.
The choice of the unit number is free for the programmer to choose.
We recommend using the units 10 to 99 for input/output to
files4 .

 The main calculation is performed within the loop

 t = t0

 do while(t .le. tf)

 t = t + dt

 enddo

 The first statement sets the initial value of the time. The statements between the
do while(condition) and enddo are executed as long as condition has a .TRUE.
value. The statement t=t+dt increments the time and this is necessary in order
not to enter into an infinite loop. he commands put in place of the dots
......... calculate the position and the velocity and print them to the file
Circle.dat:

 theta = omega * (t-t0)

 x = x0+R*cos(theta)

 y = y0+R*sin(theta)

 vx = -omega*R*sin(theta)

 vy = omega*R*cos(theta)

 write(11,*)t,x,y,vx,vy

 Notice the use of the intrinsic functions sin and cos that calculate the sine
and cosine of an angle expressed in radians. We use the intermediate
variable theta in order to store the phase [image: 𝜃(t) = ω(t − t0)]. The command
write(11,*) writes the variables t,x,y,vx,vy to the unit 11, which has
been associated to the file Circle.dat with the open statement shown
above.

 The program is stored in the file Circle.f90 and can be found in the
accompanied software. The extension .f90 is used by the compiler in order to
denote source code written in free format Fortran language. Compilation and
running can be done using the commands:

> gfortran Circle.f90 -o cl

> ./cl

 The switch -o cl forces the compiler gfortran to write the binary commands executed by the
program to the file5
cl. The command ./cl loads the program instructions to the computer memory
for execution. When the programs starts execution, it first asks for the
parameter data and then performs the calculation. A typical session looks
like:

> gfortran Circle.f90 -o cl

> ./cl

 # Enter omega:

1.0

 # Enter center of circle (x0,y0) and radius R:

1.0 1.0 0.5

 # Enter t0,tf,dt:

0.0 20.0 0.01

 # omega= 1.

 # x0= 1. y0= 1. R= 0.5

 # t0= 0. tf= 20. dt= 0.00999999978

 # T= 6.28318548

 The lines shown above that start with a # character are printed by the program
and lines without # are the values of the parameters entered interactively by the
user. The user types in the parameters and then presses the Enter key in order for
the program to read them. Here we have [image: ω = 1.0], [image: x0 = y0 = 1.0], [image: R = 0.5],
[image: t = 0.0
 0], [image: t = 20.0
 f] and [image: δt = 0.01].

 You can execute the above program many times for different values of the
parameter by writing the parameter values in a file using an editor. For example,
in the file Circle.in type the following data:

1.0 omega

1.0 1.0 0.5 (x0, y0) , R

0.0 20.0 0.01 t0 tf dt

 Each line has the parameters read by the program with a read statement (a
record). The rest of the line is ignored by the program and the user can write
anything she likes as a comment on how to use the parameters. The program can
read the above values of the parameters with the command:

> ./cl < Circle.in > Circle.out

 The command ./cl runs the commands found in the executable file ./cl. The <
Circle.in redirects the contents of the file Circle.in to the standard input
(stdin) of the command ./cl. This way the program reads in the values of the
parameters from the contents of the file Circle.in. The > Circle.out redirects
the standard output (stdout) of the command ./cl to the file Circle.out. Its
contents can be inspected after the execution of the program with the command
cat:

> cat Circle.out

 # Enter omega:

 # Enter center of circle (x0,y0) and radius R:

 # Enter t0,tf,dt:

 # omega= 1.

 # x0= 1. y0= 1. R= 0.5

 # t0= 0. tf= 20. dt= 0.00999999978

 # T= 6.28318548

 We list the full program in Circle.f90 below:

!==

!File Circle.f90

!Constant angular velocity circular motion

!Set (x0,y0) center of circle, its radius R and omega.

!At t=t0, the particle is at theta=0

!--

program Circle

 implicit none

!--

!Declaration of variables

 real :: x0,y0,R,x,y,vx,vy,t,t0,tf,dt

 real :: theta,omega

 real, parameter :: PI=3.1415927

!--

!Ask user for input:

 print *,’# Enter omega:’

 read *,omega

 print *,’# Enter center of circle (x0,y0) and radius R:’

 read *,x0,y0,R

 print *,’# Enter t0,tf,dt:’

 read *,t0,tf,dt

 print *,’# omega= ’,omega

 print *,’# x0= ’,x0,’ y0= ’,y0,’ R= ’,R

 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 if(R .le. 0.0) stop ’Illegal value of R’

 if(omega .le. 0.0) stop ’Illegal value of omega’

 print *,’# T= ’,2.0*PI/omega

 open(unit=11,file=’Circle.dat’)

!--

!Compute:

 t = t0

 do while(t .le. tf)

 theta = omega * (t-t0)

 x = x0+R*cos(theta)

 y = y0+R*sin(theta)

 vx = -omega*R*sin(theta)

 vy = omega*R*cos(theta)

 write(11,*)t,x,y,vx,vy

 t = t + dt

 enddo

 close(11)

end program Circle

 2.1.1 Plotting Data

We use gnuplot for plotting the data produced by our programs. The file
Circle.dat has the time t and the components x, y, vx, vy in five columns.
Therefore we can plot the functions [image: x(t)] and [image: y (t)] by using the gnuplot
commands:

gnuplot> plot "Circle.dat" using 1:2 with lines title "x(t)"

gnuplot> replot "Circle.dat" using 1:3 with lines title "y(t)"

[image: pict] [image: pict]

Figure 2.4: The plots [image: (x(t),y(t))] (left) and [image: 𝜃(t)] (right) from the data in Circle.dat
for [image: ω = 1.0], [image: x0 = y0 = 1.0], [image: R = 0.5], [image: t0 = 0.0], [image: tf = 20.0] and [image: δt = 0.01].

 The second line puts the second plot together with the first one. The results
can be seen in figure 2.4.

 Let’s see now how we can make the plot of the function [image: 𝜃(t)]. We can do that using
the raw data from the file Circle.dat within gnuplot, without having to write a new
program. Note that [image: −1
𝜃(t) = tan ((y − y0)∕(x − x0))]. The function atan2 is available in
gnuplot6
as well as in Fortran. Use the online help system in gnuplot in order to see its
usage:

gnuplot> help atan2

 The ‘atan2(y,x)‘ function returns the arc tangent (inverse

 tangent) of the ratio of the real parts of its arguments.

 ‘atan2‘ returns its argument in radians or degrees, as

 selected by ‘set angles‘, in the correct quadrant.

 Therefore, the right way to call the function is atan2(y-y0,x-x0). In our case
x0=y0=1 and x, y are in the 2nd and 3rd columns of the file Circle.dat.
We can construct an expression after the using command as in page
153, where $2 is the value of the second and $3 the value of the third
column:

gnuplot> x0 = 1 ; y0 = 1

gnuplot> plot "Circle.dat" using 1:(atan2($3-y0,$2-x0)) \

 with lines title "theta(t)",pi,-pi

 The second command is broken in two lines by using the character ∖ so that it fits conveniently
in the text7 .
Note how we defined the values of the variables x0, y0 and how we used them in the
expression atan2($3-x0,$2-y0). We also plot the lines which graph the constant
functions [image: f1(t) = π] and [image: f2(t) = − π] which mark the limit values of [image: 𝜃(t)]. The gnuplot
variable8
pi is predefined and can be used in formed expressions. The result can be seen in
the left plot of figure 2.4.

 The velocity components [image: (vx(t),vy(t))] as function of time as well as the
trajectory [image: ⃗r(t)] can be plotted with the commands:

gnuplot> plot "Circle.dat" using 1:4 title "v_x(t)" \

 with lines

gnuplot> replot "Circle.dat" using 1:5 title "v_y(t)" \

 with lines

gnuplot> plot "Circle.dat" using 2:3 title "x-y"

 with lines

[image: pict]

Figure 2.5: The particle trajectory plotted by the gnuplot program in the file
animate2D.gnu of the accompanied software. The position vector is shown at a given time
t, which is marked on the title of the plot together with the coordinates (x,y). The data
is produced by the program Circle.f90 described in the text.

 We close this section by showing how to do a simple animation of
the particle trajectory using gnuplot. There is a file animate2D.gnu in
the accompanied software which you can copy in the directory where
you have the data file Circle.dat. We are not going to explain how it
works9
but how to use it in order to make your own animations. The final result
is shown in figure 2.5. All that you need to do is to define the data
file10 ,
the initial time t0, the final time tf and the time step dt. These times can be
different from the ones we used to create the data in Circle.dat. A full
animation session can be launched using the commands:

gnuplot> file = "Circle.dat"

gnuplot> set xrange [0:1.6]; set yrange [0:1.6]

gnuplot> t0 = 0; tf = 20 ; dt = 0.1

gnuplot> load "animate2D.gnu"

 The first line defines the data file that animate2D.gnu reads data from. The
second line sets the range of the plots and the third line defines the time
parameters used in the animation. The final line launches the animation. If you
want to rerun the animation, you can repeat the last two commands as many
times as you want using the same or different parameters. E.g. if you wish to run
the animation at “half the speed” you should simply redefine dt=0.05 and set the
initial time to t0=0:

gnuplot> t0 = 0; dt = 0.05

gnuplot> load "animate2D.gnu"

 2.1.2 More Examples

We are now going to apply the steps described in the previous section to
other examples of motion on the plane. The first problem that we are
going to discuss is that of the small oscillations of a simple pendulum.
Figure 2.6 shows the single oscillating degree of freedom [image: 𝜃(t)], which
is the small angle that the pendulum forms with the vertical direction.

[image: pict]

Figure 2.6: The simple pendulum whose motion for [image: 𝜃 ≪ 1] is described by the program
SimplePendulum.f90.

 The motion is periodic with angular frequency [image: ∘ ---
ω = g∕l] and period
[image: T = 2π∕ω]. The angular velocity is computed from [image: ˙𝜃 ≡ d𝜃∕dt] which gives

[image: 𝜃(t) = 𝜃0cos (ω(t − t0))

˙𝜃(t) = − ω𝜃0 sin (ω(t − t0)) (2.6)
]

We have chosen the initial conditions [image: 𝜃 (t0) = 𝜃0] and [image: 𝜃˙(t0) = 0]. In order to
write the equations of motion in the Cartesian coordinate system shown in figure
2.6 we use the relations

[image: x (t) = lsin (𝜃(t))
 y(t) = − lcos(𝜃(t))

vx(t) = dx(t) = l˙𝜃(t)cos(𝜃(t))
 dt
 dy(t) ˙
vy(t) = dt = l𝜃(t)sin (𝜃(t)). (2.7)
]

These are similar to the equations (2.3) and (2.4) that we used in the case of
the circular motion of the previous section. Therefore the structure of the
program is quite similar. Its final form, which can be found in the file
SimplePendulum.f90, is:

!==

!File SimplePendulum.f90

!Set pendulum original position at theta0 with no initial speed

!--

program SimplePendulum

 implicit none

!--

!Declaration of variables

 real :: l,x,y,vx,vy,t,t0,tf,dt

 real :: theta,theta0,dtheta_dt,omega

 real, parameter ::PI=3.1415927,g=9.81

!--

!Ask user for input:

 print *,’# Enter l: ’

 read *,l

 print *,’# Enter theta0:’

 read *,theta0

 print *,’# Enter t0,tf,dt:’

 read *,t0,tf,dt

 print *,’# l= ’,l ,’ theta0= ’,theta0

 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 omega = sqrt(g/l)

 print *,’# omega= ’,omega,’ T= ’,2.0*PI/omega

 open(unit=11,file=’SimplePendulum.dat’)

!--

!Compute:

 t = t0

 do while(t .le. tf)

 theta = theta0*cos(omega*(t-t0))

 dtheta_dt = -omega*theta0*sin(omega*(t-t0))

 x = l*sin(theta)

 y = -l*cos(theta)

 vx = l*dtheta_dt*cos(theta)

 vy = l*dtheta_dt*sin(theta)

 write(11,100)t,x,y,vx,vy,theta,dtheta_dt

 t = t + dt

 enddo

 close(11)

100 FORMAT(7G15.7)

end program SimplePendulum

 We note that the acceleration of gravity [image: g] is hard coded in the program and
that the user can only set the length [image: l] of the pendulum. The data file
SimplePendulum.dat produced by the program, contains two extra columns with
the current values of [image: 𝜃(t)] and the angular velocity [image: ˙𝜃(t)]. The statement
write(11,100) writes to the unit 11 according to the format set by the FORMAT
statement, found in the line labeled by the label 100. This is done so that we can
be sure that the data is printed in one line for each value of [image: t] (see the discussion
on page 119).

 A simple session for the study of the above problem is shown
below11 :

> gfortran SimplePendulum.f90 -o sp

> ./sp

 # Enter l:

1.0

 # Enter theta0:

0.314

 # Enter t0,tf,dt:

0 20 0.01

 # l= 1. theta0= 0.31400001

 # t0= 0. tf= 20. dt= 0.00999999978

 # omega= 3.132092 T= 2.0060668

> gnuplot

gnuplot> plot "SimplePendulum.dat" u 1:2 w l t "x(t)"

gnuplot> plot "SimplePendulum.dat" u 1:3 w l t "y(t)"

gnuplot> plot "SimplePendulum.dat" u 1:4 w l t "v_x(t)"

gnuplot> replot "SimplePendulum.dat" u 1:5 w l t "v_y(t)"

gnuplot> plot "SimplePendulum.dat" u 1:6 w l t "theta(t)"

gnuplot> replot "SimplePendulum.dat" u 1:7 w l t "theta’(t)"

gnuplot> plot [-0.6:0.6][-1.1:0.1] "SimplePendulum.dat" \

 u 2:3 w l t "x-y"

gnuplot> file = "SimplePendulum.dat"

gnuplot> t0=0;tf=20.0;dt=0.1

gnuplot> set xrange [-0.6:0.6];set yrange [-1.1:0.1]

gnuplot> load "animate2D.gnu"

 The next example is the study of the trajectory of a particle shot near the earth’s
surface12
when we consider the effect of air resistance to be negligible. Then, the equations
describing the trajectory of the particle and its velocity are given by the
parametric equations

[image: x (t) = v0xt
 1
 y (t) = v0yt −--gt2
 2
vx (t) = v0x
 vy(t) = v0y − gt, (2.8)
]

where [image: t] is the parameter. The initial conditions are [image: x(0) = y(0) = 0],
[image: vx(0) = v0x = v0cos 𝜃] and [image: vy(0) = v0y = v0 sin 𝜃], as shown in figure 2.7.

[image: pict]

Figure 2.7: The trajectory of a particle moving under the influence of a
constant gravitational field. The initial conditions are set to [image: x(0) = y(0) = 0],
[image: vx(0) = v0x = v0cos𝜃] and [image: vy(0) = v0y = v0sin 𝜃].

 The structure of the program is similar to the previous ones. The user enters
the magnitude of the particle’s initial velocity and the shooting angle [image: 𝜃] in
degrees. The initial time is taken to be [image: t0 = 0]. The program calculates [image: v0x]
and [image: v
 0y] and prints them to the stdout. The data is written to the file
Projectile.dat. The full program is listed below and it can be found in the file
Projectile.f90 in the accompanied software:

!==

!File Projectile.f90

!Shooting a projectile near the earth surface.

!No air resistance.

!Starts at (0,0), set (v0,theta).

!--

program Projectile

 implicit none

!--

!Declaration of variables

 real :: x0,y0,R,x,y,vx,vy,t,tf,dt

 real :: theta,v0x,v0y,v0

 real, parameter :: PI=3.1415927,g=9.81

!--

!Ask user for input:

 print *,’# Enter v0,theta (in degrees):’

 read *,v0,theta

 print *,’# Enter tf,dt:’

 read *, tf,dt

 print *,’# v0= ’,v0,’ theta= ’,theta,’o (degrees)’

 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 if(v0 .le. 0.0) stop ’Illegal value of v0<=0’

 if(theta .le. 0.0 .or. theta .ge. 90.0) &

 stop ’Illegal value of theta’

 theta = (PI/180.0)*theta !convert to radians

 v0x = v0*cos(theta)

 v0y = v0*sin(theta)

 print *,’# v0x = ’,v0x,’ v0y= ’,v0y

 open(unit=11,file=’Projectile.dat’)

!--

!Compute:

 t = 0.0

 do while(t .le. tf)

 x = v0x * t

 y = v0y * t - 0.5*g*t*t

 vx = v0x

 vy = v0y - g*t

 write(11,*)t,x,y,vx,vy

 t = t + dt

 enddo

 close(11)

end program Projectile

 A typical session for the study of this problem is shown below:

> gfortran Projectile.f90 -o pj

> ./pj

 # Enter v0,theta (in degrees):

10 45

 # Enter tf,dt:

1.4416 0.001

 # v0= 10.0000000 theta= 45.000000 o (degrees)

 # t0= 0.0000000 tf= 1.4416000 dt= 1.00000005E-03

 # v0x = 7.0710678 v0y= 7.0710678

> gnuplot

gnuplot> plot "Projectile.dat" using 1:2 w l t "x(t)"

gnuplot> replot "Projectile.dat" using 1:3 w l t "y(t)"

gnuplot> plot "Projectile.dat" using 1:4 w l t "v_x(t)"

gnuplot> replot "Projectile.dat" using 1:5 w l t "v_y(t)"

gnuplot> plot "Projectile.dat" using 2:3 w l t "x-y"

gnuplot> file = "Projectile.dat"

gnuplot> set xrange [0:10.3];set yrange [0:10.3]

gnuplot> t0=0;tf=1.4416;dt=0.05

gnuplot> load "animate2D.gnu"

 Next, we will study the effect of air resistance of the form [image: ⃗F = − mk ⃗v]. The
solutions to the equations of motion

[image: pict]

Figure 2.8: The forces that act on the particle of figure 2.7 when we assume air resistance
of the form [image: ⃗
F = − mk⃗v].

[image: a = dvx-= − kv
 x dt x
 dvy
ay = ----= − kvy − g (2.9)
 dt
]

with initial conditions [image: x(0) = y (0) = 0], [image: vx(0) = v0x = v0 cos𝜃] and [image: vy(0) = v0y = v0 sin 𝜃]
are13

[image: −kt
vx(t) = v(0xe)
v (t) = v + -g e−kt − g-
 y 0y k k
 v0x-(−kt)
 x(t) = k 1 − e
 1(g) () g
 y(t) = -- v0y + -- 1 − e−kt − -t (2.10)
 k k k
]

 Programming the above equations is as easy as before, the only difference
being that the user needs to provide the value of the constant [image: k]. The full
program can be found in the file ProjectileAirResistance.f90 and it is listed
below:

!==

!File ProjectileAirResistance.f90

!Shooting a projectile near the earth surface

!with air resistance

!Starts at (0,0), set k, (v0,theta).

!--

program ProjectileAirResistance

 implicit none

!--

!Declaration of variables

 real :: x0,y0,R,x,y,vx,vy,t,tf,dt,k

 real :: theta,v0x,v0y,v0

 real, parameter :: PI=3.1415927,g=9.81

!--

!Ask user for input:

 print *,’# Enter k, v0,theta (in degrees):’

 read *,k, v0,theta

 print *,’# Enter tf,dt:’

 read *, tf,dt

 print *,’# k = ’,k

 print *,’# v0= ’,v0,’ theta= ’,theta,’o (degrees)’

 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 if(v0 .le. 0.0) stop ’Illegal value of v0<=0’

 if(k .le. 0.0) stop ’Illegal value of k <=0’

 if(theta .le. 0.0 .or. theta .ge. 90.0) &

 stop ’Illegal value of theta’

 theta = (PI/180.0)*theta !convert to radians

 v0x = v0*cos(theta)

 v0y = v0*sin(theta)

 print *,’# v0x = ’,v0x,’ v0y= ’,v0y

 open(unit=11,file=’ProjectileAirResistance.dat’)

!--

!Compute:

 t = 0.0

 do while(t .le. tf)

 x = (v0x/k)*(1.0-exp(-k*t))

 y = (1.0/k)*(v0y+(g/k))*(1.0-exp(-k*t))-(g/k)*t

 vx = v0x*exp(-k*t)

 vy = (v0y+(g/k))*exp(-k*t)-(g/k)

 write(11,*)t,x,y,vx,vy

 t = t + dt

 enddo

 close(11)

end program ProjectileAirResistance

[image: pict] [image: pict]

Figure 2.9: The plots of [image: x(t)],[image: y(t)] (left) and [image: v (t)
 x],[image: v (t)
 y] (right) from the data
produced by the program ProjectileAirResistance.f90 for [image: k = 5.0], [image: v0 = 10.0],
[image: 𝜃 = π∕4], [image: tf = 0.91] and [image: δt = 0.001]. We also plot the asymptotes of these functions as
[image: t → ∞].

[image: pict]

Figure 2.10: Trajectories of the particles shot with [image: v = 10.0
 0], [image: 𝜃 = π∕4] in the absence
of air resistance and when the air resistance is present in the form [image: ⃗
F = − mk ⃗v] with
[image: k = 5.0].

 We also list the commands of a typical session of the study of the
problem:

> gfortran ProjectileAirResistance.f90 -o pja

> ./pja

 # Enter k, v0,theta (in degrees):

5.0 10.0 45

 # Enter tf,dt:

0.91 0.001

 # k = 5.

 # v0= 10. theta= 45.o (degrees)

 # t0= 0. tf= 0.910000026 dt= 0.00100000005

 # v0x = 7.07106781 v0y= 7.07106781

> gnuplot

gnuplot> v0x = 10*cos(pi/4) ; v0y = 10*sin(pi/4)

gnuplot> g = 9.81 ; k = 5

gnuplot> plot [:][:v0x/k+0.1] "ProjectileAirResistance.dat" \

 using 1:2 with lines title "x(t)",v0x/k

gnuplot> replot "ProjectileAirResistance.dat" \

 using 1:3 with lines title "y(t)",\

 -(g/k)*x+(g/k**2)+v0y/k

gnuplot> plot [:][-g/k-0.6:] "ProjectileAirResistance.dat" \

 using 1:4 with lines title "v_x(t)",0

gnuplot> replot "ProjectileAirResistance.dat" \

 using 1:5 with lines title "v_y(t)",-g/k

gnuplot> plot "ProjectileAirResistance.dat" \

 using 2:3 with lines title "With air resistance k=5.0"

gnuplot> replot "Projectile.dat" \

 using 2:3 with lines title "No air resistance k=0.0"

gnuplot> file = "ProjectileAirResistance.dat"

gnuplot> set xrange [0:1.4];set yrange [0:1.4]

gnuplot> t0=0;tf=0.91;dt=0.01

gnuplot> load "animate2D.gnu"

 Long commands have been continued to the next line as before. We defined the
gnuplot variables v0x, v0y, g and k to have the values that we used when
running the program. We can use them in order to construct the asymptotes of
the plotted functions of time. The results are shown in figures 2.9 and
2.10.

 The last example of this section will be that of the anisotropic harmonic
oscillator. The force on the particle is

 	

[image: Fx = − m ω21x Fy = − mω22y
]
	(2.11)

where the “spring constants” [image: 2
k1 = mω 1] and [image: 2
k2 = m ω 2] are different in the
directions of the axes [image: x] and [image: y]. The solutions of the dynamical equations
of motion for [image: x(0) = A], [image: y(0) = 0], [image: vx(0) = 0] and [image: vy(0) = ω2A] are

[image: x (t) = A cos(ω t) y(t) = A sin (ω t)
 1 2
vx(t) = − ω1A sin (ω1t) vy(t) = ω2A cos(ω2t). (2.12)
]

If the angular frequencies [image: ω
 1] and [image: ω
 2] satisfy certain relations, the trajectories of
the particle are closed and self intersect at a given number of points.
The proof of these relations, as well as their numerical confirmation, is
left as an exercise for the reader. The program listed below is in the file
Lissajoux.f90:

!==

!File Lissajous.f90

!Lissajous curves (special case)

!x(t)= cos(o1 t), y(t)= sin(o2 t)

!--

program Lissajous

 implicit none

!--

!Declaration of variables

 real x0,y0,R,x,y,vx,vy,t,t0,tf,dt

 real o1,o2,T1,T2

 real, parameter :: PI=3.1415927

!--

!Ask user for input:

 print *,’# Enter omega1 and omega2:’

 read *,o1,o2

 print *,’# Enter tf,dt:’

 read *,tf,dt

 print *,’# o1= ’,o1, ’ o2= ’,o2

 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 if(o1.le.0.0 .or. o2.le.0.0) stop ’omega1 or omega2<=0’

 T1 = 2.0*PI/o1

 T2 = 2.0*PI/o2

 print *,’# T1= ’,T1,’ T2= ’,T2

 open(unit=11,file=’Lissajous.dat’)

!--

!Compute:

 t = 0.0

 do while(t .le. tf)

 x = cos(o1*t)

 y = sin(o2*t)

 vx = -o1*sin(o1*t)

 vy = o2*cos(o2*t)

 write(11,*)t,x,y,vx,vy

 t = t + dt

 enddo

 close(11)

end program Lissajous

 We have set [image: A = 1] in the program above. The user must enter the two angular
frequencies [image: ω1] and [image: ω2] and the corresponding times. A typical session for the
study of the problem is shown below:

> gfortran Lissajous.f90 -o lsj

> ./lsj

 # Enter omega1 and omega2:

3 5

 # Enter tf,dt:

10.0 0.01

 # o1= 3. o2= 5.

 # t0= 0. tf= 10. dt= 0.00999999978

 # T1= 2.09439516 T2= 1.2566371

>gnuplot

gnuplot> plot "Lissajous.dat" using 1:2 w l t "x(t)"

gnuplot> replot "Lissajous.dat" using 1:3 w l t "y(t)"

gnuplot> plot "Lissajous.dat" using 1:4 w l t "v_x(t)"

gnuplot> replot "Lissajous.dat" using 1:5 w l t "v_y(t)"

gnuplot> plot "Lissajous.dat" using 2:3 w l t "x-y for 3:5"

gnuplot> file = "Lissajous.dat"

gnuplot> set xrange [-1.1:1.1];set yrange [-1.1:1.1]

gnuplot> t0=0;tf=10;dt=0.1

gnuplot> load "animate2D.gnu"

 The results for [image: ω1 = 3] and [image: ω2 = 5] are shown in figure 2.11.

[image: pict]

Figure 2.11: The trajectory of the anisotropic oscillator with [image: ω = 3
 1] and [image: ω = 5
 2].

 2.2 Motion in Space

By slightly generalizing the methods described in the previous section, we will
study the motion of a particle in three dimensional space. All we have to do is to
add an extra equation for the coordinate [image: z(t)] and the component of the
velocity [image: vz(t)]. The structure of the programs will be exactly the same as
before.

[image: pict]

Figure 2.12: The conical pendulum of the program ConicalPendulum.f90.

 The first example is the conical pendulum, which can be seen in figure 2.12.
The particle moves on the [image: xy] plane with constant angular velocity [image: ω]. The
equations of motion are derived from the relations

 	

[image: Tz = T cos 𝜃 = mg Txy = T sin 𝜃 = m ω2r,
]
	(2.13)

where [image: r = lsin 𝜃]. Their solution14
is

[image: x(t) = rcosωt

y(t) = rsin ωt
z(t) = − lcos 𝜃, (2.14)
]

where we have to substitute the values

[image: g
cos𝜃 = ----
 ω√2l---------
sin 𝜃 = 1 − cos2 𝜃
 g sin 𝜃
 r = -2-----. (2.15)
 ω cos𝜃
]

For the velocity components we obtain

[image: vx = − rωsin ωt

vy = rω cosωt
vz = 0. (2.16)
]

Therefore we must have
 	

[image: ∘ --
 g
ω ≥ ωmin = -,
 l
]
	(2.17)

and when [image: ω → ∞], [image: 𝜃 → π ∕2].

 In the program that we will write, the user must enter the parameters [image: l], [image: ω],
the final time [image: tf] and the time step [image: δt]. We take [image: t0 = 0]. The convention that
we follow for the output of the results is that they should be written in a file
where the first 7 columns are the values of [image: t], [image: x], [image: y], [image: z], [image: vx], [image: vy] and
[image: vz]. Each line in this file is long and, in order to prevent Fortran from
breaking it into two separate lines, we have to give an explicit format
specification. See the discussion on page 119. The full program is listed
below:

!==

!File ConicalPendulum.f90

!Set pendulum angular velocity omega and display motion in 3D

!--

program ConicalPendulum

 implicit none

!--

!Declaration of variables

 real :: l,r,x,y,z,vx,vy,vz,t,tf,dt

 real :: theta,cos_theta,sin_theta,omega

 real, parameter :: PI=3.1415927,g=9.81

!--

!Ask user for input:

 print *,’# Enter l,omega: ’

 read *,l,omega

 print *,’# Enter tf,dt:’

 read *,tf,dt

 print *,’# l= ’,l ,’ omega= ’,omega

 print *,’# T= ’,2.0*PI/omega,’ omega_min= ’,sqrt(g/l)

 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 cos_theta = g/(omega*omega*l)

 if(cos_theta .ge. 1) stop ’cos(theta)>= 1’

 sin_theta = sqrt(1.0-cos_theta*cos_theta)

 z = -g/(omega*omega) !they remain constant throught

 vz= 0.0 !the motion

 r = g/(omega*omega)*sin_theta/cos_theta

 open(unit=11,file=’ConicalPendulum.dat’)

!--

!Compute:

 t = 0.0

 do while(t .le. tf)

 x = r*cos(omega*t)

 y = r*sin(omega*t)

 vx = -r*sin(omega*t)*omega

 vy = r*cos(omega*t)*omega

 write(11,100)t,x,y,z,vx,vy,vz

 t = t + dt

 enddo

 close(11)

100 FORMAT(20G15.7)

end program ConicalPendulum

 In order to compile and run the program we can use the commands shown
below:

> gfortran ConicalPendulum.f90 -o cpd

> ./cpd

 # Enter l,omega:

1.0 6.28

 # Enter tf,dt:

10.0 0.01

 # l= 1. omega= 6.28000021

 # T= 1.00050724 omega_min= 3.132092

 # t0= 0. tf= 10. dt= 0.00999999978

 The results are recorded in the file ConicalPendulum.dat. In order to plot the
functions [image: x(t)], [image: y(t)], [image: z(t)], [image: v (t)
 x], [image: v (t)
 y], [image: v (t)
 z] we give the following gnuplot
commands:

> gnuplot

gnuplot> plot "ConicalPendulum.dat" u 1:2 w l t "x(t)"

gnuplot> replot "ConicalPendulum.dat" u 1:3 w l t "y(t)"

gnuplot> replot "ConicalPendulum.dat" u 1:4 w l t "z(t)"

gnuplot> plot "ConicalPendulum.dat" u 1:5 w l t "v_x(t)"

gnuplot> replot "ConicalPendulum.dat" u 1:6 w l t "v_y(t)"

gnuplot> replot "ConicalPendulum.dat" u 1:7 w l t "v_z(t)"

 The results are shown in figure 2.13.

[image: pict] [image: pict]

Figure 2.13: The plots of the functions [image: x(t),y(t),z(t),v (t),v (t),v (t)
 x y z] of the program
ConicalPendulum.f90 for [image: ω = 6.28], [image: l = 1.0].

 In order to make a three dimensional plot of the trajectory, we should use the
gnuplot command splot:

gnuplot> splot "ConicalPendulum.dat" u 2:3:4 w l t "r(t)"

[image: pict]

Figure 2.14: The plot of the particle trajectory [image: ⃗r(t)] of the program
ConicalPendulum.f90 for [image: ω = 6.28], [image: l = 1.0]. We can click and drag with the mouse on
the window and rotate the curve and see it from a different angle. At the bottom left of
the window, we see the viewing direction, given by the angles [image: 𝜃 = 55.0] degrees (angle
with the [image: z] axis) and [image: ϕ = 62] degrees (angle with the [image: x] axis).

 The result is shown in figure 2.14. We can click on the trajectory and rotate it
and view it from a different angle. We can change the plot limits with the
command:

gnuplot> splot [-1.1:1.1][-1.1:1.1][-0.3:0.0] \

 "ConicalPendulum.dat" using 2:3:4 w l t "r(t)"

 We can animate the trajectory of the particle by using the file animate3D.gnu
from the accompanying software. The commands are similar to the ones we had to
give in the two dimensional case for the planar trajectories when we used the file
animate2D.gnu:

gnuplot> file = "ConicalPendulum.dat"

gnuplot> set xrange [-1.1:1.1];set yrange [-1.1:1.1]

gnuplot> set zrange [-0.3:0]

gnuplot> t0=0;tf=10;dt=0.1

gnuplot> load "animate3D.gnu"

 The result can be seen in figure 2.15.

[image: pict]

Figure 2.15: The particle trajectory [image: ⃗r(t)]
computed by the program ConicalPendulum.f90 for [image: ω = 6.28], [image: l = 1.0] and plotted by
the gnuplot script animate3D.gnu. The title of the plot shows the current time and the
particles coordinates.

 The program animate3D.gnu can be used on the data file of any program that
prints t x y z as the first words on each of its lines. All we have to do is to
change the value of the file variable in gnuplot.

 Next, we will study the trajectory of a charged particle in a homogeneous
magnetic field [image: ⃗
B = B ˆz]. At time [image: t0], the particle is at [image: ⃗r0 = x0ˆx] and its velocity
is [image: ⃗v0 = v0yˆy + v0zˆz], see figure 2.16.

[image: pict]

Figure 2.16: A particle at time [image: t = 0
 0] is at the position [image: ⃗r = x ˆx
 0 0] with velocity
[image: ⃗v0 = v0yˆy +v0zˆz] in a homogeneous magnetic field [image: ⃗
B = Bˆz].

 The magnetic force on the particle is [image: F⃗ = q(⃗v × ⃗B) = qBvy ˆx − qBvx ˆy] and
the equations of motion are

[image: dvx qB
ax = ----= ωvy ω ≡ ---
 dt m
ay = dvy-= − ωvx
 dt
az = 0. (2.18)
]

By integrating the above equations with the given initial conditions we obtain

[image: vx (t) = v0y sin ωt

 vy(t) = v0y cosωt
 vz(t) = v0z. (2.19)
]

Integrating once more, we obtain the position of the particle as a function of time

[image: (v0y) v0y
x(t) = x0 + --- − --- cosωt = x0cosωt
 v ω ω v
y(t) = -0ysinωt = − x0 sin ωt x0 = − -0y
 ω ω
z(t) = v0zt, (2.20)
]

where we have chosen [image: x0 = − v0y∕ω]. This choice places the center of the circle,
which is the projection of the trajectory on the [image: xy] plane, to be at the origin of
the coordinate system. The trajectory is a helix with radius [image: R = − x0] and pitch
[image: v0zT = 2πv0z∕ω].
 We are now ready to write a program that calculates the trajectory given by
(2.20) . The user enters the parameters [image: v
 0] and [image: 𝜃], shown in figure 2.16, as well
as the angular frequency [image: ω] (Larmor frequency). The components of the initial
velocity are [image: v0y = v0cos 𝜃] and [image: v0z = v0 sin 𝜃]. The initial position is calculated
from the equation [image: x0 = − v0y∕ ω]. The program can be found in the file
ChargeInB.f90:

!===

!File ChargeInB.f90

!A charged particle of mass m and charge q enters a magnetic

!field B in +z direction. It enters with velocity

!v0x=0,v0y=v0 cos(theta),v0z=v0 sin(theta), 0<=theta<pi/2

!at the position x0=-v0y/omega, omega=q B/m

!

!Enter v0 and theta and see trajectory from

!t0=0 to tf at step dt

!--

program ChargeInB

 implicit none

!--

!Declaration of variables

 real :: x,y,z,vx,vy,vz,t,tf,dt

 real :: x0,y0,z0,v0x,v0y,v0z,v0

 real :: theta,omega

 real, parameter :: PI=3.1415927

!--

!Ask user for input:

 print *,’# Enter omega: ’

 read *,omega

 print *,’# Enter v0, theta (degrees):’

 read *,v0,theta

 print *,’# Enter tf,dt:’

 read *,tf,dt

 print *,’# omega= ’,omega ,’ T= ’,2.0*PI/omega

 print *,’# v0= ’,v0, ’ theta= ’,theta,’o (degrees)’

 print *,’# t0= ’,0.0, ’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 if(theta.lt.0.0 .or. theta.ge.90.0)stop ’Illegal 0<theta<90’

 theta = (PI/180.0)*theta !convert to radians

 v0y = v0*cos(theta)

 v0z = v0*sin(theta)

 print *,’# v0x= ’,0.0,’ v0y= ’,v0y,’ v0z= ’,v0z

 x0 = - v0y/omega

 print *,’# x0= ’,x0, ’ y0= ’,0.0,’ z0= ’,0.0

 print *,’# xy plane: Circle with center (0,0) and R= ’,ABS(x0)

 print *,’# step of helix: s=v0z*T= ’,v0z*2.0*PI/omega

 open(unit=11,file=’ChargeInB.dat’)

!--

!Compute:

 t = 0.0

 vz = v0z

 do while(t .le. tf)

 x = x0*cos(omega*t)

 y = -x0*sin(omega*t)

 z = v0z*t

 vx = v0y*sin(omega*t)

 vy = v0y*cos(omega*t)

 write(11,100)t,x,y,z,vx,vy,vz

 t = t + dt

 enddo

 close(11)

100 FORMAT(20G15.7)

end program ChargeInB

 A typical session in which we calculate the trajectories shown in figures 2.17 and
2.18 is shown below:

[image: pict] [image: pict]

Figure 2.17: The plots of the [image: x(t),y(t),z(t),v (t),v (t),v(t)
 x y z] functions calculated by
the program in ChargeInB.f90 for [image: ω = 6.28], [image: x0 = 1.0], [image: 𝜃 = 20] degrees.

> gfortran ChargeInB.f90 -o chg

> ./chg

 # Enter omega:

6.28

 # Enter v0, theta (degrees):

1.0 20

 # Enter tf,dt:

10 0.01

 # omega= 6.28000021 T= 1.00050724

 # v0= 1. theta= 20.o (degrees)

 # t0= 0. tf= 10. dt= 0.00999999978

 # v0x= 0. v0y= 0.939692616 v0z= 0.342020124

 # x0= -0.149632573 y0= 0. z0= 0.

 # xy plane: Circle with center (0,0) and R= 0.149632573

 # step of helix: s=v0z*T= 0.342193604

> gnuplot

gnuplot> plot "ChargeInB.dat" u 1:2 w l title "x(t)"

gnuplot> replot "ChargeInB.dat" u 1:3 w l title "y(t)"

gnuplot> replot "ChargeInB.dat" u 1:4 w l title "z(t)"

gnuplot> plot "ChargeInB.dat" u 1:5 w l title "v_x(t)"

gnuplot> replot "ChargeInB.dat" u 1:6 w l title "v_y(t)"

gnuplot> replot "ChargeInB.dat" u 1:7 w l title "v_z(t)"

gnuplot> splot "ChargeInB.dat" u 2:3:4 w l title "r(t)"

gnuplot> file = "ChargeInB.dat"

gnuplot> set xrange [-0.65:0.65];set yrange [-0.65:0.65]

gnuplot> set zrange [0:1.3]

gnuplot> t0=0;tf=3.5;dt=0.1

gnuplot> load "animate3D.gnu"

[image: pict]

Figure 2.18: The trajectory [image: ⃗r(t)] calculated by the program in ChargeInB.f90 for
[image: ω = 6.28], [image: v0 = 1.0], [image: 𝜃 = 20] degrees as shown by the program animate3D.gnu. The
current time and the coordinates of the particle are printed on the title of the plot.

2.3 Trapped in a Box

In this section we will study the motion of a particle that is free, except when
bouncing elastically on a wall or on certain obstacles. This motion is calculated by
approximate algorithms that introduce systematic errors. These types of
errors15
are also encountered in the study of more complicated dynamics, but the
simplicity of the problem will allow us to control them in a systematic and easy to
understand way.

 2.3.1 The One Dimensional Box

The simplest example of such a motion is that of a particle in a “one
dimensional box”. The particle moves freely on the [image: x] axis for [image: 0 < x < L], as
can be seen in figure 2.19. When it reaches the boundaries [image: x = 0] and
[image: x = L] it bounces and its velocity instantly reversed. Its potential energy
is

 	

[image: {
 0 0 < x < L
V(x) = + ∞ elsewhere ,
]
	(2.21)

which has the shape of an infinitely deep well. The force [image: F = − dV (x)∕dx = 0]
within the box and [image: F = ± ∞] at the position of the walls.

[image: pict]

Figure 2.19: A particle in a one dimensional box with its walls located at [image: x = 0] and
[image: x = L].

 Initially we have to know the position of the particle [image: x0] as well as its velocity
[image: v0] (the sign of [image: v0] depends on the direction of the particle’s motion) at time
[image: t0]. As long as the particle moves within the box, its motion is free and

[image: x (t) = x + v (t − t)
 0 0 0
v (t) = v0. (2.22)
]

For a small enough change in time [image: δt], so that there is no bouncing on the wall in
the time interval [image: (t,t + δt)], we have that

[image: x(t + δt) = x(t) + v(t)δt
v(t + δt) = v(t). (2.23)
]

Therefore we could use the above relations in our program and when the particle
bounces off a wall we could simple reverse its velocity [image: v(t) → − v(t)]. The devil is
hiding in the word “when”. Since the time interval [image: δt] is finite in our program,
there is no way to know the instant of the collision with accuracy better than
[image: ∼ δt]. However, our algorithm will change the direction of the velocity
at time [image: t + δt], when the particle will have already crossed the wall.
This will introduce a systematic error, which is expected to decrease with
decreasing [image: δt]. One way to implement the above idea is by constructing the
loop

 do while(t .le. tf)

 write(11,*)t,x,v

 x = x + v*dt

 t = t + dt

 if(x .lt. 0.0 .or. x .gt. L) v = -v

 enddo

 where the last line gives the testing condition for the wall collision and the
subsequent change of the velocity.

 The full program that realizes the proposed algorithm is listed below and can
be found in the file box1D_1.f90. The user can set the size of the box L, the
initial conditions x0 and v0 at time t0, the final time tf and the time step
dt:

!==

!File box1D_1.f90

!Motion of a free particle in a box 0<x<L

!Use integration with time step dt: x = x + v*dt

!--

program box1D

 implicit none

!--

!Declaration of variables

 real :: L,x0,v0,t0,tf,dt,t,x,v

!--

!Ask user for input:

 print *,’# Enter L:’

 read *,L

 print *,’# L = ’,L

 if(L .le. 0.0) stop ’L must be positive.’

 print *,’# Enter x0,v0:’

 read *,x0,v0

 print *,’# x0= ’,x0,’ v0= ’,v0

 if(x0 .lt. 0.0 .or. x0 .gt. L) stop ’illegal value of x0.’

 if(v0 .eq. 0.0) stop ’illegal value of v0 = 0.’

 print *,’# Enter t0,tf,dt:’

 read *,t0,tf,dt

 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 t = t0

 x = x0

 v = v0

 open(unit=11,file=’box1D_1.dat’)

!--

!Compute:

 do while(t .le. tf)

 write(11,*)t,x,v

 x = x + v*dt

 t = t + dt

 if(x .lt. 0.0 .or. x .gt. L) v = -v

 enddo

 close(11)

end program box1D

 The computed data is recorded in the file box1D_1.dat in three columns.
Compiling, running and plotting the trajectory using gnuplot can be done as
follows:

> gfortran box1D_1.f90 -o box1

> ./box1

 # Enter L:

10

 # L = 10.

 # Enter x0,v0:

0 1.0

 # x0= 0. v0= 1.

 # Enter t0,tf,dt:

0 100 0.01

 # t0= 0. tf= 100. dt= 0.00999999978

> gnuplot

gnuplot> plot "box1D_1.dat" using 1:2 w l title "x(t)",\

 0 notitle,10 notitle

gnuplot> plot [:][-1.2:1.2] "box1D_1.dat" \

 using 1:3 w l title "v(t)"

[image: pict] [image: pict]

Figure 2.20: The trajectory [image: x(t)] of a particle in a box with [image: L = 10], [image: x = 0.0
 0],
[image: v0 = 1.0], [image: t0 = 0], [image: δt = 0.01]. The plot to the right magnifies a detail when [image: t ≈ 90]
which exposes the systematic errors in determining the exact moment of the collision of
the particle with the wall at [image: tk = 90] and the corresponding maximum value of [image: x (t)],
[image: xm = L = 10.0].

 The trajectory [image: x(t)] is shown in figure 2.20. The effects of the systematic
errors can be easily seen by noting that the expected collisions occur every
[image: T ∕2 = L ∕v = 10] units of time. Therefore, on the plot to the right of figure 2.20,
the reversal of the particle’s motion should have occurred at [image: t = 90],
[image: x = L = 10].

 The reader should have already realized that the above mentioned error can be
made to vanish by taking arbitrarily small [image: δt]. Therefore, we naively expect that
as long as we have the necessary computer power to take [image: δt] as small as possible
and the corresponding time intervals as many as possible, we can achieve any
precision that we want. Well, that is true only up to a point. The problem is that
the next position is determined by the addition operation x+v*dt and
the next moment in time by t+dt. Floating point numbers of the REAL
type have a maximum accuracy of approximately 7 significant decimal
digits. Therefore, if the operands x and v*dt are real numbers differing
by more than 7 orders of magnitude (v*dt[image: ≲ 10− 7] x), the effect of the
addition x+v*dt=x, which is null! The reason is that the floating point
unit of the processor has to convert both numbers x and v*dt into a
representation having the same exponent and in doing so, the corresponding
significant digits of the smaller number v*dt are lost. The result is less
catastrophic when v*dt[image: ≲ 10−a] x with [image: 0 < a < 7], but some degree
of accuracy is also lost at each addition operation. And since we have
accumulation of such errors over many intervals t[image: →]t+dt, the error can
become significant and destroy our calculation for large enough times.
A similar error accumulates in the determination of the next instant of
time t+dt, but we will discuss below how to make this contribution to
the total error negligible. The above mentioned errors can become less
detrimental by using floating point numbers of greater accuracy than the REAL
type. For example REAL(8) numbers have approximately 16 significant
decimal digits. But again, the precision is finite and the same type of
errors are there only to be revealed by a more demanding and complicated
calculation.

 The remedy to such a problem can only be a change in the algorithm. This
is not always possible, but in the case at hand this is easy to do. For
example, consider the equation that gives the position of a particle in free
motion

 	

[image: x (t) = x0 + v0(t − t0).
]
	(2.24)

Let’s use the above relation for the parts of the motion between two collisions.
Then, all we have to do is to reverse the direction of the motion and reset the
initial position and time to be the position and time of the collision. This can be
done by using the loop:

 t = t0

 do while(t .le. tf)

 x = x0 + v0*(t-t0)

 write(11,*)t,x,v0

 if(x .lt. 0.0 .or. x .gt. L)then

 x0 = x

 t0 = t

 v0 = -v0

 endif

 t = t + dt

 In the above algorithm, the error in the time of the collision is not
vanishing but we don’t have the “instability” problem of the dt[image: → 0]
limit16 .
Therefore we can isolate and study the effect of each type of error. The full
program that implements the above algorithm is given below and can be found in
the file box1D_2.f90:

!==

!File box1D_2.f90

!Motion of a free particle in a box 0<x<L

!Use constant velocity equation: x = x0 + v0*(t-t0)

!Reverse velocity and redefine x0,t0 on boundaries

!--

program box1D

 implicit none

!--

!Declaration of variables

 real :: L,x0,v0,t0,tf,dt,t,x,v

!--

!Ask user for input:

 print *,’# Enter L:’

 read *,L

 print *,’# L = ’,L

 if(L .le. 0.0) stop ’L must be positive.’

 print *,’# Enter x0,v0:’

 read *,x0,v0

 print *,’# x0= ’,x0,’ v0= ’,v0

 if(x0 .lt. 0.0 .or. x0 .gt. L) stop ’illegal value of x0.’

 if(v0 .eq. 0.0) stop ’illegal value of v0 = 0.’

 print *,’# Enter t0,tf,dt:’

 read *,t0,tf,dt

 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 t = t0

 open(unit=11,file=’box1D_2.dat’)

!--

!Compute:

 do while(t .le. tf)

 x = x0 + v0*(t-t0)

 write(11,*)t,x,v0

 if(x .lt. 0.0 .or. x .gt. L)then

 x0 = x

 t0 = t

 v0 = -v0

 endif

 t = t + dt

 enddo

 close(11)

end program box1D

 Compiling and running the above program is done as before and the results
are stored in the file box1D_2.dat. The algorithm can be improved in
order to compute the exact solution. We leave that as an exercise for the
reader17 .

 2.3.2 Errors

In this section we will study the effect of the systematic errors that we
encountered in the previous section in more detail. We considered two types of
errors: First, the systematic error of determining the instant of the collision of the
particle with the wall. This error is reduced by taking a smaller time step [image: δt].
Then, the systematic error that accumulates with each addition of two numbers
with increasing difference in their orders of magnitude. This error is increased
with decreasing [image: δt]. The competition of the two effects makes the optimal choice
of [image: δt] the result of a careful analysis. Such a situation is found in many
interesting problems, therefore it is quite instructive to study it in more
detail.

 When the exact solution of the problem is not known, the systematic errors
are controlled by studying the behavior of the solution as a function of [image: δt]. If the
solutions are converging in a region of values of [image: δt], one gains confidence
that the true solution has been determined up to the accuracy of the
convergence.

 In the previous sections, we studied two different algorithms, programmed in
the files box1D_1.f90 and box1D_2.f90. We will refer to them as “method
1” and “method 2” respectively. We will study the convergence of the
results as [image: δt → 0] by fixing all the parameters except [image: δt] and then study
the dependence of the results on [image: δt]. We will take [image: L = 10], [image: v0 = 1.0],
[image: x0 = 0.0], [image: t0 = 0.0], [image: tf = 95.0], so that the particle will collide with the

wall every 10 units of time. We will measure the position of the particle
[image: x (t ≈ 95)]18
as a function of [image: δt] and study its convergence to a
limit19
as [image: δt → 0].

 The analysis requires a lot of repetitive work: Compiling, setting the
parameter values, running the program and calculating the value of [image: x(t ≈ 95)] for
many values of [image: δt]. We write the values of the parameters read by the program in
a file box1D_anal.in:

10 L

0 1.0 x0 v0

0 95 0.05 t0 tf dt

 Then we compile the program

> gfortran box1D_1.f90 -o box

 and run it with the command:

> cat box1D_anal.in | ./box

 By using the pipe |, we send the contents of box1D_anal.in to the stdin of the
command ./box by using the command cat. The result [image: x(t ≈ 95)] can be found
in the last line of the file box1D_1.dat:

> tail -n 1 box1D_1.dat

 94.9511948 5.45000267 -1.

 The third number in the above line is the value of the velocity. In a file
box1D_anal.dat we write [image: δt] and the first two numbers coming out from
the command tail. Then we decrease the value [image: δt → δt∕2] in the file
box1D_anal.in and run again. We repeat for 12 more times until [image: δt] reaches the
value20 [image: 0.000012].
We do the same21
using method 2 and we place the results for [image: x(t ≈ 95)] in two new columns in the
file box1D_anal.dat. The result is

--

dt t1_95 x1(95) x2(95)

--

0.050000 94.95119 5.450003 5.550126

0.025000 94.97849 5.275011 5.174837

0.012500 94.99519 5.124993 5.099736

0.006250 94.99850 4.987460 5.063134

0.003125 94.99734 5.021894 5.035365

0.001563 94.99923 5.034538 5.017764

0.000781 94.99939 4.919035 5.011735

0.000391 94.99979 4.695203 5.005493

0.000195 95.00000 5.434725 5.001935

0.000098 94.99991 5.528124 5.000745

0.000049 94.99998 3.358000 5.000330

0.000024 94.99998 2.724212 5.000232

0.000012 94.99999 9.240705 5.000158

 Convergence is studied in figure 2.21. The 1st method maximizes its accuracy
for [image: δt ≈ 0.01], whereas for [image: δt < 0.0001] the error becomes [image: > 10]% and the
method becomes useless. The 2nd method has much better behavior that the 1st
one.

 We observe that as [image: δt] decreases, the final value of [image: t] approaches the
expected [image: tf = 95]. Why don’t we obtain [image: t = 95], especially when [image: t∕δt] is an
integer? How many steps does it really take to reach [image: t ≈ 95], when the expected
number of those is [image: ≈ 95∕δt]? Each time you take a measurement, issue the
command

> wc -l box1D_1.dat

 which measures the number of lines in the file box1D_1.dat and compare this
number with the expected one. The result is interesting:

dt N N0

0.050000 1900 1900

0.025000 3800 3800

0.012500 7601 7600

0.006250 15203 15200

0.003125 30394 30400

0.001563 60760 60780

0.000781 121751 121638

0.000391 243753 242966

0.000195 485144 487179

0.000098 962662 969387

0.000049 1972589 1938775

0.000024 4067548 3958333

0.000012 7540956 7916666

 where the second column has the number of steps computed by the program and
the third one has the expected number of steps. We observe that the accuracy
decreases with decreasing [image: δt] and in the end the difference is about 5%! Notice
that the last line should have given [image: tf = 0.000012 × 7540956 ≈ 90.5], an error
comparable to the period of the particle’s motion.

 We conclude that one important source of accumulation of systematic errors is
the calculation of time. This type of errors become more significant with
decreasing [image: δt]. We can improve the accuracy of the calculation significantly if we
use the multiplication t=t0+i*dt instead of the addition t=t+dt, where i is a
step counter:

!t = t + dt ! Not accurate, avoid

 t = t0 + i*dt ! Better accuracy, prefer

 The main loop in the program box1D_1.f90 becomes:

 t = t0

 x = x0

 v = v0

 i = 0

 do while(t .le. tf)

 write(11,*)t,x,v

 i = i + 1

 x = x + v*dt

 t = t0 + i*dt

 if(x .lt. 0.0 .or. x .gt. L) v = -v

 enddo

 The full program can be found in the file box1D_4.f90 of the accompanying
software. We call this “method 3”. We perform the same change in the file
box1D_2.f90, which we store in the file box1D_5.f90. We call this “method 4”.
We repeat the same analysis using methods 3 and 4 and we find that the problem
of calculating time accurately practically vanishes. The result of the analysis can
be found on the right plot of figure 2.21. Methods 2 and 4 have no significant
difference in their results, whereas methods 1 and 3 do have a dramatic
difference, with method 3 decreasing the error more than tenfold. The
problem of the increase of systematic errors with decreasing [image: δt] does not
vanish completely due to the operation x=x+v*dt. This type of error is
harder to deal with and one has to invent more elaborate algorithms in
order to reduce it significantly. This will be discussed further in chapter 4.

[image: pict] [image: pict]

Figure 2.21: The error [image: δx = 2|x (95)− x(95)|∕|x (95)+ x(95)|× 100
 i i] where [image: x (95)
 i]
is the value calculated by method [image: i = 1,2,3,4] and [image: x (95)] the exact value according to
the text.

 2.3.3 The Two Dimensional Box

A particle is confined to move on the plane in the area [image: 0 < x < Lx] and
[image: 0 < y < Ly]. When it reaches the boundaries of this two dimensional box, it
bounces elastically off its walls. The particle is found in an infinite depth
orthogonal potential well. The particle starts moving at time [image: t0] from [image: (x0, y0)]
and our program will calculate its trajectory until time [image: tf] with time step [image: δt].
Such a trajectory can be seen in figure 2.23.

 If the particle’s position and velocity are known at time [image: t], then at time
[image: t + δt] they will be given by the relations

[image: x(t + δt) = x(t) + v (t)δt
 x
 y(t + δt) = y(t) + vy(t)δt
vx(t + δt) = vx(t)

vy(t + δt) = vy(t). (2.25)
]

The collision of the particle off the walls is modeled by reflection of the
normal component of the velocity when the respective coordinate of the
particle crosses the wall. This is a source of the systematic errors that
we discussed in the previous section. The central loop of the program
is:

 i = i + 1

 t = t0 + i *dt

 x = x + vx*dt

 y = y + vy*dt

 if(x .lt. 0.0 .or. x .gt. Lx) vx = -vx

 if(y .lt. 0.0 .or. y .gt. Ly) vy = -vy

 The full program can be found in the file box2D_1.f90. Notice that we
introduced two counters nx and ny of the particle’s collisions with the
walls:

!==

!File box2D_1.f90

!Motion of a free particle in a box 0<x<Lx 0<y<Ly

!Use integration with time step dt: x = x + vx*dt y=y+vy*dt

!--

program box2D

 implicit none

!--

!Declaration of variables

 real(8) :: Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,t,x,y,vx,vy

 integer :: i,nx,ny

!--

!Ask user for input:

 print *,’# Enter Lx,Ly:’

 read *,Lx,Ly

 print *,’# Lx = ’,Lx,’ Ly= ’,Ly

 if(Lx .le. 0.0) stop ’Lx must be positive.’

 if(Ly .le. 0.0) stop ’Ly must be positive.’

 print *,’# Enter x0,y0,v0x,v0y:’

 read *,x0,y0,v0x,v0y

 print *,’# x0= ’,x0,’ y0= ’,y0,’ v0x= ’,v0x,’ v0y= ’,v0y

 if(x0 .lt. 0.0 .or. x0 .gt. Lx) stop ’illegal value x0’

 if(y0 .lt. 0.0 .or. y0 .gt. Ly) stop ’illegal value y0’

 if(v0x**2+v0y**2.eq. 0.0) stop ’illegal value v0=0’

 print *,’# Enter t0,tf,dt:’

 read *,t0,tf,dt

 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 i = 0

 nx = 0 ; ny = 0

 t = t0

 x = x0 ; y = y0

 vx = v0x; vy = v0y

 open(unit=11,file=’box2D_1.dat’)

!--

!Compute:

 do while(t .le. tf)

 write(11,*)t,x,y,vx,vy

 i = i + 1

 t = t0 + i *dt

 x = x + vx*dt

 y = y + vy*dt

 if(x .lt. 0.0 .or. x .gt. Lx) then

 vx = -vx

 nx = nx + 1

 endif

 if(y .lt. 0.0 .or. y .gt. Ly) then

 vy = -vy

 ny = ny + 1

 endif

 enddo

 close(11)

 print *,’# Number of collisions:’

 print *,’# nx= ’,nx,’ ny= ’,ny

end program box2D

 A typical session for the study of a particle’s trajectory could be:

> gfortran box2D_1.f90 -o box

> ./box

 # Enter Lx,Ly:

10.0 5.0

 # Lx = 10. Ly= 5.

 # Enter x0,y0,v0x,v0y:

5.0 0.0 1.27 1.33

 # x0= 5. y0= 0. v0x= 1.27 v0y= 1.33

 # Enter t0,tf,dt:

0 50 0.01

 # t0= 0. tf= 50. dt= 0.01

 # Number of collisions:

 # nx= 6 ny= 13

> gnuplot

gnuplot> plot "box2D_1.dat" using 1:2 w l title "x (t)"

gnuplot> replot "box2D_1.dat" using 1:3 w l title "y (t)"

gnuplot> plot "box2D_1.dat" using 1:4 w l title "vx(t)"

gnuplot> replot "box2D_1.dat" using 1:5 w l title "vy(t)"

gnuplot> plot "box2D_1.dat" using 2:3 w l title "x-y"

 Notice the last line of output from the program: The particle bounces off the
vertical walls 6 times (nx=6) and from the horizontal ones 13 (ny=13). The
gnuplot commands construct the diagrams displayed in figures 2.22 and 2.23.

[image: pict] [image: pict]

Figure 2.22: The results for the trajectory of a particle in a two dimensional box given
by the program box2D_1.f90. The parameters are [image: Lx = 10], [image: Ly = 5], [image: x0 = 5], [image: y0 = 0],
[image: v0x = 1.27], [image: v0y = 1.33], [image: t0 = 0], [image: tf = 50], [image: δt = 0.01].

[image: pict]

Figure 2.23: The trajectory of the particle of figure 2.22 until [image: t = 48]. The origin of
the arrow is at the initial position of the particle and its end is at its current position. The
bold lines mark the boundaries of the box.

 In order to animate the particle’s trajectory, we can copy the file
box2D_animate.gnu of the accompanying software to the current directory and
give the gnuplot commands:

gnuplot> file = "box2D_1.dat"

gnuplot> Lx = 10 ; Ly = 5

gnuplot> t0 = 0 ; tf = 50; dt = 1

gnuplot> load "box2D_animate.gnu"

gnuplot> t0 = 0 ; dt = 0.5; load "box2D_animate.gnu"

 The last line repeats the same animation at half speed. You can also use the file
animate2D.gnu discussed in section 2.1.1. We add new commands in the file
box2D_animate.gnu so that the plot limits are calculated automatically and the
box is drawn on the plot. The arrow drawn is not the position vector with respect
to the origin of the coordinate axes, but the one connecting the initial with the
current position of the particle.

 The next step should be to test the accuracy of your results. This can be done
by generalizing the discussion of the previous section and is left as an exercise for
the reader.

 2.4 Applications

In this section we will study simple examples of motion in a box with different
types of obstacles. We will start with a game of ... mini golf. The player shoots a
(point) “ball” which moves in an orthogonal box of linear dimensions [image: Lx] and
[image: L
 y] and which is open on the [image: x = 0] side. In the box there is a circular “hole”
with center at [image: (xc, yc)] and radius [image: R]. If the “ball” falls in the “hole”, the player
wins. If the ball leaves out of the box through its open side, the player
loses. In order to check if the ball is in the hole when it is at position
[image: (x,y)], all we have to do is to check whether [image: (x − xc)2 + (y − yc)2 ≤ R2].

[image: pict]

Figure 2.24: The trajectory of the particle calculated by the program MiniGolf.f90
using the parameters chosen in the text. The moment of ... success is shown. At time
[image: t = 45.3] the particle enters the hole’s region which has its center at [image: (8,2.5)] and its
radius is [image: 0.5].

 Initially we place the ball at the position [image: (0,Ly ∕2)] at time [image: t0 = 0]. The
player hits the ball which leaves with initial velocity of magnitude [image: v0] at an angle
[image: 𝜃] degrees with the [image: x] axis. The program is found in the file MiniGolf.f90 and
is listed below:

!==

!File MiniGolf.f

!Motion of a free particle in a box 0<x<Lx 0<y<Ly

!The box is open at x=0 and has a hole at (xc,yc) of radius R

!Ball is shot at (0,Ly/2) with speed v0, angle theta (degrees)

!Use integration with time step dt: x = x + vx*dt y=y+vy*dt

!Ball stops in hole (success) or at x=0 (failure)

!--

program MiniGolf

 implicit none

!--

!Declaration of variables

 real(8) :: Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,t,x,y,vx,vy

 real(8) :: v0,theta,xc,yc,R,R2

 real(8), parameter :: PI=3.14159265358979324D0

 integer :: i,nx,ny

 character(7) :: result

!--

!Ask user for input:

 print *,’# Enter Lx,Ly:’

 read *,Lx,Ly

 print *,’# Lx = ’,Lx,’ Ly= ’,Ly

 if(Lx .le. 0.0) stop ’Lx must be positive.’

 if(Ly .le. 0.0) stop ’Ly must be positive.’

 print *,’# Enter hole position and radius: (xc,yc), R:’

 read *,xc,yc,R

 print *,’# (xc,yc)= (’,xc,’ , ’,yc,’) R= ’,R

 print *,’# Enter v0, theta(degrees):’

 read *,v0,theta

 print *,’# v0= ’,v0,’ theta= ’,theta,’ degrees’

 if(v0 .le. 0.0D0) stop ’illegal value of v0.’

 if(ABS(theta).ge. 90.0D0) stop ’illegal value of theta.’

 print *,’# Enter dt:’

 read *,dt

 print *,’# dt= ’,dt

!--

!Initialize

 t0 = 0.0D0

 x0 = 0.00001D0 ! small but non-zero

 y0 = Ly/2.0

 R2 = R*R

 theta = (PI/180.0D0)*theta

 v0x = v0*cos(theta)

 v0y = v0*sin(theta)

 print *,’# x0= ’,x0,’ y0= ’,y0,’ v0x= ’,v0x,’ v0y= ’,v0y

 i = 0

 nx = 0 ; ny = 0

 t = t0

 x = x0 ; y = y0

 vx = v0x; vy = v0y

 open(unit=11,file=’MiniGolf.dat’)

!--

!Compute:

 do while(.TRUE.) !forever!

 write(11,*)t,x,y,vx,vy

 i = i + 1

 t = t0 + i*dt

 x = x + vx*dt

 y = y + vy*dt

 if(x .gt. Lx) then

 vx = -vx

 nx = nx + 1

 endif

 if(y .lt. 0.0 .or. y .gt. Ly) then

 vy = -vy

 ny = ny + 1

 endif

 if(x .le. 0.0D0)then

 result = ’Failure’

 exit !exit do loop

 endif

 if(((x-xc)*(x-xc)+(y-yc)*(y-yc)) .le. R2)then

 result = ’Success’

 exit !exit do loop

 endif

 enddo

 close(11)

 print *,’# Number of collisions:’

 print *,’# Result= ’,result,’ nx= ’,nx,’ ny= ’,ny

end program MiniGolf

 In order to run it, we can use the commands:

> gfortran MiniGolf.f90 -o mg

> ./mg

 # Enter Lx,Ly:

10 5

 # Lx = 10. Ly= 5.

 # Enter hole position and radius: (xc,yc), R:

8 2.5 0.5

 # (xc,yc)= (8. , 2.5) R= 0.5

 # Enter v0, theta(degrees):

1 80

 # v0= 1. theta= 80. degrees

 # Enter dt:

0.01

 # dt= 0.01

 # x0= 1.E-05 y0= 2.5 v0x= 0.173648178 v0y= 0.984807753

 # Number of collisions:

 # Result= Success nx= 0 ny= 9

 You should construct the plots of the position and the velocity of the particle.
You can also use the animation program found in the file MiniGolf_animate.gnu
for fun. Copy it from the accompanying software to the current directory and give
the gnuplot commands:

gnuplot> file = "MiniGolf.dat"

gnuplot> Lx = 10;Ly = 5

gnuplot> xc = 8; yc = 2.5 ; R = 0.5

gnuplot> t0 = 0; dt = 0.1

gnuplot> load "MiniGolf_animate.gnu"

 The results are shown in figure 2.24.

 The next example with be three dimensional. We will study the motion of a
particle confined within a cylinder of radius [image: R] and height [image: L]. The collisions of
the particle with the cylinder are elastic. We take the axis of the cylinder to be
the [image: z] axis and the two bases of the cylinder to be located at [image: z = 0] and [image: z = L].
This is shown in figure 2.26.

 The collisions of the particle with the bases of the cylinder are easy to
program: we follow the same steps as in the case of the simple box. For the
collision with the cylinder’s side, we consider the projection of the motion on the
[image: x − y] plane. The projection of the particle moves within a circle of radius [image: R]
and center at the intersection of the [image: z] axis with the plane. This is shown in
figure 2.25. At the collision, the [image: r] component of the velocity is reflected
[image: vr → − vr], whereas [image: v𝜃] remains the same. The velocity of the particle before the
collision is

[image: ⃗v = vxˆx + vyˆy
 = v ˆr + v 𝜃ˆ (2.26)
 r 𝜃
]

and after the collision is

[image: ′ ′ ′
⃗v = vxxˆ+ v yyˆ
 = − vrˆr + v𝜃ˆ𝜃 (2.27)
]

From the relations

[image: ˆr = cos𝜃ˆx + sin𝜃 ˆy

ˆ𝜃 = − sin 𝜃ˆx + cos 𝜃ˆy, (2.28)
]

and [image: v = ⃗v ⋅ ˆr
 r], [image: v = ⃗v ⋅ ˆ𝜃
 𝜃], we have that

[image: vr = vx cos𝜃 + vy sin 𝜃
v𝜃 = − vx sin 𝜃 + vy cos𝜃. (2.29)
]

The inverse relations are

[image: vx = vr cos𝜃 − v𝜃 sin 𝜃
v = v sin 𝜃 + v cos 𝜃. (2.30)
 y r 𝜃
]

With the transformation [image: vr → − vr], the new velocity in Cartesian coordinates
will be

[image: v′x = − vr cos𝜃 − v𝜃 sin𝜃
 ′
vy = − vr sin 𝜃 + v𝜃 cos𝜃. (2.31)
]

[image: pict]

Figure 2.25: The elastic collision of the particle moving within the circle of
radius [image: ⃗
R = |R|] and center [image: ⃗rc = xcˆx+ ycˆy] at the point [image: ⃗r = xˆx+ yˆy]. We have that
[image: R⃗= (x − xc)ˆx +(y − yc)ˆy]. The initial velocity is [image: ⃗v = vrrˆ+ v𝜃𝜃ˆ] where [image: ˆr ≡ ⃗R∕R]. After
reflecting [image: vr → − vr] the new velocity of the particle is [image: ⃗v′ = − vrˆr +v𝜃ˆ𝜃].

 The transformation [image: ′
vx → vx], [image: ′
vy → vy] will be performed in the
subroutine reflectVonCircle(vx,vy,x,y,xc,yc,R). Upon entry
to the subroutine, we provide the initial velocity (vx,vy), the collision
point (x,y), the center of the circle (xc,yc) and the radius of the
circle22
R. Upon exit from the subroutine, (vx,vy) have been replaced with the new
values23
[image: (v′,v′)
 x y].

 The program can be found in the file Cylinder3D.f90 and is listed
below:

!==

!File Cylinder3D.f90

!Motion of a free particle in a cylinder with axis the z-axis,

!radius R and 0<z<L

!Use integration with time step dt: x = x + vx*dt

! y = y + vy*dt

! z = z + vz*dt

!Use subroutine reflectVonCircle for collisions at r=R

!--

program Cylinder3D

 implicit none

!--

!Declaration of variables

 real(8) :: x0,y0,z0,v0x,v0y,v0z,t0,tf,dt,t,x,y,z,vx,vy,vz

 real(8) :: L,R,R2,vxy,rxy,r2xy,xc,yc

 integer :: i,nr,nz

!--

!Ask user for input:

 print *,’# Enter R, L:’

 read *,R,L

 print *,’# R= ’,R,’ L= ’,L

 if(R .le. 0.0) stop ’R must be positive.’

 if(L .le. 0.0) stop ’L must be positive.’

 print *,’# Enter x0,y0,z0,v0x,v0y,v0z:’

 read *,x0,y0,z0,v0x,v0y,v0z

 rxy = DSQRT(x0*x0+y0*y0)

 print *,’# x0 = ’,x0 ,’ y0 = ’,y0 ,’ z0= ’,z0, ’ rxy= ’,rxy

 print *,’# v0x= ’,v0x,’ v0y= ’,v0y,’ v0z= ’,v0z

 if(rxy .gt. R)stop ’illegal value of rxy > R’

 if(z0 .lt. 0.0D0)stop ’illegal value of z0 < 0’

 if(z0 .gt. L)stop ’illegal value of z0 > L’

 if(v0x**2+v0y**2+v0z**2.eq.0.0)stop ’illegal value of v0 = 0.’

 print *,’# Enter t0,tf,dt:’

 read *,t0,tf,dt

 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 i = 0

 nr = 0 ; nz = 0

 t = t0

 x = x0 ; y = y0 ; z = z0

 vx = v0x; vy = v0y; vz = v0z

 R2 = R*R

 xc = 0.0D0 !center of circle which is the projection of the

 yc = 0.0D0 !cylinder on the xy plane

 open(unit=11,file=’Cylinder3D.dat’)

!--

!Compute:

 do while(t .le. tf)

 write(11,100)t,x,y,z,vx,vy,vz

 i = i + 1

 t = t0 + i *dt

 x = x + vx*dt

 y = y + vy*dt

 z = z + vz*dt

 if(z .lt. 0.0 .or. z .gt. L) then

 vz = -vz ! reflection on cylinder caps

 nz = nz + 1

 endif

 r2xy = x*x+y*y

 if(r2xy .gt. R2)then

 call reflectVonCircle(vx,vy,x,y,xc,yc,R)

 nr = nr + 1

 endif

 enddo

 close(11)

 print *,’# Number of collisions:’

 print *,’# nr= ’,nr,’ nz= ’,nz

100 FORMAT(100G28.16)

end program Cylinder3D

!--

!==

!--

subroutine reflectVonCircle(vx,vy,x,y,xc,yc,R)

 implicit none

 real(8) :: vx,vy,x,y,xc,yc,R

 real(8) :: theta,cth,sth,vr,vth

 theta = atan2(y-yc,x-xc)

 cth = cos(theta)

 sth = sin(theta)

 vr = vx*cth + vy *sth

 vth = -vx*sth + vy *cth

 vx = -vr*cth - vth*sth !reflect vr -> -vr

 vy = -vr*sth + vth*cth

 x = xc + R*cth !put x,y on the circle

 y = yc + R*sth

end subroutine reflectVonCircle

 Notice that the function atan2 is used for computing the angle theta. This
function, when called with two arguments atan2(y,x), returns the angle
[image: 𝜃 = tan −1(y∕x)] in radians. The correct quadrant of the circle where [image: (x, y)] lies
is chosen. The angle that we want to compute is given by atan2(y-yc,x-xc).
Then we apply equations (2.29) and (2.31) and in the last two lines we enforce
the particle to be at the point [image: (xc + R cos𝜃, yc + R sin𝜃)], exactly on the circle.

[image: pict]

Figure 2.26: The trajectory of a particle moving inside a cylinder with
[image: R = 10], [image: L = 10], computed by the program Cylinder3D.f90. We have chosen
[image: ⃗r0 = 1.0ˆx+ 2.2ˆy+ 3.1ˆz], [image: ⃗v0 = 0.93ˆx− 0.89yˆ+ 0.74ˆz], [image: t0 = 0], [image: tf = 500.0], [image: δt = 0.01].

 A typical session is shown below:

> gfortran Cylinder3D.f90 -o cl

> ./cl

 # Enter R, L:

10.0 10.0

 # R= 10. L= 10.

 # Enter x0,y0,z0,v0x,v0y,v0z:

1.0 2.2 3.1 0.93 -0.89 0.74

 # x0 = 1. y0 = 2.2 z0= 3.1 rxy= 2.41660919

 # v0x= 0.93 v0y= -0.89 v0z= 0.74

 # Enter t0,tf,dt:

0.0 500.0 0.01

 # t0= 0. tf= 500. dt= 0.01

 # Number of collisions:

 # nr= 33 nz= 37

 In order to plot the position and the velocity as a function of time, we use the
following gnuplot commands:

gnuplot> file="Cylinder3D.dat"

gnuplot> plot file using 1:2 with lines title " x(t)",\

 file using 1:3 with lines title " y(t)",\

 file using 1:4 with lines title " z(t)"

gnuplot> plot file using 1:5 with lines title "v_x(t)",\

 file using 1:6 with lines title "v_y(t)",\

 file using 1:7 with lines title "v_z(t)"

 We can also compute the distance of the particle from the cylinder’s axis
[image: ∘ ----2------2-
r(t) = x(t) + y(t)] as a function of time using the command:

gnuplot> plot file using 1:(sqrt($2**2+$3**2)) w l t "r(t)"

 In order to plot the trajectory, together with the cylinder, we give the
commands:

gnuplot> L = 10 ; R = 10

gnuplot> set urange [0:2.0*pi]

gnuplot> set vrange [0:L]

gnuplot> set parametric

gnuplot> splot file using 2:3:4 with lines notitle,\

 R*cos(u),R*sin(u),v notitle

 The command set parametric is necessary if one wants to make a parametric plot
of a surface [image: ⃗r(u,v) = x (u,v)ˆx + y(u,v)ˆy + z(u,v)zˆ]. The cylinder (without the
bases) is given by the parametric equations [image: ⃗r(u,v) = R cosuˆx + R sin uˆy + vˆz]
with [image: u ∈ [0,2π)], [image: v ∈ [0,L]].

 We can also animate the trajectory with the help of the gnuplot script file
Cylinder3D_animate.gnu. Copy the file from the accompanying software to the
current directory and give the gnuplot commands:

gnuplot> R=10;L=10;t0=0;tf=500;dt=10

gnuplot> load "Cylinder3D_animate.gnu"

 The result is shown in figure 2.26.

 The last example will be that of a simple model of a spacetime wormhole. This
is a simple spacetime geometry which, in the framework of the theory of general
relativity, describes the connection of two distant areas in space which are
asymptotically flat. This means, that far enough from the wormhole’s mouths,
space is almost flat - free of gravity. Such a geometry is depicted in figure 2.27.
The distance traveled by someone through the mouths could be much smaller
than the distance traveled outside the wormhole and, at least theoretically,
traversable wormholes could be used for interstellar/intergalactic traveling and/or
communications between otherwise distant areas in the universe. Of course we
should note that such macroscopic and stable wormholes are not known to
be possible to exist in the framework of general relativity. One needs
an exotic type of matter with negative energy density which has never
been observed. Such exotic geometries may realize microscopically as
quantum fluctuations of spacetime and make the small scale structure of the
geometry24
a “spacetime foam”.

[image: pict]

Figure 2.27: A typical geometry of space near a wormhole. Two asymptotically flat
regions of space are connected through a “neck” which can be arranged to be of small
length compared to the distance of the wormhole mouths when traveled from the outside
space.

 We will study a very simple model of the above geometry on the plane with a particle moving
freely in it25 .

[image: pict]

Figure 2.28: A simple model of the spacetime geometry of figure 2.27. The particle
moves on the whole plane except withing the two disks that have been removed. The neck
of the wormhole is modeled by the two circles [image: x (𝜃) = ±d ∕2± R cos𝜃], [image: y(𝜃) = R sin 𝜃],
[image: − π < 𝜃 ≤ π] and has zero length since their points have been identified. There is a given
direction in this identification, so that points with the same [image: 𝜃] are the same (you can
imagine how this happens by folding the plane across the [image: y] axis and then glue the two
circles together). The entrance of the particle through one mouth and exit through the
other is done as shown for the velocity vector [image: ⃗v → ⃗v′].

 We take the two dimensional plane and cut two equal disks of radius [image: R] with
centers at distance [image: d] like in figure 2.28. We identify the points on the two circles
such that the point 1 of the left circle is the same as the point 1 on the right
circle, the point 2 on the left with the point 2 on the right etc. The two circles are
given by the parametric equations [image: x (𝜃) = d∕2 + R cos𝜃], [image: y(𝜃) = R sin𝜃],
[image: − π < 𝜃 ≤ π] for the right circle and [image: x(𝜃) = − d∕2 − R cos𝜃], [image: y (𝜃) = R sin 𝜃],
[image: − π < 𝜃 ≤ π] for the left. Points on the two circles with the same [image: 𝜃] are
identified. A particle entering the wormhole from the left circle with velocity [image: v] is
immediately exiting from the right with velocity [image: v′] as shown in figure
2.28.

 Then we will do the following:

 	Write a program that computes the trajectory of a particle moving
 in the geometry of figure 2.28. We set the limits of motion to be
 [image: − L∕2 ≤ x ≤ L∕2] and [image: − L ∕2 ≤ y ≤ L ∕2]. We will use periodic
 boundary conditions in order to define what happens when the
 particle attempts to move outside these limits. This means that we
 identify the [image: x = − L ∕2] line with the [image: x = +L ∕2] line as well as
 the [image: y = − L ∕2] line with the [image: y = +L ∕2] line. The user enters the
 parameters [image: R], [image: d] and [image: L] as well as the initial conditions [image: (x0, y0)],
 [image: (v0,ϕ)] where [image: ⃗v0 = v0(cos ϕˆx + sin ϕyˆ)]. The user will also provide
 the time parameters [image: tf] and [image: dt] for motion in the time interval
 [image: t ∈ [t = 0,t]
 0 f] with step [image: dt].

 	Plot the particle’s trajectory
 with [image: (x0,y0) = (0,− 1)], [image: (v0,ϕ) = (1,10o)] [image: tf = 40], [image: dt = 0.05] in
 the geometry with [image: L = 20,d = 5,R = 1].

 	Find a closed trajectory which does not cross the boundaries
 [image: |x | = L ∕2], [image: |y| = L ∕2] and determine whether it is stable under small
 perturbations of the initial conditions.

 	Find other closed trajectories that go through the mouths of the
 wormhole and study their stability under small perturbations of the
 initial conditions.

 	Add to the program the option to calculate the distance traveled
 by the particle. If the particle starts from [image: (− x0,0)] and moves in
 the [image: + x] direction to the [image: (x0,0)], [image: x0 > R + d∕2] position, draw the
 trajectory and calculate the distance traveled on paper. Then confirm
 your calculation from the numerical result coming from your program.

 	Change the boundary conditions, so that the particle bounces off
 elastically at [image: |x | = L ∕2], [image: |y| = L∕2] and replot all the trajectories
 mentioned above.

Define the right circle [image: c
 1] by the parametric equations

 	

[image: d
x (𝜃) = --+ R cos𝜃, y(𝜃) = R sin𝜃, − π < 𝜃 ≤ π,
 2
]
	(2.32)

and the left circle [image: c
 2] by the parametric equations

 	

[image: d
x(𝜃) = − --− R cos 𝜃, y(𝜃) = R sin𝜃, − π < 𝜃 ≤ π.
 2
]
	(2.33)

 The particle’s position changes at time [image: dt] by

[image: ti = idt
x = x + v dt
 i i−1 x
yi = yi−1 + vydt
 (2.34)
]

for [image: i = 1, 2,...] for given [image: (x0,y0)], [image: t0 = 0] and as long as [image: ti ≤ tf]. If the point
[image: (xi,yi)] is outside the boundaries [image: |x| = L∕2], [image: |y| = L ∕2], we redefine
[image: x → x ± L
 i i], [image: y → y ± L
 i i] in each case respectively. Points defined by the same
value of [image: 𝜃] are identified, i.e. they represent the same points of space. If the point
[image: (xi,yi)] crosses either one of the circles [image: c1] or [image: c2], then we take the particle out
from the other circle.

[image: pict]

Figure 2.29: The particle crossing the wormhole through the right circle [image: c1] with
velocity [image: ⃗v]. It emerges from [image: c2] with velocity [image: ⃗v′]. The unit vectors [image: (ˆer,eˆ𝜃)], [image: (ˆe′r,ˆe′𝜃)]
are computed from the parametric equations of the two circles [image: c1] and [image: c2].

 Crossing the circle [image: c1] is determined by the relation

 	

[image: ()
 d 2 2 2
 xi − 2- + yi ≤ R .
]
	(2.35)

The angle [image: 𝜃] is calculated from the equation

 	

[image: ()
𝜃 = tan −1 --yi--- ,
 xi − d
 2
]
	(2.36)

and the point [image: (xi,yi)] is mapped to the point [image: (x′i,y′i)] where

 	

[image: x′i = − d-− R cos𝜃, y′i = yi,
 2
]
	(2.37)

as can be seen in figure 2.29. For mapping [image: ′
⃗v → ⃗v], we first calculate the
vectors

 	

[image: } {
ˆer = cos𝜃ˆx + sin𝜃 ˆy ˆe′= − cos𝜃xˆ + sin 𝜃ˆy
ˆe = − sin𝜃ˆx + cos𝜃 ˆy → ˆer′= sin𝜃xˆ + cos 𝜃ˆy ,
 𝜃 𝜃
]
	(2.38)

so that the velocity

 	

[image: ⃗v = vrˆer + v 𝜃ˆe𝜃 → ⃗v ′ = − vrˆe′r + v 𝜃eˆ′𝜃,
]
	(2.39)

where the radial components are [image: v = ⃗v ⋅ ˆe
 r r] and [image: v = ⃗v ⋅ ˆe
 𝜃 𝜃]. Therefore, the
relations that give the “emerging” velocity [image: ′
⃗v] are:

 	

[image: v = v cos 𝜃 + v sin𝜃
 r x y
v𝜃 = − vx sin 𝜃 + vy cos𝜃 .
v′x = vr cos 𝜃 + v𝜃 sin𝜃
v′y = − vr sin 𝜃 + v𝜃 cos𝜃
]
	(2.40)

 Similarly we calculate the case of entering from [image: c2] and emerging from [image: c1].
The condition now is:

 	

[image: ()
 d- 2 2 2
 xi + 2 + y i ≤ R .
]
	(2.41)

The angle [image: 𝜃] is given by

 	

[image: ()
 −1 --yi--
𝜃 = π − tan x + d ,
 i 2
]
	(2.42)

and the point [image: (xi,yi)] is mapped to the point [image: (x′,y′)
 i i] where

 	

[image: x′= d-+ R cos 𝜃, y′ = yi.
 i 2 i
]
	(2.43)

For mapping [image: ′
⃗v → ⃗v], we calculate the vectors

 	

[image: } {
ˆer = − cos𝜃 ˆx + sin 𝜃ˆy ˆe′r = cos𝜃xˆ + sin 𝜃ˆy
ˆe = sin𝜃 ˆx + cos 𝜃ˆy → ˆe′= − sin𝜃xˆ + cos 𝜃ˆy ,
 𝜃 𝜃
]
	(2.44)

so that the velocity

 	

[image: ⃗v = vrˆer + v𝜃ˆe𝜃 → ⃗v′ = − vrˆe′+ v𝜃ˆe′.
 r 𝜃
]
	(2.45)

The emerging velocity [image: ′
⃗v] is:

 	

[image: vr = − vx cos𝜃 + vy sin𝜃
v𝜃 = vx sin 𝜃 + vy cos𝜃
 ′ .
vx′ = − vr cos𝜃 − v𝜃 sin𝜃
vy = − vr sin 𝜃 + v𝜃 cos𝜃
]
	(2.46)

 Systematic errors are now coming from crossing the two mouths of the
wormhole. There are no systematic errors from crossing the boundaries
[image: |x| = L∕2], [image: |y| = L∕2] (why?). Try to think of ways to control those errors and
study them.

 The closed trajectories that we are looking for come from the initial
conditions

 	

[image: (x0,y0,v0,ϕ) = (0,0,1,0)
]
	(2.47)

and they connect points 1 of figure 2.28. They are unstable, as can be seen by
taking [image: ϕ → ϕ + 𝜖].

 The closed trajectories that cross the wormhole and “wind” through space can
come from the initial conditions

[image: (x0,y0,v0,ϕ) = (− 9,0,1, 0)
(x0,y0,v0,ϕ) = (2.5,− 3,1,90o)
]

and cross the points [image: 3 → 3] and [image: 2 → 2 → 4 → 4] respectively. They are also
unstable, as can be easily verified by using the program that you will write. The
full program is listed below:

!==

program WormHole2D

 implicit none

!--

!Declaration of variables

 real(8), parameter :: PI=3.14159265358979324D0

 real(8) :: Lx,Ly,L,R,d

 real(8) :: x0,y0,v0,theta

 real(8) :: t0,tf,dt

 real(8) :: t,x,y,vx,vy

 real(8) :: xc1,yc1,xc2,yc2,r1,r2

 integer :: i

!--

!Ask user for input:

 print *,’# Enter L,d,R:’

 read *,L,d,R

 print *,’# L= ’,L,’ d= ’,d,’ R= ’,R

 if(L .le. d+2.0D0*R) stop ’L <= d+2*R’

 if(d .le. 2.0D0*R) stop ’d <= 2*R’

 print *,’# Enter (x0,y0), v0, theta(degrees):’

 read *,x0,y0,v0,theta

 print *,’# x0= ’,x0,’ y0 = ’,y0

 print *,’# v0= ’,v0,’ theta= ’,theta,’ degrees’

 if(v0 .le. 0.0D0) stop ’illegal value of v0.’

 print *,’# Enter tf, dt:’

 read *,tf,dt

 print *,’# tf= ’,tf,’ dt= ’,dt

!--

!Initialize

 theta = (PI/180.0D0)*theta

 i = 0

 t = 0.0D0

 x = x0 ; y = y0

 vx = v0*cos(theta); vy = v0*sin(theta)

 print *,’# x0= ’,x,’ y0= ’,y,’ v0x= ’,vx,’ v0y= ’,vy

!Wormhole’s centers:

 xc1 = 0.5D0*d; yc1 = 0.0D0

 xc2 = -0.5D0*d; yc2 = 0.0D0

!Box limits coordinates:

 Lx = 0.5D0*L; Ly = 0.5D0*L

!Test if already inside cut region:

 r1 = sqrt((x-xc1)**2+(y-yc1)**2)

 r2 = sqrt((x-xc2)**2+(y-yc2)**2)

 if(r1 .le. R) stop ’r1 <= R’

 if(r2 .le. R) stop ’r2 <= R’

!Test if outside box limits:

 if(ABS(x) .ge. Lx) stop ’|x| >= Lx’

 if(ABS(y) .ge. Ly) stop ’|y| >= Ly’

 open(unit=11,file=’Wormhole.dat’)

!--

!Compute:

 do while(t .lt. tf)

 write(11,*)t,x,y,vx,vy

 i = i+1

 t = i*dt

 x = x + vx*dt; y = y + vy*dt

! Toroidal boundary conditions:

 if(x .gt. Lx) x = x - L

 if(x .lt. -Lx) x = x + L

 if(y .gt. Ly) y = y - L

 if(y .lt. -Ly) y = y + L

! Test if inside the cut disks

 r1 = sqrt((x-xc1)**2+(y-yc1)**2)

 r2 = sqrt((x-xc2)**2+(y-yc2)**2)

 if(r1 .lt. R)then

! Notice: we pass r1 as radius of circle, not R

 call crossC1(x,y,vx,vy,dt,r1,d)

 else if(r2 .lt. R)then

 call crossC2(x,y,vx,vy,dt,r2,d)

 endif

! small chance here that still in C1 or C2, but OK since

! another dt-advance given at the beginning of do-loop

 enddo !do while(t .lt. tf)

end program WormHole2D

!===

subroutine crossC1(x,y,vx,vy,dt,R,d)

 implicit none

 real(8) :: x,y,vx,vy,dt,R,d

 real(8) :: vr,v0 !v0 -> vtheta

 real(8) :: theta,xc,yc

 print *,’# Inside C1: (x,y,vx,vy,R)= ’,x,y,vx,vy,R

 xc = 0.5D0*d !center of C1

 yc = 0.0D0

 theta = atan2(y-yc,x-xc)

 x = -xc - R*cos(theta) !new x-value, y invariant

!Velocity transformation:

 vr = vx*cos(theta)+vy*sin(theta)

 v0 = -vx*sin(theta)+vy*cos(theta)

 vx = vr*cos(theta)+v0*sin(theta)

 vy = -vr*sin(theta)+v0*cos(theta)

!advance x,y, hopefully outside C2:

 x = x + vx*dt

 y = y + vy*dt

 print *,’# Exit C2: (x,y,vx,vy)= ’,x,y,vx,vy

end subroutine crossC1

!===

subroutine crossC2(x,y,vx,vy,dt,R,d)

 implicit none

 real(8), parameter :: PI=3.14159265358979324D0

 real(8) :: x,y,vx,vy,dt,R,d

 real(8) :: vr,v0 !v0 -> vtheta

 real(8) :: theta,xc,yc

 print *,’# Inside C2: (x,y,vx,vy,R)= ’,x,y,vx,vy,R

 xc = -0.5D0*d !center of C2

 yc = 0.0D0

 theta = PI-atan2(y-yc,x-xc)

 x = -xc + R*cos(theta) !new x-value, y invariant

!Velocity transformation:

 vr = -vx*cos(theta)+vy*sin(theta)

 v0 = vx*sin(theta)+vy*cos(theta)

 vx = -vr*cos(theta)-v0*sin(theta)

 vy = -vr*sin(theta)+v0*cos(theta)

!advance x,y, hopefully outside C1:

 x = x + vx*dt

 y = y + vy*dt

 print *,’# Exit C1: (x,y,vx,vy)= ’,x,y,vx,vy

end subroutine crossC2

 It is easy to compile and run the program. See also the files Wormhole.csh and
Wormhole_animate.gnu of the accompanying software and run the gnuplot
commands:

gnuplot> file = "Wormhole.dat"

gnuplot> R=1;d=5;L=20;

gnuplot> ! ./Wormhole.csh

gnuplot> t0=0;dt=0.2;load "Wormhole_animate.gnu"

 You are now ready to answer the rest of the questions that we asked in our
list.

 2.5 Problems

 	 Change the program Circle.f90 so that it prints the number of full
 circles traversed by the particle.

 	 Add all the necessary tests on the parameters entered by the user in
 the program Circle.f90, so that the program is certain to run without
 problems. Do the same for the rest of the programs given in the same
 section.

 	 A particle moves with constant angular velocity [image: ω] on a circle that
 has the origin of the coordinate system at its center. At time [image: t0 = 0],
 the particle is at [image: (x0,y0)]. Write the program CircularMotion.f90
 that will calculate the particle’s trajectory. The user should enter the
 parameters [image: ω,x0,y0,t0,tf,δt]. The program should print the results
 like the program Circle.f90 does.

 	 Change the program SimplePendulum.f90 so that the user could enter
 a non zero initial velocity.

 	 Study the [image: k → 0] limit in the projectile motion given by equations
 (2.10) . Expand [image: −kt -1 2
e = 1 − kt + 2!(kt) + ...] and keep the non
 vanishing terms as [image: k → 0]. Then keep the next order leading terms
 which have a smaller power of [image: k]. Program these relations in a file
ProjectileSmallAirResistance.f90. Consider the initial conditions
 [image: ⃗v = ˆx + ˆy
 0] and calculate the range of the trajectory numerically by
 using the two programs
ProjectileSmallAirResistance.f90,
 ProjectileAirResistance.f90. Determine the range of values of [image: k]
 for which the two results agree within 5% accuracy.

 	 Write a program for a projectile which moves through a fluid with
 fluid resistance proportional to the square of the velocity. Compare
 the range of the trajectory with the one calculated by the program

 ProjectileAirResistance.f90 for the parameters shown in figure
 2.10.

 	 Change the program Lissajous.f90 so that the user can enter a
 different amplitude and initial phase in each direction. Study the case
 where the amplitudes are the same and the phase difference in the two
 directions are [image: π∕4,π ∕2,π,− π]. Repeat by taking the amplitude in the
 [image: y] direction to be twice as much the amplitude in the [image: x] direction.

 	 Change the program ProjectileAirResistance.f90, so that it can
 calculate also the [image: k = 0] case.

 	 Change the program ProjectileAirResistance.f90 so that it can
 calculate the trajectory of the particle in three dimensional space. Plot
 the position coordinates and the velocity components as a function of
 time. Plot the three dimensional trajectory using splot in gnuplot
 and animate the trajectory using the gnuplot script animate3D.gnu.

 	 Change the program ChargeInB.f90 so that it can calculate the
 number of full revolutions that the projected particle’s position on the
 [image: x − y] plane makes during its motion.

 	 Change the program box1D_1.f90 so that it prints the number of
 the particle’s collisions on the left wall, on the right wall and the total
 number of collisions to the stdout.

 	 Do the same for the program box1D_2.f90. Fill the table on page 311
 the number of calculated collisions and comment on the results.

 	 Run the program box1D_1.f90 and choose L= 10, v0=1. Decrease the
 step dt up to the point that the particle stops to move. For which value
 of dt this happens? Increase v0=10,100. Until which value of dt the
 particle moves now? Why?

 	 Change the REAL declarations to REAL(8) in the program

 box1D_1.f90. Add explicit exponents D0 to all constants (e.g.
 0.0[image: →]0.0D0). Compare your results to those obtained in section
 2.3.2. Repeat problem 2.13. What do you observe?

 	 Change the program box1D_1.f90 so that you can study non elastic
 collisions [image: ′
v = − ev], [image: 0 < e ≤ 1] with the walls.

 	 Change the program box2D_1.f90 so that you can study inelastic
 collisions with the walls, such that [image: ′
vx = − evx], [image: ′
vy = − evy],
 [image: 0 < e ≤ 1].

 	 Use the method of calculating time in the programs box1D_4.f90 and
 box1D_5.f90 in order to produce the results in figure 2.21.

 	 Particle falls freely moving in the vertical direction. It starts with
 zero velocity at height [image: h]. Upon reaching the ground, it bounces
 inelastically such that [image: ′
vy = − evy] with [image: 0 < e ≤ 1] a parameter. Write
 the necessary program in order to study numerically the particle’s
 motion and study the cases [image: e = 0.1,0.5,0.9,1.0].

 	 Generalize the program of the previous problem so that you can study
 the case [image: ⃗v0 = v0xˆx]. Animate the calculated trajectories.

 	 Study the motion of a particle moving inside the box of figure 2.30. Count
 the number of collisions of the particle with the walls before it leaves the
 box.

[image: pict]

Figure 2.30: Problem 2.20.

 	 Study the motion of the point particle on the “billiard table” of figure 2.31.
 Count the number of collisions with the walls before the particle enters into
 a hole. The program should print from which hole the particle left the table.

[image: pict]

Figure 2.31: Problem 2.21.

 	 Write a program in order to study the motion of a particle in the box of
 figure 2.32. At the center of the box there is a disk on which the particle
 bounces off elastically (Hint: use the routine reflectVonCircle of the
 program Cylinder3D.f90).

[image: pict]

Figure 2.32: Problem 2.22.

 	 In the box of the previous problem, put four disks on which the particle
 bounces of elastically like in figure 2.33.

[image: pict]

Figure 2.33: Problem 2.23.

 	 Consider the arrangement of figure 2.34. Each time the particle bounces
 elastically off a circle, the circle disappears. The game is over successfully if
 all the circles vanish. Each time the particle bounces off on the wall to the
 left, you lose a point. Try to find trajectories that minimize the number of
 lost points.

[image: pict]

Figure 2.34: Problem 2.24.

Chapter 3
Logistic Map

Nonlinear differential equations model interesting dynamical systems in physics,
biology and other branches of science. In this chapter we perform a numerical
study of the discrete logistic map as a “simple mathematical model with complex
dynamical properties” [21] similar to the ones encountered in more complicated
and interesting dynamical systems. For certain values of the parameter of the
map, one finds chaotic behavior giving us an opportunity to touch on this very
interesting topic with important consequences in physical phenomena. Chaotic
evolution restricts out ability for useful predictions in an otherwise fully
deterministic dynamical system: measurements using slightly different initial
conditions result in a distribution which is indistinguishable from the distribution
coming from sampling a random process. This scientific field is huge and active
and we refer the reader to the bibliography for a more complete introduction
 [21, 22, 23, 24, 25, 26, 27, 38].

 3.1 Introduction

The most celebrated application of the logistic map comes from the study of
population growth in biology. One considers populations which reproduce at fixed
time intervals and whose generations do not overlap.

 The simplest (and most naive) model is the one that makes the reasonable
assumption that the rate of population growth [image: dP (t)∕dt] of a population [image: P(t)] is
proportional to the current population:

 	

[image: dP (t)
------= kP (t).
 dt
]
	(3.1)

The general solution of the above equation is [image: P (t) = P(0)ekt] showing an
exponential population growth for [image: k > 0] an decline for [image: k < 0]. It is obvious that
this model is reasonable as long as the population is small enough so that the

interaction with its environment (adequate food, diseases, predators etc)
can be neglected. The simplest model that takes into account some of
the factors of the interaction with the environment (e.g. starvation) is
obtained by the introduction of a simple non linear term in the equation so
that

 	

[image: dP-(t) = kP (t)(1 − bP (t)).
 dt
]
	(3.2)

The parameter [image: k] gives the maximum growth rate of the population and [image: b]
controls the ability of the species to maintain a certain population level. The
equation (3.2) can be discretized in time by assuming that each generation
reproduces every [image: δt] and that the n-th generation has population [image: Pn = P (tn)]
where [image: tn = t0 + (n − 1)δt]. Then [image: ′
P(tn+1) ≈ P (tn) + δtP (tn)] and equation (3.1)
becomes

 	

[image: Pn+1 = rPn,
]
	(3.3)

where [image: r = 1 + kδt]. The solutions of the above equation are well approximated
by [image: Pn ∼ P0ektn] [image: ∝ e(r−1)n] so that we have population growth when

[image: r > 1] and decline when [image: r < 1]. Equation (3.2) can be discretized as
follows:

 	

[image: Pn+1 = Pn(r − bPn).
]
	(3.4)

Defining [image: xn = (b∕r)Pn] we obtain the logistic map

 	

[image: xn+1 = rxn(1 − xn).
]
	(3.5)

We define the functions

 	

[image: f (x) = rx(1 − x), F(x,r) = rx (1 − x)
]
	(3.6)

(their only difference is that, in the first one, [image: r] is considered as a given
parameter), so that

 	

[image: xn+1 = f(xn) = f(2)(xn−1) = ...= f (n)(x1) = f(n+1)(x0),
]
	(3.7)

where we use the notation [image: (1)
f (x) = f(x)], [image: (2)
f (x) = f(f(x))], [image: (3)
f (x) = f (f(f(x)))],
[image: ...] for function composition. In what follows, the derivative of [image: f] will be
useful:

 	

[image: f ′(x) = ∂F-(x,-r)-= r(1 − 2x).
 ∂x
]
	(3.8)

 Since we interpret [image: xn] to be the fraction of the population with
respect to its maximum value, we should have [image: 0 ≤ xn ≤ 1] for
each1
[image: n]. The function [image: f(x)] has one global maximum for [image: x = 1∕2] which is equal
to [image: f(1∕2) = r ∕4]. Therefore, if [image: r > 4], then [image: f(1∕2) > 1], which for an
appropriate choice of [image: x0] will lead to [image: xn+1 = f(xn) > 1] for some value of [image: n].
Therefore, the interval of values of [image: r] which is of interest for our model
is

 	

[image: 0 < r ≤ 4.
]
	(3.9)

 The logistic map (3.5) may be viewed as a finite difference equation and it
is a one step inductive relation. Given an initial value [image: x0], a sequence
of values [image: {x0,] [image: x1,] [image: ...,] [image: xn,] [image: ...] [image: }] is produced. This will be
referred2
to as the trajectory of [image: x0]. In the following sections we will study the properties of
these trajectories as a function of the parameter [image: r].

 The solutions of the logistic map are not known except in special cases. For
[image: r = 2] we have

 	

[image: 1 (2n)
xn = -- 1 − (1 − x0) ,
 2
]
	(3.10)

and for3
[image: r = 4]

 	

[image: 2 n 1- − 1√ ---
xn = sin (2 π𝜃), 𝜃 = π sin x0.
]
	(3.11)

For [image: r = 2], [image: limn →∞ xn = 1∕2] whereas for [image: r = 4] we have periodic trajectories
resulting in rational [image: 𝜃] and non periodic resulting in irrational [image: 𝜃]. For other
values of [image: r] we have to resort to a numerical computation of the trajectories of
the logistic map.

 3.2 Fixed Points and [image: 2n] Cycles

It is obvious that if the point [image: ∗
x] is a solution of the equation [image: x = f(x)], then
[image: ∗
xn = x] [image: ⇒] [image: ∗
xn+k = x] for every [image: k ≥ 0]. For the function [image: f(x) = rx (1 − x)]
we have two solutions

 	

[image: x∗1 = 0 and x∗2 = 1 − 1∕r.
]
	(3.12)

We will see that for appropriate values of [image: r], these solutions are attractors of
most of the trajectories. This means that for a range of values for the initial point
[image: 0 ≤ x0 ≤ 1], the sequence [image: {xn}] approaches asymptotically one of these points as
[image: n → ∞]. Obviously the (measure zero) sets of initial values [image: {x0} = {x ∗1}] and
[image: {x0 } = {x∗}
 2] result in trajectories attracted by [image: x∗
 1] and [image: x∗
 2] respectively. In
order to determine which one of the two values is preferred, we need to study the
stability of the fixed points [image: ∗
x 1] and [image: ∗
x2]. For this, assume that for some
value of [image: n], [image: xn] is infinitesimally close to the fixed point [image: x∗] so that

[image: ∗
 xn = x + 𝜖n
xn+1 = x∗ + 𝜖n+1. (3.13)
]

Since
 	

[image: xn+1 = f(xn) = f (x ∗ + 𝜖n) ≈ f (x ∗) + 𝜖nf ′(x∗) = x∗ + 𝜖nf′(x∗),
]
	(3.14)

where we used the Taylor expansion of the analytic function [image: f(x∗ + 𝜖)
 n] about
[image: ∗
x] and the relation [image: ∗ ∗
x = f (x)], we have that [image: ′ ∗
𝜖n+1 = 𝜖nf (x)]. Then we
obtain

 	

[image: | |
|𝜖n+1 |
||-----|| = |f′(x∗)|.
 𝜖n
]
	(3.15)

Therefore, if [image: |f′(x ∗)| < 1] we obtain [image: lim 𝜖 = 0
 n→ ∞ n] and the fixed point [image: x ∗] is
stable: the sequence [image: {xn+k }] approaches [image: ∗
x] asymptotically. If [image: ′ ∗
|f (x)| > 1]
then the sequence [image: {xn+k}] deviates away from [image: ∗
x] and the fixed point is
unstable. The limiting case [image: |f′(x∗)| = 1] should be studied separately
and it indicates a change in the stability properties of the fixed point. In
the following discussion, these points will be shown to be bifurcation
points.

 For the function [image: f (x) = rx(1 − x)] with [image: f ′(x) = r(1 − 2x)] we have that
[image: f ′(0) = r] and [image: f′(1 − 1∕r) = 2 − r]. Therefore, if [image: r < 1] the point [image: x∗1 = 0] is an
attractor, whereas the point [image: x∗= 1 − 1∕r < 0
 2] is irrelevant. When [image: r > 1],
the point [image: x∗ = 0
 1] results in [image: |f′(x∗)| = r > 1
 1], therefore [image: x∗
 1] is unstable.
Any initial value [image: x0] near [image: ∗
x1] deviates from it. Since for [image: 1 < r < 3] we
have that [image: 0 ≤ |f′(x∗2)| = |2 − r| < 1], the point [image: x∗2] is an attractor. Any

initial value [image: x0 ∈ (0,1)] approaches [image: ∗
x2 = 1 − 1∕r]. When [image: (1)
r = rc = 1] we
have the limiting case [image: ∗ ∗
x 1 = x2 = 0] and we say that at the critical value
[image: r(c1)= 1] the fixed point [image: x∗1] bifurcates to the two fixed points [image: x∗1] and
[image: x ∗
 2].

 As [image: r] increases, the fixed points continue to bifurcate. Indeed, when
[image: (2)
r = rc = 3] we have that [image: ′ ∗
f (x2) = 2 − r = − 1] and for [image: (2)
r > rc] the point [image: ∗
x2]
becomes unstable. Consider the solution of the equation [image: x = f (2)(x)]. If
[image: 0 < x ∗ < 1] is one of its solutions and for some [image: n] we have that [image: xn = x∗], then
[image: x =
 n+2] [image: x =
 n+4] [image: ...=] [image: x =
 n+2k] [image: ...=] [image: x ∗] and [image: x =
 n+1] [image: x =
 n+3] [image: ...=]
[image: xn+2k+1 =] [image: ...=] [image: ∗
f(x)] (therefore [image: ∗
f(x)] is also a solution). If [image: ∗
0 < x3 <]
[image: ∗
x 4 < 1] are two such different solutions with [image: ∗ ∗
x3 = f(x 4)], [image: ∗ ∗
x4 = f (x3)], then the
trajectory is periodic with period 2. The points [image: x∗3], [image: x∗4] are such that they are
real solutions of the equation

 	

[image: f(2)(x) = r2x(1 − x)(1 − rx(1 − x)) = x,
]
	(3.16)

and at the same time they are not the solutions [image: x∗= 0
 1] [image: x∗ = 1 − 1∕r
 2] of the
equation4
[image: x = f(2)(x)], the polynomial above can be written in the form (see [22] for more
details)

 	

[image: (())
 1- 2
x x − 1 − r (Ax + Bx + C) = 0.
]
	(3.17)

By expanding the polynomials (3.16) , (3.17) and comparing their coefficients
we conclude that [image: A = − r3], [image: B = r2(r + 1)] and [image: C = − r(r + 1)]. The
roots of the trinomial in (3.17) are determined by the discriminant
[image: 2
Δ = r (r + 1)(r − 3)]. For the values of [image: r] of interest ([image: 1 < r ≤ 4]), the
discriminant becomes positive when [image: (2)
r > rc = 3] and we have two different
solutions

 	

[image: ∗ √ -2---------
x α = ((r + 1) ∓ r − 2r − 3)∕(2r) α = 3,4.
]
	(3.18)

When [image: r = r(c2)] we have one double root, therefore a unique fixed point.

 The study of the stability of the solutions of [image: x = f(2)(x)] requires
the same steps that led to the equation (3.15) and we determine if the
absolute value of [image: (2)′
f (x)] is greater, less or equal to one. By noting
that5
[image: f (2)′(x) =
 3] [image: f(2)′(x) =
 4] [image: f ′(x)f ′(x)
 3 4] [image: = − r2 + 2r + 4], we see that for
[image: (2)
r = rc = 3], [image: (2)′ ∗
f (x 3) =] [image: (2)′ ∗
f (x4) = 1] and for [image: (3) √ --
r = rc = 1 + 6 ≈ 3.4495],
[image: f (2)′(x3) =][image: f(2)′(x4) = − 1]. For the intermediate values [image: √ --
3 < r < 1 + 6] the

derivatives [image: (2)′ ∗
|f (xα)| < 1] for [image: α = 3,4]. Therefore, these points are stable
solutions of [image: (2)
x = f (x)] and the points [image: ∗ ∗
x1,x2] bifurcate to [image: ∗
xα], [image: α = 1,2, 3,4]
for [image: r = r(2c) = 3]. Almost all trajectories with initial points in the interval
[image: [0,1]] are attracted by the periodic trajectory with period 2, the “2-cycle”
[image: ∗ ∗
{x 3,x4}].

 Using similar arguments we find that the fixed points [image: x∗α], [image: α = 1, 2,3,4]
bifurcate to the eight fixed points [image: x∗
 α], [image: α = 1, ...,8] when [image: √ --
r = r(c3) = 1 + 6].
These are real solutions of the equation that gives the 4-cycle [image: (4)
x = f (x)].
For [image: (3) (4)
rc < r < rc ≈ 3.5441], the points [image: ∗
xα], [image: α = 5, ...,8] are a stable
4-cycle which is an attractor of almost all trajectories of the logistic
map6 .
Similarly, for [image: (4) (5)
rc < r < rc] the 16 fixed points of the equation
[image: (8)
x = f (x)] give a stable 8-cycle, for [image: (5) (6)
rc < r < rc] a stable 16-cycle
etc7 .
This is the phenomenon which is called period doubling which continues ad
infinitum. The points [image: (n)
rc] are getting closer to each other as [image: n] increases so that
[image: (n)
limn →∞ rc = rc ≈ 3.56994567]. As we will see, [image: rc] marks the onset
of the non-periodic, chaotic behavior of the trajectories of the logistic
map.

[image: pict] [image: pict]

Figure 3.1: (Left) Some trajectories of the logistic map with [image: x = 0.1
 0] and various
values of [image: r]. We can see the first bifurcation for [image: (1)
rc = 1] from [image: ∗
x1 = 0] to [image: ∗
x2 = 1− 1∕r].
(Right) Trajectories of the logistic map for [image: (2) (3)
rc < r = 3.5 < rc]. The three curves start
from three different initial points. After a transient period, depending on the initial point,
one obtains a periodic trajectory which is a 2-cycle. The horizontal lines are the expected
values [image: x∗ = ((r+ 1)∓ √r2-−-2r−-3)∕(2r)
 3,4] (see text).

 Computing the bifurcation points becomes quickly intractable and we have to
resort to a numerical computation of their values. Initially we will write a program
that computes trajectories of the logistic map for chosen values of [image: r] and
[image: x
 0]. The program can be found in the file logistic.f90 and is listed
below:

!===

!Discrete Logistic Map

!===

program logistic_map

 implicit none

 integer :: NSTEPS,i

 real(8) :: r,x0,x1

! ----- Input:

 print *,’# Enter NSTEPS, r, x0:’

 read *,NSTEPS,r,x0

 print *,’# NSTEPS = ’,NSTEPS

 print *,’# r = ’,r

 print *,’# x0 = ’,x0

! ----- Initialize:

 open(unit=33,file=’log.dat’)

 write(33,*) 0,x0

! ----- Calculate:

 do i=1,NSTEPS

 x1 = r * x0 * (1.0D0-x0)

 write(33,*)i,x1

 x0 = x1

 enddo

 close(33)

end program logistic_map

 The program is compiled and run using the commands:

> gfortran logistic.f90 -o l

> echo "100 0.5 0.1" | ./l

 The command echo prints to the stdout the values of the parameters
NSTEPS=100, r=0.5 and x0=0.1. Its stdout is redirected to the stdin of the
command ./l by using a pipe via the symbol |, from which the program reads
their value and uses them in the calculation. The results can be found
in two columns in the file log.dat and can be plotted using gnuplot.
The plots are put in figure 3.1 and we can see the first two bifurcations
when [image: r] goes past the values [image: (1)
rc] and [image: (2)
rc]. Similarly, we can study
trajectories which are [image: 2n]-cycles when [image: r] crosses the values [image: (n− 1)
rc].

[image: pict] [image: pict]

Figure 3.2: Cobweb plots of the logistic map for [image: r = 2.8] and [image: 3.3]. (Left) The left plot
is an example of a fixed point [image: ∗ ∗
x = f(x)]. The green line is [image: y = f(x)] and the blue line
is [image: y = f(2)(x)]. The trajectory ends at the unique non zero intersection of the diagonal
and [image: y = f(x)] which is [image: x∗2 = 1 − 1∕r]. The trajectory intersects the curve [image: y = f(2)(x)]
at the same point. [image: y = f (2)(x)] does not intersect the diagonal anywhere else. (Right)
The right plot shows an example of a 2-cycle. [image: y = f(2)(x)] intersects the diagonal at two
additional points determined by [image: ∗
x3] and [image: ∗
x4]. The trajectory ends up on the orthogonal
[image: (x∗3,x∗3)], [image: (x∗4,x ∗3)], [image: (x∗4,x∗4)], [image: (x∗3,x∗4)].

[image: pict] [image: pict]

Figure 3.3: (Left) A 4-cycle for [image: r = 3.5]. The blue curve is [image: y = f(4)(x)] which intersects
the diagonal at four points determined by [image: xα], [image: α = 5,6,7,8]. The four cycle passes
through these points. (Right) a non periodic orbit for [image: r = 3.7] when the system exhibits
chaotic behavior.

 Another way to depict the 2-cycles is by constructing the cobweb plots: We
start from the point [image: (x0,0)] and we calculate the point [image: (x0,x1)], where
[image: x1 = f (x0)]. This point belongs on the curve [image: y = f(x)]. The point [image: (x0,x1)] is
then projected on the diagonal [image: y = x] and we obtain the point [image: (x ,x)
 1 1]. We
repeat [image: n] times obtaining the points [image: (xn,xn+1)] and [image: (xn+1,xn+1)] on [image: y = f(x)]
and [image: y = x] respectively. The fixed points [image: ∗ ∗
x = f(x)] are at the intersections of
these curves and, if they are attractors, the trajectories will converge on them. If
we have a [image: 2n]-cycle, we will observe a periodic trajectory going through
points which are solutions to the equation [image: x = f(2n)(x)]. This exercise can
be done by using the following program, which can be found in the file
logistic1.f90:

!===

! Discrete Logistic Map

! Map the trajectory in 2d space (plane)

!===

program logistic_map

 implicit none

 integer :: NSTEPS,i

 real(8) :: r,x0,x1

! ----- Input:

 print *,’# Enter NSTEPS, r, x0:’

 read *,NSTEPS,r,x0

 print *,’# NSTEPS = ’,NSTEPS

 print *,’# r = ’,r

 print *,’# x0 = ’,x0

! ----- Initialize:

 open(unit=33,file=’trj.dat’)

! ----- Calculate:

 write(33,*) 0, x0,0

 do i=1,NSTEPS

 x1 = r * x0 * (1.0D0-x0)

 write(33,*) 2*i-3,x0,x1

 write(33,*) 2*i-2,x1,x1

 x0 = x1

 enddo

 close(33)

end program logistic_map

 Compiling and running this program is done exactly as in the case of the
program in logistic.f90. We can plot the results using gnuplot. The plot in
figure 3.2 can be constructed using the commands:

gnuplot> set size square

gnuplot> f(x) = r*x*(1.0-x)

gnuplot> r = 3.3

gnuplot> plot "<echo 50 3.3 0.2|./l;cat trj.dat" using 2:3 w l

gnuplot> replot f(x) ,f(f(x)),x

 The plot command shown above, runs the program exactly as it is done on the
command line. This is accomplished by using the symbol <, which reads the plot
from the stdout of the command "echo 50 3.3 0.2|./l;cat trj.dat". Only
the second command "echo trj.dat" writes to the stdout, therefore the plot is
constructed from the contents of the file trj.dat. The following line adds
the plots of the functions [image: f(x)], [image: f(2)(x) = f(f(x))] and of the diagonal
[image: y = x]. Figures 3.2 and 3.3 show examples of attractors which are fixed
points, 2-cycles and 4-cycles. An example of a non periodic trajectory
is also shown, which exhibits chaotic behavior which can happen when
[image: r > rc ≈ 3.56994567].

 3.3 Bifurcation Diagrams

The bifurcations of the fixed points of the logistic map discussed in the previous
section can be conveniently shown on the “bifurcation diagram”. We remind
to the reader that the first bifurcations happen at the critical values of
r

 	

[image: r(c1)< r(2c) < r(c3) < ...< r(nc) < ...< rc,

]
	(3.19)

where [image: (1)
rc = 1], [image: (2)
rc = 3], [image: (3) √ --
rc = 1 + 6] and [image: (n)
rc = limn →∞ rc] [image: ≈ 3.56994567].
For [image: r(cn)< r < r(nc+1)] we have [image: 2n] fixed points [image: x∗α], [image: α = 1,2,...,2n] of
[image: x = f(2n)(x)]. By plotting these points [image: x∗ (r)
 α] as a function of [image: r] we construct
the bifurcation diagram. These can be calculated numerically by using the
program bifurcate.f90. In this program, the user selects the values of [image: r] that
she needs to study and for each one of them the program records the point of the
[image: 2n− 1]-cycles8
[image: ∗
x α(r)], [image: n−1 n−1 n
α = 2 + 1,2 + 2,...,2]. This is easily done by computing the
logistic map several times until we are sure that the trajectories reach the stable
state. The parameter NTRANS in the program determines the number of points
that we throw away, which should contain all the transient behavior. After
NTRANS steps, the program records NSTEPS points, where NSTEPS should be
large enough to cover all the points of the [image: n− 1
2]-cycles or depict a dense
enough set of values of the non periodic orbits. The program is listed
below:

!===

! Bifurcation Diagram of the Logistic Map

!===

program bifurcation_diagram

 implicit none

 real(8),parameter :: rmin = 2.5D0

 real(8),parameter :: rmax = 4.0D0

 integer,parameter :: NTRANS = 500 !Number of discarded steps

 integer,parameter :: NSTEPS = 100 !Number of recorded steps

 integer,parameter :: RSTEPS = 2000 !Number of values of r

 integer :: i

 real(8) :: r,dr,x0,x1

! ----- Initialize:

 open(unit=33,file=’bif.dat’)

 dr = (rmax-rmin)/RSTEPS !Increment in r

! ----- Calculate:

 r = rmin

 do while (r .le. rmax)

 x0 = 0.5D0

! ---- Transient steps: skip

 do i=1,NTRANS

 x1 = r * x0 * (1.0D0-x0)

 x0 = x1

 enddo

 do i=1,NSTEPS

 x1 = r * x0 * (1.0D0-x0)

 write(33,*) r,x1

 x0 = x1

 enddo

 r = r + dr

 enddo ! do while

 close(33)

end program bifurcation_diagram

[image: pict] [image: pict]

Figure 3.4: (Left) The bifurcation diagram computed by the program bifurcate.f90
for [image: 2.5 < r < 4]. Notice the first bifurcation points followed by intervals of chaotic,
non-periodic orbits interrupted by intermissions of stable periodic trajectories. The chaotic
trajectories take values in subsets of the interval [image: (0,1)]. For [image: r = 4] they take values within
the whole [image: (0,1)]. One can see that for [image: r = 1 +√8 ≈ 3.8284] we obtain a 3-cycle which
subsequently bifurcates to [image: 3⋅2n]-cycles. (Right) The diagram on the left is magnified in
a range of [image: r] showing the self-similarity of the diagram at all scales.

 The program can be compiled and run using the commands:

> gfortran bifurcate.f90 -o b

> ./b;

 The left plot of figure 3.4 can be constructed by the gnuplot commands:

gnuplot> plot "bif.dat" with dots

 We observe the fixed points and the [image: 2n]-cycles for [image: r < rc]. When [image: r] goes
past [image: rc], the trajectories become non-periodic and exhibit chaotic behavior.
Chaotic behavior will be discussed more extensively in the next section. For the
time being, we note that if we measure the distance between the points
[image: (n) (n+1) (n)
Δr = rc − rc], we find that it decreases constantly with [image: n] so
that

 	

[image: (n)
lim -Δr-----= δ ≈ 4.669201609,
n→∞ Δr (n+1)
]
	(3.20)

where [image: δ] is the Feigenbaum constant. An additional constant [image: α], defined by the
quotient of the separation of adjacent elements [image: Δwn] of period doubled attractors
from one double to the next [image: Δwn+1], is

 	

[image: Δwn
 lim ------- = α ≈ 2.502907875.
n→ ∞ Δwn+1
]
	(3.21)

It is also interesting to note the appearance of a 3-cycle right after
[image: √ --
r = 1 + 8 ≈ 3.8284 > rc]! By using the theorem of Sharkovskii, Li and
Yorke9
showed that any one dimensional system has 3-cycles, therefore it will have cycles
of any length and chaotic trajectories. The stability of the 3-cycle can be studied
from the solutions of [image: (3)
x = f (x)] in exactly the same way that we did in
equations (3.16) and (3.17) (see [22] for details). Figure 3.5 magnifies a branch
of the 3-cycle. By magnifying different regions in the bifurcation plot, as shown in
the right plot of figure 3.4, we find similar shapes to the branching of the 3-cycle.

[image: pict]

Figure 3.5: Magnification of one of the three branches of the 3-cycle for [image: r > 1+ √8-].
To the left, we observe the temporary halt of the chaotic behavior of the trajectory, which
comes back as shown in the plot to the right after an intermission of stable periodic
trajectories.

 Figure 3.4 shows that between intervals of chaotic behavior we obtain
“windows” of periodic trajectories. These are infinite but countable. It is also
quite interesting to note that if we magnify a branch withing these windows, we
obtain a diagram that is similar to the whole diagram! We say that the
bifurcation diagram exhibits self similarity. There are more interesting properties
of the bifurcation diagram and we refer the reader to the bibliography for a more
complete exposition.

 We close this section by mentioning that the qualitative properties
of the bifurcation diagram are the same for a whole class of functions.
Feigenbaum discovered that if one takes any function that is concave
and has a unique global maximum, its bifurcation diagram behaves
qualitatively the same way as that of the logistic map. Examples of such
functions10
studied in the literature are [image: r(1−x)
g(x) = xe], [image: u(x) = rsin (πx)] and [image: 2
w(x) = b − x].
The constants [image: δ] and [image: α] of equations (3.20) and (3.21) are the same
of all these mappings. The functions that result in chaotic behavior are
studied extensively in the literature and you can find a list of those in
 [28].

 3.4 The Newton-Raphson Method

In order to determine the bifurcation points, one has to solve the nonlinear,
polynomial, algebraic equations [image: (n)
x = f (x)] and [image: (n)′
f (x) = − 1]. For
this reason, one has to use an approximate numerical calculation of the
roots, and the simple Newton-Raphson method will prove to be a good
choice.

 Newton-Raphson’s method uses an initial guess [image: x
 0] for the solution of the
equation [image: g (x) = 0] and computes a sequence of points [image: x1,] [image: x2,] [image: ...,] [image: xn,]
[image: xn+1,] [image: ...] that presumably converges to one of the roots of the equation.
The computation stops at a finite [image: n], when we decide that the desired
level of accuracy has been achieved. In order to understand how it works,
we assume that [image: g(x)] is an analytic function for all the values of [image: x]
used in the computation. Then, by Taylor expanding around [image: xn] we
obtain

 	

[image: ′
g(xn+1) = g(xn) + (xn+1 − xn)g (x) +
]
	(3.22)

If we wish to have [image: g(xn+1) ≈ 0], we choose

 	

[image: g (x)
xn+1 = xn − ----n-.
 g′(xn)
]
	(3.23)

The equation above gives the Newton-Raphson method for one equation
[image: g(x) = 0] of one variable [image: x]. Different choices for [image: x0] will possibly lead to
different roots. When [image: g′(x)], [image: g ′′(x)] are non zero at the root and [image: g ′′′(x)] is
bounded, the convergence of the method is quadratic with the number of
iterations. This means that there is a neighborhood of the root [image: α] such that the
distance [image: Δxn+1 = xn+1 − α] is [image: 2
Δxn+1 ∝ (Δxn)]. If the root [image: α] has multiplicity
larger than 1, convergence is slower. The proofs of these statements are simple and
can be found in [29].

 The Newton-Raphson method is simple to program and, most of the times,
sufficient for the solution of many problems. In the general case it works well only
close enough to a root. We should also keep in mind that there are simple reasons
for the method to fail. For example, when [image: g′(xn) = 0] for some [image: n], the method

stops. For functions that tend to [image: 0] as [image: x → ±∞], it is easy to make a bad choice
for [image: x0] that does not lead to convergence to a root. Sometimes it is a
good idea to combine the Newton-Raphson method with the bisection
method. When the derivative [image: g′(x)] diverges at the root we might get into
trouble. For example, the equation [image: |x|ν = 0] with [image: 0 < ν < 1∕2], does
not lead to a convergent sequence. In some cases, we might enter into
non-convergent cycles [8]. For some functions the basin of attraction of a root
(the values of [image: x0] that will converge to the root) can be tiny. See problem
13.

 As a test case of our program, consider the equation

 	

[image: ∘ -------
𝜖tan 𝜖 = ρ2 − 𝜖2
]
	(3.24)

which results from the solution of Schrödinger’s equation for the energy spectrum
of a quantum mechanical particle of mass [image: m] in a one dimensional potential well
of depth [image: V0] and width [image: L]. The parameters [image: ∘ ------------
𝜖 = mL2E ∕(2ℏ)] and
[image: ∘ ------------
ρ = mL2V0 ∕(2ℏ)]. Given [image: ρ], we solve for [image: 𝜖] which gives the energy [image: E]. The
function [image: g(x)] and its derivative [image: g′(x)] are

[image: ∘ --2---2-
 g(x) = xtan x − ρ − x
g ′(x) = ∘---x-----+ ---x-- + tan x. (3.25)
 ρ2 − x2 cos2 x
]

The program of the Newton-Raphson method for solving the equation [image: g (x) = 0]
can be found in the file nr.f90:

!===

!Newton Raphson for a function of one variable

!===

program NewtonRaphson

 implicit none

 real(8), parameter :: rho = 15.0D0

 real(8), parameter :: eps = 1D-6

 integer, parameter :: NMAX = 1000

 real(8) :: x0, x1, err, g, gp

 integer :: i

 print *, ’Enter x0: ’

 read *, x0

 err = 1.0D0

 print *,’iter x error ’

 print *,’---’

 print *, 0,x0,err

 do i=1,NMAX

!value of function g(x):

 g = x0*tan(x0)-sqrt(rho*rho-x0*x0)

!value of the derivative g’(x):

 gp = x0/sqrt(rho*rho-x0*x0)+x0/(cos(x0)**2)+tan(x0)

 x1 = x0 - g/gp

 err = ABS(x1-x0)

 print *,i,x1,err

 if(err .lt. eps) exit

 x0 = x1

 enddo

end program NewtonRaphson

 In the program listed above, the user is asked to set the initial point [image: x0]. We fix
[image: ρ =] rho [image: = 15]. It is instructive to make the plot of the left and right hand sides
of (3.24) and make a graphical determination of the roots from their
intersections. Then we can make appropriate choices of the initial point [image: x0].
Using gnuplot, the plots are made with the commands:

gnuplot> g1(x) = x*tan(x)

gnuplot> g2(x) = sqrt(rho*rho-x*x)

gnuplot> plot [0:20][0:20] g1(x), g2(x)

[image: pict]

Figure 3.6: Plots of the right and left hand sides of equation (3.24) . The intersections
of the curves determine the solutions of the equation and their approximate graphical
estimation can serve as initial points [image: x0] for the Newton-Raphson method.

 The compilation and running of the program can be done as follows:

> gfortran nr.f90 -o n

> echo "1.4"|./n

 Enter x0:

 iter x error

 0 1.3999999999999999 1.0000000000000000

 1 1.5254292024457967 0.12542920244579681

 2 1.5009739120496131 2.4455290396183660E-002

 3 1.4807207017202200 2.0253210329393090E-002

 4 1.4731630533073483 7.5576484128716537E-003

 5 1.4724779331237687 6.8512018357957949E-004

 6 1.4724731072313519 4.8258924167932093E-006

 7 1.4724731069952235 2.3612845012621619E-010

 We conclude that one of the roots of the equation is [image: 𝜖 ≈ 1.472473107].
The reader can compute more of these roots by following these steps by
herself.

 The method discussed above can be easily generalized to the case of two
equations. Suppose that we need to solve simultaneously two algebraic equations
[image: g1(x1,x2) = 0] and [image: g2(x1,x2) = 0]. In order to compute a sequence [image: (x10,x20)],
[image: (x11,x21)], [image: ...], [image: (x1n, x2n)], [image: (x1(n+1),x2(n+1))], [image: ...] that may converge to a root
of the above system of equations, we Taylor expand the two functions around
[image: (x1n,x2n)]

[image: ∂g (x ,x)
g1(x1(n+1),x2(n+1)) = g1(x1n,x2n) + (x1(n+1) − x1n)--1--1n--2n-
 ∂x1
 ∂g1(x1n,x2n)-
 + (x2(n+1) − x2n) ∂x + ...
 2
g2(x1(n+1),x2(n+1)) = g2(x1n,x2n) + (x1(n+1) − x1n)∂g2-(x1n,x2n)
 ∂x1
 ∂g2(x1n,x2n)
 + (x2(n+1) − x2n)------------+ (3.26)
 ∂x2
]

Defining [image: δx1 = (x1(n+1) − x1n)] and [image: δx2 = (x2 (n+1) − x2n)] and setting
[image: g1(x1(n+1),x2(n+1)) ≈ 0], [image: g2(x1(n+1),x2(n+1)) ≈ 0], we obtain

[image: ∂g1 ∂g1
δx1 ----+ δx2 ---- = − g1
 ∂x1 ∂x2
δx ∂g2-+ δx ∂g2- = − g . (3.27)
 1∂x1 2∂x2 2
]

This is a linear [image: 2 × 2] system of equations

[image: A11δx1 + A12 δx2 = b1

A21δx1 + A22 δx2 = b2, (3.28)
]

where [image: Aij = ∂gi∕∂xj] and [image: bi = − gi], with [image: i,j = 1,2]. Solving for [image: δxi] we obtain

[image: x1(n+1) = x1n + δx1
x2(n+1) = x2n + δx2. (3.29)
]

The iterations stop when [image: δxi] become small enough.
 As an example, consider the equations with [image: g1(x) = 2x2 − 3xy + y − 2],
[image: g2(x) = 3x + xy + y − 1]. We have [image: A11 = 4x − 3y], [image: A12 = 1 − 3x], [image: A21 = 3 + y],
[image: A22 = 1 + x]. The program can be found in the file nr2.f90:

!===

!Newton Raphson of two functions of two variables

!===

program NewtonRaphson2

 implicit none

 real(8), parameter :: eps = 1D-6

 integer, parameter :: NMAX = 1000

 real(8) :: A(2,2),b(2),dx(2)

 real(8) :: x,y, err

 integer :: i

 print *, ’Enter x0,y0: ’

 read *, x,y

 err = 1.0D0

 print *,’iter x y error ’

 print *,’---’

 print *, 0,x,y,err

 do i=1,NMAX

 b(1) = -(2.0D0*x*x-3.0D0*x*y+y-2.0D0) ! -g1(x,y)

 b(2) = -(3.0D0*x + x*y + y - 1.0D0) ! -g2(x,y)

! dg1/dx dg1/dy

 A(1,1) = 4.0D0*x-3.0D0*y; A(1,2) = 1.0D0-3.0D0*x

! dg2/dx dg2/dy

 A(2,1) = 3.0D0+y ; A(2,2) = 1.0D0+x

 call solve2x2(A,B,dx)

 x = x + dx(1)

 y = y + dx(2)

 err = 0.5D0*SQRT(dx(1)**2+dx(2)**2)

 print *,i,x,y,err

 if(err .lt. eps) exit

 enddo

end program NewtonRaphson2

!===

subroutine solve2x2(A,b,dx)

 implicit none

 real(8) :: A(2,2),b(2),dx(2)

 real(8) :: num1,num2,det

 num1 = A(2,2)*b(1)-A(1,2)*b(2)

 num2 = A(1,1)*b(2)-A(2,1)*b(1)

 det = A(1,1)*A(2,2)-A(1,2)*A(2,1)

 if(det .eq. 0.0D0) stop ’solve2x2: det=0’

 dx(1)= num1/det

 dx(2)= num2/det

end subroutine solve2x2

 In order to guess the region where the real roots of the systems lie, we make a
3-dimensional plot using gnuplot:

gnuplot> set isosamples 20

gnuplot> set hidden3d

gnuplot> splot 2*x**2-3*x*y+y-2,3*x+y*x+y-1,0

 We plot the functions [image: gi(x, y)] together with the plane [image: x = 0]. The intersection
of the three surfaces determine the roots we are looking for. Compiling and
running the program can be done by using the commands:

> gfortran nr2.f90 -o n

> echo 2.2 1.5 |./n

 Enter x0,y0:

 iter x y error

 0 2.20000000 1.50000000 1.0000

 1 0.76427104 0.26899383 0.9456

 2 0.73939531 -0.68668275 0.4780

 3 0.74744506 -0.71105605 1.2834E-002

 4 0.74735933 -0.71083147 1.2019E-004

 5 0.74735932 -0.71083145 1.2029E-008

> echo 0 1 |./n

.................

 5 -0.10899022 1.48928857 4.3461E-012

> echo -5 0|./n

 6 -6.13836909 -3.77845711 3.2165E-013

 The computation above leads to the roots [image: (0.74735932,] [image: − 0.71083145)],
[image: (− 0.10899022,] [image: 1.48928857)], [image: (− 6.13836909,] [image: − 3.77845711)].

 The Newton-Raphson method for many variables becomes hard quite soon:
One needs to calculate the functions as well as their derivatives, which is
prohibitively expensive for many problems. It is also hard to determine the roots,
since the method converges satisfactorily only very close to the roots. We refer
the reader to [8] for more information on how one can deal with these
problems.

 3.5 Calculation of the Bifurcation Points

In order to determine the bifurcation points for [image: r < rc] we will solve the algebraic
equations [image: x = f(k)(x)] and [image: f(k)′(x) = − 1]. At these points, [image: k]-cycles
become unstable and [image: 2k]-cycles appear and are stable. This happens when
[image: r = r(cn)], where [image: k = 2n −2]. We will look for solutions [image: (x∗,r(cn))
 α] for
[image: α = k + 1,k + 2,...,2k].

 We define the functions [image: F (x,r) = f(x) = rx (1 − x)] and [image: (k) (k)
F (x,r) = f (x)]
as in equation (3.6) . We will solve the algebraic equations:

[image: g1(x,r) = x − F(k)(x,r) = 0
 (k)
g (x,r) = ∂F---(x,r)-+ 1 = 0. (3.30)
 2 ∂x
]

According to the discussion of the previous section, in order to calculate the roots
of these equations we have to solve the linear system (3.28) , where the
coefficients are

[image: b = − g (x,r) = − x + F (k)(x,r)
 1 1 (k)
 b = − g (x,r) = − ∂F---(x,-r)− 1
 2 2 ∂x
 ∂g (x,r) ∂F (k)(x, r)
A11 = --1------= 1 − -----------
 ∂x ∂x
 ∂g1(x,r)- ∂F-(k)(x,-r)
A12 = ∂r = − ∂r
 ∂g (x,r) ∂2F (k)(x, r)
A21 = --2------= ------------
 ∂x ∂x2
 ∂g2(x,r)- ∂2F-(k)(x,-r)
A22 = ∂r = ∂x∂r . (3.31)
]

The derivatives will be calculated approximately using finite differences

[image: (k) (k) (k)
∂F---(x,-r) ≈ F---(x-+-𝜖,r)-−-F---(x-−-𝜖,r)-
 ∂x 2𝜖
∂F (k)(x, r) F(k)(x, r + 𝜖) − F (k)(x,r − 𝜖)
----------- ≈ ----------------------------, (3.32)
 ∂r 2𝜖
]

and similarly for the second derivatives

[image: ∂F(k)(x+ 𝜖,r) ∂F(k)(x− 𝜖,r)
∂2F-(k)(x,r-) -----∂x-2--−------∂x-2--
 ∂x2 ≈ 2-𝜖
 { 2 }
 1- F-(k)(x-+-𝜖,r)-−-F-(k)(x,r) F-(k)(x,r)-−-F-(k)(x-−-𝜖,r)
 = 𝜖 𝜖 − 𝜖
 { }
 = 1- F (k)(x + 𝜖,r) − 2F (k)(x,r) + F (k)(x − 𝜖,r)
 𝜖2
∂2F (k)(x,r) ∂F(k)(x+-𝜖x,r)-− ∂F(k)(x−𝜖x,r)
------------ ≈ -----∂r------------∂r----
 ∂x ∂r { 2𝜖x
 -1-- F-(k)(x-+-𝜖x,r +-𝜖r)-−-F-(k)(x-+-𝜖x,r −-𝜖r)
 = 2 𝜖 2𝜖
 x r }
 F-(k)(x-−-𝜖x,r +-𝜖r)-−-F-(k)(x-−-𝜖x,r −-𝜖r)
 − 2𝜖r
 {
 = --1-- F (k)(x + 𝜖x,r + 𝜖r) − F (k)(x + 𝜖x,r − 𝜖r)
 4 𝜖x𝜖r }
 − F(k)(x − 𝜖x,r + 𝜖r) + F (k)(x − 𝜖x,r − 𝜖r) (3.33)
]

We are now ready to write the program for the Newton-Raphson method like in

the previous section. The only difference is the approximate calculation of the
derivatives using the relations above and the calculation of the function
[image: F (k)(x,r)] by a routine that will compose the function [image: f(x)] [image: k]-times. The
program can be found in the file bifurcationPoints.f90:

!===

! bifurcationPoints.f

! Calculate bifurcation points of the discrete logistic map

! at period k by solving the condition

! g1(x,r) = x - F(k,x,r) = 0

! g2(x,r) = dF(k,x,r)/dx+1 = 0

! determining when the Floquet multiplier becomes 1

! F(k,x,r) iterates F(x,r) = r*x*(x-1) k times

! The equations are solved by using a Newton-Raphson method

!===

program bifurcationPoints

 implicit none

 real(8),parameter :: tol=1.0D-10

 integer :: k,iter

 real(8) :: r0,x0

 real(8) :: A(2,2),B(2),dX(2)

 real(8) :: error

 real(8) :: F,dFdx,dFdr,d2Fdx2,d2Fdrdx

! ---- Input:

 print *,’# Enter k,r0,x0:’

 read *,k,r0,x0

 print *,’# Period k= ’,k

 print *,’# r0= ’,r0,’ x0= ’,x0

! ---- Initialize

 error = 1.0D0 !initial large value of error>tol

 iter = 0

 do while(error .gt. tol)

! ---- Calculate jacobian matrix

 A(1,1) = 1.0D0-dFdx(k,x0,r0)

 A(1,2) = -dFdr (k,x0,r0)

 A(2,1) = d2Fdx2 (k,x0,r0)

 A(2,2) = d2Fdrdx (k,x0,r0)

 B(1) = -x0 + F(k,x0,r0)

 B(2) = -dFdx (k,x0,r0)-1.0D0

! ---- Solve a 2x2 linear system:

 call solve2x2(A,B,dX)

 x0 = x0 + dX(1)

 r0 = r0 + dX(2)

 error = 0.5D0*sqrt(dX(1)**2+dX(2)**2)

 iter = iter+1

 print*,iter,’x0= ’,x0,’ r0= ’,r0,’ err=’,error

 enddo !do while(error .gt. tol)

end program bifurcationPoints

!===

!Function F(k,x,r) and its derivatives

real(8) function F(k,x,r)

 implicit none

 real(8) :: x,r,x0

 integer k,i

 x0 = x

 do i=1,k

 x0 = r*x0*(1.0D0-x0)

 enddo

 F = x0

end function F

! ----------------------------------

real(8) function dFdx(k,x,r)

 implicit none

 real(8) :: x,r,eps

 real(8) :: F

 integer k

 eps = 1.0D-6*x

 dFdx = (F(k,x+eps,r)-F(k,x-eps,r))/(2.0D0*eps)

end function dFdx

! ----------------------------------

real(8) function dFdr(k,x,r)

 implicit none

 real(8) :: x,r,eps

 real(8) :: F

 integer k

 eps = 1.0D-6*r

 dFdr = (F(k,x,r+eps)-F(k,x,r-eps))/(2.0D0*eps)

end function dFdr

! ----------------------------------

real(8) function d2Fdx2(k,x,r)

 implicit none

 real(8) :: x,r,eps

 real(8) :: F

 integer k

 eps = 1.0D-6*x

 d2Fdx2 = (F(k,x+eps,r)-2.0D0*F(k,x,r)+F(k,x-eps,r))/(eps*eps)

end function d2Fdx2

! ----------------------------------

real(8) function d2Fdrdx(k,x,r)

 implicit none

 real(8) :: x,r,epsx,epsr

 real(8) :: F

 integer k

 epsx = 1.0D-6*x

 epsr = 1.0D-6*r

 d2Fdrdx = (F(k,x+epsx,r+epsr)-F(k,x+epsx,r-epsr) &

 -F(k,x-epsx,r+epsr)+F(k,x-epsx,r-epsr)) &

 /(4.0D0*epsx*epsr)

end function d2Fdrdx

!===

subroutine solve2x2(A,b,dx)

 implicit none

 real(8) :: A(2,2),b(2),dx(2)

 real(8) :: num1,num2,det

 num1 = A(2,2)*b(1) - A(1,2)*b(2)

 num2 = A(1,1)*b(2) - A(2,1)*b(1)

 det = A(1,1)*A(2,2)- A(1,2)*A(2,1)

 if(det .eq. 0.0D0) stop ’solve2x2: det = 0’

 dx(1) = num1/det

 dx(2) = num2/det

end subroutine solve2x2

 Compiling and running the program can be done as follows:

> gfortran bifurcationPoints.f90 -o b

> echo 2 3.5 0.5 |./b

 # Enter k,r0,x0:

 # Period k= 2

 # r0= 3.5000000000000 x0= 0.50000000000

 1 x0= 0.4455758353187 r0= 3.38523275827 err= 6.35088E-002

 2 x0= 0.4396562547624 r0= 3.45290970406 err= 3.39676E-002

 3 x0= 0.4399593001407 r0= 3.44949859951 err= 1.71226E-003

 4 x0= 0.4399601690333 r0= 3.44948974267 err= 4.44967E-006

 5 x0= 0.4399601689937 r0= 3.44948974281 err= 7.22160E-011

> echo 2 3.5 0.85 | ./b

 4 x0= 0.8499377795512 r0= 3.44948974275 err= 1.85082E-011

> echo 4 3.5 0.5 |./b

 5 x0= 0.5235947861540 r0= 3.54409035953 err= 1.86318E-011

> echo 4 3.5 0.35 | ./b

 5 x0= 0.3632903374118 r0= 3.54409035955 err= 5.91653E-013

 The above listing shows the points of the 2-cycle and some of the points of the
4-cycle. It is also possible to compare the calculated value [image: r(3c)= 3.449490132]
with the expected one [image: √ --
r(3c)= 1 + 6] [image: ≈ 3.449489742]. Improving the accuracy
of the calculation is left as an exercise for the reader who has to control the
systematic errors of the calculations and achieve better accuracy in the
computation of [image: (4)
rc].

 3.6 Liapunov Exponents

We have seen that when [image: r > rc ≈ 3.56994567], the trajectories of the logistic map
become non periodic and exhibit chaotic behavior. Chaotic behavior mostly
means sensitivity of the evolution of a dynamical system to the choice of initial
conditions. More precisely, it means that two different trajectories constructed
from infinitesimally close initial conditions, diverge very fast from each other. This

implies that there is a set of initial conditions that densely cover subintervals of
[image: (0,1)] whose trajectories do not approach arbitrarily close to any cycle of finite
length.

 Assume that two trajectories have [image: x
 0], [image: ˜x
 0] as initial points and
[image: Δx0 = x0 − ˜x0]. When the points [image: xn], [image: ˜xn] have a distance [image: Δxn = ˜xn − xn]
that for small enough [image: n] increases exponentially with [image: n] (the “time”),
i.e.

 	

[image: λn
Δxn ∼ Δx0e , λ > 0,
]
	(3.34)

the system is most likely exhibiting chaotic
behavior11 .
The exponent [image: λ] is called a Liapunov exponent. A useful equation for the
calculation of [image: λ] is

 	

[image: n∑−1
λ = lim 1- ln |f ′(x)|.
 n→ ∞ n k
 k=0
]
	(3.35)

This relation can be easily proved by considering infinitesimal [image: 𝜖 ≡ |Δx0 |] so that
[image: λ = lim lim 1ln |Δxn |∕𝜖
 n→∞ 𝜖→0 n]. Then we obtain

[image: ˜x1 = f(˜x0) = f (x0 + 𝜖) ≈ f (x0) + 𝜖f ′(x0)
 ′
 = x1 + 𝜖f (x0) ⇒
Δx1-- ˜x1-−-x1- ′
 𝜖 = 𝜖 ≈ f (x0)

 ′ ′ ′
 ˜x2 = f(˜x1) = f (x1 + 𝜖f (x0)) ≈ f(x1) + (𝜖f (x0))f(x1)
 = x2 + 𝜖f′(x0)f′(x1) ⇒
Δx2 ˜x2 − x2
----- = --------≈ f′(x0)f′(x1)
 𝜖 𝜖

 ˜x3 = f(˜x2) = f (x2 + 𝜖f ′(x0)f ′(x1)) ≈ f(x2) + (𝜖f′(x0)f′(x1))f ′(x2)
 = x + 𝜖f′(x)f′(x)f′(x) ⇒
 3 0 1 2
Δx3-- = ˜x3-−-x3-≈ f′(x0)f′(x1)f ′(x2). (3.36)
 𝜖 𝜖
]

We can show by induction that [image: |Δxn |∕𝜖 ≈ f′(x0)f′(x1)f′(x2)...f′(xn−1)] and by
taking the logarithm and the limits we can prove (3.35) .

[image: pict]

Figure 3.7: A plot of [image: |Δx |∕𝜖
 n] for the logistic map for [image: r = 3.6], [image: x = 0.2
 0]. Note
the convergence of the curves as [image: 𝜖 → 0] and the approximate exponential behavior in
this limit. The two lines are fits to the equation (3.34) and give [image: λ = 0.213(4)] and
[image: λ = 0.217(6)] respectively.

 A first attempt to calculate the Liapunov exponents could be made by using
the definition (3.34) . We modify the program logistic.f90 so that it calculates
two trajectories whose initial distance is [image: 𝜖 =] epsilon:

!===

!Discrete Logistic Map:

!Two trajectories with close initial conditions.

!===

program logistic_map

 implicit none

 integer :: NSTEPS,i

 real(8) :: r,x0,x1,x0t,x1t,epsilon

! ----- Input:

 print *,’# Enter NSTEPS, r, x0, epsilon:’

 read *,NSTEPS,r,x0,epsilon

 print *,’# NSTEPS = ’,NSTEPS

 print *,’# r = ’,r

 print *,’# x0 = ’,x0

 print *,’# epsilon = ’,epsilon

 x0t = x0+epsilon

! ----- Initialize:

 open(unit=33,file=’lia.dat’)

 write(33,*) 1,x0,x0t,ABS(x0t-x0)/epsilon

! ----- Calculate:

 do i=2,NSTEPS

 x1 = r * x0 * (1.0D0-x0)

 x1t = r * x0t * (1.0D0-x0t)

 write(33,*)i,x1,x1t,ABS(x1t-x1)/epsilon

 x0 = x1; x0t = x1t

 enddo

 close(33)

end program logistic_map

 After running the program, the quantity [image: |Δxn |∕𝜖] is found at the fourth column
of the file lia.dat. The curves of figure 3.7 can be constructed by using the
commands:

> gfortran liapunov1.f90 -o l

> gnuplot

gnuplot> set logscale y

gnuplot> plot \

 "<echo 200 3.6 0.2 1e-15 |./l;cat lia.dat" u 1:4 w l

 The last line plots the stdout of the command "echo 200 3.6 0.2 1e-15
|./l;cat lia.dat", i.e. the contents of the file lia.dat produced after running
our program using the parameters NSTEPS [image: = 200], r [image: = 3.6], x0 [image: = 0.2] and
epsilon [image: − 15
= 10]. The gnuplot command set logscale y, puts the y axis
in a logarithmic scale. Therefore an exponential function is shown as a
straight line and this is what we see in figure 3.7: The points [image: |Δxn |∕𝜖]
tend to lie on a straight line as [image: 𝜖] decreases. The slopes of these lines are
equal to the Liapunov exponent [image: λ]. Deviations from the straight line
behavior indicates corrections and systematic errors, as we point out in figure
3.7. A different initial condition results in a slightly different value of
[image: λ], and the true value can be estimated as the average over several such
choices. We estimate the error of our computation from the standard
error of the mean. The reader should perform such a computation as an
exercise.

 One can perform a fit of the points [image: |Δxn |∕𝜖] to the exponential function in
the following way: Since [image: |Δxn |∕𝜖 ∼ C exp (λn)] [image: ⇒ ln (|Δxn |∕𝜖) = λn + c], we can
make a fit to a straight line instead. Using gnuplot, the relevant commands
are:

gnuplot> fit [5:53] a*x+b \

 "<echo 500 3.6 0.2 1e-15 |./l;cat lia.dat"\

 using 1:(log($4)) via a,b

gnuplot> replot exp(a*x+b)

The command shown above fits the data to the function a*x+b by taking the 1st
column and the logarithm of the 4th column (using 1:(log($4))) of the
stdout of the command that we used for creating the previous plot. We
choose data for which [image: 5 ≤ n ≤ 53] ([5:53]) and the fitting parameters
are a,b (via a,b). The second line, adds the fitted function to the plot.

[image: pict]

Figure 3.8: Plot of the sum [image: (1∕n) ∑N+n −1ln|f′(x)|
 k=N k] as a function of [image: n]
for the logistic map with [image: r = 3.8], [image: N = 2000] for different initial conditions
[image: x0 = 0.20,0.35,0.50,0.75,0.90]. The different curves converge in the limit [image: n → ∞] to
[image: λ = 0.4325(10)].

 Now we are going to use equation (3.35) for calculating [image: λ]. This equation is
approximately correct when (a) we have already reached the steady state and (b)
in the large [image: n] limit. For this reason we should study if we obtain a satisfactory
convergence when we (a) “throw away” a number of NTRANS steps, (b) calculate
the sum (3.35) for increasing NSTEPS= [image: n] (c) calculate the sum (3.35) for
many values of the initial point [image: x0]. This has to be carefully repeated
for all values of [image: r] since each factor will contribute differently to the
quality of the convergence: In regions that manifest chaotic behavior (large
[image: λ]) convergence will be slower. The program can be found in the file
liapunov2.f90:

!===

!Discrete Logistic Map:

!Liapunov exponent from sum_i ln|f’(x_i)|

! NTRANS: number of discarded iteration in order to discard

! transient behavior

! NSTEPS: number of terms in the sum

!===

program logistic_map

 implicit none

 integer :: NTRANS,NSTEPS,i

 real(8) :: r,x0,x1,sum

! ----- Input:

 print *,’# Enter NTRANS,NSTEPS, r, x0:’

 read *,NTRANS,NSTEPS,r,x0

 print *,’# NTRANS = ’,NTRANS

 print *,’# NSTEPS = ’,NSTEPS

 print *,’# r = ’,r

 print *,’# x0 = ’,x0

 do i=1,NTRANS

 x1 = r * x0 * (1.0D0-x0)

 x0 = x1

 enddo

 sum = log(ABS(r*(1.0D0-2.0D0*x0)))

! ----- Initialize:

 open(unit=33,file=’lia.dat’)

 write(33,*) 1,x0,sum

! ----- Calculate:

 do i=2,NSTEPS

 x1 = r * x0 * (1.0D0-x0)

 sum = sum + log(ABS(r*(1.0D0-2.0D0*x1)))

 write(33,*)i,x1,sum/i

 x0 = x1

 enddo

 close(33)

end program logistic_map

 After NTRANS steps, the program calculates NSTEPS times the sum of the terms
[image: ln |f′(xk)| = ln|r(1 − 2xk)|]. At each step the sum divided by the number
of steps i is printed to the file lia.dat. Figure 3.6 shows the results
for [image: r = 3.8]. This is a point where the system exhibits strong chaotic
behavior and convergence is achieved after we compute a large number
of steps. Using NTRANS [image: = 2000] and NSTEPS [image: ≈ 70000] the achieved
accuracy is about [image: 0.2]% with [image: λ = 0.4325 ± 0.0010 ≡ 0.4325(10)]. The
main contribution to the error comes from the different paths followed by
each initial point chosen. The plot can be constructed with the gnuplot
commands:

> gfortran liapunov2.f90 -o l

> gnuplot

gnuplot> plot \

 "<echo 2000 70000 3.8 0.20 |./l;cat lia.dat" u 1:3 w l,\

 "<echo 2000 70000 3.8 0.35 |./l;cat lia.dat" u 1:3 w l,\

 "<echo 2000 70000 3.8 0.50 |./l;cat lia.dat" u 1:3 w l,\

 "<echo 2000 70000 3.8 0.75 |./l;cat lia.dat" u 1:3 w l,\

 "<echo 2000 70000 3.8 0.90 |./l;cat lia.dat" u 1:3 w l

 The plot command runs the program using the parameters NTRANS [image: = 2000],
NSTEPS [image: = 70000], r [image: = 3.8] and x0 [image: = 0.20,0.35,0.50,0.75,0.90] and plots the
results from the contents of the file lia.dat.

 In order to determine the regions of chaotic behavior we have to study the
dependence of the Liapunov exponent [image: λ] on the value of [image: r]. Using our experience
coming from the careful computation of [image: λ] before, we will run the program for
several values of [image: r] using the parameters NTRANS [image: = 2000], NSTEPS [image: = 60000]
from the initial point x0 [image: = 0.2]. This calculation gives accuracy of the order of
[image: 1]%. If we wish to measure [image: λ] carefully and estimate the error of the results, we
have to follow the steps described in figures 3.7 and 3.8. The program can be
found in the file liapunov3.f90 and it is a simple modification of the
previous program so that it can perform the calculation for many values of
[image: r].

!===

!Discrete Logistic Map:

!Liapunov exponent from sum_i ln|f’(x_i)|

!Calculation for r in [rmin,rmax] with RSTEPS steps

! RSTEPS: values or r studied: r=rmin+(rmax-rmin)/RSTEPS

! NTRANS: number of discarded iteration in order to discard

! transient behavior

! NSTEPS: number of terms in the sum

! xstart: value of initial x0 for every r

!===

program logistic_map

 implicit none

 real(8),parameter :: rmin = 2.5D0

 real(8),parameter :: rmax = 4.0D0

 real(8),parameter :: xstart = 0.2D0

 integer,parameter :: RSTEPS = 1000

 integer,parameter :: NSTEPS = 60000

 integer,parameter :: NTRANS = 2000

 integer :: i,ir

 real(8) :: r,x0,x1,sum,dr

 open(unit=33,file=’lia.dat’)

 dr = (rmax-rmin)/(RSTEPS-1)

 do ir=0,RSTEPS-1

 r = rmin+ir*dr

 x0= xstart

 do i=1,NTRANS

 x1 = r * x0 * (1.0D0-x0)

 x0 = x1

 enddo

 sum = log(ABS(r*(1.0D0-2.0D0*x0)))

! ----- Calculate:

 do i=2,NSTEPS

 x1 = r * x0 * (1.0D0-x0)

 sum = sum + log(ABS(r*(1.0D0-2.0D0*x1)))

 x0 = x1

 enddo

 write(33,*)r,sum/NSTEPS

 enddo !do ir=0,RSTEPS-1

 close(33)

end program logistic_map

 The program can be compiled and run using the commands:

> gfortran liapunov3.f90 -o l

> ./l &

 The character & makes the program ./l to run in the background. This is
recommended for programs that run for a long time, so that the shell returns the
prompt to the user and the program continues to run even after the shell is
terminated.

[image: pict]

Figure 3.9: The Liapunov exponent [image: λ] of the logistic map calculated via equation
(3.35) . Note the chaotic behavior that manifests for the values of [image: r] where [image: λ > 0] and
the windows of stable [image: k]-cycles where [image: λ < 0]. Compare this plot with the bifurcation
diagram of figure 3.4. At the points where [image: λ = 0] we have onset of chaos (or “edge of
chaos”) with manifestation of weak chaos (i.e. [image: |Δxn| ∼ |Δx0|nω]). At these points we have
transitions from stable [image: k]-cycles to strong chaos. We observe the onset of chaos for the
first time when [image: r = rc ≈ 3.5699], at which point [image: λ = 0] (for smaller [image: r] the plot seems to
touch the [image: λ = 0] line, but in fact [image: λ] takes negative values with [image: |λ|] very small).

 The data are saved in the file lia.dat and we can make the plot shown in
figure 3.7 using gnuplot:

gnuplot> plot "lia.dat" with lines notitle ,0 notitle

 Now we can compare figure 3.9 with the bifurcation diagram shown in figure 3.4.
The intervals with [image: λ < 0] correspond to stable [image: k]-cycles. The intervals where
[image: λ > 0] correspond to manifestation of strong chaos. These intervals are separated
by points with [image: λ = 0] where the system exhibits weak chaos. This means
that neighboring trajectories diverge from each other with a power law
[image: |Δxn | ∼ |Δx0 |nω] instead of an exponential, where [image: ω = 1∕(1 − q)] is
a positive exponent that needs to be determined. The parameter [image: q] is
the one usually used in the literature. Strong chaos is obtained in the
[image: q → 1] limit. For larger [image: r], switching between chaotic and stable periodic
trajectories is observed each time [image: λ] changes sign. The critical values
of [image: r] can be computed with relatively high accuracy by restricting the
calculation to a small enough neighborhood of the critical point. You can do
this using the program listed above by setting the parameters rmin and
rmax.

[image: pict] [image: pict]

Figure 3.10: The distribution functions [image: p(x)] of [image: x] of the logistic map for [image: r = 3.59]
(left) and [image: 3.8] (right). The chaotic behavior appears to be weaker for [image: r = 3.59], and this
is reflected on the value of the entropy. One sees that there exist intervals of [image: x] with
[image: p(x) = 0] which become smaller and vanish as [image: r] gets close to 4. This distribution is very
hard to be distinguished from a truly random distribution.

 We can also study the chaotic properties of the trajectories of the logistic map
by computing the distribution [image: p (x)] of the values of [image: x] in the interval [image: (0,1)].
After the transitional period, the distribution [image: p (x)] for the [image: k] cycles will have
support only at the points of the [image: k] cycles, whereas for the chaotic regimes it will
have support on subintervals of [image: (0,1)]. The distribution function [image: p(x)] is
independent for most of the initial points of the trajectories. If one obtains a large
number of points from many trajectories of the logistic map, it will be
practically impossible to understand that these are produced by a deterministic
rule. For this reason, chaotic systems can be used for the production of
pseudorandom numbers, as we will see in chapter 11. By measuring the
entropy, which is a measure of disorder in a system, we can quantify the
“randomness” of the distribution. As we will see in chapter 12, it is given by the
equation

 	

[image: ∑
S = − pk ln pk,
 k
]
	(3.37)

where [image: p
 k] is the probability of observing the state [image: k]. In our case, we can make
an approximate calculation of [image: S] by dividing the interval [image: (0,1)] to [image: N]
subintervals of width [image: Δx]. For given [image: r] we obtain a large number [image: M] of values
[image: xn] of the logistic map and we compute the histogram [image: hk] of their distribution in
the intervals [image: (xk,xk + Δx)]. The probability density is obtained from the limit
of [image: p = h ∕(M Δx)
 k k] as [image: M] becomes large and [image: Δx] small (large [image: N]).
Indeed, [image: ∑N
 k=1pk Δx = 1] converges to [image: ∫ 1
 0 p(x)dx = 1]. We will define
[image: ∑
S = − Nk=1 pk lnpk Δx].

[image: pict]

Figure 3.11: The distribution [image: p(x)] of [image: x] for the logistic map for [image: r = 4]. We observe
strong chaotic behavior, [image: p(x)] has support over the whole interval [image: (0,1)] and the entropy
is large. The solid line is the analytic form of the distribution [image: p(x) = π−1x−1∕2(1− x)−1∕2]
which is known for [image: r = 4] [30]. This is the beta distribution for [image: a = 1∕2], [image: b = 1∕2].

 The program listed below calculates [image: pk] for chosen values of [image: r], and then the
entropy [image: S] is calculated using (3.37) . It is a simple modification of the
program in liapunov3.f90 where we add the parameter NHIST counting the
number of intervals [image: N] for the histograms. The probability density is
calculated in the array p(NHIST). The program can be found in the file
entropy.f90:

!===

!Discrete Logistic Map:

!Entropy calculation from S=-sum_i p_i ln p_i

!Calculation for r in [rmin,rmax] with RSTEPS steps

! RSTEPS: values or r studied: r=rmin+(rmax-rmin)/RSTEPS

! NHIST : number of histogram bins for calculation of p_i

! NSTEPS: number of values of x in the histograms

! NTRANS: number of discarted iteration in order to discard

! transient behavior

! xstart: value of initial x0 for every r

!===

program logistic_map

 implicit none

 real(8),parameter :: rmin = 2.5D0

 real(8),parameter :: rmax = 4.0D0

 real(8),parameter :: xstart = 0.2D0

 integer,parameter :: RSTEPS = 1000

 integer,parameter :: NHIST = 10000

 integer,parameter :: NTRANS = 2000

 integer,parameter :: NSTEPS = 5000000

 real(8),parameter :: xmin=0.0D0,xmax=1.0D0

 integer :: i,ir,isum,n

 real(8) :: r,x0,x1,sum,dr,dx

 real(8) :: p(NHIST),S

 open(unit=33,file=’entropy.dat’)

 p = 0.0D0

 dr = (rmax-rmin)/(RSTEPS-1)

 dx = (xmax-xmin)/(NHIST -1)

 do ir=0,RSTEPS-1

 r = rmin+ir*dr

 x0= xstart

 do i=1,NTRANS

 x1 = r * x0 * (1.0D0-x0)

 x0 = x1

 enddo

!make histogram:

 n=INT(x0/dx)+1;p(n)=p(n)+1.0D0

 do i=2,NSTEPS

 x1 = r * x0 * (1.0D0-x0)

 n = INT(x1/dx)+1

 p(n)=p(n)+1.0D0

 x0 = x1

 enddo

!p(k) is now histogram of x-values.

!Normalize so that sum_k p(k)*dx=1

!to get probability distribution:

 p = p/NSTEPS/dx

!sum all non zero terms: p(n)*log(p(n))*dx

 S = -SUM(p*log(p),MASK=p.gt.0.0D0)*dx

 write(33,*)r,S

 enddo !do ir=0,RSTEPS-1

 close(33)

!print the last probability distribution:

 open(unit=34,file=’entropy_hist.dat’)

 do n=1,NHIST

 x0 = xmin +(n-1)*dx + 0.5D0*dx

 write(34,*) r,x0,p(n)

 enddo

 close(34)

end program logistic_map

[image: pict]

Figure 3.12: The entropy [image: S = − ∑ p lnp Δx
 k k k] for the logistic map as a function of
[image: r]. The vertical line is [image: rc ≈ 3.56994567] which marks the beginning of chaos and the
horizontal is the corresponding entropy. The entropy is low for small values of [image: r], where
we have the stable [image: 2n] cycles, and large in the chaotic regimes. [image: S] drops suddenly when
we pass to a (temporary) periodic behavior interval. We clearly observe the 3-cycle for
[image: r = 1+ √8-≈ 3.8284] and the subsequent bifurcations that we observed in the bifurcation
diagram (figure 3.4) and the Liapunov exponent diagram (figure 3.9).

 For the calculation of the distribution functions and the entropy we have to
choose the parameters which control the systematic error. The parameter NTRANS
should be large enough so that the transitional behavior will not contaminate our
results. Our measurements must be checked for being independent of its value.
The same should be done for the initial point xstart. The parameter
NHIST controls the partitioning of the interval [image: (0,1)] and the width [image: Δx],
so it should be large enough. The parameter NSTEPS is the number of
“measurements” for each value of [image: r] and it should be large enough in
order to reduce the “noise” in [image: p
 k]. It is obvious that NSTEPS should be
larger when [image: Δx] becomes smaller. Appropriate choices lead to the plots
shown in figures 3.10 and 3.11 for [image: r = 3.59], [image: 3.58] and [image: 4]. We see that
stronger chaotic behavior means a wider distribution of the values of
[image: x].

 The entropy is shown in figure 3.12. The stable periodic trajectories lead to
small entropy, whereas the chaotic ones lead to large entropy. There is a sudden
increase in the value of the entropy at the beginning of chaos at [image: r = rc], which
increases even further as the chaotic behavior becomes stronger. During the
intermissions of the chaotic behavior there are sudden drops in the value of the
entropy. It is quite instructive to compare the entropy diagrams with the
corresponding bifurcation diagrams (see figure 3.4) and the Liapunov
exponent diagrams (see figure 3.9). The entropy is increasing until [image: r]
reaches its maximum value 4, but this is not done smoothly. By magnifying
the corresponding areas in the plot, we can see an infinite number of
sudden drops in the entropy in intervals of [image: r] that become more and more
narrow.

 3.7 Problems

Several of the programs that you need to write for solving the problems of this
chapter can be found in the Problems directory of the accompanying software of
this chapter.

 	Confirm that the trajectories of the logistic map for [image: r < 1] are falling off
 exponentially for large enough [image: n].

 	Choose [image: r = 0.5] and plot the trajectories for [image: x0 = 0.1 − 0.9] with
 step [image: 0.1] for [image: n = 1,...,1000]. Put the [image: y] axis in a logarithmic
 scale. From the resulting curves discuss whether you obtain an
 exponential falloff.

 	Fit the points [image: xn] for [image: n > 20] to the function [image: ce−ax] and determine
 the fitting parameters [image: a] and [image: c]. How do these parameters depend on
 the initial point [image: x
 0]? You can use the following gnuplot commands for
 your calculation:

 gnuplot> !gfortran logistic.f90 -o l

gnuplot> a=0.7;c=0.4;

gnuplot> fit [10:] c*exp(-a*x) \

 "<echo 1000 0.5 0.5|./l;cat log.dat" via a,c

gnuplot> plot c*exp(-a*x),\

 "<echo 1000 0.5 0.5|./l;cat log.dat" w l

 As you can see, we set NSTEPS = 1000, r = 0.5, x0 = 0.5. By
 setting the limits [10:] to the fit command, the fit includes
 only the points [image: xn ≥ 10], therefore avoiding the transitional
 period and the deviation from the exponential falloff for small
 [image: n].

 	Repeat for [image: r = 0.3 − 0.9] with step [image: 0.1] and for [image: r = 0.99,0.999]. As
 you will be approaching [image: r = 1], you will need to discard more
 points from near the origin. You might also need to increase
 NSTEPS. You should always check graphically whether the fitted
 exponential function is a good fit to the points [image: xn] for large
 [image: n]. Construct a table for the values of [image: a] as a function of
 [image: r].

 The solutions of the equation (3.3) is [image: e(r−1)x]. How is this related to the
 values that you computed in your table?

 	Consider the logistic map for [image: r = 2]. Choose NSTEPS=100 and calculate the
 corresponding trajectories for x0=0.2, 0.3, 0.5, 0.7, 0.9. Plot
 them on the same graph. Calculate the fixed point [image: x ∗2] and compare
 your result to the known value [image: 1 − 1∕r]. Repeat for x0= [image: 10 −α] for
 [image: α = − 1,− 2,− 5,− 10,− 20,− 25]. What do you conclude about the point
 [image: ∗
x1 = 0]?

 	Consider the logistic map for [image: r = 2.9,2.99,2.999]. Calculate the stable
 point [image: x∗
 2] and compare your result to the known value [image: 1 − 1∕r].
 How large should NSTEPS be chosen each time? You may choose
 x0=0.3.

 	Consider the logistic map for [image: r = 3.2]. Take x0=0.3, 0.5, 0.9 and
 NSTEPS=300 and plot the resulting trajectories. Calculate the fixed points
 [image: x∗3] and [image: x∗4] by using the command tail log.dat. Increase NSTEPS and
 repeat so that you make sure that the trajectory has converged to the
 2-cycle. Compare their values to the ones given by equation (3.18) . Make
 the following plots:

 gnuplot> plot \

 "<echo 300 3.2 0.3|./l;awk ’NR%2==0’ log.dat" w l

gnuplot> replot \

 "<echo 300 3.2 0.3|./l;awk ’NR%2==1’ log.dat" w l

 What do you observe?

 	Repeat the previous problem for [image: r = 3.4494]. How big should NSTEPS be
 chosen so that you obtain [image: x∗
 3] and [image: x ∗
 4] with an accuracy of 6 significant
 digits?

 	Repeat the previous problem for [image: r = 3.5] and [image: 3.55]. Choose NSTEPS =
 1000, x0 = 0.5. Show that the trajectories approach a 4-cycle
 and an 8-cycle respectively. Calculate the fixed points [image: x ∗
 5]-[image: x∗
 8] and
 [image: x∗
 9]-[image: x ∗
 16].

 	Plot the functions [image: f (x)], [image: (2)
f (x)], [image: (4)
f (x)], [image: x] for given [image: r] on the same
 graph. Use the commands:

 gnuplot> set samples 1000

gnuplot> f(x) = r*x*(1-x)

gnuplot> r=1;plot [0:1] x,f(x),f(f(x)),f(f(f(f(x))))

 The command r=1 sets the value of [image: r]. Take [image: r = 2.5], [image: 3], [image: 3.2], [image: √ --
1 + 6],
 [image: 3.5]. Determine the fixed points and the [image: k]-cycles from the intersections of
 the plots with the diagonal [image: y = x].

 	Construct the cobweb plots of figures 3.2 and 3.4 for [image: r = 2.8,3.3] and [image: 3.5].
 Repeat by dropping from the plot an increasing number of initial points, so
 that in the end only the [image: k]-cycles will remain. Do the same for
 [image: r = 3.55].

 	Construct the bifurcation diagrams shown in figure 3.4.

 	Construct the bifurcation diagram of the logistic map for [image: 3.840 < r < 3.851]
 and for [image: 0.458 < x < 0.523]. Compute the first four bifurcation points with
 an accuracy of 5 significant digits by magnifying the appropriate parts of the
 plots. Take NTRANS=15000.

 	Construct the bifurcation diagram of the logistic map for [image: 2.9 < r < 3.57].
 Compute graphically the bifurcation points [image: (n)
rc] for [image: n = 2,] [image: 3,] [image: 4,] [image: 5,]
 [image: 6,] [image: 7,] [image: 8]. Make sure that your results are stable against variations of the
 parameters NTRANS, NSTEPS as well as from the choice of branching
 point. From the known values of [image: r(nc)] for [image: n = 2,3], and from the
 dependence of your results on the choices of NTRANS, NSTEPS, estimate the
 accuracy achieved by this graphical method. Compute the ratios
 [image: (n) (n−1) (n+1) (n)
(rc − rc)∕(rc − rc)] and compare your results to equation (3.20)
 .

 	Choose the values of [image: ρ] in equation (3.24) so that you obtain only one
 energy level. Compute the resulting value of the energy. When do we have
 three energy levels?

 	 Consider the polynomial [image: 3 2
g(x) = x − 2x − 11x + 12]. Find the
 roots obtained by the Newton-Raphson method when you choose
 [image: x0 = 2.35287527,] [image: 2.35284172,] [image: 2.35283735,] [image: 2.352836327,] [image: 2.352836323].
 What do you conclude concerning the basins of attraction of each root of the
 polynomial? Make a plot of the polynomial in a neighborhood of its roots
 and try other initial points that will converge to each one of the roots.

 	Use the Newton-Raphson method in order to compute the 4-cycle
 [image: x∗5,...,x∗8] of the logistic map. Use appropriate areas of the bifurcation
 diagram so that you can choose the initial points correctly. Check that
 your result for [image: r(4)
 c] is the same for all [image: x∗
 α]. Tune the parameters
 chosen in your calculation on order to improve the accuracy of your
 measurements.

 	Repeat the previous problem for the 8-cycle [image: ∗ ∗
x9,...,x16] and [image: (5)
rc].

 	Repeat the previous problem for the 16-cycle [image: x∗ ,...,x∗
 17 32] and [image: r(c6)].

 	 Calculate the critical points [image: r(nc)] for [image: n = 3,...,17] of the logistic map
 using the Newton-Raphson method. In order to achieve that, you should
 determine the bifurcation points graphically in the bifurcation diagram first
 and then choose the initial points in the Newton-Raphson method
 appropriately. The program in bifurcationPoints.f90 should read
 the parameters eps, epsx, epsr from the stdin so that they can
 be tuned for increasing [image: n]. If these parameters are too small the
 convergence will be unstable and if they are too large you will have large
 systematic errors. Using this method, try to reproduce table 3.1

 	
	
	
	

	[image: n]	[image: (n)
rc] 	[image: n]	[image: (n)
rc]

	
	
	
	

	 2	3.0000000000 	 10	3.56994317604
	 3	3.4494897429 	 11	3.569945137342

	 4	3.544090360 	 12	3.5699455573912
	 5	3.564407266 	 13	3.569945647353

	 6	3.5687594195 	 14	3.5699456666199

	 7	3.5696916098 	 15	3.5699456707464

	 8	3.56989125938	 16	3.56994567163008

	 9	3.56993401837	 17	3.5699456718193

	
	
	
	

	 [image: r = 3.56994567 ...
 c]

	
	
	
	

	

 Table 3.1: The values of [image: r(nc)] for the logistic map calculated for problem 17.
 [image: (∞)
rc ≡ rc] is taken from the bibliography.

 	Calculate the ratios [image: Δr (n)∕Δr (n+1)] of equation (3.20) using the results of
 table 3.1. Calculate Feigenbaum’s constant and comment on the accuracy
 achieved by your calculation.

 	Estimate Feigenbaum’s constant [image: δ] and the critical value [image: rc] by
 assuming that for large enough [image: n], [image: (n)
rc ≈ rc − C δ−n]. This behavior
 is a result of equation (3.20) . Fit the results of table 3.1 to this
 function and calculate [image: δ] and [image: r
 c]. This hypothesis is confirmed in
 figure 3.13 where we can observe the exponential convergence of
 [image: (n)
rc] to [image: rc]. Construct the same plot using the parameters of your
 calculation.
Hint: You can use the following gnuplot commands:

 gnuplot> nmin=2;nmax=17

gnuplot> r(x)= rc-c*d**(-x)

gnuplot> fit [nmin:nmax] r(x) "rcrit" u 1:2 via rc,c,d

gnuplot> plot "rcrit", r(x)

gnuplot> print rc,d

 The file rcrit contains the values of table 3.1. You should vary the
 parameters nmin, nmax and repeat until you obtain a stable fit.

[image: pict]

Figure 3.13: Test of the relation [image: r(cn)≈ rc − C δ−n] discussed in problem 17. The
parameters used in the plot are approximately [image: r = 3.5699457
 c], [image: δ = 4.669196] and
[image: C = 12.292].

 	Use the Newton-Raphson method to calculate the first three bifurcation
 points after the appearance of the 3-cycle for [image: √--
r = 1 + 8]. Choose one
 bifurcation point of the 3-cycle, one of the 6-cycle and one of the 12-cycle
 and magnify the bifurcation diagram in their neighborhood.

 	Consider the map describing the evolution of a population
 	

 [image: r(1−xn)
xn+1 = p(xn) = xne .
]
	(3.38)

 	Plot the functions [image: x], [image: p(x)], [image: p(2)(x)], [image: p(4)(x)] for [image: r = 1.8,2],
 [image: 2.6], [image: 2.67], [image: 2.689] for [image: 0 < x < 8]. For which values of [image: r] do you
 expect to obtain stable [image: k]-cycles?

 	For the same values of [image: r] plot the trajectories with initial points
 [image: x0 = 0.2,0.5,0.7]. For each [image: r] make a separate plot.

 	Use the Newton-Raphson method in order to determine the points
 [image: (n)
rc] for [image: n = 3,4,5] as well as the first two bifurcation points of
 the 3-cycle.

 	Construct the bifurcation diagram for [image: 1.8 < r < 4]. Determine
 the point marking the onset of chaos as well as the point where
 the 3-cycle starts. Magnify the diagram around a branch that you
 will choose.

 	Estimate Feigenbaum’s constant [image: δ] as in problem 17. Is your
 result compatible with the expectation of universality for the value
 of [image: δ]? Is the value of [image: rc] the same as that of the logistic map?

 	Consider the sine map:
 	

 [image: xn+1 = s(xn) = r sin(πxn).
]
	(3.39)

 	Plot the functions [image: x], [image: s(x)], [image: s(2)(x)], [image: s(4)(x)], [image: s(8)(x)] for
 [image: r = 0.65], [image: 0.75], [image: 0.84], [image: 0.86], [image: 0.88]. Which values of [image: r] are
 expected to lead to stable [image: k]-cycles?

 	For the same values of [image: r], plot the trajectories with initial points
 [image: x0 = 0.2,0.5,0.7]. Make one plot for each [image: r].

 	Use the Newton-Raphson method in order to determine the points
 [image: (n)
rc] for [image: n = 3,4,5] as well as the first two bifurcation points of
 the 3-cycle.

 	Construct the bifurcation diagram for [image: 0.6 < r < 1]. Within which
 limits do the values of [image: x] lie in? Repeat for [image: 0.6 < r < 2]. What
 do you observe? Determine the point marking the onset of chaos
 as well as the point where the 3-cycle starts. Magnify the diagram
 around a branch that you will choose.

 	Consider the map:
 	

 [image: 2
xn+1 = 1 − rx n.
]
	(3.40)

 	Construct the bifurcation diagram for [image: 0 < r < 2]. Within which
 limits do the values of [image: x] lie in? Determine the point marking
 the onset of chaos as well as the point where the 3-cycle starts.
 Magnify the diagram around a branch that you will choose.

 	Use the Newton-Raphson method in order to determine the points
 [image: (n)
rc] for [image: n = 3,4,5] as well as the first two bifurcation points of
 the 3-cycle.

 	Consider the tent map:
 	

 [image: {
 rxn 0 ≤ xn ≤ 12
xn+1 = rmin {xn, 1 − xn} = r(1 − xn) 1 < xn ≤ 1 .
 2
]
	(3.41)

 Construct the bifurcation diagram for [image: 0 < r < 2]. Within which limits do
 the values of [image: x] lie in? On the same graph, plot the functions [image: r∕2],
 [image: r − r2∕2].

Magnify the diagram in the area [image: 1.407 < r < 1.416] and [image: 0.580 < x < 0.588].
 At which point do the two disconnected intervals within which [image: xn]
 take their values merge into one? Magnify the areas [image: 1.0 < r < 1.1],
 [image: 0.4998 < x < 0.5004] and [image: 1.00 < r < 1.03], [image: 0.4999998 < x < 0.5000003]
 and determine the merging points of two disconnected intervals within
 which [image: xn] take their values.

 	Consider the Gauss map (or mouse map):

 	

 [image: x = e−rx2n + q.
 n+1
]
	(3.42)

 Construct the bifurcation diagram for [image: − 1 < q < 1] and [image: r = 4.5,] [image: 4.9,]
 [image: 7.5]. Make your program to take as the initial point of the new
 trajectory to be the last one of the previous trajectory and choose
 [image: x0 = 0] for [image: q = − 1]. Repeat for [image: x0 = 0.7,0.5,− 0.7]. What do you
 observe? Note that as [image: q] is increased, we obtain bifurcations and
 “anti-bifurcations”.

 	Consider the circle map:
 	

 [image: xn+1 = [xn + r − q sin(2πxn)] mod1.
]
	(3.43)

 (Make sure that your program keeps the values of [image: xn] so that [image: 0 ≤ xn < 1]).
 Construct the bifurcation diagram for [image: 0 < q < 2] and [image: r = 1∕3].

 	Use the program in liapunov.f90 in order to compute the distance between
 two trajectories of the logistic map for [image: r = 3.6] that originally are at a
 distance [image: Δx0 = 10−15]. Choose [image: x0 = 0.1,] [image: 0.2,0.3,] [image: 0.4,] [image: 0.5,0.6,]
 [image: 0.7,0.8,] [image: 0.9,] [image: 0.99,0.999] and calculate the Liapunov exponent by fitting
 to a straight line appropriately. Compute the mean value and the standard
 error of the mean.

 	Calculate the Liapunov exponent for [image: r = 3.58,] [image: 3.60,] [image: 3.65,] [image: 3.70,] [image: 3.80]
 for the logistic map. Use both ways mentioned in the text. Choose at least 5
 different initial points and calculate the mean and the standard error of the
 mean of your results. Compare the values of [image: λ] that you obtain with each
 method and comment.

 	Compute the critical value [image: rc] numerically as the limit [image: lim rc(n)
n→∞] for the
 logistic map with an accuracy of nine significant digits. Use the
 calculation of the Liapunov exponent [image: λ] given by equation (3.35)
 .

 	Compute the values of [image: r] of the logistic map numerically for which
 we (a) enter a stable 3-cycle (b) reenter into the chaotic behavior.
 Do the calculation by computing the Liapunov exponent [image: λ] and
 compare your results with the ones obtained from the bifurcation
 diagram.

 	Calculate the Liapunov exponent using equation (3.35) for the following
 maps:

 [image: r(1−xn)
xn+1 = xne , 1.8 < r < 4
xn+1 = r sin (πxn), 0.6 < r < 1
 2
xn+1 = 1 − rx n, 0 < r < 2
xn+1 = e− rx2n + q, r = 7.5,− 1 < q < 1
 []
xn+1 = xn + 1-− q sin(2πxn) mod1, 0 < q < 2, (3.44)
 3
]

and construct the diagrams similar to the ones in figure 3.9. Compare your
 plots with the respective bifurcation diagrams (you may put both graphs on
 the same plot). Use two different initial points [image: x0 = 0,0.2] for the Gauss
 map ([image: xn+1 =] [image: e−rx2n + q]) and observe the differences. For the circle map
 ([image: xn+1 =] [image: [xn + 1 ∕3 − qsin(2πxn)] mod1]) study carefully the values
 [image: 0 < q < 0.15].

 	Reproduce the plots in figures 3.10, 3.11 and 3.12. Compute the function
 [image: p(x)] for [image: r = 3.68], [image: 3.80], [image: 3.93] and [image: 3.98]. Determine the points where
 you have stronger chaos by observing [image: p(x)] and the corresponding values of
 the entropy. Compute the entropy for [image: r ∈ (3.95,4.00)] by taking
 RSTEPS=2000 and estimate the values of [image: r] where we enter to and exit from
 chaos. Compare your results with the computation of the Liapunov
 exponent.

 	 Consider the Hénon map:

 [image: 2
xn+1 = yn + 1 − ax n
 y = bx (3.45)
 n+1 n
]

 	Construct the two bifurcation diagrams for [image: xn] and [image: yn] for
 [image: b = 0.3], [image: 1.0 < a < 1.5]. Check if the values [image: a = 1.01,1.4] that
 we will use below correspond to stable periodic trajectories or
 chaotic behavior.

 	Write a program in a file attractor.f90 which will take NINIT
 = NL [image: ×] NL initial conditions [image: (x0 (i),y0(i))] [image: i = 1,...,]NL on a
 NL[image: ×]NL lattice of the square [image: xm ≤ x0 ≤ xM], [image: ym ≤ y0 ≤ yM].
 Each of the points [image: (x0(i),y0(i))] will evolve according to equation
 (3.45) for [image: n =] NSTEPS steps. The program will print the
 points [image: (xn(i),yn(i))] to the stdout. Choose [image: xm = ym = 0.6],
 [image: xM = yM = 0.8], NL[image: = 200].

 	Choose [image: a = 1.01], [image: b = 0.3] and plot the points [image: (xn (i),yn(i))] for
 [image: n = 0,] [image: 1,] [image: 2,] [image: 3,] [image: 10,] [image: 20,] [image: 30,] [image: 40,] [image: 60,] [image: 1000] on the same
 diagram.

 	Choose [image: a = 1.4], [image: b = 0.3] and plot the points [image: (xn (i),yn(i))] for
 [image: n = 0,...,7] on the same diagram.

 	Choose [image: a = 1.4], [image: b = 0.3] and plot the points [image: (xn(i),yn(i))] for
 [image: n = 999] on the same diagram. Observe the Hénon strange
 attractor and its fractal properties. It is characterized by a
 Hausdorff12
 dimension [image: dH = 1.261 ± 0.003]. Then magnify the regions
 	

 [image: {(x,y)| − 1.290 < x < − 1.270, 0.378 < y < 0.384 },
{(x,y)| 1.150 < x < − 1.130, 0.366 < y < 0.372 },
{(x,y)| 0.108 < x < 0.114, 0.238 < y < 0.241 },
{(x,y)| 0.300 < x < 0.320, 0.204 < y < 0.213 },
{(x,y)| 1.076 < x < 1.084, 0.090 < y < 0.096 },

{(x,y)| 1.216 < x < 1.226, 0.032 < y < 0.034 }.
]

 	Consider the Duffing map:

 [image: x = y
 n+1 n 3
yn+1 = − bxn + ayn − yn. (3.46)
]

 	Construct the two bifurcation diagrams for [image: xn] and [image: yn] for
 [image: b = 0.3], [image: 0 < a < 2.78]. Choose four different initial conditions
 [image: (x0,y0) =] [image: √ -- √ --
(±1 ∕ 2,±1 ∕ 2)]. What do you observe?

 	Use the program attractor.f90 from problem 33 in order to
 study the attractor of the map for [image: b = 0.3], [image: a = 2.75].

 	Consider the Tinkerbell map:

 [image: xn+1 = x2 − y2 + axn + byn
 n n
yn+1 = 2xnyn + cxn + dyn. (3.47)
]

 	Choose [image: a = 0.9], [image: b = − 0.6013], [image: c = 2.0], [image: d = 0.50]. Plot a
 trajectory on the plane by plotting the points [image: (xn,yn)] for
 [image: n = 0,...,10000] with [image: (x0,y0) = (− 0.72, − 0.64)].

 	Use the program attractor.f90 from problem 33 in order to
 study the attractor of the map for the values of the parameters
 [image: a], [image: b], [image: c], [image: d] given above. Choose [image: xm = − 0.68], [image: xM = − 0.76],
 [image: y = − 0.60
 m], [image: y = − 0.68
 M], [image: n = 10000].

 	Repeat the previous question by taking [image: d = 0.27].

Chapter 4
Motion of a Particle

In this chapter we will study the numerical solution of classical equations of
motion of one dimensional mechanical systems, e.g. a point particle moving on the
line, the simple pendulum etc. We will make an introduction to the numerical
integration of ordinary differential equations with initial conditions and in
particular to the Euler and Runge-Kutta methods. We study in detail the
examples of the damped harmonic oscillator and of the damped pendulum under
the influence of an external periodic force. The latter system is nonlinear and
exhibits interesting chaotic behavior.

 4.1 Numerical Integration of Newton’s Equations

Consider the problem of the solution of the dynamical equations of motion of one
particle under the influence of a dynamical field given by Newton’s law. The
equations can be written in the form

 	

[image: d2⃗x-
dt2 = ⃗a(t,⃗x,⃗v),
]
	(4.1)

where

 	

[image: ⃗
⃗a(t,⃗x,⃗v) ≡ F- ⃗v = d⃗x.
 m dt
]
	(4.2)

From the numerical analysis point of view, the problems that we will discuss are
initial value problems for ordinary differential equations where the initial
conditions

 	

[image: ⃗x(t0) = ⃗x0 ⃗v(t0) = ⃗v0,
]
	(4.3)

determine a unique solution [image: ⃗x(t)]. The equations (4.1) are of second order with
respect to time and it is convenient to write them as a system of twice as many
first order equations:

 	

[image: d⃗x-= ⃗v d⃗v-= ⃗a(t,⃗x,⃗v).
dt dt
]
	(4.4)

In particular, we will be interested in the study of the motion of a particle
moving on a line (1 dimension), therefore the above equations become

[image: dx dv
 ---= v --- = a(t,x,v) 1-dimension
 dt dt
x(t0) = x0 v(t0) = v0. (4.5)
]

When the particle moves on the plane (2 dimensions) the equations of motion
become

[image: dx- dvx-
 dt = vx dt = ax (t,x, vx,y,vy) 2-dimensions
 dy dv
 ---= vy --y-= ay(t,x,vx, y,vy)
 dt dt
x (t0) = x0 vx(t0) = v0x
 y(t0) = y0 vy(t0) = v0y, (4.6)
]

 4.2 Prelude: Euler Methods

As a first attempt to tackle the problem, we will study a simple pendulum of
length [image: l] in a homogeneous gravitational field [image: g] (figure 4.1).

[image: pict]

Figure 4.1: A simple pendulum of length [image: l] in a homogeneous gravitational field [image: g].

[image: pict]

Figure 4.2: Convergence of Euler’s method for a simple pendulum with period
[image: 2
T ≈ 1.987(ω = 10.0)] for several values of the time step [image: Δt] which is determined
by the number of integration steps Nt= [image: 50− 100,000]. The solution is given for
[image: 𝜃0 = 0.2], [image: ω0 = 0.0] and we compare it with the known solution for small angles with
[image: α(t) ≈ − (g∕l)𝜃].

[image: pict]

Figure 4.3: Convergence of the Euler-Cromer method, similarly to figure 4.2. We
observe a faster convergence compared to Euler’s method.

[image: pict]

Figure 4.4: Convergence of the Euler-Verlet method, similarly to figure 4.2. We observe
a faster convergence than Euler’s method, but the roundoff errors make the results useless
for Nt[image: ≳ 50,000] (note what happens when Nt[image: = 100,000]. Why?).

[image: pict]

Figure 4.5: Convergence of Euler’s method for the simple pendulum like in figure 4.2
for [image: 𝜃0 = 3.0], [image: ω0 = 0.0]. The behavior of the angular velocity is shown and we notice
unstable behavior for Nt[image: ≲ 1,000].

[image: pict]

Figure 4.6: Convergence of Euler-Cromer’s method, like in figure 4.5. We observe a
faster convergence than for Euler’s method.

[image: pict]

Figure 4.7: Convergence of the Euler-Verlet method, similarly to figure 4.5. We observe
a faster convergence compared to Euler’s method but that the roundoff errors make the
results unstable for Nt[image: ≳ 18,000].

 The equations of motion are given by the differential equations

[image: d2𝜃 g
--2- = − -sin 𝜃
dt l
 d𝜃- = ω, (4.7)
 dt
]

which can be rewritten as a first order system of differential equations

[image: d𝜃- = ω
 dt
dω- g-
 dt = − l sin𝜃 , (4.8)
]

The equations above need to be written in a discrete form
appropriate for a numerical solution with the aid of a computer. We
split the interval of time of integration [image: [ti,tf]] to [image: N − 1] equal
intervals1
of width [image: Δt ≡ h], where [image: h = (tf − ti)∕(N − 1)]. The derivatives are
approximated by the relations [image: (xn+1 − xn)∕Δt ≈ x′n], so that

[image: ωn+1 = ωn + αnΔt

𝜃n+1 = 𝜃n + ωnΔt. (4.9)
]

where [image: α = − (g∕l)sin𝜃] is the angular acceleration. This is the so-called
Euler method. The error at each step is estimated to be of order [image: (Δt)2].
This is most easily seen by Taylor expanding around the point [image: tn]
and neglecting all terms starting from the second derivative and
beyond2 .
What we are mostly interested in is in the total error of the estimate of the
functions we integrate for at time [image: t
 f]! We expect that errors accumulate in an
additive way at each integration step, and since the number of steps is
[image: N ∝ 1∕ Δt] the total error should be [image: 2
∝ (Δt) × (1∕Δt) = Δt]. This is indeed
what happens, and we say that Euler’s method is a first order method. Its range
of applicability is limited and we only study it for academic reasons. Euler’s
method is asymmetric because it uses information only from the beginning of the
integration interval [image: (t,t + Δt)]. It can be put in a more balanced form by using
the velocity at the end of the interval [image: (t,t + Δt)]. This way we obtain the
Euler-Cromer method with a slightly improved behavior, but which is still of first
order

[image: ωn+1 = ωn + αnΔt
𝜃n+1 = 𝜃n + ωn+1Δt. (4.10)

]

 An improved algorithm is the Euler–Verlet method which is of second order and gives
total error3
[image: ∼ (Δt)2]. This is given by the equations

[image: 2
𝜃n+1 = 2 𝜃n − 𝜃n−1 + αn (Δt)
 𝜃n+1 −-𝜃n−1-
 ωn = 2 Δt . (4.11)
]

 The price that we have to pay is that we have to use a two step relation in
order to advance the solution to the next step. This implies that we have to
carefully determine the initial conditions of the problem which are given only at
one given time [image: ti]. We make one Euler time step backwards in order to define the
value of [image: 𝜃0]. If the initial conditions are [image: 𝜃1 = 𝜃 (ti)], [image: ω1 = ω(ti)], then we
define

 	

[image: 1 2
𝜃0 = 𝜃1 − ω1Δt + -α1 (Δt) .
 2
]
	(4.12)

It is important that at this step the error introduced is not larger than [image: 2
𝒪 (Δt)],
otherwise it will spoil and eventually dominate the [image: 𝒪(Δt2)] total error of the
method introduced by the intermediate steps. At the last step we also have to
take

 	

[image: ωN = 𝜃N-−-𝜃N-−1.
 Δt
]
	(4.13)

Even though the method has smaller total error than the Euler method, it
becomes unstable for small enough [image: Δt] due to roundoff errors. In particular, the
second equation in (4.11) gives the angular velocity as the ratio of two small
numbers. The problem is that the numerator is the result of the subtraction of
two almost equal numbers. For small enough [image: Δt], this difference has to be
computed from the last digits of the finite representation of the numbers [image: 𝜃n+1]
and [image: 𝜃n] in the computer memory. The accuracy in the determination of
[image: (𝜃n+1 − 𝜃n)] decreases until it eventually becomes exactly zero. For the first
equation of (4.11) , the term [image: α Δt2
 n] is smaller by a factor [image: Δt] compared to the
term [image: αnΔt] in Euler’s method. At some point, by decreasing [image: Δt], we obtain
[image: 2
αn Δt ≪ 2𝜃n − 𝜃n−1] and the accuracy of the method vanishes due to the finite
representation of real number in the memory of the computer. When the
numbers [image: αn Δt2] and [image: 2𝜃n − 𝜃n−1] differ from each other by more that
approximately seven orders of magnitude, adding the first one to the
second is equivalent to adding zero and the contribution of the acceleration
vanishes4 .

 Writing programs that implement the methods discussed so far is quite simple.
We will write a program that compares the results from all three methods
Euler, Euler–Cromer and Euler–Verlet. The main program is mainly a
user interface, and the computation is carried out by three subroutines
euler, euler_cromer and euler_verlet. The user must provide the
function accel(x) which gives the angular acceleration as a function of
x. The variable x in our problem corresponds to the angle [image: theta]. For
starters we take accel(x)= -10.0 * sin(x), the acceleration of the simple
pendulum.

 The data structure is very simple: Three real arrays REAL T(P), X(P) and
V(P) store the times [image: tn], the angles [image: 𝜃n] and the angular velocities [image: ωn] for
[image: n = 1,...,Nt]. The user determines the time interval for the integration from
[image: ti = 0] to [image: tf = Tfi] and the number of discrete times Nt. The latter should be
less than P, the size of the arrays. She also provides the initial conditions
[image: 𝜃 = Xin
 0] and [image: ω = Vin
 0]. After this, we call the main integration routines which
take as input the initial conditions, the time interval of the integration and the
number of discrete times Xin,Vin,Tfi,Nt. The output of the routines is the
arrays T,X,V which store the results for the time, position and velocity
respectively. The results are printed to the files euler.dat, euler_cromer.dat
and euler_verlet.dat.

 After setting the initial conditions and computing the time step
[image: Δt ≡ h = Tfi ∕(Nt − 1)], the integration in each of the subroutines is performed
in do loops which advance the solution for time [image: Δt]. The results are stored at
each step in the arrays T,X,V. For example, the central part of the program for
Euler’s method is:

 T(1) = 0.0

 X(1) = Xin

 V(1) = Vin

 h = Tfi/(Nt-1)

 do i = 2,Nt

 T(i) = T(i-1)+h

 X(i) = X(i-1)+V(i-1)*h

 V(i) = V(i-1)+accel(X(i-1))*h

 enddo

 Some care has to be taken in the case of the Euler–Verlet method where one has
to initialize the first two steps, as well as take special care for the last step for the
velocity:

 T(1) = 0.0

 X(1) = Xin

 V(1) = Vin

 X0 = X(1) - V(1) * h + accel(X(1)) *h*h/2.0

 T(2) = h

 X(2) = 2.0*X(1) - X0 + accel(X(1)) *h*h

 do i = 3,Nt

 enddo

 V(Nt)= (X(Nt)-X(Nt-1))/h

 The full program can be found in the file euler.f90 and is listed below:

!===

!Program to integrate equations of motion for accelerations

!which are functions of x with the method of Euler,

!Euler-Cromer and Euler-Verlet.

!The user sets initial conditions and the subroutines return

!X(t) and V(t)=dX(t)/dt in arrays T(1..Nt),X(1..Nt),V(1..Nt)

!The user provides number of times Nt and the final

!time Tfi. Initial time is assumed to be t_i=0 and the

!integration step h = Tfi/(Nt-1)

!The user programs a real function accel(x) which gives the

!acceleration dV(t)/dt as function of X.

!NOTE: T(1) = 0 T(Nt) = Tfi

!===

program diff_eq_euler

 implicit none

 integer,parameter:: P=110000 ! The size of the arrays

 real,dimension(P):: T,X,V ! time t,x(t),v(t)=dx/dt

 real :: Xin,Vin,Tfi ! initial conditions

 integer :: Nt,i

!The user provides initial conditions X_0,V_0 final time t_f

!and Nt:

 print *,’Enter X_0,V_0,t_f,Nt (t_i=0):’

 read(5,*)Xin,Vin,Tfi,Nt

!This check is necessary in order to avoid memory

!access violations:

 if(Nt .ge. P)then

 print *,’Nt must be strictly less than P. Nt,P= ’,Nt,P

 stop

 endif

!Xin= X(1), Vin=V(1), T(1)=0 and the routine gives evolution in

!T(2..Nt), X(2..Nt), V(2..Nt) which we print in a file

 call euler(Xin,Vin,Tfi,Nt,T,X,V)

 open(unit=20,file="euler.dat")

 do i=1,Nt

!Each line in data file has time, position, velocity:

 write(20,*) T(i),X(i),V(i)

 enddo

 close(20) !we close the unit to be reused below

!------------------------------------

!We repeat everything for each method

 call euler_cromer(Xin,Vin,Tfi,Nt,T,X,V)

 open(unit=20,file="euler_cromer.dat")

 do i=1,Nt

 write(20,*) T(i),X(i),V(i)

 enddo

 close(20)

!------------------------------------

 call euler_verlet(Xin,Vin,Tfi,Nt,T,X,V)

 open(unit=20,file="euler_verlet.dat")

 do i=1,Nt

 write(20,*) T(i),X(i),V(i)

 enddo

 close(20)

!------------------------------------

end program diff_eq_euler

!===

!Function which returns the value of acceleration at

!position x used in the integration subroutines

!euler, euler_cromer and euler_verlet

!===

real function accel(x)

 implicit none

 real x

 accel = -10.0*sin(x)

end function accel

!===

!Driver routine for integrating equations of motion

!using the Euler method

!Input:

!Xin=X(1), Vin=V(1) -- initial condition at t=0,

!Tfi the final time and Nt the number of times

!Output:

!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which

!gives x(t_k)=X(k), dx/dt(t_k)=V(k), t_k=T(k) k=1..Nt

!where for k=1 we have the initial condition.

!===

subroutine euler(Xin,Vin,Tfi,Nt,T,X,V)

 implicit none

 integer :: Nt

 real,dimension(Nt) :: T,X,V !time t,x(t),v(t)=dx/dt

 real :: Xin,Vin,Tfi

 integer :: i

 real :: h,accel !**declare the function accel**

!Initial conditions set here:

 T(1) = 0.0

 X(1) = Xin

 V(1) = Vin

!h is the time step Dt

 h = Tfi/(Nt-1)

 do i = 2,Nt

 T(i) = T(i-1)+h ! time advances by Dt=h

 X(i) = X(i-1)+V(i-1)*h ! advancement of position

 V(i) = V(i-1)+accel(X(i-1))*h !and velocity.

 enddo

end subroutine euler

!===

!Driver routine for integrating equations of motion

!using the Euler-Cromer method

!Input:

!Xin=X(1), Vin=V(1) -- initial condition at t=0,

!Tfi the final time and Nt the number of times

!Output:

!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which

!gives x(t_i)=X(i), dx/dt(t_i)=V(i), t_i=T(i) i=1..Nt

!where for i=1 we have the initial condition.

!===

subroutine euler_cromer(Xin,Vin,Tfi,Nt,T,X,V)

 implicit none

 integer :: Nt

 real,dimension(Nt):: T,X,V !time t,x(t),v(t)=dx/dt

 real :: Xin,Vin,Tfi

 integer :: i

 real :: h,accel

 T(1) = 0.0

 X(1) = Xin

 V(1) = Vin

 h = Tfi/(Nt-1)

 do i = 2,Nt

 T(i) = T(i-1)+h

 V(i) = V(i-1)+accel(X(i-1))*h

 !here is the difference compared to Euler

 X(i) = X(i-1)+V(i)*h

 enddo

end subroutine euler_cromer

!===

!Driver routine for integrating equations of motion

!using the Euler - Verlet method

!Input:

!Xin=X(1), Vin=V(1) -- initial condition at t=0,

!Tfi the final time and Nt the number of times

!Output:

!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which

!gives x(t_i)=X(i), dx/dt(t_i)=V(i), t_i=T(i) i=1..Nt

!where for i=1 we have the initial condition.

!===

subroutine euler_verlet(Xin,Vin,Tfi,Nt,T,X,V)

 implicit none

 integer :: Nt

 real,dimension(Nt):: T,X,V !time t,x(t),v(t)=dx/dt

 real :: Xin,Vin,Tfi

 integer :: i

 real :: h,h2,X0,o2h

 real :: accel

!Initial conditions set here:

 T(1) = 0.0

 X(1) = Xin

 V(1) = Vin

 h = Tfi/(Nt-1) ! time step

 h2 = h*h ! time step squared

 o2h = 0.5/h ! h/2

!We have to initialize one more step: X0 corresponds to ’X(0)’

 X0 = X(1) - V(1) * h + accel(X(1)) *h2/2.0

 T(2) = h

 X(2) = 2.0*X(1) - X0 + accel(X(1)) *h2

!Now i starts from 3:

 do i = 3,Nt

 T(i) = T(i-1)+h

 X(i) = 2.0*X(i-1) - X(i-2) + accel(X(i-1))*h2

 V(i-1) = o2h * (X(i)-X(i-2))

 enddo

!Notice that we have one more step for the velocity:

 V(Nt)= (X(Nt)-X(Nt-1))/h

end subroutine euler_verlet

 Compiling the running the program can be done with the commands:

> gfortran euler.f90 -o euler

> ./euler

 Enter X_0,V_0,t_f,Nt (t_i=0):

0.2 0.0 6.0 1000

> ls euler*.dat

euler_cromer.dat euler.dat euler_verlet.dat

> head -n 5 euler.dat

 0.000000 0.2000000 0.000000

 6.0060062E-03 0.2000000 -1.1932093E-02

 1.2012012E-02 0.1999283 -2.3864185E-02

 1.8018018E-02 0.1997850 -3.5792060E-02

 2.4024025E-02 0.1995700 -4.7711499E-02

 The last command shows the first 5 lines of the file euler.dat. We see the data
for the time, the position and the velocity stored in 3 columns. We can graph the
results using gnuplot:

gnuplot> plot "euler.dat" using 1:2 with lines

gnuplot> plot "euler.dat" using 1:3 with lines

 These commands result in plotting the positions and the velocities as a function
of time respectively. We can add the results of all methods to the last plot with
the commands:

gnuplot> replot "euler_cromer.dat" using 1:3 with lines

gnuplot> replot "euler_verlet.dat" using 1:3 with lines

 The results can be seen in figures 4.2–4.7. Euler’s method is unstable unless we
take a quite small time step. The Euler–Cromer method behaves impressively
better. The results converge and remain constant for Nt[image: ∼ 100, 000]. The
Euler–Verlet method converges much faster, but roundoff errors kick in soon. This
is more obvious in figure 4.7 where the initial angular position is large. For small
angles we can compare with the solution one obtains for the harmonic pendulum
([image: sin(𝜃) ≈ 𝜃]):

[image: g 2
α(𝜃) = − l𝜃 ≡ − Ω 𝜃

 𝜃(t) = 𝜃0cos(Ωt) + (ω0∕Ω)sin(Ωt)
ω (t) = ω0cos(Ωt) − (𝜃0Ω)sin(Ωt). (4.14)
]

In figures 4.2–4.4 we observe that the results agree with the above formulas for the
values of [image: Δt] where the methods converge. This way we can check our program
for bugs. The plot of the functions above can be done with the following gnuplot
commands5 :

gnuplot> set dummy t

gnuplot> omega2 = 10

gnuplot> X0 = 0.2

gnuplot> V0 = 0.0

gnuplot> omega = sqrt(omega2)

gnuplot> x(t) = X0 * cos(omega * t) +(V0/omega)*sin(omega*t)

gnuplot> v(t) = V0 * cos(omega * t) -(omega*X0)*sin(omega*t)

gnuplot> plot x(t), v(t)

 The results should not be compared only graphically since subtle differences can
remain unnoticed. It is more desirable to plot the differences of the theoretical
values from the numerically computed ones which can be done using the
commands:

gnuplot> plot "euler.dat" using 1:($2-x($1)) with lines

gnuplot> plot "euler.dat" using 1:($3-v($1)) with lines

 The command using 1:($2-x($1)) puts the values found in the
first column on the [image: x] axis and the value found in the second column
minus the value of the function x(t) for [image: t] equal to the value found in
the first column on the [image: y] axis. This way, we can make the plots shown
in6
figures 4.11-4.14.

 4.3 Runge–Kutta Methods

Euler’s method is a one step finite difference method of first order. First
order means that the total error introduced by the discretization of the
integration interval [image: [ti,tf]] by [image: N] discrete times is of order [image: ∼ 𝒪 (h)], where
[image: h ≡ Δt = (tf − ti)∕N] is the time step of the integration. In this section we will
discuss a generalization of this approach where the total error will be of higher
order in [image: h]. This is the class of Runge-Kutta methods which are one step
algorithms where the total discretization error is of order [image: p
∼ 𝒪 (h)]. The
local error introduced at each step is of order [image: p+1
∼ 𝒪 (h)] leading after
[image: N = (tf − ti)∕Δt] steps to a maximum error of order

 	

[image: tf − ti 1
∼ 𝒪 (hp+1) × N = 𝒪 (hp+1) × -------∼ 𝒪 (hp+1) × --= 𝒪 (hp).
 Δt h
]
	(4.15)

In such a case we say that we have a Runge-Kutta method of [image: pth] order.
The price one has to pay for the increased accuracy is the evaluation of
the derivatives of the functions in more than one points in the interval
[image: (t,t + Δt)].

 Let’s consider for simplicity the problem with only one unknown function
[image: x (t)] which evolves in time according to the differential equation:

 	

[image: dx-= f(t,x).
dt
]
	(4.16)

[image: pict]

Figure 4.8: The geometry of the step of the Runge-Kutta method of [image: 1st] order given
by equation (4.17) .

 Consider the first order method first. The most naive approach would be to
take the derivative to be given by the finite difference

 	

[image: dx- xn+1-−--xn
 dt ≈ Δt = f (tn,xn) ⇒ xn+1 = xn + hf(tn,xn).
]
	(4.17)

By Taylor expanding, we see that the error at each step is [image: 𝒪 (h2)], therefore the
error after integrating from [image: t → t
i f] is [image: 𝒪 (h)]. Indeed,

 	

[image: dx
xn+1 = x (tn + h) = xn + h ---(xn) + 𝒪 (h2) = xn + hf (tn,xn) + 𝒪 (h2).
 dt
]
	(4.18)

The geometry of the step is shown in figure 4.8. We start from point 1 and by
linearly extrapolating in the direction of the derivative [image: k1 ≡ f(tn,xn)] we
determine the point [image: xn+1].

[image: pict]

Figure 4.9: The geometry of an integration step of the 2nd order Runge-Kutta method
given by equation (4.19) .

 We can improve the method above by introducing an intermediate
point 2. This process is depicted in figure 4.9. We take the point 2 in the
middle of the interval [image: (tn,tn+1)] by making a linear extrapolation from
[image: x
 n] in the direction of the derivative [image: k ≡ f(t ,x)
 1 n n]. Then we use the
slope at point 2 as an estimator of the derivative within this interval, i.e.
[image: k2 ≡ f (tn+1∕2,xn+1∕2) = f(tn + h∕2,xn + (h ∕2)k1)]. We use [image: k2] to linearly
extrapolate from [image: xn] to [image: xn+1]. Summarizing, we have that

[image: k1 = f (tn,xn)
 h h
 k2 ≡ f (tn + --,xn + --k1)
 2 2
xn+1 = xn + hk2. (4.19)
]

For the procedure described above we have to evaluate [image: f] twice at each step,
thereby doubling the computational effort. The error at each step (4.19) becomes
[image: 3
∼ 𝒪 (h)], however, giving a total error of [image: 2 2
∼ 𝒪 (h) ∼ 𝒪 (1∕N)]. So for given
computational time, (4.19) is superior to (4.17) .

[image: pict]

Figure 4.10: The geometry of an integration step of the Runge-Kutta method of 4th
order given by equation (4.20) .

 We can further improve the accuracy gain by using the Runge–Kutta method of
4th order. In this case we have 4 evaluations of the derivative [image: f] per step, but the
total error becomes now [image: 4
∼ 𝒪(h)] and the method is superior to that of (4.19)
7.
The process followed is explained geometrically in figure 4.10. We use 3
intermediate points for evolving the solution from [image: xn] to [image: xn+1]. Point 2 is
determined by linearly extrapolating from [image: xn] to the midpoint of the
interval [image: (tn,tn+1 = tn + h)] by using the direction given by the derivative
[image: k1 ≡ f (tn,xn)], i.e. [image: x2 = xn + (h ∕2)k1]. We calculate the derivative
[image: k ≡ f (t + h ∕2,x + (h∕2)k)
 2 n n 1] at the point 2 and we use it in order to determine
point 3, also located at the midpoint of the interval [image: (tn,tn+1)]. Then we calculate
the derivative [image: k3 ≡ f(tn + h ∕2,xn + (h∕2)k2)] at the point 3 and we use
it to linearly extrapolate to the end of the interval [image: (tn, tn+1)], thereby
obtaining point 4, i.e. [image: x4 = xn + hk3]. Then we calculate the derivative
[image: k ≡ f (t + h, x + hk)
 4 n n 3] at the point 4, and we use all four derivative [image: k ,k ,k
 1 2 3]
and [image: k4] as estimators of the derivative of the function in the interval
[image: (tn,tn+1)]. If each derivative contributes with a particular weight in this
estimate, the discretization error can become [image: ∼ 𝒪 (h5)]. Such a choice is

[image: k1 = f(tn,xn)
 h- h-
 k2 = f(tn + 2 ,xn + 2k1)
 h h
 k3 = f(tn + --,xn + -k2)
 2 2
 k4 = f(tn + h,xn + hk3)
 h
xn+1 = xn + --(k1 + 2k2 + 2k3 + k4). (4.20)
 6
]

We note that the second term of the last equation takes an average of the four
derivatives with weights [image: 1∕6], [image: 1∕3], [image: 1∕3] and [image: 1∕6] respectively. A generic small
change in these values will increase the discretization error to worse than
[image: h5].
 We remind to the reader the fact that by decreasing [image: h] the discretization
errors decrease, but that roundoff errors will start showing up for small enough
[image: h]. Therefore, a careful determination of [image: h] that minimizes the total error
should be made by studying the dependence of the results as a function of
[image: h].

 4.3.1 A Program for the 4th Order Runge–Kutta

Consider the problem of the motion of a particle in one dimension. For
this, we have to integrate a system of two differential equations (4.5)
for two unknown functions of time [image: x1(t) ≡ x(t)] and [image: x2 (t) ≡ v(t)] so
that

 	

[image: dx1-= f1(t,x1,x2) dx2- = f2(t,x1,x2)
 dt dt

]
	(4.21)

 In this case, equations (4.20) generalize to:

[image: k11 = f1(tn,x1,n,x2,n)
 k21 = f2(tn,x1,n,x2,n)

 k12 = f1(tn + h-,x1,n + h-k11,x2,n + h-k21)
 2 2 2
 h- h- h-
 k22 = f2(tn + 2 ,x1,n + 2k11,x2,n + 2k21)
 h h h
 k13 = f1(tn + --,x1,n + --k12,x2,n + --k22)
 2 2 2
 k = f (t + h-,x + h-k ,x + h-k)
 23 2 n 2 1,n 2 12 2,n 2 22
 k14 = f1(tn + h,x1,n + hk13,x2,n + hk23)

 k24 = f2(tn + h,x1,n + hk13,x1,n + hk23)
 h-
x1,n+1 = x1,n + 6 (k11 + 2k12 + 2k13 + k14)
 h
x2,n+1 = x1,n + --(k21 + 2k22 + 2k23 + k24). (4.22)
 6
]

 Programming this algorithm is quite simple. The main program is an interface
between the user and the driver routine of the integration. The user enters the
initial and final times [image: ti =] Ti and [image: tf =] Tf and the number of discrete time
points Nt. The initial conditions are [image: x1(ti) =] X10, [image: x2(ti) =] X20. The main data
structure consists of three real arrays T(P), X1(P), X2(P) which store the times
[image: ti ≡ t1,t2,...,tNt ≡ tf] and the corresponding values of the functions [image: x1(tk)]
and [image: x (t)
 2 k], [image: k = 1, ...,Nt]. The main program calls the driver routine
RK(T,X1,X2,Ti,Tf,X10,X20,Nt) which “drives” the heart of the program, the
subroutine RKSTEP(t,x1,x2,dt) which performs one integration step using

equations (4.22) . RKSTEP evolves the functions x1, x2 at time t by one step [image: h =]
dt. The routine RK stores the calculated values in the arrays T, X1 and X2 at each
step. When RK returns the control to the main program, all the results
are stored in T, X1 and X2, which are subsequently printed in the file
rk.dat. The full program is listed below and can be found in the file
rk.f90:

!==

!Program to solve a 2 ODE system using Runge-Kutta Method

!User must supply derivatives

!dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)

!as real functions

!Output is written in file rk.dat

!==

program rk_solve

 implicit none

 integer, parameter :: P=110000

 real,dimension(P) :: T,X1,X2

 real :: Ti,Tf,X10,X20

 integer :: Nt

 integer :: i

!Input:

 print *,’Runge-Kutta Method for 2-ODEs Integration’

 print *,’Enter Nt,Ti,TF,X10,X20:’

 read *, Nt,Ti,Tf,X10,X20

 print *,’Nt = ’,Nt

 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf

 print *,’ X1(Ti)=’,X10,’ X2(Ti)=’,X20

 if(Nt.gt.P) stop ’Nt>P’

!The Calculation:

 call RK(T,X1,X2,Ti,Tf,X10,X20,Nt)

!Output:

 open(unit=11,file=’rk.dat’)

 do i=1,Nt

 write(11,*)T(i),X1(i),X2(i)

 enddo

 close(11)

end program rk_solve

!==

!The functions f1,f2(t,x1,x2) provided by the user

!==

real function f1(t,x1,x2)

 implicit none

 real :: t,x1,x2

 f1=x2 !dx1/dt= v = x2

end function f1

!--

real function f2(t,x1,x2)

 implicit none

 real :: t,x1,x2

 f2=-10.0D0*x1 !harmonic oscillator

end function f2

!==

!RK(T,X1,X2,Ti,Tf,X10,X20,Nt) is the driver

!for the Runge-Kutta integration routine RKSTEP

!Input: Initial and final times Ti,Tf

! Initial values at t=Ti X10,X20

! Number of steps of integration: Nt-1

! Size of arrays T,X1,X2

!Output: real arrays T(Nt),X1(Nt),X2(Nt) where

!T(1) = Ti X1(1) = X10 X2(1) = X20

! X1(k) = X1(at t=T(k)) X2(k) = X2(at t=T(k))

!T(Nt)=TF

!==

subroutine RK(T,X1,X2,Ti,Tf,X10,X20,Nt)

 implicit none

 integer :: Nt

 real,dimension(Nt):: T,X1,X2

 real :: Ti,Tf,X10,X20

 real :: dt

 real :: TS,X1S,X2S !values of time and X1,X2 at given step

 integer :: i

!Initialize variables:

 dt = (Tf-Ti)/(Nt-1)

 T (1) = Ti

 X1(1) = X10

 X2(1) = X20

 TS = Ti

 X1S = X10

 X2S = X20

!Make RK steps: The arguments of RKSTEP

!are replaced with the new ones!

 do i=2,Nt

 call RKSTEP(TS,X1S,X2S,dt)

 T (i) = TS

 X1(i) = X1S

 X2(i) = X2S

 enddo

end subroutine RK

!==

!Subroutine RKSTEP(t,x1,x2,dt)

!Runge-Kutta Integration routine of ODE

!dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)

!User must supply derivative functions:

!real function f1(t,x1,x2)

!real function f2(t,x1,x2)

!Given initial point (t,x1,x2) the routine advances it

!by time dt.

!Input : Inital time t and function values x1,x2

!Output: Final time t+dt and function values x1,x2

!Careful!: values of t,x1,x2 are overwritten...

!==

subroutine RKSTEP(t,x1,x2,dt)

 implicit none

 real :: t,x1,x2,dt

 real :: f1,f2

 real :: k11,k12,k13,k14,k21,k22,k23,k24

 real :: h,h2,h6

 h =dt !h =dt, integration step

 h2 =0.5D0*h !h2=h/2

 h6 =h/6.0 !h6=h/6

 k11=f1(t,x1,x2)

 k21=f2(t,x1,x2)

 k12=f1(t+h2,x1+h2*k11,x2+h2*k21)

 k22=f2(t+h2,x1+h2*k11,x2+h2*k21)

 k13=f1(t+h2,x1+h2*k12,x2+h2*k22)

 k23=f2(t+h2,x1+h2*k12,x2+h2*k22)

 k14=f1(t+h ,x1+h *k13,x2+h *k23)

 k24=f2(t+h ,x1+h *k13,x2+h *k23)

 t =t+h

 x1 =x1+h6*(k11+2.0D0*(k12+k13)+k14)

 x2 =x2+h6*(k21+2.0D0*(k22+k23)+k24)

end subroutine RKSTEP

 4.4 Comparison of the Methods

[image: pict]

Figure 4.11: The discrepancy of the numerical results of the Euler method from
the analytic solution for the simple harmonic oscillator. The parameters chosen
are [image: ω2 = 10], [image: ti = 0], [image: tf = 6], [image: x(0) = 0.2], [image: v(0) = 0] and the number of steps is
[image: N = 50,500,5,000,50,000]. Observe that the error becomes approximately ten times
smaller each time according to the expectation of being of order [image: ∼ 𝒪(Δt)].

[image: pict]

Figure 4.12: Like in figure 4.11 for the Euler-Cromer method. The error becomes
approximately ten times smaller each time according to the expectation of being of order
[image: ∼ 𝒪(Δt)].

[image: pict]

Figure 4.13: Like in figure 4.11 for the Euler-Verlet method. The error becomes
approximately 100 times smaller each time according to the expectation of being of order
[image: ∼ 𝒪(Δt2)].

[image: pict]

Figure 4.14: Like in figure 4.11 for the 4th order Runge–Kutta method. The error
becomes approximately [image: −4
10] times smaller each time according to the expectation of
being of order [image: ∼ 𝒪 (Δt4)]. The roundoff errors become apparent for [image: 50,000] steps.

[image: pict]

Figure 4.15: Like in figure 4.11 for the case of mechanical energy for the Euler method.

[image: pict]

Figure 4.16: Like in figure 4.11 for the case of mechanical energy for the Euler–Cromer
method.

[image: pict]

Figure 4.17: Like in figure 4.11 for the case of mechanical energy for the Euler–Verlet
method.

[image: pict]

Figure 4.18: Like in figure 4.11 for the case of mechanical energy for the 4th order
Runge–Kutta method. Roundoff errors appear for large enough number of steps.

 In this section we will check our programs for correctness and accuracy w.r.t.
discretization and roundoff errors. The simplest test is to check the results against
a known analytic solution of a simple model. This will be done for the simple
harmonic oscillator. Our programs will need small changes which are summarized
below. First, we will need to use higher accuracy variables and we will change
all variables of type REAL to REAL(8). For this we need to change the
corresponding declarations in the beginning of each (sub)program. For each
numerical constant in the program we need to put an explicit exponent
with the letter D instead of an E. For example 0.5 [image: →] 0.5D0, 1.2E-3
[image: →] 1.2D-3 etc. Then we need to alter the functions that compute the
acceleration of the particle to give [image: a = − ω2x]. We will take [image: ω2 = 10]
([image: T ≈ 1.987]). Therefore the relevant part of the program in euler.f90
becomes

real(8) function accel(x)

 implicit none

 real(8) :: x

 accel = -10.0D0*x

end function accel

 and that of the program in rk.f90 becomes

real(8) function f2(t,x1,x2)

 implicit none

 real(8) :: t,x1,x2

 f2=-10.0D0*x1

end function f2

 The programs are run for a given time interval [image: ti = 0] to [image: tf = 6] with the
initial conditions [image: x = 0.2
 0], [image: v = 0
 0]. The time step [image: Δt] is varied by
varying the number of steps Nt-1. The computed numerical solution is
compared to the well known solution for the simple harmonic oscillator

[image: a(x) = − ω2x

xh(t) = x0 cos(ωt) + (v0∕ω)sin(ωt)
vh(t) = v0 cos(ωt) − (x0 ω)sin(ωt), (4.23)
]

We study the deviation [image: δx(t) = |x (t) − xh(t)|] and [image: δv(t) = |v (t) − vh(t)|] as a
function of the time step [image: Δt]. The results are shown in figures 4.11–4.14. We
note that for the Euler method and the Euler–Cromer method, the errors
are of order [image: 𝒪 (Δt)] as expected. However, the latter has smaller errors
compared to the first one. For the Euler–Verlet method, the error turns out
to be of order [image: 2
𝒪 (Δt)] whereas for the 4th order Runge–Kutta is of
order8

[image: 4
𝒪 (Δt)].
 Another way for checking the numerical results is by looking at a conserved
quantity, like the energy, momentum or angular momentum, and study its
deviation from its original value. In our case we study the mechanical
energy

 	

[image: 1 1
E = --mv2 + -m ω2x2
 2 2
]
	(4.24)

which is computed at each step. The deviation [image: δE = |E − E0 |] is shown in figures
4.15–4.18.

 4.5 The Forced Damped Oscillator

In this section we will study a simple harmonic oscillator subject to a damping
force proportional to its velocity and an external periodic driving force,
which for simplicity will be taken to have a sinusoidal dependence in
time,

 	

[image: d2x dx
----+ γ ---+ ω20x = a0sinωt,
dt2 dt
]
	(4.25)

where [image: F (t) = ma0 sin ωt] and [image: ω] is the angular frequency of the driving
force.

 Consider initially the system without the influence of the driving
force, i.e. with [image: a0 = 0]. The real solutions of the differential
equation9
which are finite for [image: t → + ∞] are given by

 	

[image: √ ------ √ ------
x0(t) = c1e −(γ+ γ2−4ω20)t∕2 + c2e−(γ− γ2− 4ω20)t∕2, γ2 − 4ω2 > 0,
 0
]
	(4.26)

 	

[image: −γt∕2 − γt∕2 2 2
x0(t) = c1e + c2e t, γ − 4ω0 = 0,
]
	(4.27)

[image: (∘ -----------)
x0(t) = c1e−γt∕2 cos − γ2 + 4ω20t∕2

 (∘ -----------)
 +c2e −γt∕2 sin − γ2 + 4 ω20t∕2 , γ2 − 4ω20 < 0.(4.28)
]

In the last case, the solution oscillates with an amplitude decreasing exponentially
with time.
 In the [image: a0 > 0] case, the general solution is obtained from the sum of a special
solution [image: xs(t)] and the solution of the homogeneous equation [image: x0 (t)]. A special
solution can be obtained from the ansatz [image: xs(t) = A sinωt + B cosωt],
which when substituted in (4.25) and solved for [image: A] and [image: B] we find
that

 	

[image: a0 [(ω20 − ω2)cosωt + γ ωsin ωt]
xs(t) = ---------2----2-2----2-2-------,
 (ω 0 − ω) + ω γ
]
	(4.29)

and

 	

[image: x(t) = x (t) + x (t).
 0 s
]
	(4.30)

The solution [image: x0 (t)] decreases exponentially with time and eventually only
[image: xs(t)] remains. The only case where this is not true, is when we have
resonance without damping for [image: ω = ω0], [image: γ = 0]. In that case the solution
is

 	

[image: x(t) = c1cosωt + c2 sin ωt + -a0-(cosωt + 2(ωt)sin ωt) .
 4ω2
]
	(4.31)

The first two terms are the same as that of the simple harmonic oscillator. The
last one increases the amplitude linearly with time, which is a result of the influx
of energy from the external force to the oscillator.

 Our program will be a simple modification of the program in rk.f90. The
main routines RK(T,X1,X2,T0,TF,X10,X20,Nt) and RKSTEP(t,x1,x2,dt) remain
as they are. We only change the user interface. The basic parameters [image: ω0], [image: ω],
[image: γ], [image: a0] are entered interactively by the user from the standard input stdin.

These parameters should be accessible also by the function f2(t,x1,x2), and one
way to be able to do this, is to store them in variables which are placed in a
common block. Such variables are accessible to all subprograms that declare a
common block with the same name using a COMMON declaration. Such a
declaration is shown in the following lines

 real(8) :: omega_0,omega,gamma,a_0,omega_02,omega2

 common /params/omega_0,omega,gamma,a_0,omega_02,omega2

 which when written in a (sub)program, the (sub)program gains access to the
“memory position” params where the values of the variables are stored. Another
point that needs our attention is the function f2(t,x1,x2) which now takes the
velocity [image: v →] x2 in its arguments:

real(8) function f2(t,x1,x2)

 implicit none

 real(8) omega_0,omega,gamma,a_0,omega_02,omega2

 common /params/omega_0,omega,gamma,a_0,omega_02,omega2

 real(8) t,x1,x2,a

 a = a_0*cos(omega*t)

 f2=-omega_02*x1-gamma*x2+a

end function f2

 The main program found in the file dlo.f90 is listed below. The subroutines RK,
RKSTEP are the same as in rk.f90 and should also be included in the same
file.

!==

!Program to solve Damped Linear Oscillator

!using 4th order Runge-Kutta Method

!Output is written in file dlo.dat

!==

program dlo_solve

 implicit none

 integer, parameter :: P=110000

 real(8),dimension(P):: T,X1,X2

 real(8) :: Ti,Tf,X10,X20

 real(8) :: Energy

 real(8) :: omega_0,omega,gamma,a_0,omega_02,omega2

 common /params/omega_0,omega,gamma,a_0,omega_02,omega2

 integer :: Nt, i

!Input:

 print *,’Runge-Kutta Method for DLO Integration’

 print *,’Enter omega_0, omega, gamma, a_0:’

 read *, omega_0,omega,gamma,a_0

 omega_02 = omega_0*omega_0

 omega2 = omega *omega

 print *, ’omega_0= ’,omega_0,’ omega= ’, omega

 print *, ’gamma= ’,gamma, ’ a_0= ’,a_0

 print *,’Enter Nt,Ti,TF,X10,X20:’

 read *, Nt,Ti,Tf,X10,X20

 print *,’Nt = ’,Nt

 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf

 print *,’ X1(Ti)=’,X10,’ X2(Ti)=’,X20

 if(Nt.gt.P) stop ’Nt>P’

!The Calculation:

 call RK(T,X1,X2,Ti,Tf,X10,X20,Nt)

!Output:

 open(unit=11,file=’dlo.dat’)

 write(11,*)’# Damped Linear Oscillator - dlo’

 write(11,*)’# omega_0= ’,omega_0,’ omega= ’, omega,&

 ’ gamma= ’,gamma,’ a_0= ’,a_0

 do i=1,Nt

 Energy = 0.5D0*X2(i)*X2(i)+0.5D0*omega_02*X1(i)*X1(i)

 write(11,*)T(i),X1(i),X2(i),Energy

 enddo

 close(11)

end program dlo_solve

!==

!The functions f1,f2(t,x1,x2) provided by the user

!==

real(8) function f1(t,x1,x2)

 implicit none

 real(8) t,x1,x2

 f1=x2 !dx1/dt= v = x2

end function f1

!--

real(8) function f2(t,x1,x2)

 implicit none

 real(8) omega_0,omega,gamma,a_0,omega_02,omega2

 common /params/omega_0,omega,gamma,a_0,omega_02,omega2

 real(8) t,x1,x2,a

 a = a_0*cos(omega*t)

 f2=-omega_02*x1-gamma*x2+a

end function f2

[image: pict]

Figure 4.19: The position as a function of time for the damped oscillator for several
values of [image: γ] and [image: ω0 = 3.145].

[image: pict]

Figure 4.20: The phase space trajectory for the damped oscillator for several values
of [image: γ] and [image: ω0 = 3.145]. Note the attractor at [image: (x,v) = (0,0)] where all trajectories are
“attracted to” as [image: t → +∞].

[image: pict]

Figure 4.21: The amplitude of oscillation for the damped oscillator for several values
of [image: γ] and [image: ω0 = 3.145]. Note the exponential damping of the amplitude with time.

[image: pict]

Figure 4.22: The period of oscillation of the damped oscillator for several values of
[image: γ] and [image: ω0 = 3.145]. The axes are chosen so that equation (4.28) [image: 2 2 2
(2π∕T) = 4ω0 − γ]
can be easily verified. The points in the plot are our measurements whereas the straight
line is the theoretical prediction, the diagonal [image: y = x]

 The results are shown in figures 4.19–4.22. Figure 4.19 shows the transition
from a damped motion for [image: γ > 2ω0] to an oscillating motion with damping
amplitude for [image: γ < 2 ω0]. The exponential decrease of the amplitude is shown in
figure 4.21, whereas the dependence of the period [image: T] from the damping coefficient
[image: γ] is shown in figure 4.22. Motivated by equation (4.28) , written in the
form

 	

[image: ()
 2 2π- 2
4ω0 − T = γ ,
]
	(4.32)

we construct the plot in figure 4.22. The right hand side of the equation is put on
the horizontal axis, whereas the left hand side on the vertical. Equation (4.32)
predicts that both quantities are equal and all measurements should lie on a
particular line, the diagonal [image: y = x]. The period [image: T] can be estimated from the
time between two consecutive extrema of [image: x(t)] or two consecutive zeros of the
velocity [image: v(t)] (see figure 4.19).

 Finally it is important to study the trajectory of the system in phase space. This can
be seen10
in figure 4.20. A point in this space is a state of the system and a trajectory
describes the evolution of the system’s states in time. We see that all such
trajectories end up as [image: t → +∞] to the point [image: (0,0)], independently of the
initial conditions. Such a point is an example of a system’s attractor.

[image: pict]

Figure 4.23: The period of oscillation for the forced damped oscillator for different
initial conditions. We have chosen [image: ω0 = 3.145], [image: ω = 2.0], [image: γ = 0.5] and [image: a0 = 1.0]. We
note that after the transient behavior the system oscillates harmonically according to the
relation [image: x(t) = x0(ω)cos(ωt + δ)].

[image: pict]

Figure 4.24: The oscillation amplitude [image: x (ω)
 0] as a function of [image: ω] for the forced
damped oscillator, where [image: ω0 = 3.145], [image: γ = 0.5] and [image: a0 = 1.0]. We observe a resonance
for [image: ω ≈ ω0]. The points of the plot are our measurements and the line is the theoretical
prediction given by equation (4.33) .

[image: pict]

Figure 4.25: A phase space trajectory of the forced damped oscillator with
[image: ω0 = 3.145], [image: ω = 2.0], [image: γ = 0.5] and [image: a0 = 1.0]. The harmonic oscillation which is the
steady state of the system is an ellipse, which is an attractor of all the phase space
trajectories that correspond to different initial conditions.

[image: pict]

Figure 4.26: The trajectory shown in figure 4.25 for [image: t > 100]. The trajectory is almost
on top of an ellipse corresponding to the steady state motion of the system. This ellipse
is an attractor of the system.

 Next, we add the external force and study the response of the system to it.
The system exhibits a transient behavior that depends on the initial conditions.
For large enough times it approaches a steady state that does not depend
on (almost all of) the initial conditions. This can be seen in figure 4.23.
This is easily understood for our system by looking at equations (4.26) –
(4.28) . We see that the steady state [image: xs(t)] becomes dominant when
the exponentials have damped away. [image: xs(t)] can be written in the form

[image: x (t) = x0(ω) cos(ωt + δ(ω))
 a0 ω γ
x0(ω) = ∘----2--------------, tan δ(ω) = -2----2-. (4.33)
 (ω 0 − ω2)2 + γ2ω2 ω − ω0
]

These equations are verified in figure 4.24 where we study the dependence of the
amplitude [image: x0(ω)] on the angular frequency of the driving force. Finally we study
the trajectory of the system in phase space. As we can see in figure 4.20, this time
the attractor is an ellipse, which is a one dimensional curve instead of a zero
dimensional point. For large enough times, all trajectories approach their
attractor asymptotically.
 4.6 The Forced Damped Pendulum

In this section we will study a non-linear dynamical system which exhibits
interesting chaotic behavior. This is a simple model which, despite its
deterministic nature, the prediction of its future behavior becomes intractable
after a short period of time. Consider a simple pendulum in a constant
gravitational field whose motion is damped by a force proportional to its
velocity and it is under the influence of a vertical, harmonic external driving
force:

 	

[image: 2
d-𝜃-+ γd-𝜃+ ω20 sin 𝜃 = − 2A cosωt sin 𝜃.
dt2 dt
]
	(4.34)

In the equation above, [image: 𝜃] is the angle of the pendulum with the vertical axis, [image: γ]
is the damping coefficient, [image: ω20 = g∕L] is the pendulum’s natural angular
frequency, [image: ω] is the angular frequency of the driving force and [image: 2A] is
the amplitude of the external angular acceleration caused by the driving
force.

 In the absence of the driving force, the damping coefficient drives the system
to the point [image: (𝜃, ˙𝜃) = (0, 0)], which is an attractor for the system. This continues
to happen for small enough [image: A], but for [image: A > Ac] the behavior of the system
becomes more complicated.

 The program that integrates the equations of motion of the system can be
obtained by making trivial changes to the program in the file dlo.f90.
This changes are listed in detail below, but we note that X1 [image: ↔ 𝜃], X2
[image: ↔ ˙𝜃], a_0 [image: ↔ A]. The final program can be found in the file fdp.f90. It
is listed below, with the understanding that the commands in between
the dots are the same as in the programs found in the files dlo.f90,
rk.f90.

!==

!Program to solve Forced Damped Pendulum

!using 4th order Runge-Kutta Method

!Output is written in file fdp.dat

!==

program dlo_solve

 implicit none

 integer, parameter :: P=1010000

 Energy = 0.5D0*X2(i)*X2(i)+omega_02*(1.0D0-cos(X1(i)))

end program dlo_solve

!--

real(8) function f2(t,x1,x2)

 implicit none

 real(8) omega_0,omega,gamma,a_0,omega_02,omega2

 common /params/omega_0,omega,gamma,a_0,omega_02,omega2

 real(8) t,x1,x2

 f2=-(omega_02+2.0D0*a_0*cos(omega*t))*sin(x1)-gamma*x2

end function f2

!==

subroutine RKSTEP(t,x1,x2,dt)

 implicit none

 real(8),parameter :: pi =3.14159265358979324D0

 real(8),parameter :: pi2=6.28318530717958648D0

 x1 =x1+h6*(k11+2.0D0*(k12+k13)+k14)

 x2 =x2+h6*(k21+2.0D0*(k22+k23)+k24)

 if(x1 .gt. pi) x1 = x1 - pi2

 if(x1 .lt. -pi) x1 = x1 + pi2

end subroutine RKSTEP

 The final lines in the program are added so that the angle is kept within the
interval [image: [− π,π]].

 In order to study the system’s properties we will set [image: ω0 = 1], [image: ω = 2], and
[image: γ = 0.2] unless we explicitly state otherwise. The natural period of the pendulum
is [image: T0 = 2π∕ω0 = 2π ≈ 6.28318530717958648] whereas that of the driving force is
[image: T = 2π∕ω = π ≈ 3.14159265358979324]. For [image: A < Ac], with [image: Ac ≈ 0.18], the
point [image: (𝜃, ˙𝜃) = (0,0)] is an attractor, which means that the pendulum eventually
stops at its stable equilibrium point. For [image: Ac < A < 0.71] the attractor is a
closed curve, which means that the pendulum at its steady state oscillates
indefinitely without circling through its unstable equilibrium point at [image: 𝜃 = ± π].
The period of motion is found to be twice that of the driving force. For
[image: 0.72 < A < 0.79] the attractor is an open curve, because at its steady state the
pendulum crosses the [image: 𝜃 = ± π] point. The period of the motion becomes
equal to that of the driving force. For [image: 0.79 < A ≲ 1.033] we have period
doubling for critical values of [image: A], but the trajectory is still periodic. For
even larger values of [image: A] the system enters into a chaotic regime where
the trajectories are non periodic. For [image: A ≈ 3.1] we find the system in a
periodic steady state again, whereas for [image: A ≈ 3.8] – [image: 4.448] we have period
doubling. For [image: A ≈ 4.4489] we enter into a chaotic regime again etc. These
results can be seen in figures 4.27–4.29. The reader should construct the
bifurcation diagram of the system by solving problem 20 of this chapter.

[image: pict] [image: pict]

[image: pict] [image: pict]

Figure 4.27: A phase space trajectory of the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0], [image: ω = 2.0], [image: γ = 0.2] and [image: A = 0.60,0.72,0.85,1.02]. We observe the
phenomenon of period doubling.

[image: pict] [image: pict]

[image: pict] [image: pict]

Figure 4.28: A phase space trajectory of the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0], [image: ω = 2.0], [image: γ = 0.2] and [image: A = 1.031,1.033,1.04,1.4]. We observe the
chaotic behavior of the system.

[image: pict] [image: pict]

[image: pict] [image: pict]

Figure 4.29: A phase space trajectory of the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0], [image: ω = 2.0], [image: γ = 0.2] and [image: A = 1.568,3.8,4.44,4.5]. We observe the
system exiting and reentering regimes of chaotic behavior.

[image: pict] [image: pict]

Figure 4.30: A Poincaré diagram for the forced damped pendulum in its chaotic
regime. The parameters chosen are [image: ω0 = 1.0], [image: ω = 2.0], [image: γ = 0.2] and [image: A = 1.4,4.5].

 We can also use the so called Poincaré diagrams in order to study the chaotic
behavior of a system. These are obtained by placing a point in phase
space when the time is an integer multiple of the period of the driving
force. Then, if for example the period of the motion is equal to that of
the period of the driving force, the Poincaré diagram consists of only
one point. If the period of the motion is an [image: n]–multiple of the period of
the driving force then the Poincaré diagram consists of only [image: n] points.
Therefore, in the period doubling regime, the points of the Poincaré diagram
double at each period doubling point. In the chaotic regime, the Poincaré
diagram consists of an infinite number of points which belong to sets that
have interesting fractal structure. One way to construct the Poincaré
diagram numerically, is to process the data of the output file fdp.dat using
awk11 :

awk -v o=$omega -v nt=$Nt -v tf=$TF \

 ’BEGIN{T=6.283185307179/o;dt=tf/nt;} $1%T<dt{print $2,$3}’\

 fdp.dat

 where $omega, $Nt, $TF are the values of the angular frequency [image: ω],
the number of points of time and the final time [image: tf]. We calculate
the period T and the time step dt in the program. Then we print
those lines of the file where the time is an integer multiple of the
period12 .
This is accomplished by the modulo operation $1 % T. The value of the
expression $1 % T < dt is true when the remainder of the division of the first
column ($1) of the file fdp.dat with the period T is smaller than dt. The results
in the chaotic regime are displayed in figure 4.30.

 We close this section by discussing another concept that helps us in
the analysis of the dynamical properties of the pendulum. This is the
concept of the basin of attraction which is the set of initial conditions in
phase space that lead the system to a specific attractor. Take for example
the case for [image: A > 0.79] in the regime where the pendulum at its steady
state has a circular trajectory with a positive or negative direction. By
taking a large sample of initial conditions and recording the direction of
the resulting motion after the transient behavior, we obtain figure 4.31.

[image: pict] [image: pict]

Figure 4.31: Basin of attraction for the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0], [image: ω = 2.0], [image: γ = 0.2] and [image: A = 0.85,1.4].

 4.7 Appendix: On the Euler–Verlet Method

Equations (4.11) can be obtained from the Taylor expansion

[image: ′ (Δt-)2 ′′ (Δt-)3 ′′′ 4
𝜃(t + Δt) = 𝜃(t) + (Δt)𝜃 (t) + 2! 𝜃 (t) + 3! 𝜃 (t) + 𝒪 ((Δt))
 2 3
𝜃(t − Δt) = 𝜃(t) − (Δt)𝜃′(t) + (Δt-)-𝜃′′(t) − (Δt-)-𝜃′′′(t) + 𝒪 ((Δt)4).
 2! 3!
]

By adding and subtracting the above equations we obtain

[image: 𝜃(t + Δt) + 𝜃(t − Δt) = 2𝜃(t) + (Δt)2𝜃′′(t) + 𝒪 ((Δt)4)
 ′ 3
𝜃(t + Δt) − 𝜃(t − Δt) = 2(Δt)𝜃 (t) + 𝒪 ((Δt)) (4.35)
]

which give equations (4.11)

[image: 2 4
𝜃 (t + Δt) = 2𝜃(t) − 𝜃(t − Δt) + (Δt) α(t) + 𝒪((Δt))
 𝜃(t + Δt) − 𝜃(t − Δt) 2
 ω(t) = --------2(Δt-)------- + 𝒪 ((Δt)) (4.36)
]

From the first equation and equations (4.9) we obtain:
 	

[image: 𝜃(t + Δt) = 𝜃(t) + ω (t)(Δt) + 𝒪 ((Δt)2)
]
	(4.37)

 When we perform a numerical integration, we are interested in the total error
accumulated after [image: N − 1] integration steps. In this method, these errors must be
studied carefully:

 	The error in the velocity [image: ω (t)] does not accumulate because it is given
 by the difference of the positions [image: 𝜃(t + Δt) − 𝜃(t − Δt)].

 	The accumulation of the errors for the position is estimated as
 follows: Assume that [image: δ𝜃(t)] is the total accumulated error from the
 integration from time [image: t0] to [image: t]. Then according to the expansions
 (4.36) the error for the first step is [image: 4
δ𝜃(t0 + Δt) = 𝒪 ((Δt))].
 Then13

 [image: 𝜃(t0 + 2Δt) = 2𝜃 (t0 + Δt) − 𝜃(t0) + Δt2α (t0 + Δt) + 𝒪 ((Δt)4) ⇒
 4
δ𝜃(t0 + 2Δt) = 2δ𝜃 (t0 + Δt) − δ𝜃(t0) + 𝒪 ((Δt))
 = 2𝒪 ((Δt)4) − 0 + 𝒪 ((Δt)4)
 4
 = 3𝒪 ((Δt)).
]

For the next steps we obtain

 [image: 𝜃(t0 + 3Δt) = 2𝜃(t0 + 2Δt) − 𝜃(t0 + Δt) + Δt2 α(t0 + 2Δt) + 𝒪 ((Δt)4) ⇒
 4
δ 𝜃(t0 + 3Δt) = 2δ𝜃 (t0 + 2Δt) − δ𝜃(t0 + Δt) + 𝒪 ((Δt))
 = 6𝒪 ((Δt)4) − 𝒪 ((Δt)4) + 𝒪 ((Δt)4)
 4
 = 6𝒪 ((Δt)),
]

 [image: 2 4
 𝜃(t0 + 4Δt) = 2𝜃(t0 + 3Δt) − 𝜃(t0 + 2Δt) + Δt α(t0 + 3 Δt) + 𝒪 ((Δt)) ⇒
δ 𝜃(t0 + 4Δt) = 2δ𝜃 (t0 + 3Δt) − δ𝜃(t0 + 2Δt) + 𝒪 ((Δt)4)
 4 4 4
 = 12𝒪 ((Δt)) − 3𝒪 ((Δt)) + 𝒪 ((Δt))
 = 10𝒪 ((Δt)4).
]

Then, inductively, if [image: (n−1)n- 4
δ𝜃(t0 + (n − 1)Δt) = 2 𝒪 ((Δt))], we obtain

 [image: 2
 𝜃(t0 + nΔt) = 2 𝜃(t0 + (n − 1)Δt) − 𝜃(t0 + (n − 2)Δt) + Δt α(t0 + (n − 1)Δt)
 + 𝒪 ((Δt)4) ⇒
 4
δ 𝜃(t0 + nΔt) = 2 δ𝜃(t0 + (n − 1)Δt) − δ𝜃 (t0 + (n − 2)Δt) + 𝒪 ((Δt))
 (n − 1)n 4 (n − 2)(n − 1) 4 4
 = 2 ---2----𝒪 ((Δt)) − -------2------𝒪 ((Δt)) + 𝒪 ((Δt))

 = n(n-+-1)𝒪 ((Δt)4).
 2
]

Finally
 	

 [image: δ𝜃(t0 + n Δt) = n-(n +-1)𝒪 ((Δt)4) ∼-1--𝒪 ((Δt)4) ∼ 𝒪 ((Δt)2).
 2 Δt2

]
	(4.38)

Therefore the total error is [image: 𝒪 ((Δt)2)].

 We also mention the Velocity Verlet method or the Leapfrog method. In this
case we use the velocity explicitly:

[image: 1- 2
𝜃n+1 = 𝜃n + ωnΔt + 2αn Δt
 1
ωn+12 = ωn + --αnΔt
 2
ωn+1 = ωn+ 1+ 1αn+1 Δt. (4.39)
 2 2
]

The last step uses the acceleration [image: αn+1] which should depend only on the
position [image: 𝜃
 n+1] and not on the velocity.
 The Verlet methods are popular in molecular dynamics simulations of many
body systems. One of their advantages is that the constraints of the system of
particles are easily encoded in the algorithm.

 4.8 Appendix: 2nd order Runge–Kutta Method

In this appendix we will show how the choice of the intermediate point 2 in
equation (4.17) reduces the error by a power of [image: h]. This choice is special, since
by choosing another point (e.g. [image: t = tn + 0.4h]) the result would have not been the
same. Indeed, from the relation

 	

[image: dx ∫ tn+1
---= f (t,x) ⇒ xn+1 = xn + f(t,x)dx.
dt tn
]
	(4.40)

By Taylor expanding around the point [image: (tn+1 ∕2,xn+1 ∕2)] we obtain

 	

[image: df
f (t,x) = f (tn+1∕2,xn+1∕2) + (t − tn+1∕2)-(tn+1∕2) + 𝒪 (h2).
 dt
]
	(4.41)

Therefore

[image: ∫ tn+1
 f(t,x)dx
 tn
 df (t − t)2||tn+1
= f(tn+1∕2,xn+1∕2)(tn+1 − tn) + --(tn+1∕2)------n+1∕2--||
 dt 2 tn
 + 𝒪 (h2)(t − t)
 n+1 n { 2 2}
= f(t ,x)h + df-(t) (tn+1-−-tn+1∕2)-− (tn −-tn+1∕2)
 n+1∕2 n+1∕2 dt n+1∕2 2 2
 2
 + 𝒪 (h)h { }
 df-- h2- (−-h)2 3
= f(tn+1∕2,xn+1∕2)h + dt(tn+1∕2) 2 − 2 + 𝒪(h)
 3
= f(tn+1∕2,xn+1∕2)h + 𝒪 (h). (4.42)
]

Note that for the vanishing of the [image: 𝒪 (h)] term it is necessary to place the
intermediate point at time [image: tn+1∕2].
 This is not a unique choice. This can be most easily seen by a different
analysis of the Taylor expansion. Expanding around the point [image: (tn,xn)] we obtain

[image: dxn 1 d2xn
xn+1 = xn + (tn+1 − tn)--- + --(tn+1 − tn)2---2-+ 𝒪 (h3)
 2 dt 2 dt
 = x + hf + h--dfn + 𝒪 (h3)
 n n 2 dt
 h2 (∂fn ∂fn dxn) 3
 = xn + hfn + --- ----+ -------- + 𝒪 (h)
 2 (∂t ∂x dt)
 h2- ∂fn- ∂fn- 3
 = xn + hfn + 2 ∂t + ∂x fn + 𝒪 (h), (4.43)
]

where we have set [image: fn ≡ f(tn,xn)], [image: dxdnt ≡ dxdt(xn)] etc. We define

[image: k1 = f(tn,xn) = fn
 k2 = f(tn + ah,xn + bhk1)

xn+1 = xn + h(c1k1 + c2k2). (4.44)
]

and we will determine the conditions so that the terms [image: 𝒪 (h2)] of the last
equation in the error are identical with those of equation (4.43) . By expanding
[image: k2] we obtain

[image: k2 = f(tn + ah,xn + bhk1)
 ∂f- 2
 = f(tn,xn + bhk1) + ha ∂t (tn,xn + bhk1) + 𝒪 (h)
 ∂f ∂f 2
 = f(tn,xn) + hbk1---(tn,xn) + ha---(tn,xn) + 𝒪 (h)
 { ∂x } ∂t
 = f + h a ∂fn-+ bk ∂fn- + 𝒪 (h2)
 n ∂t 1 ∂x
 { ∂f ∂f }
 = fn + h a --n-+ bfn --n- + 𝒪 (h2) (4.45)
 ∂t ∂x
]

Substituting in (4.44) we obtain

[image: xn+1 = xn + h(c1k1 + c2k2)
 { () }
 = xn + h c1fn + c2fn + c2h a∂fn- + bfn∂fn- + 𝒪 (h2)
 ∂t ∂x
 h2 (∂fn ∂fn)
 = xn + h(c1 + c2)fn + --- (2c2a)----+ (2c2b)fn ----
 2 ∂t ∂x
 + 𝒪 (h3). (4.46)
]

All we need is to choose

[image: c1 + c2 = 1
 2c2a = 1

 2c2b = 1. (4.47)
]

The choice [image: c1 = 0], [image: c2 = 1], [image: a = b = 1∕2] leads to equation (4.19) . Some other
choices in the bibliography are [image: c = 1∕2
 2] and [image: c = 3∕4
 2].

 4.9 Problems

 	Prove that the total error in the Euler–Cromer method is of order [image: Δt].

 	Reproduce the results in figures 4.11–4.18

 	Improve your programs so that there is no accumulation of roundoff
 error in the calculation of time when h is very small for the
 methods Euler, Euler-Cromer, Euler-Verlet and Runge-Kutta. Repeat
 the analysis of the previous problem.

 	Make the appropriate changes in your programs of the Euler,
 Euler-Cromer, Euler-Verlet and Runge-Kutta methods so that all
 floating variables change from REAL[image: →]REAL(8). Repeat the analysis
 of the previous problem.

 	Compare the results obtained from the Euler, Euler-Cromer, Euler-Verlet,
 Runge-Kutta methods for the following systems where the analytic solution
 is known:

 	Particle falling in a constant gravitational field. Consider the case
 [image: v(0) = 0], [image: m = 1], [image: g = 10].

 	Particle falling in a constant gravitational field moving in a fluid
 from which exerts a force [image: F = − kv] on the particle. Consider the
 case [image: v (0) = 0], [image: m = 1], [image: g = 10] [image: k = 0.1,1.0,2.0]. Calculate the
 limiting velocity of the particle numerically and compare the value
 obtained to the theoretical expectation.

 	Repeat for the case of a force of resistance of magnitude
 [image: 2
|F | = kv].

 	Consider the damped harmonic oscillator

 	

 [image: d2x dx
--2-+ γ ---+ ω20x = 0.
dt dt
]
	(4.48)

 Take [image: ω0 = 3.145], [image: γ = 0.5] and calculate its mechanical energy as a
 function of time. Is it monotonic? Why? (show that [image: d(E ∕m)∕dt = − γv2]).
 Repeat for [image: γ = 4,5,6, 7,8]. When is the system oscillating and when it’s
 not? Calculate numerically the critical value of [image: γ] for which the system
 passes from a non oscillating to an oscillating regime. Compare your results
 with the theoretical expectations.

 	Reproduce the results of figures 4.19–4.22.

 	Reproduce the results of figures 4.23–4.26. Calculate the phase [image: δ(ω)]
 numerically and compare with equation (4.33) .

 	Consider a simple model for a swing. Take the damped harmonic oscillator
 and a driving force which periodically exerts a momentary push with
 angular frequency [image: ω]. Define “momentary” to be an impulse given by the
 acceleration [image: a0] by an appropriately small time interval [image: Δt]. The
 acceleration is [image: 0] for all other times. Calculate the amplitude [image: x0(ω)] for
 [image: ω0 = 3.145] and [image: γ = 0.5].

 	Consider a “half sine” driving force on a damped harmonic oscillator

 [image: (
 { a0cos ωt cosωt > 0
a(t) = 0 cosωt ≤ 0
 (
]
 Study the transient behavior of the system for several initial conditions and
 calculate its steady state motion for [image: ω = 3.145
 0] and [image: γ = 0.5]. Calculate
 the amplitude [image: x0(ω)].

 	Consider the driving force on a damped oscillator given by

 [image: 1- 1- -2- -2--
a(t) = π + 2 cos ω + 3π cos 2ωt − 15π cos 4ωt
]
 Study the transient behavior of the system for several initial conditions and
 calculate its steady state motion for [image: ω0 = 3.145] and [image: γ = 0.5]. Calculate
 the amplitude [image: x0(ω)]. Compare your results with those of the previous
 problem and comment about.

 	Write a program that simulates [image: N] identical, independent harmonic
 oscillators. Take [image: N = 20] and choose random initial conditions for each one
 of them. Study their trajectories in phase space and check whether they
 cross each other. Comment on your results.

 	Place the [image: N = 20] harmonic oscillators of the previous problem in a
 small square in phase space whose center is at the origin of the
 axes. Consider the evolution of the system in time. Does the shape
 of the rectangle change in time? Does the area change in time?

 Explain...

 	Repeat the previous problem when each oscillator is damped with [image: γ = 0.5].
 Take [image: ω0 = 3.145].

 	Consider the forced damped oscillator with [image: ω = 2], [image: ω0 = 1.0], [image: γ = 0.2].
 Study the transient behavior of the system in the plots of [image: 𝜃(t)], [image: 𝜃˙(t)] for
 [image: A = 0.1,0.5,0.79,0.85,1.03,1.4].

 	Consider the forced damped pendulum with [image: ω = 2], [image: ω = 1.0
 0], [image: γ = 0.2]
 and study the phase space trajectories for [image: A =] 0.1, 0.19, 0.21, 0.25, 0.5,
 0.71, 0.79, 0.85, 1.02, 1.031, 1.033, 1.05, 1.08, 1.1, 1.4, 1.8, 3.1, 3.5, 3.8, 4.2,
 4.42, 4.44, 4.445, 4.447, 4.4488. Consider both the transient behavior and
 the steady state motion.

 	Reproduce the results in figures 4.30.

 	Reproduce the results in figures 4.31.

 	Consider the forced damped oscillator with

 [image: ω0 = 1, ω = 2, γ = 0.2
]
 After the transient behavior, the motion of the system for [image: A = 0.60],
 [image: A = 0.75] and [image: A = 0.85] is periodic. Measure the period of the
 motion with an accuracy of three significant digits and compare it
 with the natural period of the pendulum and with the period of the
 driving force. Take as initial conditions the following pairs: [image: (𝜃0, ˙𝜃0) =]
 [image: (3.1, 0.0)], [image: (2.5,0.0)], [image: (2.0,0.0)], [image: (1.0, 0.0)], [image: (0.2,0.0)], [image: (0.0,1.0)],
 [image: (0.0, 3.0)], [image: (0.0,6.0)]. Check if the period is independent of the initial
 conditions.

 	 Consider the forced damped pendulum with

 [image: ω0 = 1, ω = 2, γ = 0.2
]
 Study the motion of the pendulum when the amplitude [image: A] takes values in
 the interval [image: [0.2,5.0]]. Consider specific discrete values of [image: A] by splitting
 the interval above in subintervals of width equal to [image: δA = 0.002].
 For each value of [image: A], record in a file the value of [image: A], the angular
 position and the angular velocity of the pendulum when [image: tk = k π] with
 [image: k = ktrans,ktrans + 1,ktrans + 2,...,kmax]:

 [image: A 𝜃(t) ˙𝜃(t)
 k k
]
 The choice of [image: ktrans] is made so that the transient behavior will be
 discarded and study only the steady state of the pendulum. You
 may take [image: kmax = 500], [image: ktrans = 400], [image: ti = 0], [image: tf = 500 π], and
 split the intervals [image: [tk,tk + π]] to 50 subintervals. Choose [image: 𝜃0 = 3.1],
 [image: ˙
𝜃0 = 0].

 	Construct the bifurcation diagram by plotting the points
 [image: (A,𝜃(tk))].

 	Repeat by plotting the points [image: (A, 𝜃˙(tk))].

 	Check whether your results depend on the choice of [image: 𝜃0], [image: 𝜃˙0].
 Repeat your analysis for [image: 𝜃0 = 0], [image: 𝜃˙0 = 1].

 	Study the onset of chaos: Take [image: A ∈ [1.0000,1.0400]] with
 [image: δA = 0.0001] and [image: A ∈ [4.4300,4.4500]] with [image: δA = 0.0001] and
 compute with the given accuracy the value [image: Ac] where the system
 enters into the chaotic behavior regime.

 	The plot the points [image: (𝜃(tk),𝜃˙(tk))] for [image: A = 1.034,] [image: 1.040,] [image: 1.080,]
 [image: 1.400,] [image: 4.450,] [image: 4.600]. Put 2000 points for each value of [image: A] and
 commend on the strength of the chaotic behavior of the pendulum.

Chapter 5
Planar Motion

In this chapter we will study the motion of a particle moving on the plane under
the influence of a dynamical field. Special emphasis will be given to the study of
the motion in a central field, like in the problem of planetary motion and
scattering. We also study the motion of two or more interacting particles moving
on the plane, which requires the solution of a larger number of dynamical
equations. These problems can be solved numerically by using Runge–Kutta
integration methods, therefore this chapter extends and applies the numerical
methods studied in the previous chapter.

 5.1 Runge–Kutta for Planar Motion

In two dimensions, the initial value problem that we are interested in, is solving
the system of equations (4.6)

[image: dx-= v dvx-= a (t,x, v ,y,v)
dt x dt x x y
dy dvy
dt-= vy -dt-= ay(t,x, vx,y,vy). (5.1)
]

 The 4th order Runge-Kutta method can be programmed by making small
modifications of the program in the file rk.f90. In order to facilitate the study of
many different dynamical fields, for each field we put the code of the respective
acceleration in a different file. The code which is common for all the forces,
namely the user interface and the implementation of the Runge–Kutta method,
will be put in the file rk2.f90. The program that computes the acceleration will
be put in a file named rk_XXX.f90, where XXX is a string of characters that
identifies the force. For example, the file rk2_hoc.f90 contains the program
computing the acceleration of the simple harmonic oscillator, the file
rk2_g.f90 the acceleration of a constant gravitational field [image: ⃗g = − gˆy]

etc.

 Different force fields will require the use of one or more coupling constants
which need to be accessible to the code in the main program and some
subroutines. For this reason, we will provide two variables k1, k2 in a common
block:

 real(8) :: k1,k2

 common /couplings/k1,k2

 This common block will be accessed by the acceleration functions f3 and f4, the
function energy and the main program where the user will enter the values of k1
and k2. The initial conditions are stored in the variables X10 [image: ↔ x0], X20
[image: ↔ y0], V10 [image: ↔ vx0], V20 [image: ↔ vy0], and the values of the functions of
time will be stored in the arrays X1(P) [image: ↔ x(t)], X2(P) [image: ↔ y(t)], V1(P)
[image: ↔ vx(t)], V2(P) [image: ↔ vy(t)]. The integration is performed by a call to the
subroutine

 call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)

 The results are written to the file rk2.dat. Each line in this file contains the
time, position, velocity and the total mechanical energy, where the energy is
calculated by the function energy(t,x1,x2,v1,v2):

 open(unit=11,file=’rk2.dat’)

 do i=1,Nt

 write(11,*)T(i),X1(i),X2(i),V1(i),V2(i),&

 energy(T(i),X1(i),X2(i),V1(i),V2(i))

 enddo

 The code for the function energy, which is different for each force field, is
written in the same file with the acceleration. The code for the subroutine
RKSTEP(t,x1,x2,x3,x4,dt) should be extended in order to integrate four instead
of two functions. The full code is listed below:

!==

!Program to solve a 4 ODE system using Runge-Kutta Method

!User must supply derivatives

!dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)

!dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)

!as real(8) functions

!Output is written in file rk2.dat

!==

program rk2_solve

 implicit none

 integer,parameter :: P=1010000

 real(8),dimension(P):: T,X1,X2,V1,V2

 real(8) :: Ti,Tf,X10,X20,V10,V20

 integer :: Nt, i

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: energy,E0,EF,DE

!Input:

 print *,’Runge-Kutta Method for 4-ODEs Integration’

 print *,’Enter coupling constants:’

 read *, k1,k2

 print *,’k1= ’,k1,’ k2= ’,k2

 print *,’Enter Nt,Ti,Tf,X10,X20,V10,V20:’

 read *, Nt,Ti,TF,X10,X20,V10,V20

 print *,’Nt = ’,Nt

 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf

 print *,’ X1(Ti)=’,X10,’ X2(Ti)=’,X20

 print *,’ V1(Ti)=’,V10,’ V2(Ti)=’,V20

!The Calculation:

 call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)

!Output:

 open(unit=11,file=’rk2.dat’)

 do i=1,Nt

 write(11,*)T(i),X1(i),X2(i),V1(i),V2(i),&

 energy(T(i),X1(i),X2(i),V1(i),V2(i))

 enddo

 close(11)

!Rutherford scattering angles:

 print *,’v-angle: ’,atan2(V2(Nt),V1(Nt))

 print *,’b-angle: ’,2.0D0*atan(k1/(V10*V10*X20))

 E0 = energy(Ti ,X10 ,X20 ,V10 ,V20)

 EF = energy(T(Nt),X1(Nt),X2(Nt),V1(Nt),V2(Nt))

 DE = ABS(0.5D0*(EF-E0)/(EF+E0))

 print *,’E0,EF, DE/E= ’,E0,EF,DE

end program rk2_solve

!==

!The velocity functions f1,f2(t,x1,x2,v1,v2)

!==

real(8) function f1(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 f1=v1 !dx1/dt= v1

end function f1

!--

real(8) function f2(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 f2=v2 !dx2/dt= v2

end function f2

!==

!RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt) is the driver

!for the Runge-Kutta integration routine RKSTEP

!Input: Initial and final times Ti,Tf

! Initial values at t=Ti X10,X20,V10,V20

! Number of steps of integration: Nt-1

! Size of arrays T,X1,X2,V1,V2

!Output: real arrays T(Nt),X1(Nt),X2(Nt),

! V1(Nt),V2(Nt) where

!T(1) = Ti X1(1) = X10 X2(1) = X20 V1(1) = V10 V2(1) = V20

! X1(k) = X1(at t=T(k)) X2(k) = X2(at t=T(k))

! V1(k) = V1(at t=T(k)) V2(k) = V2(at t=T(k))

!T(Nt)= Tf

!==

subroutine RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)

 implicit none

 integer :: Nt

 real(8),dimension(Nt)::T,X1,X2,V1,V2

 real(8) :: Ti ,Tf

 real(8) :: X10,X20

 real(8) :: V10,V20

 real(8) :: dt

 real(8) :: TS,X1S,X2S !values of time and X1,X2 at given step

 real(8) :: V1S,V2S

 integer :: i

!Initialize variables:

 dt = (Tf-Ti)/(Nt-1)

 T (1) = Ti

 X1(1) = X10; X2(1) = X20

 V1(1) = V10; V2(1) = V20

 TS = Ti

 X1S = X10; X2S = X20

 V1S = V10; V2S = V20

!Make RK steps: The arguments of RKSTEP are

!replaced with the new ones

 do i=2,Nt

 call RKSTEP(TS,X1S,X2S,V1S,V2S,dt)

 T(i) = TS

 X1(i) = X1S; X2(i) = X2S

 V1(i) = V1S; V2(i) = V2S

 enddo

end subroutine RK

!==

!Subroutine RKSTEP(t,x1,x2,dt)

!Runge-Kutta Integration routine of ODE

!dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)

!dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)

!User must supply derivative functions:

!real function f1(t,x1,x2,x3,x4)

!real function f2(t,x1,x2,x3,x4)

!real function f3(t,x1,x2,x3,x4)

!real function f4(t,x1,x2,x3,x4)

!Given initial point (t,x1,x2) the routine advances it

!by time dt.

!Input : Inital time t and function values x1,x2,x3,x4

!Output: Final time t+dt and function values x1,x2,x3,x4

!Careful!: values of t,x1,x2,x3,x4 are overwritten...

!==

subroutine RKSTEP(t,x1,x2,x3,x4,dt)

 implicit none

 real(8) :: t,x1,x2,x3,x4,dt

 real(8) :: f1,f2,f3,f4

 real(8) :: k11,k12,k13,k14,k21,k22,k23,k24

 real(8) :: k31,k32,k33,k34,k41,k42,k43,k44

 real(8) :: h,h2,h6

 h =dt !h =dt, integration step

 h2=0.5D0*h !h2=h/2

 h6=h/6.0D0 !h6=h/6

 k11=f1(t,x1,x2,x3,x4)

 k21=f2(t,x1,x2,x3,x4)

 k31=f3(t,x1,x2,x3,x4)

 k41=f4(t,x1,x2,x3,x4)

 k12=f1(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)

 k22=f2(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)

 k32=f3(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)

 k42=f4(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)

 k13=f1(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)

 k23=f2(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)

 k33=f3(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)

 k43=f4(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)

 k14=f1(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)

 k24=f2(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)

 k34=f3(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)

 k44=f4(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)

 t =t+h

 x1=x1+h6*(k11+2.0D0*(k12+k13)+k14)

 x2=x2+h6*(k21+2.0D0*(k22+k23)+k24)

 x3=x3+h6*(k31+2.0D0*(k32+k33)+k34)

 x4=x4+h6*(k41+2.0D0*(k42+k43)+k44)

end subroutine RKSTEP

 5.2 Projectile Motion

Consider a particle in the constant gravitational field near the surface of the earth
which moves with constant acceleration [image: ⃗g = − gˆy] so that

 	

[image: 1 2
x(t) = x0 + v0xt , y(t) = y0 + v0yt − 2gt
vx(t) = v0x , vy(t) = v0y − gt
ax(t) = 0 , ay(t) = − g
]
	(5.2)

The particle moves on a parabolic trajectory that depends on the initial
conditions

[image: ()
(y − y0) = v0y (x − x0) − 1-g- (x − x0)2
 v0x 2v20x
 tan2 𝜃
 = tan𝜃 (x − x0) − -----(x − x0)2, (5.3)
 4hmax
]

where [image: tan 𝜃 = v0y∕v0x] is the direction of the initial velocity and [image: hmax] is the
maximum height of the trajectory.

[image: pict] [image: pict]

[image: pict] [image: pict]

Figure 5.1: Plots of [image: x(t)], [image: y(t)], [image: vx(t)], [image: vy(t)] for a projectile fired in a constant
gravitational field [image: ⃗g = − 10.0ˆy] with initial velocity [image: ⃗v0 = ˆx + ˆy].

[image: pict] [image: pict]

Figure 5.2: (Left) The parabolic trajectory of a projectile fired in a constant
gravitational field [image: ⃗g = − 10.0ˆy] with initial velocity [image: ⃗v0 = ˆx+ ˆy]. (Right) The deviation of
the projectile’s energy from its initial value is due to numerical errors.

 The acceleration [image: ax(t) = 0] [image: ay(t) = − g] ([image: ax ↔] f3 , [image: ay ↔] f4) and the
mechanical energy is coded in the file rk2_g.f90:

!==

!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided

!by the user

!==

!Free fall in constant gravitational filed with

!g = -k2

real(8) function f3(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 f3=0.0D0 !dx3/dt=dv1/dt=a1

end function f3

!--

real(8) function f4(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 f4=-k1 !dx4/dt=dv2/dt=a2

end function f4

!--

real(8) function energy(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 energy = 0.5D0*(v1*v1+v2*v2) + k1*x2

end function energy

 In order to calculate a projectile’s trajectory you may use the following
commands:

> gfortran -O2 rk2.f90 rk2_g.f90 -o rk2

> ./rk2

 Runge-Kutta Method for 4-ODEs Integration

 Enter coupling constants:

10.0 0.0

 k1= 10.000000 k2= 0.000000

 Enter Nt,Ti,Tf,X10,X20,V10,V20:

20000 0.0 0.2 0.0 0.0 1.0 1.0

 Nt= 20000

 Time: Initial Ti = 0.000000 Final Tf= 0.200000

 X1(Ti)= 0.000000 X2(Ti)= 0.000000

 V1(Ti)= 1.000000 V2(Ti)= 1.000000

 The analysis of the results contained in the file rk2.dat can be done using
gnuplot:

gnuplot> set terminal x11 1

gnuplot> plot "rk2.dat" using 1:2 with lines title "x(t)"

gnuplot> set terminal x11 2

gnuplot> plot "rk2.dat" using 1:3 with lines title "y(t)"

gnuplot> set terminal x11 3

gnuplot> plot "rk2.dat" using 1:4 with lines title "vx(t)"

gnuplot> set terminal x11 4

gnuplot> plot "rk2.dat" using 1:5 with lines title "vy(t)"

gnuplot> set terminal x11 5

gnuplot> plot "rk2.dat" using 1:($6-1.0) w lines t "E(t)-(0)"

gnuplot> set terminal x11 6

gnuplot> set size square

gnuplot> set title "Trajectory"

gnuplot> plot "rk2.dat" using 2:3 with lines notit

 The results can be seen in figures 5.1 and 5.2. We note a small increase in
the mechanical energy which is due to the accumulation of numerical
errors.

 We can animate the trajectory by writing a script of gnuplot commands in a
file rk2_animate.gpl

icount = icount+skip

plot "<cat -n rk2.dat" \

 using 3:($1<= icount ? $4: 1/0) with lines notitle

pause 1

if(icount < nlines) reread

 Before calling the script, the user must set the values of the variables
icount, skip and nlines. Each time gnuplot reads the script, it plots
icount number of lines from rk2.dat. Then the script is read again and a
new plot is made with skip lines more than the previous one, unless
icount < nlines. The plotted “file” "<cat -n rk2.dat" is the standard
output (stdout) of the command cat -n rk2.dat which prints to the
stdout the contents of the file rk2.dat line by line, together with the line
number. Therefore the plot command reads data which are the line number,
the time, the coordinate [image: x], the coordinate [image: y] etc. The keyword using
in

 using 3:($1<= icount ? $4: 1/0)

 instructs the plot command to use the 3rd column on the horizontal axis and if
the first column is less than icount ($1<= icount) put on the vertical axis the
value of the 4th column if the first column is less than icount. Otherwise ($1 >
icount) it prints an undefined number (1/0) which makes gnuplot print nothing
at all. You may also uncomment the command pause if you want to make
the animation slower. In order to run the script from gnuplot, issue the
commands

gnuplot> icount = 10

gnuplot> skip = 200

gnuplot> nlines = 20000

gnuplot> load "rk2_animate.gpl"

 The scripts shown above can be found in the accompanying software. More
scripts can be found there that automate many of the boring procedures.
The usage of two of these is explained below. The first one is in the file
rk2_animate.csh:

> ./rk2_animate.csh -h

Usage: rk2_animate.csh -t [sleep time] -d [skip points] <file>

Default file is rk2.dat

Other options:

 -x: set lower value in xrange

 -X: set lower value in xrange

 -y: set lower value in yrange

 -Y: set lower value in yrange

 -r: automatic determination of x-y range

> ./rk2_animate.csh -r -d 500 rk2.dat

 The last line is a command that animates a trajectory read from the file
rk2.dat. Each animation frame contains 500 more points than the previous one.
The option -r calculates the plot range automatically. The option -h prints a
short help message.

 A more useful script is in the file rk2.csh.

> ./rk2.csh -h

Usage: rk2.csh -f <force> k1 k2 x10 x20 v10 v20 STEPS t0 tf

Other Options:

 -n Do not animate trajectory

Available forces (value of <force>):

1: ax=-k1 ay= -k2 y Harmonic oscillator

2: ax= 0 ay= -k1 Free fall

3: ax= -k2 vx ay= -k2 vy - k1 Free fall + \

 air resistance ~ v

4: ax= -k2 |v| vx ay= -k2 |v|vy - k1 Free fall + \

 air resistance ~ v^2

5: ax= k1*x1/r^3 ay= k1*x2/r^3 Coulomb Force

....

 The option -h prints operating instructions. A menu of forces is available, and a
choice can be made using the option -f. The rest of the command line consists of
the parameters read by the program in rk2.f90, i.e. the coupling constants k1,
k2, the initial conditions x10, x20, v10, v20 and the integration parameters
STEPS, t0 and tf. For example, the commands

[literate={-}{{\texttt{-}}}1]

> rk2.csh -f 2 -- 10.0 0.0 0.0 0.0 1.0 1.0 20000 0.0 0.2

> rk2.csh -f 1 -- 16.0 1.0 0.0 1.0 1.0 0.0 20000 0.0 6.29

> rk2.csh -f 5 -- 10.0 0.0 -10 0.2 10. 0.0 20000 0.0 3.00

 compute the trajectory of a particle in the constant gravitational field discussed
above, the trajectory of an anisotropic harmonic oscillator (k1 = [image: ax = − ω21x],
k2 = [image: ay = − ω2y
 2]) and the scattering of a particle in a Coulomb field –
try them! I hope that you will have enough curiosity to look “under the
hood” of the scripts and try to modify them or create new ones. Some
advise to the lazy guys: If you need to program your own force field follow
the recipe: Write the code of your acceleration field in a file named e.g.
rk2_myforce.f90 as we did with rk2_g.f90. Edit the file rk2.csh and modify
the line

set forcecode = (hoc g vg v2g cb)

 to

set forcecode = (hoc g vg v2g cb myforce)

 (the variable $forcecode may have more entries than the ones shown
above). Count the order of the string myforce, which is 6 in our case. In
order to access this force field from the command line, use the option -f
6:

> rk2.csh -f 6 --

 Now, we will study the effect of the air resistance on the motion of the
projectile. For small velocities this is a force proportional to the velocity
[image: F⃗r = − mk ⃗v], therefore

[image: ax = − kvx
ay = − kvy − g. (5.4)
]

By taking

[image: v0x ()
 x(t) = x0 + --- 1 − e−kt
 k() ()
 y(t) = y0 + 1- v0y + g- 1 − e−kt − g-t
 k k k
vx(t) = v0xe−kt
 (g) g
vy(t) = v0y + -- e− kt − --, (5.5)
 k k
]

we obtain the motion of a particle with terminal velocity [image: vy(+∞) = − g ∕k]

([image: x(+ ∞) =] const., [image: y(+ ∞) ∼ t]).
 The acceleration caused by the air resistance is programmed in the file (k1
[image: ↔ g], k2 [image: ↔ k]) rk2_vg.f90:

!==

!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided

!by the user

!==

!Free fall in constant gravitational filed with

!ax = -k2 vx ay = -k2 vy - k1

real(8) function f3(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 f3=-k2*v1 !dx3/dt=dv1/dt=a1

end function f3

!--

real(8) function f4(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 f4=-k2*v2-k1 !dx4/dt=dv2/dt=a2

end function f4

 The results are shown in figure 5.3 where we see the effect of an increasing air
resistance on the particle trajectory. The effect of a resistance force of the form
[image: F⃗r = − mkv2 ˆv] is shown in figure 5.4.

[image: pict] [image: pict]

Figure 5.3:
The trajectory of a projectile moving in a constant gravitational field [image: ⃗g = − 10ˆy] with air
resistance causing acceleration [image: ⃗ar = − k⃗v] for [image: k = 0,0.2,1,5,10,20,30]. The left plot has
[image: ⃗v(0) = ˆx + ˆy] and the right plot has [image: ⃗v(0) = 5ˆx + 5ˆy].

[image: pict] [image: pict]

Figure 5.4: The trajectory of a
projectile moving in a constant gravitational field [image: ⃗g = − 10yˆ] with air resistance causing
acceleration [image: ⃗ar = − kv2ˆv] for [image: k = 0,0.2,1,5,10,20,30]. The left plot has [image: ⃗v(0) = ˆx+ ˆy]
and the right plot has [image: ⃗v(0) = 5ˆx +5yˆ].

 5.3 Planetary Motion

Consider the simple planetary model of a “sun” of mass [image: M] and a planet “earth”
at distance [image: r] from the sun and mass [image: m] such that [image: m ≪ M]. According to
Newton’s law of gravity, the earth’s acceleration is

 	

[image: GM GM
⃗a = ⃗g = − --2-ˆr = − --3--⃗r,
 r r
]
	(5.6)

where [image: − 11--m3----
G = 6.67 × 10 kgr⋅sec2], [image: 30
M = 1.99 × 10 kgr], [image: 24
m = 5.99 × 10 kgr].
When the hypothesis [image: m ≪ M] is not valid, the two body problem is reduced to
that of the one body problem with the mass replaced by the reduced mass
[image: μ]

[image: 1-= -1 + -1-.
μ m M]

The force of gravity is a central force. This implies conservation of the angular
momentum [image: ⃗
L = ⃗r × ⃗p] with respect to the center of the force, which in turn
implies that the motion is confined on one plane. We choose the [image: z] axis so

that
 	

[image: ⃗L = Lz ˆk = m (xvy − yvx)ˆk.
]
	(5.7)

The force of gravity is conservative and the mechanical energy

 	

[image: E = 1-mv2 − GmM----
 2 r
]
	(5.8)

is conserved. If we choose the origin of the coordinate axes to be the center of the
force, the equations of motion (5.6) become

[image: GM
ax = − --3-x
 r
a = − GM--y, (5.9)
 y r3
]

where [image: r2 = x2 + y2]. This is a system of two coupled differential equations for the
functions [image: x(t)], [image: y(t)]. The trajectories are conic sections which are either an
ellipse (bound states - “planet”), a parabola (e.g. escape to infinity when the
particle starts moving with speed equal to the escape velocity) or a hyperbola
(e.g. scattering).
 Kepler’s third law of planetary motion states that the orbital period [image: T] of a
planet satisfies the equation

 	

[image: 2 4π2 3
T = GM---a ,
]
	(5.10)

where [image: a] is the semi-major axis of the elliptical trajectory. The eccentricity is a
measure of the deviation of the trajectory from being circular

 	

[image: ∘ ------2
e = 1 − b-,
 a2
]
	(5.11)

where [image: b] is the semi-minor axis. The eccentricity is 0 for the circle and tends to 1
as the ellipse becomes more and more elongated. The foci [image: F1] and [image: F2] are
located at a distance [image: ea] from the center of the ellipse. They have the property
that for every point on the ellipse

 	

[image: PF1 + P F2 = 2a.
]
	(5.12)

 The acceleration given to the particle by Newton’s force of gravity is
programmed in the file rk2_cb.f90:

!==

!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided

!by the user

!==

!Motion in Coulombic potential:

!ax= k1*x1/r^3 ay= k1*x2/r^3

real(8) function f3(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: r2,r3

 r2=x1*x1+x2*x2

 r3=r2*sqrt(r2)

 if(r3.gt.0.0D0)then

 f3=k1*x1/r3 !dx3/dt=dv1/dt=a1

 else

 f3=0.0D0

 endif

end function f3

!--

real(8) function f4(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: r2,r3

 r2=x1*x1+x2*x2

 r3=r2*sqrt(r2)

 if(r3.gt.0.0D0)then

 f4=k1*x2/r3 !dx4/dt=dv2/dt=a2

 else

 f4=0.0D0

 endif

end function f4

!--

real(8) function energy(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: r

 r=sqrt(x1*x1+x2*x2)

 if(r .gt. 0.0D0)then

 energy = 0.5D0*(v1*v1+v2*v2) + k1/r

 else

 energy = 0.0D0

 endif

end function energy

 We set k1= [image: − GM] and take special care to avoid hitting the center of the
force, the singular point at [image: (0,0)]. The same code can be used for the
electrostatic Coulomb field with k1= [image: qQ ∕4π 𝜖0m].

 At first we study trajectories which are bounded. We set [image: GM = 10],
[image: x (0) = 1.0], [image: y(0) = 0], [image: v0x = 0] and vary [image: v0y]. We measure the period [image: T] and
the length of the semi axes of the resulting ellipse. The results can be found in
table 5.1.

 	
	
	

	[image: v0x]	[image: T ∕2] 	[image: 2a]

	
	
	

	3.2 	1.030 	2.049
	3.4 	1.281 	2.370

	3.6 	1.682 	2.841
	3.8 	2.396 	3.597

	4.0 	3.927 	5.000
	4.1 	5.514 	6.270

	4.2 	8.665 	8.475

	4.3 	16.931	13.245

	4.3 	28.088	18.561

	4.38 	42.652	24.522

	4.40 	61.359	31.250

	4.42 	99.526	43.141

	
	
	

	

 Table 5.1: The results for the period [image: T] and the length of the semi-major axis [image: a] of
the trajectory of planetary motion for [image: GM = 10], [image: x(0) = 1.0], [image: y(0) = 0], [image: v0y = 0].

 Some of the trajectories are shown in figure 5.5. There we can see the
dependence of the size of the ellipse on the period. Figure 5.6 confirms Kepler’s
third law of planetary motion given by equation (5.10) .

[image: pict]

Figure 5.5: Planetary trajectories for [image: GM = 10], [image: x(0) = 1.0], [image: y(0) = 0], [image: v = 0
 0y]
and [image: v0x =] 3.6, 3.8, 4.0, 4.1, 4.3. The numbers are the corresponding half periods.

[image: pict]

Figure 5.6: Kepler’s third law of planetary motion for [image: GM = 10]. The points are the
measurements taken from table 5.1. The solid line is the known analytic solution (5.10) .

 In order to confirm Kepler’s third law of planetary motion numerically, we
take the logarithm of both sides of equation (5.10)

 	

[image: ()
 3 1 4 π2
lnT = 2-ln a + 2-ln GM--- .
]
	(5.13)

Therefore, the points [image: (ln a,lnT)] lie on a straight line. Using a linear least
squares fit we calculate the slope and the intercept which should be equal to [image: 3
2]
and [image: 2
1∕2ln (4 π ∕GM)] respectively. This is left as an exercise.

 In the case where the initial velocity of the particle becomes larger than the
escape velocity [image: ve], the particle escapes from the influence of the gravitational
field to infinity. The escape velocity corresponds to zero mechanical energy, which
gives

 	

[image: v2e = 2GM--.
 r
]
	(5.14)

When [image: GM = 10], [image: x(0) = 1.0], [image: y(0) = 0], we obtain [image: ve ≈ 4.4721 ...]. The
numerical calculation of [image: ve] is left as an exercise.

[image: pict]

Figure 5.7: The spiral orbit of a particle moving under the influence of a central force
[image: ⃗ 3
F = − k∕r ˆr].

 5.4 Scattering

In this section we consider scattering of particles from a central
potential1 .
We assume particles that follow unbounded trajectories that start from infinity
and move almost free from the influence of the force field towards its center.
When they approach the region of interaction they get deflected and get
off to infinity in a new direction. We say that the particles have been
scattered and that the angle between their original and final direction is the
scattering angle [image: 𝜃]. Scattering problems are interesting because we can
infer to the properties of the scattering potential from the distribution of
the scattering angle. This approach is heavily used in today’s particle
accelerators for the study of fundamental interactions between elementary
particles.

 First we will discuss scattering of small hard spheres of
radius [image: r1] by other hard spheres or radius [image: R2]. The interaction
potential2
is given by

 	

[image: {
V (r) = 0 r > R2 + r1 ,
 ∞ r < R2 + r1
]
	(5.15)

where [image: r] is the distance between the center of [image: r1] from the center of [image: R2].

[image: pict]

Figure 5.8: Scattering of hard spheres. The scattering angle is [image: 𝜃]. The cross sectional
area [image: σ] is shown to the right.

 Assume that the particles in the beam do not interact with each other and
that there is only one collision per scattering. Let [image: J] be the intensity of the
beam3
and [image: A] its cross sectional area. Assume that the target has [image: n] particles per unit
area. The cross sectional area of the interaction is [image: 2
σ = π(r1 + R2)] where [image: r1]
and [image: R2] are the radii of the scattered particles and targets respectively (see figure
(5.8)): All the spheres of the beam which lie outside this area are not
scattered by the particular target. The total interaction cross section is

 	

[image: Σ = nA σ,
]
	(5.16)

where [image: nA] is the total number of target spheres which lie within the beam. On
the average, the scattering rate is

 	

[image: N = J Σ = J nA σ.

]
	(5.17)

The above equation is the definition of the total scattering cross section [image: σ]
of the interaction. The differential cross section [image: σ(𝜃)] is defined by the
relation

 	

[image: dN = JnA σ (𝜃)dΩ,
]
	(5.18)

where [image: dN] is the number of particles per unit time scattered within the solid
angle [image: dΩ].

[image: pict]

Figure 5.9: Beam particles passing through the ring [image: 2πbdb] are scattered within the
solid angle [image: dΩ = 2πsin𝜃d𝜃].

 The total cross section is

 	

[image: ∫ ∫ ∫
σtot = σ (𝜃)dΩ = σ(𝜃) sin 𝜃d𝜃dϕ = 2π σ (𝜃) sin 𝜃d𝜃.
 Ω
]
	(5.19)

In the last relation we used the cylindrical symmetry of the interaction with
respect to the axis of the collision. Therefore

 	

[image: 1 dN
σ(𝜃) = ---------------.
 nAJ 2π sin 𝜃d𝜃
]
	(5.20)

This relation can be used in experiments for the measurement of the
differential cross section by measuring the rate of detection of particles within
the space contained in between two cones defined by the angles [image: 𝜃] and
[image: 𝜃 + d𝜃]. This is the relation that we will use in the numerical calculation of
[image: σ (𝜃)].

 Generally, in order to calculate the differential cross section we shoot a particle
at a target as shown in figure 5.9. The scattering angle [image: 𝜃] depends on the
impact parameter [image: b]. The part of the beam crossing the ring of radius

[image: b(𝜃)], thickness [image: db] and area [image: 2πbdb] is scattered in angles between [image: 𝜃]
and [image: 𝜃 + d𝜃]. Since there is only one particle at the target we have that
[image: nA = 1]. The number of particles per unit time crossing the ring is [image: J 2πbdb],
therefore

 	

[image: 2πb(𝜃)db = − 2πσ (𝜃)sin 𝜃d𝜃
]
	(5.21)

(the [image: −] sign is because as [image: b] increases, [image: 𝜃] decreases). From the potential we can
calculate [image: b(𝜃)] and from [image: b(𝜃)] we can calculate [image: σ(𝜃)]. Conversely, if we measure
[image: σ (𝜃)], we can calculate [image: b(𝜃)].

 5.4.1 Rutherford Scattering

The scattering of a charged particle with charge [image: q] (“electron”) in a
Coulomb potential of a much heavier charge [image: Q] (“nucleus”) is called
Rutherford scattering. In this case, the interaction potential is given by

 	

[image: 1 Q
V (r) = -------,
 4π 𝜖0 r
]
	(5.22)

which accelerates the particle with acceleration

 	

[image: qQ ˆr ⃗r
⃗a = 4π𝜖-m--r2 ≡ α r3.
 0
]
	(5.23)

The energy of the particle is [image: E = 1mv2
 2] and the magnitude of its angular
momentum is [image: l = mvb], where [image: v ≡ |⃗v|]. The dependence of the impact parameter
on the scattering angle is [38]

 	

[image: α 𝜃
b(𝜃) = --2 cot-.
 v 2
]
	(5.24)

Using equation (5.21) we obtain

 	

[image: 2
σ(𝜃) = α---1-sin− 4 𝜃-.
 4 v4 2
]
	(5.25)

[image: pict]

Figure 5.10: Rutherford scattering trajectories. We set k1 [image: ≡ -qQ--= 1
 4π𝜖0m] (see
code in the file rk2_cb.f90) and [image: b = 0.08,] [image: 0.015,] [image: 0.020,] [image: 0.035,] [image: 0.080,] [image: 0.120,]
[image: 0.200,] [image: 0.240,] [image: 0.320,] [image: 0.450,] [image: 0.600,] [image: 1.500]. The initial position of the particle is
at [image: x(0) = − 50] and its initial velocity is [image: v = 3] in the [image: x] direction. The number of
integration steps is 1000, the initial time is 0 and the final time is 30.

 Consider the scattering trajectories. The results for same charges are shown in
figure 5.10. A similar figure is obtained in the case of opposite charges. In the
latter case we have to take special care for small impact parameters [image: b < 0.2]
where the scattering angle is [image: ≈ 1]. A large number of integration steps
is needed in order to obtain the desired accuracy. A useful monitor of
the accuracy of the calculation is the measurement of the energy of the
particle which should be conserved. The results are shown in table 5.2.

 	
	
	
	
	

	[image: b] 	[image: 𝜃n] 	[image: 𝜃a] 	[image: ΔE ∕E] 	Nt

	
	
	
	
	

	[image: 0.008]	[image: 2.9975]	[image: 2.9978]	[image: 2.810 −9] 	[image: 5000]

	[image: 0.020]	[image: 2.7846]	[image: 2.7854]	[image: 2.710 −9] 	[image: 5000]

	[image: 0.030]	[image: 2.6131]	[image: 2.6142]	[image: −9
2.510] 	[image: 5000]

	[image: 0.043]	[image: 2.4016]	[image: 2.4031]	[image: 2.310 −9] 	[image: 5000]

	[image: 0.056]	[image: 2.2061]	[image: 2.2079]	[image: 2.010 −9] 	[image: 5000]

	[image: 0.070]	[image: 2.0152]	[image: 2.0172]	[image: 1.710 −9] 	[image: 5000]

	[image: 0.089]	[image: 1.7887]	[image: 1.7909]	[image: −9
1.410] 	[image: 5000]

	[image: 0.110]	[image: 1.5786]	[image: 1.5808]	[image: −9
1.010] 	[image: 5000]

	[image: 0.130]	[image: 1.4122]	[image: 1.4144]	[image: 0.810 −9] 	[image: 5000]

	[image: 0.160]	[image: 1.2119]	[image: 1.2140]	[image: 0.510 −9] 	[image: 5000]

	[image: 0.200]	[image: 1.0123]	[image: 1.0142]	[image: 0.310 −9] 	[image: 5000]

	[image: 0.260]	[image: 0.8061]	[image: 0.8077]	[image: −9
0.110] 	[image: 5000]

	[image: 0.360]	[image: 0.5975]	[image: 0.5987]	[image: −11
2.910]	[image: 5000]

	[image: 0.560]	[image: 0.3909]	[image: 0.3917]	[image: 0.310 −11]	[image: 5000]

	[image: 1.160]	[image: 0.1905]	[image: 0.1910]	[image: 5.310 −14]	[image: 5000]

	
	
	
	
	

	

 Table 5.2: Scattering angles of Rutherford scattering. We set k1 [image: ≡ 4qπQ𝜖m-= 1
 0] (see
file rk2_cb.f90) and study the resulting trajectories for the values of [image: b] shown in column
1. [image: 𝜃n] is the numerically calculated scattering angle and [image: 𝜃a] is the one calculated from
equation (5.24) . The ratio [image: ΔE ∕E] shows the change in the particle’s energy due to
numerical errors. The last column is the number of integration steps. The particle’s initial
position is at [image: x(0) = − 50] and initial velocity [image: ⃗v = 3ˆx].

 	
	
	
	
	

	[image: b] 	[image: 𝜃n] 	[image: 𝜃a] 	[image: ΔE ∕E] 	 STEPS

	
	
	
	
	

	[image: 0.020]	[image: 2.793] 	[image: 2.785] 	[image: 0.02] 	[image: 1000000]

	[image: 0.030]	[image: 2.620] 	[image: 2.614] 	[image: −3
8.210] 	[image: 300000]

	[image: 0.043]	[image: 2.405] 	[image: 2.403] 	[image: −4
7.210] 	[image: 150000]

	[image: 0.070]	[image: 2.019] 	[image: 2.017] 	[image: 3.210 −7] 	[image: 150000]

	[image: 0.089]	[image: 1.793] 	[image: 1.791] 	[image: 8.210 −7] 	 [image: 60000]

	[image: 0.110]	[image: 1.583] 	[image: 1.581] 	[image: 1.210 −6] 	 [image: 30000]

	[image: 0.130]	[image: 1.417] 	[image: 1.414] 	[image: −7
9.410] 	 [image: 20000]

	[image: 0.160]	[image: 1.216] 	[image: 1.214] 	[image: 6.010 −5] 	 [image: 5000]

	[image: 0.200]	[image: 1.016] 	[image: 1.014] 	[image: 4.110 −6] 	 [image: 5000]

	[image: 0.260]	[image: 0.8093]	[image: 0.8077]	[image: 2.210 −7] 	 [image: 5000]

	[image: 0.360]	[image: 0.6000]	[image: 0.5987]	[image: −9
7.610] 	 [image: 5000]

	[image: 0.560]	[image: 0.3926]	[image: 0.3917]	[image: −10
1.210]	 [image: 5000]

	[image: 1.160]	[image: 0.1913]	[image: 0.1910]	[image: 2.910 −13]	 [image: 5000]

	
	
	
	
	

	

 Table 5.3: Rutherford scattering of opposite charges with [image: --qQ-- = − 1
4π𝜖0m]. The table is
similar to table 5.2. We observe the numerical difficulty for small impact parameters.

[image: pict]

Figure 5.11: Differential cross section of the Rutherford scattering. The solid line is
the function (5.25) for [image: α = 1], [image: v = 3]. We set [image: -qQ--
4π𝜖0m = 1]. The particle’s initial position
is [image: x(0) = − 50] and its initial velocity is [image: ⃗v = 3ˆx]. We used 5000 integration steps, initial
time equal to 0 and final time equal to 30. The impact parameter varies between 0.02 and
1 with step equal to 0.0002.

[image: pict]

Figure 5.12: Differential cross section of the Rutherford scattering like in figure 5.11.
The solid line is the function [image: 4
1∕(4 × 3)x] from which we can deduce the functional form
of [image: σ (𝜃)].

 We will now describe a method for calculating the cross section by
using equation (5.20) . Alternatively we could have used equation (5.21)
and perform a numerical calculation of the derivatives. This is left as an
exercise for the reader. Our calculation is more like an experiment. We
place a “detector” that “detects” particles scattered within angles [image: 𝜃]
and [image: 𝜃 + δ𝜃]. For this reason we split the interval [image: [0,π]] in [image: Nb] bins
so that [image: δ𝜃 = π ∕Nb]. We perform “scattering experiments” by varying
[image: b ∈ [bm,bM]] with step [image: δb]. Due to the symmetry of the problem we fix [image: ϕ]
to be a constant, therefore a given [image: 𝜃] corresponds to a cone with an
opening angle [image: 𝜃] and an apex at the center of scattering. For given [image: b] we
measure the scattering angle [image: 𝜃] and record the number of particles per unit
time [image: δN ∝ bδb]. The latter is proportional to the area of the ring of
radius [image: b]. All we need now is the beam intensity [image: J] which is the total
number of particles per unit time [image: J ∝ ∑ bδb
 i] (note than in the ratio
[image: δN ∕J] the proportionality constant and [image: δb] cancel) and the solid angle
[image: 2π sin(𝜃)δ𝜃]. Finally we can easily use equation (5.19) in order to calculate the
total cross section [image: σtot]. The program that performs this calculation is in
the file scatter.f90 and it is a simple modification of the program in
rk2.f90:

!==

!Program that computes scattering cross-section of a central

!force on the plane. The user should first check that the

!parameters used, lead to a free state in the end.

! ** X20 is the impact parameter b **

!A 4 ODE system is solved using Runge-Kutta Method

!User must supply derivatives

!dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)

!dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)

!as real(8) functions

!Output is written in file scatter.dat

!==

program scatter_cross_section

 implicit none

 integer,parameter :: P=1010000

 real(8),dimension(P):: T,X1,X2,V1,V2

 real(8) :: Ti,Tf,X10,X20,V10,V20

 real(8) :: X20F,dX20 !max impact parameter and step

 integer :: Nt

 integer :: i

 real(8) :: k1,k2

 common /couplings/k1,k2

 integer, parameter :: Nbins=20

 integer :: index

 real(8) :: angle,bins(Nbins),Npart

 real(8),parameter :: PI =3.14159265358979324D0

 real(8),parameter :: rad2deg=180.0D0/PI

 real(8),parameter :: dangle =PI/Nbins

 real(8) R,density,dOmega,sigma,sigmatot

!Input:

 print *,’Runge-Kutta Method for 4-ODEs Integration’

 print *,’Enter coupling constants:’

 read *, k1,k2

 print *,’k1= ’,k1,’ k2= ’,k2

 print *,’Enter Nt,Ti,Tf,X10,X20,V10,V20:’

 read *, Nt,Ti,TF,X10,X20,V10,V20

 print *,’Enter final impact parameter X20F and step dX20:’

 read *, X20F,dX20

 print *,’Nt = ’,Nt

 print *,’Time: Initial Ti =’,Ti, ’ Final Tf=’,Tf

 print *,’ X1(Ti)=’,X10, ’ X2(Ti)=’,X20

 print *,’ V1(Ti)=’,V10, ’ V2(Ti)=’,V20

 print *,’Impact par X20F =’,X20F,’ dX20 =’,dX20

 open(unit=11,file=’scatter.dat’)

 bins = 0.0d0

!The Calculation:

 Npart = 0.0D0

 X20 = X20 + dX20/2.0D0 !starts in middle of first interval

 do while (X20 .lt. X20F)

 call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)

! Take absolute value due to symmetry:

 angle = DABS(atan2(V2(Nt),V1(Nt)))

!Output: The final angle. Check if almost constant

 write(11,*) ’@ ’, X20, angle,&

 DABS(atan2(V2(Nt-50),V1(Nt-50))),&

 k1/V10**2/tan(angle/2.0D0)

!Update histogram:

 index = int(angle/dangle)+1

!Number of incoming particles per unit time

!is proportional to radius of ring

!of radius X20, the impact parameter:

 !db is cancelled from density

 bins(index) = bins(index) + X20

 Npart = Npart + X20 !<-- i.e. from here

 X20 = X20 + dX20

 enddo

!Print scattering cross section:

 R = X20 !beam radius

 density = Npart/(PI*R*R) !beam flux density J

 sigmatot = 0.0D0 !total cross section

 do i=1,Nbins

 angle = (i-0.5D0)*dangle

 dOmega = 2.0D0*PI*sin(angle)*dangle !d(Solid Angle)

 sigma = bins(i)/(density*dOmega)

 if(sigma.gt.0.0D0) write(11,*) ’ds= ’,&

 angle,angle*rad2deg,sigma

 sigmatot = sigmatot + sigma*dOmega

 enddo

 write(11,*) ’sigmatot= ’,sigmatot

 close(11)

end program scatter_cross_section

 The results are recorded in the file scatter.dat. An example session that
reproduces figures 5.11 and 5.12 is

> gfortran scatter.f90 rk2_cb.f90 -o scatter

> ./scatter

 Runge-Kutta Method for 4-ODEs Integration

 Enter coupling constants:

1.0 0.0

 k1= 1.00000 k2= 0.00000

 Enter Nt,Ti,Tf,X10,X20,V10,V20:

5000 0 30 -50 0.02 3 0

 Enter final impact parameter X20F and step dX20:

1 0.0002

 Nt= 5000

 Time: Initial T0 = 0.00000 Final TF= 30.00000

 X1(T0)= -50.00000 X2(T0)= 2.00000E-002

 V1(T0)= 3.00000 V2(T0)= 0.00000

 Impact par X20F = 1.00000 dX20 = 2.00000E-004

 The results can be plotted with the gnuplot commands:

gnuplot> set log

gnuplot> plot [:1000] "<grep ds= scatter.dat" \

 u ((sin($2/2))**(-4)):($4) notit,\

 (1./(4.*3.**4))*x notit

gnuplot> unset log

gnuplot> set log y

gnuplot> plot [:] "<grep ds= scatter.dat" u 2:4 notit, \

 (1./(4.*3.**4))*(sin(x/2))**(-4) notit

 The results are in a very good agreement with the theoretical ones given by
(5.25) . The next step will be to study other central potentials whose solution is
not known analytically.

 5.4.2 More Scattering Potentials

Consider scattering from a force field

 	

[image: (
 { 12 − r3 r ≤ a
⃗F = f(r)ˆr, f(r) = r0 a r > a .
 (
]
	(5.26)

This is a very simple classical model of the scattering of a positron [image: e+] by the
hydrogen atom. The positron has positive charge [image: + e] and the hydrogen atom
consists of a positively charged proton with charge [image: + e] in an electron
cloud of opposite charge [image: − e]. We set the scales so that [image: me+ = 1] and

[image: 2
e ∕4π 𝜖0 = 1]. We will perform a numerical calculation of [image: b(𝜃)], [image: σ(𝜃)] and
[image: σtot].

 The potential energy is given by

 	

[image: dV (r) 1 r2 3
f(r) = − --dr-- ⇒ V (r) = r-+ 2a2-− 2a-.
]
	(5.27)

where [image: V (r) = 0] for [image: r ≥ a]. The program containing the calculation of the
acceleration caused by this force can be found in the file rk_hy.f90:

!==

!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided

!by the user

!==

!Motion in hydrogen atom + positron:

!f(r) = 1/r^2-r/k1^3

!ax= f(r)*x1/r ay= f(r)*x2/r

real(8) function f3(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: r2,r,fr

 r2=x1*x1+x2*x2

 r =sqrt(r2)

 if(r .le.k1 .and. r2.gt.0.0D0)then

 fr = 1/r2-r/k1**3

 else

 fr = 0.0D0

 endif

 if(fr.gt.0.0D0 .and. r .gt.0.0D0)then

 f3=fr*x1/r !dx3/dt=dv1/dt=a1

 else

 f3=0.0D0

 endif

end function f3

!--

real(8) function f4(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: r2,r,fr

 r2=x1*x1+x2*x2

 r =sqrt(r2)

 if(r .le.k1 .and. r2.gt.0.0D0)then

 fr = 1/r2-r/k1**3

 else

 fr = 0.0D0

 endif

 if(fr.gt.0.0D0 .and. r .gt.0.0D0)then

 f4=fr*x2/r !dx3/dt=dv1/dt=a1

 else

 f4=0.0D0

 endif

end function f4

!--

real(8) function energy(t,x1,x2,v1,v2)

 implicit none

 real(8) :: t,x1,x2,v1,v2

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: r,Vr

 r=sqrt(x1*x1+x2*x2)

 if(r .le.k1 .and. r .gt.0.0D0)then

 Vr = 1/r + 0.5D0*r*r/k1**3 - 1.5D0 / k1

 else

 Vr = 0.0D0

 endif

 energy = 0.5D0*(v1*v1+v2*v2) + Vr

end function energy

 The results are shown in figures 5.13–5.14. We find that [image: σtot = πa2] (see
problem 5.10).

[image: pict]

Figure 5.13: The impact parameter [image: b(𝜃)] for the potential given by equation (5.27)
for different values of the initial velocity [image: v]. We set [image: a = 1], [image: x (0) = − 5] and made [image: 4000]
integration steps from [image: ti = 0] to [image: tf = 40].

[image: pict]

Figure 5.14: The function [image: σ(𝜃)] for the potential given by equation (5.27) for
different values of the initial velocity [image: v]. We set [image: a = 1], [image: x(0) = − 5] and the integration
is performed by making [image: 4000] steps from [image: ti = 0] to [image: tf = 40].

 Another interesting dynamical field is given by the Yukawa potential. This is a
phenomenological model of nuclear interactions:

 	

[image: e−r∕a
V(r) = k -----.
 r
]
	(5.28)

This field can also be used as a model of the effective interaction of electrons in
metals (Thomas–Fermi) or as the Debye potential in a classic plasma. The
resulting force is

 	

[image: ()
⃗ e−-r∕a r-
F(r) = f(r)ˆr, f(r) = k r2 1 + a
]
	(5.29)

The program of the resulting acceleration can be found in the file rk2_yu.f90.
The results are shown in figures 5.15–5.16.

[image: pict]

Figure 5.15: The function [image: b(𝜃)] for the Yukawa scattering for several values of the
initial velocity [image: v]. We set [image: a = 1], [image: k = 1], [image: x(0) = − 50] and the integration is performed
with [image: 5000] steps from [image: ti = 0] to [image: tf = 30]. The lines marked as cb are equation (5.24)
of the Rutherford scattering.

[image: pict]

Figure 5.16: The function [image: b(𝜃)] for the Yukawa scattering for several values of the
range [image: a] of the force. We set [image: v = 4.0], [image: k = 1], [image: x(0) = − 50] and the integration is
performed with [image: 5000] steps from [image: ti = 0] to [image: tf = 30].

 5.5 More Particles

In this section we will generalize the discussion of the previous paragraphs in the
case of a dynamical system with more degrees of freedom. The number of
dynamical equations that need to be solved depends on the number of degrees of
freedom and we have to write a program that implements the 4th order
Runge–Kutta method for an arbitrary number of equations NEQ. We will explain
how to allocate memory dynamically, in which case the necessary memory storage
space, which depends on NEQ, is allocated at the time of running the program and
not at compilation time.

 Until now, memory has been allocated statically. This means that arrays have
sizes which are known at compile time. For example, in the program rk2.f90 the
integer parameter P had a given value which determined the size of all arrays
using the declarations:

 integer,parameter :: P=1010000

 real(8),dimension(P):: T,X1,X2,V1,V2

 Changing P after compilation is impossible and if this becomes necessary we have
to edit the file, change the value of P and recompile. Dynamical memory allocation
allows us to read in Nt and NEQ at execution time and then ask from the
operating system to allocate the necessary memory. All we have to do is to
declare the shape of the arrays (i.e. how many indices they take) and give
them the allocatable attribute. The needed memory can be asked for at
execution time by calling the function ALLOCATE. Here is an example:

 integer Nt,NEQ

 real(8),allocatable :: T (:) ! Rank-1 array

 real(8),allocatable :: X (:,:) ! Rank-2 array

 real(8),allocatable :: X0(:) ! Rank-1 array

 read *,Nt

 call finit(NEQ)

 allocate(X0(NEQ))

 allocate(T(Nt))

 allocate(X(Nt,NEQ))

 ...

 (compute with X0,T,X)

 ...

 deallocate(X0)

 deallocate(X)

 deallocate(T)

 (X0,T,X are not usable anymore)

 ...

....................

subroutine finit(NEQ)

 NEQ = 4

end subroutine finit

 In this program the arrays have the allocatable attribute and for each : they
have an extra index. Therefore the arrays T,X0 are rank-1 arrays and
have only one index, whereas the array X is a rank-2 array and has two
indices. The user enters the value of Nt and the subroutine finit sets the
value of NEQ. The calls to the function ALLOCATE allocate the necessary
memory4 .
If memory allocation is successful, then the arrays can be used in the same way as
the statically allocated ones. When allocatable arrays are not necessary anymore

we should make a call to the function DEALLOCATE which returns the unused
memory back to the system. Otherwise our program might suffer from “memory
leaks” if e.g. the memory is repeatedly asked in a loop that calls a function that
allocates memory without deallocating it in the end. Dynamical memory
allocation is very convenient but for high performance computing static
allocation might be preferable so that the compiler performs a more efficient
optimization.

 The main program will be written in the file rkA.f90, whereas the
force-dependent part of the code will be written in files with names of the form
rkA_XXX.f90. In the latter, the user must program a subroutine f(t,X,dXdt)
which takes as input the time t and the values of the functions X(NEQ) and
outputs the values of their derivatives dXdt(NEQ) at time t. The function
finit(NEQ) sets the number of functions in f and it is called once during the
initialization phase of the program.

 The program in the file rkA.f905
is listed below:

!==

!Program to solve an ODE system using the

!4th order Runge-Kutta Method

!NEQ: Number of equations

!User supplies two subroutines:

!f(t,x,xdot): with real(8) :: t,x(NEQ),xdot(NEQ) which

!given the time t and current values of functions x(NEQ)

!it returns the values of derivatives: xdot = dx/dt

!The values of two coupling constants k1,k2 may be used

!in f which are read in the main program and stored in

!common /couplings/k1,k2

!finit(NEQ) : sets the value of NEQ

!

!User Interface:

!k1,k2: real(8) coupling constants

!Nt,Ti,Tf: Nt-1 integration steps, initial/final time

!X0: real(8),dimension(NEQ): initial conditions

!Output:

!rkA.dat with Nt lines consisting of: T(Nt),X(Nt,NEQ)

!==

program rk2_solve

 implicit none

 real(8),allocatable :: T (:)

 real(8),allocatable :: X (:,:)

 real(8),allocatable :: X0(:)

 real(8) :: Ti,Tf

 integer :: Nt, NEQ,i

 real(8) :: k1,k2

 common /couplings/k1,k2

!We need explicit interface, since energy has

!assumed-shape arrays as arguments.

 INTERFACE

 real(8) function energy(t_intrf,x_intrf)

 implicit none

 real(8) :: t_intrf,x_intrf(:)

 end function energy

 END INTERFACE

!Input:

 print *,’Runge-Kutta Method for ODE Integration.’

!Get the number of equations:

 call finit(NEQ);allocate(X0(NEQ))

 print *,’NEQ= ’,NEQ

 print *,’Enter coupling constants:’

 read *, k1,k2

 print *,’k1= ’,k1,’ k2= ’,k2

 print *,’Enter Nt,Ti,Tf,X0:’

 read *, Nt,Ti,TF,X0

 print *,’Nt = ’,Nt

 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf

 print ’(A,2000G28.16)’,’ X0 =’,X0

 allocate(T(Nt));allocate(X(Nt,NEQ))

!The Calculation:

 call RK(T,X,Ti,Tf,X0,Nt,NEQ)

!Output:

 open(unit=11,file=’rkA.dat’)

 do i=1,Nt

 write(11,’(2000G28.16)’)T(i),X(i,:),&

 energy(T(i),X(i,:))

 enddo

 close(11)

end program rk2_solve

!==

!Driver of the RKSTEP routine

!==

subroutine RK(T,X,Ti,Tf,X0,Nt,NEQ)

 implicit none

 integer :: Nt,NEQ

 real(8),dimension(Nt) :: T

 real(8),dimension(Nt,NEQ):: X

 real(8),dimension(NEQ) :: X0

 real(8) :: Ti ,Tf

 real(8) :: dt

 real(8) :: TS,XS(NEQ) !values of time and X at given step

 integer :: i

!Initialize variables:

 dt = (Tf-Ti)/(Nt-1)

 T (1) = Ti

 X (1,:)= X0

 TS = Ti

 XS = X0

!Make RK steps: The arguments of RKSTEP are

!replaced with the new ones

 do i=2,Nt

 call RKSTEP(TS,XS,dt,NEQ)

 T(i) = TS

 X(i,:)= XS

 enddo

end subroutine RK

!==

!Subroutine RKSTEP(t,X,dt)

!Runge-Kutta Integration routine of ODE

!==

subroutine RKSTEP(t,x,dt,NEQ)

 implicit none

 integer :: NEQ

 real(8),dimension(NEQ) :: x

 real(8) :: t,dt,tt

 real(8),dimension(NEQ) :: k1,k2,k3,k4,xx

 real(8) :: h,h2,h6

!We need explicit interface, since f has assumed-shape

!arrays as arguments.

 INTERFACE

 subroutine f(t_intrf,x_intrf,xdot_intrf)

 implicit none

 real(8) :: t_intrf

 real(8),dimension(:):: x_intrf,xdot_intrf

 end subroutine f

 END INTERFACE

 h =dt !h =dt, integration step

 h2=0.5D0*h !h2=h/2

 h6=h/6.0D0 !h6=h/6

 call f(t ,x ,k1); xx = x + h2*k1; tt =t+h2

 call f(tt,xx,k2); xx = x + h2*k2; tt =t+h2

 call f(tt,xx,k3); xx = x + h *k3; tt =t+h

 call f(tt,xx,k4)

 t =t+h

 x =x +h6*(k1+2.0D0*(k2+k3)+k4)

end subroutine RKSTEP

 Note the use of array sections:

 write(11,’(2000G28.16)’)T(i),X(i,:)

 X(1,:)= X0

 X(i,:)= XS

 The expression X (1,:) refers to the first row of the array X. The arrays X0 and X
(1,:) are conformable and we can assign the entries in X (1,:) equal to the
entries in X0, i.e. X(1,1)=X0(1), X(1,2)=X0(2), ... , X(1,NEQ)=X0(NEQ) in
only one statement X(1,:)= X0. Similarly the statement write(...) X(i,:)
prints the whole i-th row of the array X whereas the statement X(i,:)= XS
assigns X(i,1)=XS(1), X(i,2)=XS(2), ... , X(i,NEQ)=XS(NEQ). Note the
vector operations:

xx = x + h2* k1

x = x + h6*(k1+2.0D0*(k2+k3)+k4)

 which are equivalent to the following do loops

 do i=1,NEQ

 xx(i) = x(i) + h2* k1(i)

 enddo

 do i=1,NEQ

 x(i) = x(i) + h6*(k1(i)+2.0D0*(k2(i)+k3(i))+k4(i))

 enddo

 A few words in order to explain what is an INTERFACE block. Up to
now we declared only the type of the functions in the calling program.
When the arguments of the function are arrays for which we only know
their shape and not their size (assumed-shape arrays), the compiler needs
more information. We need to declare the arguments, their types and,
in case they are arrays, their shapes as well. Each program that calls
these functions should include an INTERFACE block which provides this
information. For the functions f and energy, the corresponding INTERFACE block
is

 INTERFACE

!---

 subroutine f(t_intrf,x_intrf,xdot_intrf)

 implicit none

 real(8) :: t_intrf

 real(8),dimension(:):: x_intrf,xdot_intrf

 end subroutine f

!---

 real(8) function energy(t_intrf,x_intrf)

 implicit none

 real(8) :: t_intrf,x_intrf(:)

 end function energy

!---

 END INTERFACE

 You may create files like e.g. interfaces.inc with groups of INTERFACE blocks
and include them in all subprograms that use them with the statement include
"interfaces.inc".

[image: pict]

Figure 5.17: Three particles of equal mass interact via their mutual gravitational
attraction. The problem is solved numerically using the program in the files rkA.f90,
rkA_3pcb.f90. The same program can be used in order to study the motion of three equal
charges under the influence of their attractive or repulsive electrostatic force.

 Consider three particles of equal mass exerting a force of gravitational attraction on
each other6
like the ones shown in figure 5.17. The forces exerting on each other are given
by

 	

[image: ⃗Fij = mk1-⃗rij, i,j = 1,2,3,
 r3ij
]
	(5.30)

where [image: k1 = − Gm] and the equations of motion become ([image: i = 1,2,3])

[image: 3
dxi- dvix ∑ xi-−-xj
 dt = vix dt = k1 r3
 j=1,j⁄=i ij
 ∑3
dyi = viy dviy = k1 yi-−-yj, (5.31)
 dt dt j=1,j⁄=i r3ij
]

where [image: r2ij = (xi − xj)2 + (yi − yj)2]. The total energy of the system is

 	

[image: ∑3
E ∕m = 1-(v2+ v2) + k1.
 2 1 2 i,j=1,j<i rij
]
	(5.32)

The relations shown above are programmed in the file rkA_3pcb.f90 listed
below:

!===============================

!Sets number of equations

!===============================

subroutine finit(NEQ)

 NEQ = 12

end subroutine finit

!===============================

!Three particles of the same

!mass on the plane interacting

!via Coulombic force

!===============================

subroutine f(t,X,dXdt)

 implicit none

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: t,X(:),dXdt(:)

!-----------------------

 real(8) :: x11,x12,x21,x22,x31,x32

 real(8) :: v11,v12,v21,v22,v31,v32

 real(8) :: r12,r13,r23

!-----------------------

 x11 = X(1);x21 = X(5);x31 = X(9)

 x12 = X(2);x22 = X(6);x32 = X(10)

 v11 = X(3);v21 = X(7);v31 = X(11)

 v12 = X(4);v22 = X(8);v32 = X(12)

!-----------------------

 r12 = ((x11-x21)*(x11-x21)+(x12-x22)*(x12-x22))**(-1.5D0)

 r13 = ((x11-x31)*(x11-x31)+(x12-x32)*(x12-x32))**(-1.5D0)

 r23 = ((x21-x31)*(x21-x31)+(x22-x32)*(x22-x32))**(-1.5D0)

!--------------

 dXdt(1) = v11

 dXdt(2) = v12

 dXdt(3) = k1*(x11-x21)*r12+k1*(x11-x31)*r13 ! a11=dv11/dt

 dXdt(4) = k1*(x12-x22)*r12+k1*(x12-x32)*r13 ! a12=dv12/dt

!--------------

 dXdt(5) = v21

 dXdt(6) = v22

 dXdt(7) = k1*(x21-x11)*r12+k1*(x21-x31)*r23 ! a21=dv21/dt

 dXdt(8) = k1*(x22-x12)*r12+k1*(x22-x32)*r23 ! a22=dv22/dt

!--------------

 dXdt(9) = v31

 dXdt(10) = v32

 dXdt(11) = k1*(x31-x11)*r13+k1*(x31-x21)*r23 ! a31=dv31/dt

 dXdt(12) = k1*(x32-x12)*r13+k1*(x32-x22)*r23 ! a32=dv32/dt

end subroutine f

!===============================

real(8) function energy(t,X)

 implicit none

 real(8) :: k1,k2

 common /couplings/k1,k2

 real(8) :: t,X(:)

!-----------------------

 real(8) :: x11,x12,x21,x22,x31,x32

 real(8) :: v11,v12,v21,v22,v31,v32

 real(8) :: r12,r13,r23

!-----------------------

 x11 = X(1);x21 = X(5);x31 = X(9)

 x12 = X(2);x22 = X(6);x32 = X(10)

 v11 = X(3);v21 = X(7);v31 = X(11)

 v12 = X(4);v22 = X(8);v32 = X(12)

!-----------------------

 r12 = ((x11-x21)*(x11-x21)+(x12-x22)*(x12-x22))**(-0.5D0)

 r13 = ((x11-x31)*(x11-x31)+(x12-x32)*(x12-x32))**(-0.5D0)

 r23 = ((x21-x31)*(x21-x31)+(x22-x32)*(x22-x32))**(-0.5D0)

!-----------------------

 energy = 0.5D0*&

 (v11*v11+v12*v12+v21*v21+v22*v22+v31*v31+v32*v32)

 energy = energy + k1*(r12+r13+r23)

end function energy

 In order to run the program and see the results look at the commands in
the shell script in the file rkA_3pcb.csh. In order to run the script use
command

> rkA_3pcb.csh -0.5 4000 1.5 -1 0.1 1 0 1 -0.1 -1 0 0.05 1 0 -1

 which will run the program setting [image: k1 = − 0.5], [image: ⃗r1(0) = − ˆx + 0.1ˆy], [image: ⃗v1(0) = xˆ],
[image: ⃗r (0) = ˆx − 0.1ˆy
 2], [image: ⃗v (0) = − ˆx
 2], [image: ⃗r (0) = 0.05xˆ+ ˆy
 3], [image: ⃗v (0) = − ˆy
 3], Nt[image: = 4000]
and [image: tf = 1.5].

 5.6 Problems

 	Reproduce the results shown in figures 5.3 and 5.4. Compare your
 results to the known analytic solution.

 	Write a program for the force on a charged particle in a
 constant magnetic field [image: B⃗ = B ˆk] and compute its trajectory for
 [image: ⃗v(0) = v0xˆx + v0yˆy]. Set [image: x (0) = 1,y(0) = 0,v0y = 0] and calculate the
 resulting radius of the trajectory. Plot the relation between the radius
 and [image: v0x]. Compare your results to the known analytic solution. (assume
 non relativistic motion)

 	Consider the anisotropic
 harmonic oscillator [image: 2
ax = − ω1x], [image: 2
ay = − ω 2y]. Construct the Lissajous
 curves by setting [image: x (0) = 0, y(0) = 1,vx(0) = 1,vy(0) = 0], [image: tf = 2π],
 [image: ω22 = 1], [image: ω21 = 1,2,4,9,16,...]. What happens when [image: ω21 ⁄= nω22]?

 	Reproduce the results displayed in table 5.1 and figures 5.5 and 5.6.
 Plot [image: ln a] vs [image: ln T] and calculate the slope of the resulting straight
 line by using the linear least squares method. Is it what you expect?
 Calculate the intercept and compare your result with the expected one.

 	Calculate the angular momentum with respect to the center of the force
 at each integration step of the planetary motion and check whether it is
 conserved. Show analytically that conservation of angular momentum
 implies that the position vector sweeps areas at constant rate.

 	Calculate the escape velocity of a planet [image: ve] for [image: GM = 10.0],
 [image: y(0) = 0.0], [image: x0 = x (0) = 1] using the following steps: First show
 that [image: v2 = − GM (1∕a) + v2
 0 e]. Then set [image: v (0) = 0
 x], [image: v (0) = v
 y 0]. Vary
 [image: vy(0) = v0] and measure the resulting semi-major axis [image: a]. Determine
 the intercept of the resulting straight line in order to calculate [image: ve].

 	Repeat the previous problem for [image: x0 = 0.5], [image: 1.0], [image: 1.5], [image: 2.0], [image: 2.5],
 [image: 3.0], [image: 3.5], [image: 4.0]. From the [image: ve = f (1∕x0)] plot confirm the relation
 (5.14) .

 	Check that for the bound trajectory of a planet with [image: GM = 10.0],
 [image: x(0) = 1], [image: y(0) = 0.0], [image: vx(0) = 0] , [image: vy(0) = 4] you obtain that
 [image: F1P + F2P = 2a] for each point [image: P] of the trajectory. The point [image: F1]
 is the center of the force. After determining the semi-major axis [image: a]
 numerically, the point [image: F
 2] will be taken symmetric to [image: F
 1] with respect
 to the center of the ellipse.

 	Consider the planetary motion studied in the previous problem. Apply
 a momentary push in the tangential direction after the planet has
 completed 1/4 of its elliptical orbit. How stable is the particle trajectory
 (i.e. what is the dependence of the trajectory on the magnitude and
 the duration of the push?)? Repeat the problem when the push is in
 the vertical direction.

 	 Consider the scattering potential of the positron-hydrogen system
 given by equation (5.26) . Plot the functions [image: f (r)] and [image: V (r)] for
 different values of [image: a]. Calculate the total cross section [image: σtot] numerically
 and show that it is equal to [image: πa2].

 	Consider the Morse potential of diatomic molecules:
 	

 [image: V (r) = D (exp (− 2αr) − 2exp (− αr))
]
	(5.33)

 where [image: D, α > 0]. Compute the solutions of the problem numerically in one
 dimension and compare them to the known analytic solutions when
 [image: E < 0]:

 	

 [image: { ∘ ------------ ∘ -------- }
 -1 D-−----D-(D-−-|E-|)-sin(αt---2|E|∕m--+-C-)
x (t) = α ln |E| ,
]
	(5.34)

 where the integration constant as a function of the initial position and
 energy is given by

 	

 [image: [αx0]
C = sin−1 ∘D--−-|E|e----- .
 D(D − |E|)
]
	(5.35)

 We obtain a periodic motion with an energy dependent period
 [image: ∘ --------
= (π∕α) 2m ∕|E|]. For [image: E > 0] we obtain

 	

 [image: { ∘ ----------- ∘ ------ }
 -1 --D-(D-+--E)-cosh(αt--2E-∕m--+-C-) −-D-
x (t) = α ln |E |
]
	(5.36)

 whereas for [image: E = 0]

 	

 [image: { 2 }
x(t) = 1-ln 1-+ D-α-(t + C)2 .
 α 2 m
]
	(5.37)

 In these equations, the integration constant [image: C] is given by a different
 relation and not by equation (5.35) . Compute the motion in phase space
 [image: (x, ˙x)] and study the transition from open to closed trajectories.

 	Consider the effective potential term [image: Veff(r) = l2∕2mr2] ([image: l ≡ |L⃗|]) in the
 previous problem. Plot the function [image: V (r) = V(r) + V (r)
 tot eff] for [image: D = 20],
 [image: α = 1], [image: m = 1], [image: l = 1], and of course for [image: r > 0]. Determine the
 equilibrium position and the ionization energy.

 Calculate the solutions [image: x(t)], [image: y(t)], [image: y(x)], [image: r(t)] on the plane for [image: E > 0],
 [image: E = 0], and [image: E < 0] numerically. In the [image: E < 0] case consider the scattering
 problem and calculate the functions [image: b(𝜃)], [image: σ (𝜃)] and the total cross section
 [image: σtot].

 	Consider the potential of the molecular model given by the force
 [image: ⃗
F (r) = f (r)ˆr] where [image: 13 7
f (r) = 24(2∕r − 1 ∕r)]. Calculate the potential
 [image: V (r)] and plot the function [image: Vtot(r) = V (r) + Veff(r)]. Determine the
 equilibrium position and the ionization energy.
 Consider the problem of scattering and calculate [image: b(𝜃)], [image: σ(𝜃)] and [image: σtot]
 numerically. How much do your results depend on the minimum scattering
 angle?

 	Compute the trajectories of a particle under the influence of a force
 [image: ⃗ 3
F = − k ∕r ˆr]. Determine appropriate initial conditions that give a spiral
 trajectory.

 	Compute the total cross section [image: σtot] for the Rutherford scattering both
 analytically and numerically. What happens to your numerical results as you
 vary the integration limits?

 	Write a program that computes the trajectory of a particle that
 moves on the plane in the static electric field of [image: N] static point
 charges.

 	Solve the three body problem described in the text in the case of three
 different electric charges by making the appropriate changes to the program
 in the file rkA_3cb.f90.

 	Two charged particles of equal mass and charge are moving on the [image: xy]
 plane in a constant magnetic field [image: ⃗B = B ˆz]. Solve the equations of motion
 using a 4th order Runge–Kutta Method. Plot the resulting trajectories for
 the initial conditions that you will choose.

 	 Three particles of equal mass [image: m] are connected by identical springs. The
 springs’ spring constant is equal to [image: k] and their equilibrium length is equal

 to [image: l]. The particles move without friction on a horizontal plane. Solve the
 equations of motion of the system numerically by using a 4th order
 Runge–Kutta Method. Plot the resulting trajectories for the initial
 conditions that you will choose. (Hint: Look in the files rkA_3hoc.f90,
 rkA_3hoc.csh.)

[image: pict]

Figure 5.18: Two identical particles are attached to thin weightless rods of length
[image: l] and they are connected by an ideal weightless spring with spring constant [image: k] and
equilibrium length [image: l]. The rods are hinged to the ceiling at points whose distance is [image: l].
(Problem 5.20).

 	 Two identical particles are attached to thin weightless rods of length [image: l]
 and they are connected by an ideal weightless spring with spring
 constant [image: k] and equilibrium length [image: l]. The rods are hinged to the
 ceiling at points whose distance is [image: l] (see figure 5.18). Compute
 the Lagrangian of the system and the equations of motion for the
 degrees of freedom [image: 𝜃1] and [image: 𝜃2]. Solve these equations numerically by
 using a 4th order Runge–Kutta method. Plot the positions of the
 particles in a Cartesian coordinate system and the resulting trajectory.
 Study the normal modes for small angles [image: 𝜃 ≲ 0.1
 1] and compute the
 deviation of the solutions from the small oscillation approximation as
 the angles become larger. (Hint: Look in the files rk_cpend.f90,
 rk_cpend.csh)

 	 Repeat the previous problem when the hinges of the rods slide without
 friction on the [image: x] axis.

 	Repeat problem 5.20 by adding a third pendulum to the right at distance
 [image: l].

Chapter 6
Motion in Space
 In this chapter we will study the motion of a
particle in space (three dimensions). We will also discuss the case of the
relativistic motion, which is important if one wants to consider the motion of
particles moving with speeds comparable to the speed of light. This will be an
opportunity to use an adaptive stepsize Runge-Kutta method for the numerical
solution of the equations of motion. We will use the open source code
rksuite1 available
at the Netlib2
repository. Netlib is an open source, high quality repository for numerical analysis
software. The software it contains is used by many researchers in their high
performance computing programs and it is a good investment of time to learn how
to use it.
The technical skill that you will exercise in this chapter is looking for solutions to
your numerical problems provided by software written by others. It is
important to be able to locate the optimal solution to your problem, find the
relevant functions, read the software’s documentation carefully and filter out
the necessary information in order to call and link the functions to your
program.

 6.1 Adaptive Stepsize Control for Runge–Kutta Methods

The three dimensional equation of motion of a particle is an initial value problem
given by the equations (4.6)

[image: dx dv
--- = vx --x-= ax(t,x,vx,y,vy, z,vz)
 dt dt
dy- = v dvz-= a (t,x,v ,y,v ,z, v)
 dt y dt y x y z
 dz dvz
 dt-= vz dt--= az(t,x,vx,y,vy,z,vz). (6.1)
]

 For its numerical solution we will use an adaptive stepsize Runge–Kutta
algorithm for increased performance and accuracy. Adaptive stepsize is used in
cases where one needs to minimize computational effort for given accuracy goal.
The method frequently changes the time step during the integration process, so
that it is set to be large through smooth intervals and small when there
are abrupt changes in the values of the functions. This is achieved by
exercising error control either by monitoring a conserved quantity or by
computing the same solution using two different methods. In our case, two
Runge-Kutta methods are used, one of order [image: p] and one of order [image: p + 1],
and the difference of the results is used as an estimate of the truncation
error. If the error needs to be reduced, the step size is reduced and if it is
satisfactorily small the step size is increased. For the details we refer the
reader to [31]. Our goal is not to analyze and understand the details of
the algorithm, but to learn how to find and use appropriate and high
quality code written by others. The link http://www.netlib.org/ode/
reads

lib rksuite

alg Runge-Kutta

for initial value problem for first order ordinary differential

 equations. A suite of codes for solving IVPs in ODEs. A

 choice of RK methods, is available. Includes an error

 assessment facility and a sophisticated stiffness checker.

 Template programs and example results provided.

 Supersedes RKF45, DDERKF, D02PAF.

ref RKSUITE, Softreport 92-S1, Dept of Math, SMU, Dallas, Texas

by R.W. Brankin (NAG), I. Gladwell and L.F. Shampine (SMU)

lang Fortran

prec double

 There, we learn that the package provides code for Runge–Kutta methods, whose
source is open and written in the Fortran language. We also learn that the code is
written for double precision variables, which is suitable for our problem. Last, but
not least, we are also happy to learn that it is written by highly reputable people!
We download the files rksuite.f, rksuite.doc, details.doc, templates,
readme.

 In order to link the subroutines provided by the suite to our program we need
to read the documentation carefully. In the general case, documentation is
available on the web (html, pdf, ...), bundled files with names like README,
INSTALL, in whole directories with names like doc/, online help in man or info
pages and finally in good old fashioned printed manuals. Good quality software is
also well documented inside the source code files, something that is true for the
software at hand.

 In order to link the suite’s subroutines to our program we need the following
basic information:

 	INPUT DATA: This is the necessary information that the program
 needs in order to perform the calculation. In our case, the minimal
 such information is the initial conditions, the integration time interval
 and the number of integration steps. The user should also provide the
 functions on the right hand side of (6.1) . It might also be necessary to
 provide information about the desired accuracy goal, the scale of the
 problem, the hardware etc.

 	OUTPUT DATA: This is the information on how we obtain the
 results of the calculation for further analysis. Information whether the
 calculation was successful and error free could also be provided.

 	WORKSPACE: This is information on how we provide the necessary
 memory space used in the intermediate calculations. Such space needs
 to be provided by the user in programming languages where dynamical
 memory allocation is not possible, like in Fortran 77, and the size of
 workspace depends on the parameters of the calling program.

 It is easy to install the software. All the necessary code is in one file rksuite.f. The file
rksuite.doc3
contains the documentation. There we read that we need to inform the program
about the hardware dependent accuracy of floating point numbers. We need to set
the values of three variables:

...

RKSUITE requires three environmental constants OUTCH, MCHEPS,

DWARF. When you use RKSUITE, you may need to know their

values. You can obtain them by calling the subroutine ENVIRN

in the suite:

 CALL ENVIRN(OUTCH,MCHPES,DWARF)

returns values

 OUTCH - INTEGER

 Standard output channel on the machine being used.

 MCHEPS - DOUBLE PRECISION

 The unit of roundoff, that is, the largest

 positive number such that 1.0D0 + MCHEPS = 1.0D0.

 DWARF - DOUBLE PRECISION

 The smallest positive number on the machine being

 used.

...

************************** Installation Details ************

 All machine-dependent aspects of the suite have been

 isolated in the subroutine ENVIRN in the rksuite.for file.

 Certain environmental parameters must be specified in this

 subroutine. The values in the distribution version are

 those appropriate to the IEEE arithmetic standard. They

 must be altered, if necessary, to values appropriate to the

 computing system you are using before calling the codes of

 the suite. If the IEEE arithmetic standard values are not

 appropriate for your system, appropriate values can often

 be obtained by calling routines named in the Comments of

 ENVIRN.

...

 The variables OUTCH, MCHEPS, DWARF are defined in the subroutine ENVIRN. They
are given generic default values but the programmer is free to change them by editing
ENVIRN. We should identify the routine in the file rksuite.f and read the comments

in it4 :

...

 SUBROUTINE ENVIRN(OUTCH,MCHEPS,DWARF)

...

C The following six statements are to be Commented out

C after verification that the machine and installation

C dependent quantities are specified correctly.

...

 WRITE(*,*) ’ Before using RKSUITE, you must verify that the ’

 WRITE(*,*) ’ machine- and installation-dependent quantities ’

 WRITE(*,*) ’ specified in the subroutine ENVIRN are correct, ’

 WRITE(*,*) ’ and then Comment these WRITE statements and the ’

 WRITE(*,*) ’ STOP statement out of ENVIRN. ’

 STOP

...

C The following values are appropriate to IEEE

C arithmetic with the typical standard output channel.

C

 OUTCH = 6

 MCHEPS = 1.11D-16

 DWARF = 2.23D-308

 All we need to do is to comment out the WRITE and STOP commands since we will
keep the default values of the OUTCH, MCHEPS, DWARF variables:

...

C WRITE(*,*) ’ Before using RKSUITE, you must verify that the ’

C WRITE(*,*) ’ machine- and installation-dependent quantities ’

C WRITE(*,*) ’ specified in the subroutine ENVIRN are correct, ’

C WRITE(*,*) ’ and then Comment these WRITE statements and the ’

C WRITE(*,*) ’ STOP statement out of ENVIRN. ’

C STOP

...

 In order to check whether the default values are satisfactory, we can use the
Fortran intrinsic functions EPSILON() and TINY(). In the file test_envirn.f90,
we write a small test program

program testme

 implicit none

 integer :: OUTCH

 real(8) :: DWARF, MCHEPS

 real(8) :: x

 OUTCH = 6 !This is pretty much a standard

 MCHEPS = epsilon(x)/2.0D0

 DWARF = tiny(x)

 write(6,101)OUTCH,MCHEPS,DWARF

101 format(I4,2E30.18)

end program testme

 We compile and run the above program as follows:

> gfortran test_envirn.f90 -o test_envirn

> ./test_envirn

 6 0.111022302462515654E-15 0.222507385850720138-307

 We conclude that our choices are satisfactory.

 Next we need to learn how to use the subroutines in the suite. By carefully
reading rksuite.doc we learn the following: The interface to the adaptive
stepsize Runge–Kutta algorithm is the routine UT (UT = “Usual Task”). The
routine can use a 2nd-3rd (RK23) order Runge-Kutta pair for error control
(METHOD=1), a 4th-5th (RK45) order pair (METHOD=2) or a 7th-8th (RK78) order
pair (METHOD=3). We will set METHOD=2 (RK45). The routine SETUP must be called
before UT for initialization. The user should provide a function F that calculates
the derivatives of the functions we integrate for, i.e. the right hand side of
6.1.

 The fastest way to learn how to use the above routines is “by example”. The
suite include a templates package which can be unpacked by executing the
commands in the file templates using the sh shell:

> sh templates

tmpl1.out

tmpl1a.f

...

 The file tmpl1a.f contains the solution of the simple harmonic oscillator and has
many explanatory comments in it. We encourage the reader to study it carefully,
run it and test its results.

 After we become wise enough, we write the driver for the integration routine
UT, which can be found in the file rk3.f90:

!==

!Program to solve a 6 ODE system using Runge-Kutta Method

!Output is written in file rk3.dat

!==

program rk3_solve

 include ’rk3.inc’

 real(8) :: T0,TF,X10,X20,X30,V10,V20,V30

 real(8) :: t,dt,tstep

 integer :: STEPS

 integer :: i

 real(8) :: energy

!Arrays/variables needed by rksuite:

 real(8) TOL,THRES(NEQ),WORK(LENWRK),Y(NEQ),YMAX(NEQ),&

 YP(NEQ),YSTART(NEQ),HSTART

 logical ERRASS, MESSAGE

 integer UFLAG

!.. External Subroutines ..

 EXTERNAL F, SETUP, STAT, UT

!Input:

 print *,’Runge-Kutta Method for 6-ODEs Integration’

 print *,’Enter coupling constants k1,k2,k3,k4:’

 read *, k1,k2,k3,k4

 print *,’k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3,’ k4= ’,k4

 print *,’Enter STEPS,T0,TF,X10,X20,X30,V10,V20,V30:’

 read *, STEPS,T0,TF,X10,X20,X30,V10,V20,V30

 print *,’No. Steps= ’,STEPS

 print *,’Time: Initial T0 =’,T0,’ Final TF=’,TF

 print *,’ X1(T0)=’,X10,’ X2(T0)=’,X20,’ X3(T0)=’,X30

 print *,’ V1(T0)=’,V10,’ V2(T0)=’,V20,’ V3(T0)=’,V30

!Initial Conditions

 dt = (TF-T0)/STEPS

 YSTART(1) = X10

 YSTART(2) = X20

 YSTART(3) = X30

 YSTART(4) = V10

 YSTART(5) = V20

 YSTART(6) = V30

!

! Set error control parameters.

!

 TOL = 5.0D-6

 do i = 1, NEQ

 THRES(i) = 1.0D-10

 enddo

 MESSAGE = .TRUE.

 ERRASS = .FALSE.

 HSTART = 0.0D0

!Initialization:

 call SETUP(NEQ,T0,YSTART,TF,TOL,THRES,METHOD,’Usual Task’,&

 ERRASS,HSTART,WORK,LENWRK,MESSAGE)

 open(unit=11,file=’rk3.dat’)

 write(11,100) T0,YSTART(1),YSTART(2),YSTART(3),YSTART(4),&

 YSTART(5),YSTART(6),energy(T0,YSTART)

!Calculation:

 do i=1,STEPS

 t = T0 + i*dt

 call UT(F,t,tstep,Y,YP,YMAX,WORK,UFLAG)

 if(UFLAG.GT.2) exit !exit the loop: go after enddo

 write(11,100) tstep,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),&

 energy(tstep,Y)

 enddo

 close(11)

100 format(8E25.15)

end program rk3_solve

 All common parameters and variables are declared in an include file rk3.inc.
This is necessary in order for them to be accessible by the function F which
calculates the derivatives. The contents of this file are substituted in each line
containing the command include ’rk3.inc’.

!Basic definitions of variables for the suite rksuite

 implicit none

!NEQ is the number of equations, 6 in 3 dimensions

!METHOD=2 is for RK45.

 INTEGER NEQ, LENWRK, METHOD

 PARAMETER (NEQ=6,LENWRK=32*NEQ,METHOD=2)

 REAL *8 k1,k2,k3,k4 !force couplings

 COMMON /COUPLINGS/k1,k2,k3,k4

 The number of differential equations is set equal to NEQ=6. The integration
method is set by the choice METHOD=2. The variable LENWRK sets the size of the
workspace needed by the suite for the intermediate calculations.

 The main program starts with the user interface. The initial state of the
particle is stored in the array YSTART in the positions [image: 1 ...6]. The first three
positions are the coordinates of the initial position and the last three
the components of the initial velocity. Then we set some variables that
determine the behavior of the integration program (see the file rksuite.doc
for details) and call the subroutine SETUP. The main integration loop
is:

 do i=1,STEPS

 t = T0 + i*dt

 call UT(F,t,tstep,Y,YP,YMAX,WORK,UFLAG)

 if(UFLAG.GT.2) exit !exit the loop: go after enddo

 write(11,100) tstep,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),&

 energy(tstep,Y)

 enddo

 The function F is the subroutine that calculates the derivatives and
it will be programmed by us later. The variable t stores the desired
moment of time at which we want to calculate the functions. Because
of the adaptive stepsize, it can be different than the one returned
by the subroutine UT. The actual value of time that the next step
lands5
on is tstep. The array Y stores the values of the functions. We choose the data
structure to be such that [image: x]= Y(1), [image: y]= Y(2), [image: z]= Y(3) and [image: vx]= Y(4), [image: vy]=
Y(5), [image: vz]= Y(6) (the same sequence as in the array YSTART). The function
energy(t,Y) returns the value of the mechanical energy of the particle and its
code will be written in the same file as that of F. Finally, the variable UFLAG
indicates the error status of the calculation by UT and if UFLAG[image: > 2] we end the
calculation.

 Our test code will be on the study of the motion of a projectile in a
constant gravitational field, subject also to the influence of a dissipative force
[image: ⃗
Fr = − mk ⃗v]. The program is in the file rk3_g.f90. We choose the parameters k1
and k2 so that [image: ⃗g =] -k1 [image: ˆk] and [image: k =] k2.

!---------------------------------

subroutine F(T,Y,YP)

 include ’rk3.inc’

 real(8) :: t

 real(8) :: Y(*),YP(*)

 real(8) :: x1,x2,x3,v1,v2,v3

 x1 = Y(1);v1 = Y(4)

 x2 = Y(2);v2 = Y(5)

 x3 = Y(3);v3 = Y(6)

!Velocities: dx_i/dt = v_i

 YP(1) = v1

 YP(2) = v2

 YP(3) = v3

!Acceleration: dv_i/dt = a_i

 YP(4) = -k2*v1

 YP(5) = -k2*v2

 YP(6) = -k2*v3-k1

end subroutine F

!---------------------------------

real(8) function energy(T,Y)

 include ’rk3.inc’

 real(8) :: t,e

 real(8) :: Y(*)

 real(8) :: x1,x2,x3,v1,v2,v3

 x1 = Y(1);v1 = Y(4)

 x2 = Y(2);v2 = Y(5)

 x3 = Y(3);v3 = Y(6)

!Kinetic Energy

 e = 0.5*(v1*v1+v2*v2+v3*v3)

!Potential Energy

 e = e + k1*x3

 energy = e

end function energy

 For convenience we “translated” the values in the array Y(NEQ) into user-friendly variable

names6 .
If the file rksuite.f is in the directory rksuite/, then the compilation, running
and visualization of the results can be done with the commands:

> gfortran rk3.f90 rk3_g.f90 rksuite/rksuite.f -o rk3

> ./rk3

 Runge-Kutta Method for 6-ODEs Integration

 Enter coupling constants k1,k2,k3,k4:

10 0 0 0

 k1= 10.0000 k2= 0.0000E+000 k3=

 0.0000E+000 k4= 0.0000E+000

 Enter STEPS,T0,TF,X10,X20,X30,V10,V20,V30:

10000 0 3 0 0 0 1 1 1

 No. Steps= 10000

 Time: Initial T0 = 0.0000E+000 Final TF= 3.0000

 X1(T0)= 0.0000E+000 X2(T0)= 0.0000E+000

 X3(T0)= 0.0000E+000

 V1(T0)= 1.0000 V2(T0)= 1.0000

 V3(T0)= 1.0000

> gnuplot

gnuplot> plot "rk3.dat" using 1:2 with lines title "x1(t)"

gnuplot> plot "rk3.dat" using 1:3 with lines title "x2(t)"

gnuplot> plot "rk3.dat" using 1:4 with lines title "x3(t)"

gnuplot> plot "rk3.dat" using 1:5 with lines title "v1(t)"

gnuplot> plot "rk3.dat" using 1:6 with lines title "v2(t)"

gnuplot> plot "rk3.dat" using 1:7 with lines title "v3(t)"

gnuplot> plot "rk3.dat" using 1:8 with lines title "E(t)"

gnuplot> set title "trajectory"

gnuplot> splot "rk3.dat" using 2:3:4 with lines notitle

 All the above commands can be executed together using the shell script in the file
rk3.csh. The script uses the animation script rk3_animate.csh. The following
command executes all the commands shown above:

./rk3.csh -f 1 -- 10 0. 0 0 0 0 0 1 1 1 10000 0 3

 6.2 Motion of a Particle in an EM Field

In this section we study the non-relativistic motion of a charged particle in an
electromagnetic (EM) field. The particle is under the influence of the Lorentz
force:

 	

[image: ⃗F = q(E⃗ + ⃗v × ⃗B).
]
	(6.2)

Consider the constant EM field of the form [image: E⃗ = Ex ˆx + Eyˆy + Ez ˆz], [image: ⃗B = Bzˆ].
The components of the acceleration of the particle are:

[image: ax = (qEx ∕m) + (qB∕m)vy
ay = (qEy ∕m) − (qB ∕m)vx

az = (qEz ∕m). (6.3)
]

This field is programmed in the file rk3_B.f90. We set k1 [image: = qB ∕m], k2
[image: = qE ∕m
 x], k3 [image: = qE ∕m
 y] and k4 [image: = qE ∕m
 z]:

!--

!Particle in constant Magnetic and electric field

!q B/m = k1 z q E/m = k2 x + k3 y + k4 z

subroutine F(T,Y,YP)

 include ’rk3.inc’

 real(8) :: t

 real(8) :: Y(*),YP(*)

 real(8) :: x1,x2,x3,v1,v2,v3

 x1 = Y(1);v1 = Y(4)

 x2 = Y(2);v2 = Y(5)

 x3 = Y(3);v3 = Y(6)

!Velocities: dx_i/dt = v_i

 YP(1) = v1

 YP(2) = v2

 YP(3) = v3

!Acceleration: dv_i/dt = a_i

 YP(4) = k2 + k1 * v2

 YP(5) = k3 - k1 * v1

 YP(6) = k4

end subroutine F

!---------------------------------

real(8) function energy(T,Y)

 include ’rk3.inc’

 real(8) :: t,e

 real(8) :: Y(*)

 real(8) :: x1,x2,x3,v1,v2,v3

 x1 = Y(1);v1 = Y(4)

 x2 = Y(2);v2 = Y(5)

 x3 = Y(3);v3 = Y(6)

!Kinetic Energy

 e = 0.5*(v1*v1+v2*v2+v3*v3)

!Potential Energy

 e = e - k2*x1 - k3*x2 - k4*x3

 energy = e

end function energy

[image: pict]

Figure 6.1: The trajectory of a charged particle in a constant magnetic field [image: ⃗B = B ˆz],
where [image: qB∕m = 1.0], [image: ⃗v(0) = 1.0ˆy+ 0.1zˆ], [image: ⃗r(0) = 1.0ˆx]. The integration of the equations
of motion is performed using the RK45 method from [image: t0 = 0] to [image: tf = 40] with 1000 steps.

[image: pict]

Figure 6.2: The trajectory of a charged particle in a constant magnetic
field [image: ⃗
B = B ˆz], where [image: qB∕m = 1.0] and a constant electric field [image: ⃗
E = Ex ˆx+ Eyˆy]
[image: qEx ∕m = qEy∕m = 0.1]. [image: ⃗v(0) = 1.0ˆy +0.1ˆz], [image: ⃗r(0) = 1.0xˆ]. The integration of the
equations of motion is performed using the RK45 method from [image: t0 = 0] to [image: tf = 40] with
1000 steps. Each axis is on a different scale.

[image: pict]

Figure 6.3: The trajectory of a charged particle in a magnetic field [image: B⃗= B ˆy+ B ˆz
 y z]
with [image: qBy∕m = − 0.02y], [image: qBz∕m = 1+ 0.02z], [image: ⃗v(0) = 1.0yˆ+ 0.1ˆz], [image: ⃗r(0) = 1.0ˆx]. The
integration of the equations of motion is performed using the RK45 method from [image: t0 = 0]
to [image: tf = 500] with 10000 steps. Each axis is on a different scale.

[image: pict]

Figure 6.4: The trajectory of a charged particle in a magnetic field [image: B⃗= B ˆy+ B ˆz
 y z]
with [image: qBy∕m = 0.08z], [image: qBz∕m = 1.4+ 0.08y], [image: ⃗v(0) = 1.0yˆ+ 0.1ˆz], [image: ⃗r(0) = 1.0ˆx]. The
integration of the equations of motion is performed using the RK45 method from [image: t0 = 0]
to [image: tf = 3000] with 40000 steps. Each axis is on a different scale.

 We can also study space-dependent fields in the same way. The fields must
satisfy Maxwell’s equations. We can study the confinement of a particle in
a region of space by a magnetic field by taking [image: B⃗ = By ˆy + Bzˆz] with
[image: qB ∕m = − k y
 y 2], [image: qB ∕m = k + k z
 z 1 2] and [image: qB ∕m = k z
 y 3], [image: qB ∕m = k + k y
 z 1 2].
Note that [image: ∇⃗ ⋅ ⃗B = 0]. You may also want to calculate the current density from
the equation [image: ⃗∇ × ⃗B = μ0⃗j].

 The results are shown in figures 6.1–6.4.

 6.3 Relativistic Motion

Consider a particle of non zero rest mass moving with speed
comparable to the speed of light. In this case, it is necessary to
study its motion using the equations of motion given by special
relativity7 .
In the equations below we set [image: c = 1]. The particle’s rest mass is [image: m0 > 0], its
mass is [image: √ -----2
m = m0 ∕ 1 − v] (where [image: v < 1]), its momentum is [image: ⃗p = m⃗v] and its
energy is [image: ∘ -2----2-
E = m = p + m 0]. Then the equations of motion in a dynamic field
[image: F⃗] are given by:

 	

[image: d⃗p-= ⃗F.
dt
]
	(6.4)

In order to write a system of first order equations, we use the relations

 	

[image: ⃗p ⃗p ⃗p
⃗v = -- = -- = ∘--------2.
 m E p2 + m 0
]
	(6.5)

Using [image: ⃗v = d⃗r∕dt] we obtain

[image: dx- ---(px∕m0-)--- d(px∕m0-)- Fx-
dt = ∘1--+-(p∕m--)2, dt = m0
 0
dy- ---(py∕m0-)--- d(py∕m0-) -Fy
dt = ∘ 1 + (p∕m)2, dt = m0
 0
dz- = ∘--(pz∕m0-)---, d(pz∕m0-) = -Fz , (6.6)
dt 1 + (p∕m0)2 dt m0
]

which is a system of first order differential equations for the functions [image: (x(t),]
[image: y(t),] [image: z(t),] [image: (px∕m0)(t),] [image: (py∕m0)(t),] [image: (pz∕m0)(t))]. Given the initial conditions
[image: (x(0),] [image: y(0),] [image: z(0),] [image: (px∕m0)(0),] [image: (py∕m0)(0),] [image: (pz∕m0)(0))] their solution is
unique and it can be computed numerically using the 4th-5th order Runge–Kutta
method according to the discussion of the previous section. By using the relations

[image: (px∕m0) = √--vx--- vx = ∘--(px∕m0-)---
 1 − v2 1 + (p∕m0)2
 v (p ∕m)
(py∕m0) = √---y--- vy = ∘----y---0----
 1 − v2 1 + (p∕m0)2
 vz (pz∕m0)
(pz∕m0) = √------2 vz = ∘-------------,
 1 − v 1 + (p∕m0)2
 (6.7)
]

we can use the initial conditions [image: (x (0)], [image: y(0)], [image: z(0)], [image: vx(0)], [image: vy(0)], [image: vz(0))]
instead. Similarly, from the solutions [image: (x(t)], [image: y(t)], [image: z (t)], [image: (px∕m0)(t)],
[image: (py∕m0)(t)], [image: (pz∕m0)(t))] we can calculate [image: (x (t)], [image: y(t)], [image: z(t)], [image: vx(t)], [image: vy(t)],
[image: v (t))
 z]. We always have to check that
 	

[image: 2 2 2 2
v = (vx) + (vy) + (vz) < 1.
]
	(6.8)

Since half of the functions that we integrate for are the momentum instead of
the velocity components, we need to make some modifications to the
program in the file rk3.f90. The main program can be found in the file
sr.f90:

!==

!Program to solve a 6 ODE system using Runge-Kutta Method

!Output is written in file sr.dat

!Interface to be used with relativistic particles.

!==

program sr_solve

 include ’sr.inc’

 real(8) :: T0,TF,X10,X20,X30,V10,V20,V30

 real(8) :: P10,P20,P30

 real(8) :: P1,P2,P3,V1,V2,V3

 real(8) :: t,dt,tstep

 integer :: STEPS

 integer :: i

 real(8) :: energy

!Arrays/variables needed by rksuite:

 real(8) :: TOL,THRES(NEQ), WORK(LENWRK), Y(NEQ), YMAX(NEQ),&

 YP(NEQ), YSTART(NEQ),HSTART

 logical :: ERRASS, MESSAGE

 integer :: UFLAG

!.. External Subroutines ..

 EXTERNAL F, SETUP, STAT, UT

!Input:

 print *,’Runge-Kutta Method for 6-ODEs Integration’

 print *,’Special Relativistic Particle:’

 print *,’Enter coupling constants k1,k2,k3,k4:’

 read *, k1,k2,k3,k4

 print *,’k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3,’ k4= ’,k4

 print *,’Enter STEPS,T0,TF,X10,X20,X30,V10,V20,V30:’

 read *, STEPS,T0,TF,X10,X20,X30,V10,V20,V30

 call momentum(V10,V20,V30,P10,P20,P30)

 print *,’No. Steps= ’,STEPS

 print *,’Time: Initial T0 =’,T0,’ Final TF=’,TF

 print *,’ X1(T0)=’,X10,’ X2(T0)=’,X20,’ X3(T0)=’,X30

 print *,’ V1(T0)=’,V10,’ V2(T0)=’,V20,’ V3(T0)=’,V30

 print *,’ P1(T0)=’,P10,’ P2(T0)=’,P20,’ P3(T0)=’,P30

!Initial Conditions

 dt = (TF-T0)/STEPS

 YSTART(1) = X10

 YSTART(2) = X20

 YSTART(3) = X30

 YSTART(4) = P10

 YSTART(5) = P20

 YSTART(6) = P30

!

! Set error control parameters.

!

 TOL = 5.0D-6

 do i = 1, NEQ

 THRES(i) = 1.0D-10

 enddo

 MESSAGE = .TRUE.

 ERRASS = .FALSE.

 HSTART = 0.0D0

!Initialization:

 call SETUP(NEQ,T0,YSTART,TF,TOL,THRES,METHOD,’Usual Task’,&

 ERRASS,HSTART,WORK,LENWRK,MESSAGE)

 open(unit=11,file=’sr.dat’)

 call velocity(YSTART(4),YSTART(5),YSTART(6),V1,V2,V3)

 write(11,100) T0,YSTART(1),YSTART(2),YSTART(3),&

 V1,V2,V3,&

 energy(T0,YSTART),&

 YSTART(4),YSTART(5),YSTART(6)

!Calculation:

 do i=1,STEPS

 t = T0 + i*dt

 call UT(F,t,tstep,Y,YP,YMAX,WORK,UFLAG)

 if(UFLAG.GT.2) exit

 call velocity(Y(4),Y(5),Y(6),V1,V2,V3)

 write(11,100) tstep,Y(1),Y(2),Y(3),&

 V1,V2,V3,&

 energy(tstep,Y),&

 Y(4),Y(5),Y(6)

 enddo

 close(11)

100 format(11E25.15)

end program sr_solve

!==

!momentum -> velocity transformation

!==

subroutine velocity(p1,p2,p3,v1,v2,v3)

 implicit none

 real(8) :: v1,v2,v3,p1,p2,p3,v,p,vsq,psq

 psq = p1*p1+p2*p2+p3*p3

 v1 = p1/sqrt(1.0D0+psq)

 v2 = p2/sqrt(1.0D0+psq)

 v3 = p3/sqrt(1.0D0+psq)

end subroutine velocity

!==

!velocity -> momentum transformation

!==

subroutine momentum(v1,v2,v3,p1,p2,p3)

 implicit none

 real(8) :: v1,v2,v3,p1,p2,p3,v,p,vsq,psq

 vsq = v1*v1+v2*v2+v3*v3

 if(vsq .ge. 1.0D0) stop ’sub momentum: vsq >= 1’

 p1 = v1/sqrt(1.0D0-vsq)

 p2 = v2/sqrt(1.0D0-vsq)

 p3 = v3/sqrt(1.0D0-vsq)

end subroutine momentum

 The subroutines momentum and velocity compute the transformations (6.7) . In
the subroutine momentum we check whether the condition (6.8) is satisfied. These
functions are also used in the subroutine F that computes the derivatives of the
functions.

 The test drive of the above program is the well known relativistic motion of a
charged particle in a constant EM field. The acceleration of the particle is
given by equations (6.3) . The relativistic kinetic energy of the particle
is

 	

[image: () ()
 √---1--- ∘ -----------2
T = 1 − v2 − 1 m0 = 1 + (p∕m0) − 1 m0
]
	(6.9)

These relations are programmed in the file sr_B.f90. The contents of the file
sr_B.f90 are:

!==

! Particle in constant Magnetic and electric field

! q B/m = k1 z q E/m = k2 x + k3 y + k4 z

!==

subroutine F(T,Y,YP)

 include ’sr.inc’

 real(8) :: t

 real(8) :: Y(*),YP(*)

 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3

 x1 = Y(1);p1 = Y(4)

 x2 = Y(2);p2 = Y(5)

 x3 = Y(3);p3 = Y(6)

 call velocity(p1,p2,p3,v1,v2,v3)

!now we can use all x1,x2,x3,p1,p2,p3,v1,v2,v3

 YP(1) = v1

 YP(2) = v2

 YP(3) = v3

!Acceleration:

 YP(4) = k2 + k1 * v2

 YP(5) = k3 - k1 * v1

 YP(6) = k4

end subroutine F

!==

!Energy per unit rest mass

!==

real(8) function energy(T,Y)

 include ’sr.inc’

 real(8) :: t,e

 real(8) :: Y(*)

 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3,psq

 x1 = Y(1);p1 = Y(4)

 x2 = Y(2);p2 = Y(5)

 x3 = Y(3);p3 = Y(6)

 psq= p1*p1+p2*p2+p3*p3

!Kinetic Energy/m_0

 e = sqrt(1.0D0+psq)-1.0D0

!Potential Energy/m_0

 e = e - k2*x1 - k3*x2 - k4*x3

 energy = e

end function energy

 The results are shown in figures 6.5–6.6.

[image: pict]

Figure 6.5: The trajectory of a relativistic charged particle in a magnetic field
[image: ⃗
B = Bz ˆz] with [image: qBz∕m0 = 10.0], [image: ⃗v(0) = 0.95ˆy+ 0.10ˆz], [image: ⃗r(0) = 1.0xˆ]. The integration is
performed by using the RK45 method from [image: t0 = 0] to [image: tf = 20] with 1000 steps. Each
axis is on a different scale.

[image: pict]

Figure 6.6: Projection of the trajectory of a relativistic charged particle in a
magnetic field [image: ⃗
B = Bz ˆz] with [image: qBz∕m0 = 10.0], on the [image: xy] plane. [image: ⃗v(0) = 0.95ˆy+ 0.10ˆz],
[image: ⃗r(0) = 1.0ˆx]. The integration is performed by using the RK45 method from [image: t0 = 0] to
[image: tf = 20] with 1000 steps. Each axis is on a different scale.

[image: pict]

Figure 6.7: The influence of an additional electric field [image: qE⃗∕m = 1.0zˆ
 0] on the
trajectory shown in figure 6.5.

 Now we can study a more interesting problem. Consider a simple model of the
Van Allen radiation belt. Assume that the electrons are moving within the
Earth’s magnetic field which is modeled after a magnetic dipole field of the
form:

 	

[image: ()3 []
B⃗ = B0 RE-- 3 (dˆ⋅ ˆr)ˆr − ˆd ,
 r
]
	(6.10)

where [image: ⃗d = dˆd] is the magnetic dipole moment of the Earth’s magnetic field and
[image: ⃗r = rrˆ]. The parameter values are approximately equal to [image: B0 = 3.5 × 10 −5T],
[image: r ∼ 2RE], where [image: RE] is the radius of the Earth. The typical energy of
the moving particles is [image: ∼ 1] MeV which corresponds to velocities of
magnitude [image: ∘ --2----2- √ ---------2
v ∕c = E − m 0∕E ≈ 1 − 0.512 ∕1 = 0.86]. We choose
the coordinate axes so that [image: ˆd = ˆz] and we measure distance in [image: RE]
units8 .
Then we obtain:

[image: 3xz
Bx = B0 --5-
 r
By = B0 3yz-
 (r5)
 3zz 1
Bz = B0 -r5-− r3 (6.11)
]

The magnetic dipole field is programmed in the file sr_Bd.f90:

!==

! Particle in Magnetic dipole field:

! q B_1/m = k1 (3 x1 x3)/r^5

! q B_2/m = k1 (3 x2 x3)/r^5

! q B_3/m = k1[(3 x3 x3)/r^5-1/r^3]

!==

subroutine F(T,Y,YP)

 include ’sr.inc’

 real(8) :: t

 real(8) :: Y(*),YP(*)

 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3

 real(8) :: B1,B2,B3

 real(8) :: r

 x1 = Y(1);p1 = Y(4)

 x2 = Y(2);p2 = Y(5)

 x3 = Y(3);p3 = Y(6)

 call velocity(p1,p2,p3,v1,v2,v3)

!now we can use all x1,x2,x3,p1,p2,p3,v1,v2,v3

 YP(1) = v1

 YP(2) = v2

 YP(3) = v3

!Acceleration:

 r = sqrt(x1*x1+x2*x2+x3*x3)

 if(r.gt.0.0D0)then

 B1 = k1*(3.0D0*x1*x3)/r**5

 B2 = k1*(3.0D0*x2*x3)/r**5

 B3 = k1*((3.0D0*x3*x3)/r**5-1/r**3)

 YP(4) = v2*B3-v3*B2

 YP(5) = v3*B1-v1*B3

 YP(6) = v1*B2-v2*B1

 else

 YP(4) = 0.0D0

 YP(5) = 0.0D0

 YP(6) = 0.0D0

 endif

end subroutine F

!==

!Energy per unit rest mass

!==

real(8) function energy(T,Y)

 include ’sr.inc’

 real(8) :: t,e

 real(8) :: Y(*)

 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3,psq

 x1 = Y(1);p1 = Y(4)

 x2 = Y(2);p2 = Y(5)

 x3 = Y(3);p3 = Y(6)

 psq= p1*p1+p2*p2+p3*p3

!Kinetic Energy/m_0

 e = sqrt(1.0D0+psq)-1.0D0

 energy = e

end function energy

[image: pict]

Figure 6.8: The trajectory of a charged particle in a magnetic dipole field given
by equation (6.11) . We used [image: B0 = 1000], [image: ⃗r = 0.02ˆx+ 2.00ˆz], [image: ⃗v = − 0.99999ˆz]. The
integration was done from [image: t0 = 0] to [image: tf = 5] in 10000 steps.

 The results are shown in figure 6.8. The parameters have been exaggerated in
order to achieve an aesthetically pleasant result. In reality, the electrons are
moving in very thin spirals and the reader is encouraged to use more realistic
values for the parameters [image: ⃗v
 0], [image: B
 0], [image: ⃗r
 0]. The problem of why the effect is not seen
near the equator is left as an exercise.

 6.4 Problems

 	Compute the trajectory of a projectile moving in space in a constant
 gravitational field and under the influence of an air resistance
 proportional to the square of its speed.

 	Two point charges are moving with non relativistic speeds in a constant
 magnetic field [image: B⃗ = B ˆz]. Assume that their interaction is given by the
 Coulomb force only. Write a program that computes their trajectory
 numerically using the RK45 method.

 	Write a program that computes the trajectory of the anisotropic
 harmonic oscillator [image: F⃗ = − kxxxˆ] [image: − kyy ˆy] [image: − kzz ˆz]. Compute the
 three dimensional Lissajous curves which appear for appropriate
 values of the angular frequencies [image: ∘ ------
ωx = kx∕m], [image: ∘ ------
ωy = ky∕m],
 [image: ∘ ------
ωz = kz ∕m].

 	Two particles of mass [image: M] are at the fixed positions [image: ⃗r1 = aˆz] and
 [image: ⃗r = − aˆz
 2]. A third particle of mass [image: m] interacts with them via a
 Newtonian gravitational force and moves at non relativistic speeds.
 Compute the particle’s trajectory and find initial conditions that result
 in a planar motion.

 	Solve problem 5.19 of page 758 using the RK45 method. Choose initial
 conditions so that the system executes only translational motion. Next,
 choose initial conditions so that the system executes small vibrations

 and its center of mass remains stationary. Find the normal modes of the
 system and choose appropriate initial conditions that put the system
 in each one of them.

 	Solve the previous problem by putting the system in a box [image: |x| ≤ L]
 and [image: |y| ≤ L].
Hint: Look in the file springL.f90.

 	Solve the problem 5.20 in page 759 by using the RK45 method.

 	Solve the problem 5.21 in page 759 by using the RK45 method.

 	The electric field of an electric dipole [image: ⃗p = pˆz] is given by:

 [image: ⃗
 E = E ρˆρ + Ezˆz
 --1--3p-sin-𝜃cos-𝜃
E ρ = 4 π𝜖 r3
 0 2
Ez = --1--p(3-cos-𝜃-−-1) (6.12)
 4 π𝜖0 r3
]

where [image: ρ = ∘x2--+--y2 = rsin𝜃], [image: E = E cosϕ
 x ρ], [image: E = E sinϕ
 y ρ] and
 [image: (r,𝜃,ϕ)] are the polar coordinates of the point where the electric field is
 calculated. Calculate the trajectory of a test charge moving in this
 field at non relativistic speeds. Calculate the deviation between the
 relativistic and the non relativistic trajectories when the initial speed is
 [image: 0.01c,0.1c,0.5c,0.9c] respectively (ignore radiation effects).

 	Consider a linear charge distribution with constant linear charge density [image: λ].
 The electric field is given by

 [image: ⃗ --1--2λ-
E = E ρˆρ = 4π 𝜖0 ρ ˆρ
]
 Calculate the trajectories of two equal negative test charges that move at
 non relativistic speeds in this field. Consider only the electrostatic Coulomb
 forces and ignore anything else.

 	Consider a linear charge distribution on four straight lines parallel to the [image: z]
 axis. The linear charge density is [image: λ] and it is constant. The four straight
 lines intersect the [image: xy] plane at the points [image: (0,0)], [image: (0,a)], [image: (a,0)],
 [image: (a,a)]. Calculate the trajectory of a non relativistic charge in this
 field. Next, compute the relativistic trajectories (ignore all radiation
 effects).

 	Three particles of mass [image: m] interact via their Newtonian gravitational force.
 Compute their (non relativistic) trajectories in space.

Chapter 7
Electrostatics
 In this chapter we will study the electric field
generated by a static charge distribution. First we will compute the electric field
lines and the equipotential surfaces of the electric field generated by a static point
charge distribution on the plane. Then we will study the electric field generated
by a continuous charge distribution on the plane. This requires the numerical
solution of an elliptic boundary value problem which will be done using successive
over-relaxation (SOR) methods.
 7.1 Electrostatic Field of Point Charges

Consider [image: N] point charges [image: Q
 i] which are located at fixed positions on the plane
given by their position vectors [image: ⃗ri], [image: i = 1,...,N]. The electric field is given by
Coulomb’s law

 	

[image: N
⃗ -1---∑ ---Qi---
E (⃗r) = 4π𝜖 |⃗r − ⃗r |2ρˆi
 0 i=1 i
]
	(7.1)

where [image: ˆρ = (⃗r − ⃗r)∕|⃗r − ⃗r |
 i i i] is the unit vector in the direction of [image: ⃗r − ⃗r
 i]. The
components of the field are

[image: N
E (x,y) = -1---∑ -------Qi(x-−-xi)--------
 x 4π𝜖0 ((x − xi)2 + (y − yi)2)3∕2
 i=1
 1 ∑N Qi(y − yi)
Ey (x,y) = ----- --------2----------2-3∕2, (7.2)
 4π𝜖0 i=1 ((x − xi) + (y − yi))
]

 The electrostatic potential at [image: ⃗r] is

 	

[image: 1 ∑N Q
V (⃗r) = V(x, y) = ----- ------------i--------1∕2,
 4π𝜖0 i=1 ((x − xi)2 + (y − yi)2)
]
	(7.3)

and we have that

 	

[image: ⃗E (⃗r) = − ⃗∇V (⃗r).
]
	(7.4)

 The electric field lines are the integral curves of the vector field [image: E⃗], i.e. the
curves whose tangent lines at each point are parallel to the electric field at that
point. The magnitude of the electric field is proportional to the density of the field
lines (the number of field lines per perpendicular area). This means that the
electric flux [image: ∫ ⃗ ⃗
ΦE = 𝒮 E ⋅ d A] through a surface [image: 𝒮] is proportional to the number
of field lines that cross the surface. Electric field lines of point charge distributions
start from positive charges (sources), end in negative charges (sinks) or extend to
infinity.

 The equipotential surfaces are the loci of the points of space where the
electrostatic potential takes fixed values. hey are closed surfaces. Equation (7.4)
tells us that a strong electric field at a point is equivalent to a strong spatial variation
of the electric potential at this point, i.e. to dense equipotential surfaces. The
direction of the electric field is perpendicular to the equipotential surfaces at each
point1 ,
which is the direction of the strongest spatial variation of [image: V], and it
points in the direction of decreasing [image: V]. The planar cross sections of the
equipotential surfaces are closed curves which are called equipotential
lines.

[image: pict]

Figure 7.1: The electric field is tangent at each point of an electric field line and
perpendicular to an equipotential line. By approximating the continuous curve by the line
segment [image: Δl], we have that [image: Δy∕Δx = Ey ∕Ex].

 The computer cannot solve a problem in the continuum and we have to
consider a finite discretization of a field line. A continuous curve is approximated
by a large but finite number of small line segments. The basic idea is illustrated in
figure 7.1: The small line segment [image: Δl] is taken in the direction of the electric field
and we obtain

 	

[image: Δx = Δl Ex-, Δy = Δl Ey-,
 E E
]
	(7.5)

where [image: ∘ ---------
E ≡ |E⃗| = E2x + E2y].

 In order to calculate the equipotential lines we use the property that they are
perpendicular to the electric field at each point. Therefore, if [image: (Δx, Δy)] is in the
tangential direction of a field line, then [image: (− Δy, Δx)] is in the perpendicular
direction since [image: (Δx, Δy) ⋅ (− Δy, Δx) = − Δx Δy + Δy Δx = 0]. Therefore the
equations that give the equipotential lines are

 	

[image: Ey Ex
Δx = − Δl ---, Δy = Δl ---.
 E E
]
	(7.6)

 The algorithm that will allow us to perform an approximate calculation of the
electric field lines and the equipotential lines is the following: Choose an initial
point that belongs to the (unique) line that you want to draw. The electric field
can be calculated from the known electric charge distribution and equation (7.2) .
By using a small enough step [image: Δl] we move in the direction [image: (Δx, Δy)] to the new
position

 	

[image: x → x + Δx, y → y + Δy,
]
	(7.7)

where we use equations (7.5) or (7.6) . The procedure is repeated until the
drawing is finished. The programmer sets a criterion for that, e.g. when the field
line steps out of the drawing area or approaches a charge closer than a minimum
distance.

 7.2 The Program – Appetizer and ... Desert

The hurried, but slightly experienced reader may skip the details of this section
and go directly to section 7.4. There she can find the final form of the program
and brief usage instructions.

 In order to program the algorithm described in the previous section, we will
separate the algorithmic procedures into four different but well defined tasks:

 	Main program: The data structure, which is given by the position of
 the charges stored in the arrays X(P), Y(P) and the charges stored

 in the array Q(P), is defined. It also contains the user interface which
 consists of reading data entered by the user, like the number of charges
 N, their positions and magnitude. Then the calculation of a group of
 field or equipotential lines is performed by calling the routines eline
 or epotline respectively.

 	subroutine eline(xin,yin,X,Y,Q,N): Calculates the electric field line
 passing through the point xin,yin. On entry, the user inputs the point
 xin,yin and the data N, X(N), Y(N), Q(N). On exit, the subroutine
 prints to the stdout the coordinates of the approximate electric field
 line. The line extends up to a point that is either too close to one of the
 point charges or until the line leaves the drawing area2 .
 It calls the subroutines efield for the calculation of the electric field
 and mdist for the calculation of the minimum and maximum distance
 of a point on the field line from all the point charges.

 	subroutine epotline(xin,yin,X,Y,Q,N): Calculates the equipotential
 line passing through the point xin,yin. On entry, the user inputs
 the point xin,yin and the data N, X(N), Y(N), Q(N). On exit, the
 subroutine prints to the stdout the coordinates of the approximate
 equipotential line. The subroutine stops calculating an equipotential
 line when it comes back close enough to the original point3
 xin,yin or when it leaves the drawing area. It calls the subroutines
 efield for the calculation of the electric field and mdist for the calculation
 of the minimum and maximum distance of a point on the equipotential
 line from all the point charges.

 	subroutine efield(x0,y0,X,Y,Q,N,Ex,Ey): Calculates the electric
 field Ex, Ey at position x0, y0. On entry, the user provides the number
 of charges N, the position of charges X(N), Y(N), the charges Q(N) and
 the position x0, y0. On exit, the routine provides the values Ex, Ey.

 	subroutine mdist(x0,y0,X,Y,N,rmin,rmax):
 Calculates the maximum and minimum distance of the point x0, y0
 from all charges located at X(N), Y(N). On entry, the user provides the

 number of charges N, the position of charges X(N), Y(N) and the point
 x0, y0. On exit, the routine provides the minimum and maximum
 distances rmin,rmax.

 In the main program, the variables N, X(N), Y(N) and Q(N) must
be set. These can be hard coded by the programmer or entered by the
user interactively. The first choice is coded in the program listed below,
which can be found in the file ELines.f90. This is version 1 of the main
program:

!**

program Electric_Fields

!**

 implicit none

 integer,parameter :: P=20 !max number of charges

 real,dimension(P) :: X,Y,Q

 integer :: N

!------------- SET CHARGE DISTRIBUTION ----

 N = 2

 X(1) = 1.0

 Y(1) = 0.0

 Q(1) = 1.0

 X(2) = -1.0

 Y(2) = 0.0

 Q(2) = -1.0

!------------- DRAWING LINES -------------

 call eline(0.0, 0.5,X,Y,Q,N)

 call eline(0.0, 1.0,X,Y,Q,N)

 call eline(0.0, 1.5,X,Y,Q,N)

 call eline(0.0, 2.0,X,Y,Q,N)

 call eline(0.0,-0.5,X,Y,Q,N)

 call eline(0.0,-1.0,X,Y,Q,N)

 call eline(0.0,-1.5,X,Y,Q,N)

 call eline(0.0,-2.0,X,Y,Q,N)

end program Electric_Fields

 The commands

!------------- SET CHARGE DISTRIBUTION ----

 N = 2

 X(1) = 1.0

 Y(1) = 0.0

 Q(1) = 1.0

 X(2) = -1.0

 Y(2) = 0.0

 Q(2) = -1.0

 define two opposite charges Q(1)= -Q(2)= 1.0 located at [image: (1,0)] and [image: (− 1,0)]
respectively. The next lines call the subroutine eline in order to perform the
calculation of 8 field lines passing through the points [image: (0,±1 ∕2)], [image: (0,±1)],
[image: (0,±3 ∕2)], [image: (0,±2)]:

!------------- DRAWING LINES -------------

 call eline(0.0, 0.5,X,Y,Q,N)

 call eline(0.0, 1.0,X,Y,Q,N)

 call eline(0.0, 1.5,X,Y,Q,N)

 call eline(0.0, 2.0,X,Y,Q,N)

 call eline(0.0,-0.5,X,Y,Q,N)

 call eline(0.0,-1.0,X,Y,Q,N)

 call eline(0.0,-1.5,X,Y,Q,N)

 call eline(0.0,-2.0,X,Y,Q,N)

 These commands print the coordinates of the field lines to the stdout and the
user can analyze them further.

 The program for calculating the equipotential lines is quite similar. The calls
to the subroutine eline are substituted by calls to epotline.

 For the program to be complete, we must program the subroutines
eline, efield, mdist. This will be done later, and you can find the
full code in the file ELines.f90. For the moment, let’s copy the main
program4
listed above into the file Elines.f90 and compile and run it with the
commands:

> gfortran ELines.f90 -o el

> ./el > el.out

 The stdout of the program is redirected to the file el.out. We can plot the
results with gnuplot:

gnuplot> plot "el.out" with dots

 The result is shown in figure 7.2.

[image: pict]

Figure 7.2: Some electric field lines of the electric field of two opposite charges calculated
by the program ELines.f90 (version 1!).

 Let’s modify the program so that the user can enter the charge distribution, as
well as the number and position of the field lines that she wants to draw,
interactively. The part of the code that we need to change is:

!------------- SET CHARGE DISTRIBUTION ----

 print *, ’# Enter number of charges:’

 read *, N

 print *, ’# N= ’,N

 do i=1,N

 print *,’# Charge: ’,i

 print *,’# Position and charge: (X,Y,Q):’

 read *, X(i),Y(i),Q(i)

 print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)

 enddo

 The first line asks the user to enter the number of charges in the distribution.
It proceeds with reading it from the stdin and prints the result to the
stdout. The following loop reads the positions and charges and stores
them at the position i of the arrays X(i), Y(i), Q(i). The results are
printed to the stdout so that the user can check the values read by the
program.

 The drawing of the field lines is now done by modifying the code so
that:

!------------- DRAWING LINES -------------

 print *,’# How many lines to draw? ’

 read *, draw

 do i=1,draw

 print *,’# Initial point (x0,y0): ’

 read *, x0,y0

 call eline(x0,y0,X,Y,Q,N)

 enddo

 As a test case, we run the program for one charge [image: q = 1.0] located at the origin
and we draw one field line passing through the point [image: (0.1,0.1)].

> gfortran ELines.f90 -o el

> ./el

 # Enter number of charges:

1

 # N= 1

 # Charge: 1

 # Position and charge: (X,Y,Q):

0.0 0.0 1.0

 # (X,Y)= 0.000000 0.000000 Q= 1.000000

 # How many lines to draw?

1

 # Initial point (x0,y0):

0.1 0.1

 9.2928931E-02 9.2928931E-02

 8.5857861E-02 8.5857861E-02

 7.8786790E-02 7.8786790E-02

....

 For charge distributions with a large number of point charges, use an editor to
record the charges, their positions and the points where the field lines should go
through.

2 N: Number of Charges

 1.0 0.0 1.0 (X,Y,Q): Position and charge

-1.0 0.0 -1.0 (X,Y,Q): Position and charge

8 Number of lines to draw

0.0 0.5 x0,y0: Initial point of line

0.0 1.0 x0,y0: Initial point of line

0.0 1.5 x0,y0: Initial point of line

0.0 2.0 x0,y0: Initial point of line

0.0 -0.5 x0,y0: Initial point of line

0.0 -1.0 x0,y0: Initial point of line

0.0 -1.5 x0,y0: Initial point of line

0.0 -2.0 x0,y0: Initial point of line

 If the data listed above is written into a file, e.g. Input, then the command

./el < Input > el.out

 reads the data from the file Input and redirects the data printed to the stdout
to the file el.out. This way you can create a “library” of charge distributions and
the field lines of their respective electric fields. The complete code (version 2) is
listed below:

!**

program Electric_Fields

!**

 implicit none

 integer,parameter :: P=20 !max number of charges

 real,dimension(P) :: X,Y,Q

 integer :: N

 integer :: i,j,draw

 real :: x0,y0

!------------- SET CHARGE DISTRIBUTION ----

 print *, ’# Enter number of charges:’

 read *, N

 print *, ’# N= ’,N

 do i=1,N

 print *,’# Charge: ’,i

 print *,’# Position and charge: (X,Y,Q):’

 read *, X(i),Y(i),Q(i)

 print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)

 enddo

!------------- DRAWING LINES -------------

 print *,’# How many lines to draw? ’

 read *, draw

 do i=1,draw

 print *,’# Initial point (x0,y0): ’

 read *, x0,y0

 call eline(x0,y0,X,Y,Q,N)

 enddo

end program Electric_Fields

 If you did the exercises described above, you should have already realized that
in order to draw a nice representative picture of the electric field can be
time consuming. For field lines one can use simple physical intuition in
order to automate the procedure. For distances close enough to a point
charge the electric field is approximately isotropic. The number of field
lines crossing a small enough curve which contains only the charge is
proportional to the charge (Gauss’s law). Therefore we can draw a small

circle centered around each charge and choose initial points isotropically
distributed on the circle as initial points of the field lines. The code listed below
(version 3) implements the idea for charges that are equal in magnitude. For
charges different in magnitude, the program is left as an exercise to the
reader.

!**

program Electric_Fields

!**

 implicit none

 integer,parameter:: P=20 !max number of charges

 real,dimension(P):: X,Y,Q

 integer :: N

 integer :: i,j,nd

 real :: x0,y0,theta

 real,parameter :: PI= 3.14159265359

!------------- SET CHARGE DISTRIBUTION ----

 print *, ’# Enter number of charges:’

 read *, N

 print *, ’# N= ’,N

 do i=1,N

 print *,’# Charge: ’,i

 print *,’# Position and charge: (X,Y,Q):’

 read *, X(i),Y(i),Q(i)

 print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)

 enddo

!------------- DRAWING LINES -------------

!We draw 2*nd field lines around each charge

 nd = 6

 do i = 1,N

 do j = 1,(2*nd)

 theta = (PI/nd)*j

 x0 = X(i) + 0.1 * cos(theta)

 y0 = Y(i) + 0.1 * sin(theta)

 call eline(x0,y0,X,Y,Q,N)

 enddo

 enddo

end program Electric_Fields

 We set the number of field lines around each charge to be equal to 12 (nd=6). The
initial points are taken on the circle whose center is (X(i),Y(i)) and its radius is
0.1. The 2*nd points are determined by the angle theta=(PI/nd)*j.

 We record the data of a charge distribution in a file, e.g. Input. Below, we list
the example of four equal charges [image: qi = ±1] located at the vertices of a
square:

4 N: Number of charges

 1 1 -1 (X,Y,Q): Position and charge

-1 1 1 (X,Y,Q): Position and charge

 1 -1 1 (X,Y,Q): Position and charge

-1 -1 -1 (X,Y,Q): Position and charge

 Then we give the commands:

> gfortran ELines.f90 -o el

> ./el < Input > el.out

> gnuplot

gnuplot> plot "el.out" with dots

 The results are shown in figures 7.3 and 7.4. The reader should determine the
charge distributions that generate those fields and reproduce the figures as an
exercise.

[image: pict]

[image: pict] [image: pict]

Figure 7.3: Field lines of a static charge distribution of point charges generated by the
program ELines.f90.

[image: pict] [image: pict]

Figure 7.4: Field lines of a static charge distribution of point charges generated by the
program ELines.f90.

 For the computation of the equipotential lines we can work in a similar way.
We will follow a quick and dirty way which will not produce an accurate picture of
the electric field and choose the initial points evenly spaced on an square
lattice. For a better choice see problem 5. The listed code is in the file
EPotential.f90:

!**

program Electric_Potential

!**

 implicit none

 integer,parameter :: P=20 !max number of charges

 real,dimension(P) :: X,Y,Q

 integer :: N

 real,parameter :: PI= 3.14159265359

 integer :: i,j,nd

 real :: x0,y0,rmin,rmax,L

 print *, ’# Enter number of charges:’

 read *, N

 print *, ’# N= ’,N

 do i=1,N

 print *,’# Charge: ’,i

 print *,’# Position and charge: (X,Y,Q):’

 read *, X(i),Y(i),Q(i)

 print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)

 enddo

!------------- DRAWING LINES -------------

!We draw lines passing through an equally

!spaced lattice of N=(2*nd+1)x(2*nd+1) points

!in the square -L<= x <= L, -L<= y <= L.

 nd = 4

 L = 1.0

 do i = -nd,nd

 do j = -nd,nd

 x0 = i*(L/nd)

 y0 = j*(L/nd)

 print *,’# @ ’,i,j,L/nd,x0,y0

 call mdist(x0,y0,X,Y,N,rmin,rmax)

!we avoid getting too close to a charge:

 if(rmin .gt. L/(nd*10))&

 call epotline(x0,y0,X,Y,Q,N)

 enddo

 enddo

end program Electric_Potential

 The first and second part of the code is identical to the previous one. In the third
part we call the subroutine epotline for drawing an equipotential line for each
initial point. The initial points are on a square lattice with (2*nd+1)*(2*nd+1)=
81 points (nd=4). The lattice extends within the limits set by the square [image: (1,1)],
[image: (− 1,1)], [image: (− 1, − 1)], [image: (1,− 1)] (L=1.0). For each point (x0,y0) we calculate the
equipotential line that passes through it. We check that this point is not
too close to one of the charges by calling the subroutine mdist. The call
determines the minimum distance rmin of the point from all the charges which
should be larger than L/(nd*10). You can run the program with the
commands:

> gfortran EPotential.f90 -o ep

> ./ep < Input > ep.out

> gnuplot

gnuplot> plot "ep.out" with dots

 Some of the results are shown in figure 7.5.

[image: pict]

[image: pict] [image: pict]

Figure 7.5: Equipotential lines of the electric field generated by a point charge
distribution on the plane calculated by the program in EPotential.f90. Beware: the
density of the lines is not correctly calculated and it is not proportional to the magnitude
of the electric field. See problem 7.5.

 7.3 The Program – Main Dish

In this section we look under the hood and give the details of the inner parts of
the program: The subroutines eline and epotline that calculate the field and
equipotential lines, the subroutine efield that calculates the electric field at a
point and the subroutine mdist that calculates the minimum and maximum
distances of a point from the point charges.

 The subroutine eline is called by the command:

 call eline(x0,y0,X,Y,Q,N)

 The input to the routine is the initial point (x0,y0), the number of charges N,
the positions of the charges (X(N),Y(N)) and the charges Q(N). The
routine needs some parameters in order to draw the field line. These are
“hard coded”, i.e. set to fixed values by the programmer that cannot
be changed by the user that calls the routine in her program. One of
them is the step [image: Δl] of equation (7.5) which sets the discretization step
of the field line. It also sets the minimum distance of approaching to a
charge equal to [image: 2Δl]. The size of the drawing area of the curve is set
by the parameter max_dist=20.0. We should also provide a check in
the program that checks whether the electric field is zero, in which case
the result of the calculation in equation (7.5) becomes indeterminate.
By taking [image: Δl > 0], the motion is in the direction of the electric field,
which ends on a negative charge or outside the drawing area (why?). In
order to draw the line in both directions, set [image: Δl < 0] and repeat the
calculation.

 The code is listed below:

!**

subroutine eline(xin,yin,X,Y,Q,N)

!**

 implicit none

 integer :: N

 real,dimension(N):: X,Y,Q

 real :: xin,yin,x0,y0

 real,parameter :: step=0.01

 real,parameter :: max_dist=20.0

 integer :: i,direction

 real :: rmin,rmax,r,dx,dy,dl

 real :: Ex,Ey,E

 do direction = -1,1,2 !direction= +/- 1

 dl = direction * step

 x0 = xin

 y0 = yin

 dx = 0.0

 dy = 0.0

 call mdist(x0,y0,X,Y,N,rmin,rmax)

 do while(rmin .gt. (2.0*step) .and. rmax .lt. max_dist)

 print *,x0,y0

! We evaluate the E-field at the midpoint: This reduces

! systematic errors

 call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)

 E = sqrt(Ex*Ex+Ey*Ey)

 if(E .le. 1.0e-10) exit

 dx = dl*Ex/E

 dy = dl*Ey/E

 x0 = x0 + dx

 y0 = y0 + dy

 call mdist(x0,y0,X,Y,N,rmin,rmax)

 enddo !do while()

 enddo !do direction = -1,1,2

end subroutine eline

 In the first part of the code we have the variable declarations. We only note the
declaration

 real,dimension(N):: X,Y,Q

 which declares the dimension of the arrays to be N instead of their true dimension
P. This is fine, as long as the programmer of the calling program has already
checked that N [image: ≤] P. The necessary memory for the arrays is allocated in the
calling program and the declaration does not provide new storage space. The
arrays X,Y, Q are passed to the subroutine “by reference”, i.e. the routine learns
about their position in the memory to which it can refer to, and not “by value”.
The parameters [image: Δl =] step and max_dist are fixed by the parameter
attribute:

 real,parameter :: step=0.01

 real,parameter :: max_dist=20.0

 Their values should be the result of a careful study by the programmer since they
determine the accuracy of the calculation.

 The outmost loop

 do direction = -1,1,2

 dl = direction * step

 ...

 enddo

 sets the direction of motion on the field line (i.e. the sign of [image: Δl]). The
command do direction = -1,1,2 executes the loop twice by setting the
variable direction to take values from [image: − 1] to [image: 1] with step equal to
[image: 2].

 The commands x0 = xin, y0 = yin define the initial point on the field line.
(x0, y0) is the current point on the field line which is printed to the stdout
with the command print. The variables (dx, dy) set the step (x0, y0)
[image: →] (x0+dx, y0+dy). The drawing of the field line is done in the inner
loop

 call mdist(x0,y0,X,Y,N,rmin,rmax)

 do while(rmin .gt. (2.0*step) .and. rmax .lt. max_dist)

 ...

 call mdist(x0,y0,X,Y,N,rmin,rmax)

 enddo

 which is executed provided that the logical expression (rmin .gt. (2.0*step) .and.
rmax .lt. max_dist) is .TRUE. This happens as long as the current point is at a
distance greater than 2.0*step and the maximum distance from all charges is less than
max_dist5 .
The minimum and maximum distances are calculated by calling the subroutine
mdist.

 The electric field, needed in equation (7.5) , is calculated by a call to
efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey). The first two arguments give
the point at which we want to calculate the electric field, which is chosen to be
the midpoint (x0+dx/2,y0+dy/2) instead of (x0,y0). This improves the stability
and the accuracy of the algorithm.

 Equation (7.5) is coded in the commands

 E = sqrt(Ex*Ex+Ey*Ey)

 dx = dl*Ex/E

 dy = dl*Ey/E

 x0 = x0 + dx

 y0 = y0 + dy

 We also perform checks for the cases E=0.0 and dx=dy=0.0:

 if(E .le. 1.0e-10) exit

 When the magnitude of the electric field becomes too small we stop the
calculation by exiting the loop with the command exit. The reader can improve
the code by adding more checks of singular cases.

 The subroutine epotline is programmed in a similar way. The relevant code is
listed below:

!**

subroutine epotline(xin,yin,X,Y,Q,N)

!**

 implicit none

 integer :: N

 real,dimension(N) :: X,Y,Q

 real :: xin,yin,x0,y0

 real,parameter :: step=0.02

 real,parameter :: max_dist=20.0

 integer :: i

 real :: r,dx,dy,dl

 real :: Ex,Ey,E

 dl = step

 x0 = xin

 y0 = yin

 dx = 0.0

 dy = 0.0

 r = step !in order to start loop

 do while(r .gt. (0.9*dl) .and. r .lt. max_dist)

 print *,x0,y0

! We evaluate the E-field at the midpoint: This reduces

! systematic errors

 call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)

 E = sqrt(Ex*Ex+Ey*Ey)

 if(E .le. 1.0e-10) exit

 dx = dl*Ey/E

 dy = -dl*Ex/E

 x0 = x0 + dx

 y0 = y0 + dy

 r = sqrt((x0-xin)**2+(y0-yin)**2)

 enddo !do while()

end subroutine epotline

 The differences are minor: The equipotential lines are closed curves, therefore we
only need to transverse them in one direction. The criterion for ending the
calculation is to approach the initial point close enough or leave the drawing

area:

 do while(r .gt. (0.9*dl) .and. r .lt. max_dist)

 ...

 enddo

 The values of dx, dy are calculated according to equation (7.6) :

 dx = dl*Ey/E

 dy = -dl*Ex/E

 The subroutine efield is an application of
equations6
(7.2) :

!**

subroutine efield(x0,y0,X,Y,Q,N,Ex,Ey)

!**

 implicit none

 integer :: N

 real,dimension(N) :: X,Y,Q

 real :: x0,y0,dx,dy,Ex,Ey

 integer :: i

 real :: r3,xi,yi

 Ex = 0.0

 Ey = 0.0

 do i= 1,N

 xi = x0-X(i)

 yi = y0-Y(i)

 r3 = (xi*xi+yi*yi)**(-1.5)

 Ex = Ex + Q(i)*xi*r3

 Ey = Ey + Q(i)*yi*r3

 enddo

end subroutine efield

 Finally, the subroutine mdist calculates the minimum and maximum
distance rmin and rmax of a point (x0,y0) from all the point charges in the
distribution:

!**

subroutine mdist(x0,y0,X,Y,N,rmin,rmax)

!**

 implicit none

 integer :: N

 real,dimension(N) :: X,Y

 real :: x0,y0,rmin,rmax

 integer :: i

 real :: r

 rmax = 0.0

 rmin = 1000.0

 do i = 1,N

 r = sqrt((x0-X(i))**2 + (y0-Y(i))**2)

 if(r.GT.rmax) rmax = r

 if(r.LT.rmin) rmin = r

 enddo

end subroutine mdist

 The initial value of rmin depends of the limits of the drawing area (why?).

 7.4 The Program - Conclusion

In this section we list the programs discussed in the previous sections and provide
short usage information for compiling, running and analyzing your results.
You can jump into this section without reading the previous ones and go
back to them if you need to clarify some points that you find hard to
understand.

 First we list the contents of the file ELines.f90:

!**

program Electric_Fields

!**

 implicit none

 integer,parameter:: P=20 !max number of charges

 real,dimension(P):: X,Y,Q

 integer :: N

 integer :: i,j,nd

 real :: x0,y0,theta

 real,parameter :: PI= 3.14159265359

!------------- SET CHARGE DISTRIBUTION ----

 print *, ’# Enter number of charges:’

 read *, N

 print *, ’# N= ’,N

 do i=1,N

 print *,’# Charge: ’,i

 print *,’# Position and charge: (X,Y,Q):’

 read *, X(i),Y(i),Q(i)

 print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)

 enddo

!------------- DRAWING LINES -------------

!We draw 2*nd field lines around each charge

 nd = 6

 do i = 1,N

 do j = 1,(2*nd)

 theta = (PI/nd)*j

 x0 = X(i) + 0.1 * cos(theta)

 y0 = Y(i) + 0.1 * sin(theta)

 call eline(x0,y0,X,Y,Q,N)

 enddo

 enddo

end program Electric_Fields

!**

subroutine eline(xin,yin,X,Y,Q,N)

!**

 implicit none

 integer :: N

 real,dimension(N):: X,Y,Q

 real :: xin,yin,x0,y0

 real,parameter :: step=0.01

 real,parameter :: max_dist=20.0

 integer :: i,direction

 real :: rmin,rmax,r,dx,dy,dl

 real :: Ex,Ey,E

 do direction = -1,1,2 !direction= +/- 1

 dl = direction * step

 x0 = xin

 y0 = yin

 dx = 0.0

 dy = 0.0

 call mdist(x0,y0,X,Y,N,rmin,rmax)

 do while(rmin .gt. (2.0*step) .and. rmax .lt. max_dist)

 print *,x0,y0

! We evaluate the E-field at the midpoint: This reduces

! systematic errors

 call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)

 E = sqrt(Ex*Ex+Ey*Ey)

 if(E .le. 1.0e-10) exit

 dx = dl*Ex/E

 dy = dl*Ey/E

 x0 = x0 + dx

 y0 = y0 + dy

 call mdist(x0,y0,X,Y,N,rmin,rmax)

 enddo !do while()

 enddo !do direction = -1,1,2

end subroutine eline

!**

subroutine efield(x0,y0,X,Y,Q,N,Ex,Ey)

!**

 implicit none

 integer :: N

 real,dimension(N) :: X,Y,Q

 real :: x0,y0,dx,dy,Ex,Ey

 integer :: i

 real :: r3,xi,yi

 Ex = 0.0

 Ey = 0.0

 do i= 1,N

 xi = x0-X(i)

 yi = y0-Y(i)

! Exercise: Improve code so that xi*xi+yi*yi=0 is taken care of

 r3 = (xi*xi+yi*yi)**(-1.5)

 Ex = Ex + Q(i)*xi*r3

 Ey = Ey + Q(i)*yi*r3

 enddo

end subroutine efield

!**

subroutine mdist(x0,y0,X,Y,N,rmin,rmax)

!**

 implicit none

 integer :: N

 real,dimension(N) :: X,Y

 real :: x0,y0,rmin,rmax

 integer :: i

 real :: r

 rmax = 0.0

 rmin = 1000.0

 do i = 1,N

 r = sqrt((x0-X(i))**2 + (y0-Y(i))**2)

 if(r.GT.rmax) rmax = r

 if(r.LT.rmin) rmin = r

 enddo

end subroutine mdist

 Then we list the contents of the file EPotential.f90:

!**

program Electric_Potential

!**

 implicit none

 integer,parameter :: P=20 !max number of charges

 real,dimension(P) :: X,Y,Q

 integer :: N

 real,parameter :: PI= 3.14159265359

 integer :: i,j,nd

 real :: x0,y0,rmin,rmax,L

 print *, ’# Enter number of charges:’

 read *, N

 print *, ’# N= ’,N

 do i=1,N

 print *,’# Charge: ’,i

 print *,’# Position and charge: (X,Y,Q):’

 read *, X(i),Y(i),Q(i)

 print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)

 enddo

!------------- DRAWING LINES -------------

!We draw lines passing through an equally

!spaced lattice of N=(2*nd+1)x(2*nd+1) points

!in the square -L<= x <= L, -L<= y <= L.

 nd = 4

 L = 1.0

 do i = -nd,nd

 do j = -nd,nd

 x0 = i*(L/nd)

 y0 = j*(L/nd)

 print *,’# @ ’,i,j,L/nd,x0,y0

 call mdist(x0,y0,X,Y,N,rmin,rmax)

!we avoid getting too close to a charge:

 if(rmin .gt. L/(nd*10))&

 call epotline(x0,y0,X,Y,Q,N)

 enddo

 enddo

end program Electric_Potential

!**

subroutine epotline(xin,yin,X,Y,Q,N)

!**

 implicit none

 integer :: N

 real,dimension(N) :: X,Y,Q

 real :: xin,yin,x0,y0

 real,parameter :: step=0.02

 real,parameter :: max_dist=20.0

 integer :: i

 real :: r,dx,dy,dl

 real :: Ex,Ey,E

 dl = step

 x0 = xin

 y0 = yin

 dx = 0.0

 dy = 0.0

 r = step !in order to start loop

 do while(r .gt. (0.9*dl) .and. r .lt. max_dist)

 print *,x0,y0

! We evaluate the E-field at the midpoint: This reduces

! systematic errors

 call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)

 E = sqrt(Ex*Ex+Ey*Ey)

 if(E .le. 1.0e-10) exit

 dx = dl*Ey/E

 dy = -dl*Ex/E

 x0 = x0 + dx

 y0 = y0 + dy

 r = sqrt((x0-xin)**2+(y0-yin)**2)

 enddo !do while()

end subroutine epotline

...

 where ... are the subroutines efield and mdist which are identical to the ones
in the file ELines.f90.

 In order to compile the program use the commands:

> gfortran ELines.f90 -o el

> gfortran EPotential.f90 -o ep

 Then, edit a file and name it e.g. Input and write the data that define a charge
distribution. For example:

4 N: Number of charges

 1 1 -1 (X,Y,Q): Position and charge

-1 1 1 (X,Y,Q): Position and charge

 1 -1 1 (X,Y,Q): Position and charge

-1 -1 -1 (X,Y,Q): Position and charge

 The results are obtained with the commands:

> ./el < Input > el.dat

> ./ep < Input > ep.dat

> gnuplot

gnuplot> plot "el.dat" with dots

gnuplot> plot "ep.dat" with dots

 Have fun!

 7.5 Electrostatic Field in the Vacuum

Consider a time independent electric field in an area of space which is
empty of electric charge. Maxwell’s equations are reduced to Gauss’s
law

 	

[image: ∂Ex ∂Ey ∂Ez
∇⃗ ⋅ ⃗E (x, y,z) =---- + ---- + ----= 0,
 ∂x ∂y ∂z
]
	(7.8)

together with the equation that defines the electrostatic
potential7

[image: E⃗(x,y,z) = − ⃗∇V (x,y,z). (7.9)
]

Equations (7.8) and (7.9) give the Laplace equation for the function
[image: V (x,y,z)]:
 	

[image: 2 2 2
∇2V (x,y, z) = ∂-V--+ ∂-V--+ ∂--V-= 0.
 ∂x2 ∂y2 ∂z2
]
	(7.10)

 The solution of the equation above is a boundary value problem: We are
looking for the potential [image: V(x, y,z)] in a region of space [image: 𝒮] bounded by a closed
surface [image: ∂𝒮]. When the potential is known on [image: ∂𝒮] the solution to (7.10) is
unique and the potential and the electric field is determined everywhere in
[image: 𝒮].

 For simplicity consider the problem confined on a plane, therefore
[image: V = V (x,y)]. In this case the last term in equation (7.10) vanishes, the region
[image: 𝒮] is a compact subset of the plane and [image: ∂𝒮] is a closed curve.

 For the numerical solution of the problem, we approximate [image: 𝒮] by a discrete,
square lattice. The potential is defined on the [image: N] sites of the lattice. We
take [image: 𝒮] to be bounded by a square with sides of length [image: l]. The distance
between the nearest lattice points is called the lattice constant [image: a]. Then
[image: l = (L − 1)a], where [image: √ ---
L = N] is the number of lattice points on each side of
the square. The continuous solution is approximated by the solution on

the lattice, and the approximation becomes exact in the [image: N → ∞] and
[image: a → 0] limits, so that the length [image: l = (L − 1)a] remains constant. The
curve [image: ∂ 𝒮] is approximated by the lattice sites that are located on the
perimeter of the square and the loci in the square where the potential takes
constant values. This is a simple model of a set of conducting surfaces
(points where [image: V =] const. [image: ⁄= 0]) in a compact region whose boundary is
grounded (points where [image: V = 0]). An example is depicted in figure 7.6.

[image: pict]

Figure 7.6: A lattice which corresponds to a cross section of two parallel conducting
planes inside a grounded cubic box. The black lattice sites are the points of constant, fixed
potential whereas the white ones are sites in the vacuum.

 In order to derive a finite difference equation which approximates equation
(7.10) , we Taylor expand around a point [image: (x, y)] according to the equations:

[image: ∂V 1∂2V 2
V (x + δx,y) = V (x,y) + ---δx + ----2 (δx) + ...
 ∂x 2 ∂x2
V (x − δx,y) = V (x,y) − ∂V-δx + 1∂-V--(δx)2 + ...
 ∂x 2 ∂x2
 ∂V 1∂2V 2
V (x,y + δy) = V (x,y) + ∂y-δy + 2∂y2-(δy) + ...
 2
V (x,y − δy) = V (x,y) − ∂V-δy + 1∂-V-(δy)2 +
 ∂y 2∂y2
]

By summing both sides of the above equations, taking [image: δx = δy] and ignoring the
terms implied by [image: ...], we obtain

[image: V(x + δx, y) + V(x − δx, y) + V (x,y + δy) + V (x,y − δy)
 2 2
 = 4V(x, y) + (δx)2(∂-V-+ ∂-V-) + ...
 ∂x2 ∂y2
 ≈ 4V(x, y), (7.11)
]

The second term in the second line was eliminated by using equation (7.10)
.

 We map the coordinates of the lattice points to integers [image: (i,j)] such that
[image: xi = (i − 1)a] and [image: yj = (j − 1)a] where [image: i,j = 1,...,L]. By taking [image: δx = δy = a]
so that [image: xi ± δx =] [image: xi ± a =] [image: (i − 1 ± 1)a =] [image: xi±1] and [image: yj ± δy =] [image: yj ± a =]
[image: (j − 1 ± 1)a =] [image: yj±1], equation (7.11) becomes:

 	

[image: 1
V (i,j) = --(V(i − 1,j) + V(i + 1,j) + V(i,j − 1) + V(i,j + 1)).
 4
]
	(7.12)

The equation above states that the potential at the position [image: (i,j)] is the
arithmetic mean of the potential of the nearest neighbors. We will describe an
algorithm which belongs to the class of “successive overrelaxation methods”
(SOR) whose basic steps are:

 	Set the size [image: L] of the square lattice.

 	Flag the sites that correspond to “conductors”, i.e. the sites where the
 potential remains fixed to the boundary conditions values.

 	Choose an initial trial function for [image: V (x,y)] on the vacuum sites. Of
 course it is not the solution we are looking for. A good choice will lead
 to fast convergence of the algorithm to the true solution. A bad choice
 may lead to slow convergence, no convergence or even convergence to
 the wrong solution. In our case the problem is easy and the simple
 choice [image: V (x,y) = 0] will do.

 	Sweep the lattice and enforce equation (7.12) on each visited vacuum
 site. This defines the new value of the potential at this site.

 	Sweep the lattice repeatedly until two successive sweeps result in a very
 small change in the function [image: V (x,y)].

A careful study of the above algorithm requires to test different criteria of “very small
change” and test that different choices of the initial function [image: V (x,y)] result in
the same solution.

 We write a program that implements this algorithm in the case of a system
which is the projection of two parallel conducting planes inside a grounded cubic
box on the plane. The lattice is depicted in figure 7.6, where the black dots
correspond to the conductors. All the points of the box have [image: V = 0] and the
two conductors are at constant potential [image: V1] and [image: V2] respectively. The
user enters the values [image: V1] and [image: V2], the lattice size [image: L] and the required
accuracy interactively. The latter is determined by a small number [image: 𝜖]. The
convergence criterion that we set is that the maximum difference between the
values of the potential between two successive sweeps should be less than
[image: 𝜖].

 The data structure is very simple. We use a real array V(L,L) in order to store
the values of the potential at each lattice site. A logical array isConductor(L,L)
flags each site as a “conductor site” (= .TRUE.) or as a “vacuum site”
(=.FALSE.).

 The main program reads in the data entered by the user and then calls three
subroutines:

 	initialize_lattice(V,isConductor,L,V1,V2):
The routine needs at its input the values of the potential V1 and V2 on
 the left and right plate respectively and the size of the lattice L. On
 exit it provides the initial values of the potential V(L,L) and the flags
 isConductor(L,L). The geometry of the setting is hard coded and the
 user needs to change this subroutine each time that she wants to study
 a different geometry.

 	laplace(V,isConductor,L,epsilon):
This is the heart of the program. On entry we provide the initialized
 arrays V(L,L) and isConductor(L,L), the lattice size L, and the desired
 accuracy epsilon. On exit we obtain the final solution V(L,L). This
 subroutine calculates the arithmetic mean of the potential of the nearest

 neighbors Vav and the value V(i,j)=Vav is changed immediately8 .
 The maximum change in the new value of the potential Vav from the
 old one V(i,j) is stored in the variable error. When error becomes
 smaller than epsilon we assume that convergence has been achieved.

 	print_results(V,L):
This subroutine prints the potential V(L,L) to the file data. Each line
 contains the integers i, j and the value of the potential V(i,j). We
 note that each time that the index i changes, the subroutine prints an
 extra empty line. This is done so that the output can be read easily by
 the three dimensional plotting function splot of gnuplot.

The full program is listed below:

!***

!PROGRAM LAPLACE_EM

!Computes the electrostatic potential around conductors.

!The computation is performed on a square lattice of linear

!dimension L. A relaxation method is used to converge to the

!solution of Laplace equation for the potential.

!DATA STRUCTURE:

!real(8) V(L,L): Value of the potential on the lattice sites

!logical isConductor(L,L): If .TRUE. site has fixed potential

! If .FALSE. site is empty space

!real epsilon: Determines the accuracy of the solution

!The maximum difference of the potential on each site between

!two consecutive sweeps should be less than epsilon.

!PROGRAM STRUCTURE

!main program:

! . Data Input

! . call subroutines for initialization, computation and

! printing of results

!subroutine initialize_lattice:

! . Initilization of V(L,L) and isConductor(L,L)

!subroutine laplace:

! . Solves laplace equation using a relaxation method

!subroutine print_results:

! . Prints results for V(L,L) in a file. Uses format compatible

!with splot of gnuplot.

!***

program laplace_em

 implicit none

!P defines the size of the arrays and is equal to L

 integer,parameter :: P=31

 logical,dimension(P,P) :: isConductor

 real(8),dimension(P,P) :: V

!V1 and V2 are the values of the potential on the interior

!conductors. epsilon is the accuracy desired for the

!convergence of the relaxation method in subroutine

!laplace()

 real(8) :: V1,V2,epsilon

 integer :: L

!We ask the user to provide the necessary data:

!V1,V2 and epsilon

 L = P

 print *,’Enter V1,V2:’

 read *, V1,V2

 print *,’Enter epsilon:’

 read *, epsilon

 print *,’Starting Laplace:’

 print *,’Grid Size= ’,L

 print *,’Conductors set at V1= ’,V1,’ V2= ’,V2

 print *,’Relaxing with accuracy epsilon= ’,epsilon

!The arrays V and isConductor are initialized

 call initialize_lattice(V,isConductor,L,V1,V2)

!We enter initialized V,isConductor. On exit the

!routine gives the solution V

 call laplace(V,isConductor,L,epsilon)

!We print V in a file.

 call print_results(V,L)

end program laplace_em

!***

!subroutine initialize_lattice

!Initializes arrays V(L,L) and isConductor(L,L).

!V(L,L)= 0.0 and isConductor(L,L)= .FALSE. by default

!isConductor(i,j)= .TRUE. on boundary of lattice where V=0

!isConductor(i,j)= .TRUE. on sites with i= L/3+1, 5<= j <= L-5

!isConductor(i,j)= .TRUE. on sites with i=2*L/3+1, 5<= j <= L-5

!V(i,j) = V1 on all sites with i= L/3+1, 5<= j <= L-5

!V(i,j) = V2 on all sites with i=2*L/3+1, 5<= j <= L-5

!V(i,j) = 0 on boundary (i=1,L and j=1,L)

!V(i,j) = 0 on interior sites with isConductor(i,j)= .FALSE.

!INPUT:

!integer L: Linear size of lattice

!real(8) V1,V2: Values of potential on interior conductors

!OUTPUT:

!real(8) V(L,L): Array provided by user. Values of potential

!logical isConductor(L,L): If .TRUE. site has fixed potential

! If .FALSE. site is empty space

!***

subroutine initialize_lattice(V,isConductor,L,V1,V2)

 implicit none

 integer :: L

 logical,dimension(L,L) :: isConductor

 real(8),dimension(L,L) :: V

 real(8) :: V1,V2

 integer :: i,j

!Initialize to 0 and .FALSE (default values for boundary and

!interior sites).

 V = 0.0D0

 isConductor = .FALSE.

!We set the boundary to be a conductor: (V=0 by default)

 do i=1,L

 isConductor(1,i) = .TRUE.

 isConductor(i,1) = .TRUE.

 isConductor(L,i) = .TRUE.

 isConductor(i,L) = .TRUE.

 enddo

!We set two conductors at given potential V1 and V2

 do i=5,L-5

 V (L/3+1,i) = V1

 isConductor(L/3+1,i) = .TRUE.

 V (2*L/3+1,i) = V2

 isConductor(2*L/3+1,i) = .TRUE.

 enddo

end subroutine initialize_lattice

!***

!subroutine laplace

!Uses a relaxation method to compute the solution of the

!Laplace equation for the electrostatic potential

!on a 2 dimensionalsquarelattice of linear size L.

!At every sweep of the lattice we compute the average

!Vav of thepotential at each site (i,j) and we immediately

! update V(i,j).

!The computation continues until Max |Vav-V(i,j)| < epsilon

!INPUT:

!integer L: Linear size of lattice

!real(8) V(L,L): Value of the potential at each site

!logical isConductor(L,L): If .TRUE. potential is fixed

! If .FALSE. potential is updated

!real(8) epsilon: if Max |Vav-V(i,j)| < epsilon return to

!callingprogram.

!OUTPUT:

!real(8) V(L,L): The computed solution for the potential

!***

subroutine laplace(V,isConductor,L,epsilon)

 implicit none

 integer :: L

 logical,dimension(L,L) :: isConductor

 real(8),dimension(L,L) :: V

 real(8) :: epsilon

 integer :: i,j,icount

 real(8) :: Vav,error,dV

 icount = 0 !counts number of sweeps

 do while (.TRUE.) !an infinite loop:

 error = 0.0D0 !Exit when error<epsilon

 do j=2,L-1

 do i=2,L-1

!We change V only for non conductors:

 if(.NOT. isConductor(i,j))then

 Vav = (V(i-1,j)+V(i+1,j)+V(i,j+1)+V(i,j-1)) * 0.25D0

 dV = DABS(V(i,j)-Vav)

 if(error .LT. dV) error = dV !maximum error

 V(i,j) = Vav ! we immendiately update V(i,j)

 endif

 enddo

 enddo

 icount = icount + 1

 print *,icount,’ err= ’,error

 if(error .LT. epsilon) return !return to main program

 enddo

end subroutine laplace

!***

!subroutine print_results

!Prints the array V(L,L) in file "data"

!The format of the output is appropriate for the splot function

!of gnuplot: Each time i changes an empty line is printed.

!INPUT:

!integer L: size of array V

!real(8) V(L,L): array to be printed

!OUTPUT:

!no output

!***

subroutine print_results(V,L)

 implicit none

 integer :: L

 real(8),dimension(L,L) :: V

 integer :: i,j

 open(unit=11,file="data")

 do i=1,L

 do j =1,L

 write(11,*)i,j,V(i,j)

 enddo

 write (11,*)’’ !empty line for gnuplot,separate isolines

 enddo

end subroutine print_results

 7.6 Results

The program in the previous section is written in the file LaplaceEq.f90.
Compiling and running is done with the commands:

> gfortran LaplaceEq.f90 -o lf

> ./lf

 Enter V1,V2:

100 -100

 Enter epsilon:

0.01

 Starting Laplace:

 Grid Size= 31

 Conductors set at V1= 100. V2= -100.

 Relaxing with accuracy epsilon= 0.01

 1 err= 33.3333333

 2 err= 14.8148148

 3 err= 9.87654321

.......................

 110 err= 0.0106860904

 111 err= 0.0101182476

 112 err= 0.00958048937

 In the example above, the program performs 112 sweeps until the error becomes
0.00958048937 < 0.01. The results are stored in the file data. We can
make a three dimensional plot of the function [image: V (i,j)] with the gnuplot
commands:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> set size ratio 1

gnuplot> splot "data" with lines

 The results are shown in figure 7.7

[image: pict]

Figure 7.7: The solution of the equation (7.10) computed by the program
LaplaceEq.f90 for L= 31, V1=100, V2=-100, epsilon=0.01.

 7.7 Poisson Equation

This section contains a short discussion of the case where the space is filled
with a continuous static charge distribution given by the charge density
function [image: ρ(⃗r)]. In this case the Laplace equation becomes the Poisson
equation:

 	

[image: 2 2 2
∇2V = ∂-V-+ ∂-V--+ ∂-V--= − 4π ρ(x,y,z)
 ∂x2 ∂y2 ∂z2
]
	(7.13)

 The equation on the lattice becomes

 	

[image: 1
V (i,j) = -(V (i − 1,j) + V (i + 1,j) + V (i,j − 1) + V (i,j + 1) + ˜ρ(i,j)),
 4
]
	(7.14)

where9
[image: ˜ρ(i,j) = 4πa2 ρ(i,j)].

[image: pict]

Figure 7.8: The solution of the equation (7.13) by the program in the file Poisson.f90
for L= 51, V= 0 on the boundary and the charge [image: 4πQ = 1000] all concentrated at one
point.

[image: pict]

Figure 7.9: The solution of equation (7.13) by the program in the file Poisson.f90
for L= 51, V= 0 on the boundary and the charge [image: 4πQ = 1000] uniformly distributed in a
small square with sides made of 10 lattice sites.

[image: pict]

Figure 7.10: The solution of equation (7.13) by the program in the file Poisson.f90
for L= 51, V= 0 on the boundary and the charge [image: 4πQ = 1000] uniformly distributed on
all internal lattice sites.

 The program in the file PoissonEq.f90 solves equation (7.14) for
a uniform charge distribution (figure 7.10), where we have set [image: a = 1].
The reader is asked to reproduce this figure together with figures 7.8 and
7.9.

!***

!set the boundary of a square to given potentials

!***

program poisson_eq

 implicit none

 integer,parameter :: P=51

 logical,dimension(P,P) :: isConductor

 real(8),dimension(P,P) :: V,rho

 real(8) :: V1,V2,V3,V4,Q,epsilon

 integer :: L

 L = P

 print *,’Enter V1,V2,V3,V4:’

 read *, V1,V2,V3,V4

 print *,’Enter 4*PI*Q:’

 read *, Q

 print *,’Enter epsilon:’

 read *, epsilon

 print *,’Starting Laplace:’

 print *,’Grid Size= ’,L

 print *,’Boundaries set at V1= ’,V1,’ V2= ’,V2,’ V3= ’,V3,&

 ’ V4= ’,V4,’ and Q= ’,Q

 print *,’Relaxing with accuracy epsilon= ’,epsilon

 call initialize_lattice(V,isConductor,rho,L,V1,V2,V3,V4,Q)

 call laplace(V,isConductor,rho,L,epsilon)

 call print_results(V,L)

end program laplace_sq

!**

subroutine &

initialize_lattice(V,isConductor,rho,L,V1,V2,V3,V4,Q)

!**

 implicit none

 integer :: L

 logical,dimension(L,L) :: isConductor

 real(8),dimension(L,L) :: V,rho

 real(8) :: V1,V2,V3,V4,Q,Area

 integer :: i,j,L1,L2

!Initialize to 0 and .FALSE.

 V = 0.0D0

 isConductor = .FALSE.

 rho = 0.0D0

!We set the boundary to be a conductor:

 do i=1,L

 isConductor(1,i) = .TRUE.

 isConductor(i,1) = .TRUE.

 isConductor(L,i) = .TRUE.

 isConductor(i,L) = .TRUE.

 V (1,i) = V1

 V (i,L) = V2

 V (L,i) = V3

 V (i,1) = V4

 enddo

!We set the points with non-zero charge

!A uniform distribution at a center square

 L1 = (L/2)-5

 L2 = (L/2)+5

 if(L1.LT.1) stop ’array rho out of bounds. Small L1’

 if(L2.GT.L) stop ’array rho out of bounds. Large L2’

 Area = (L2-L1+1)*(L2-L1+1)

 do j=L1,L2

 do i=L1,L2

 rho(i,j) = Q/Area !rho is \tilde\rho in notes

 enddo !so Q is 4*PI*Q

 enddo

end subroutine initialize_lattice

!***

subroutine laplace(V,isConductor,rho,L,epsilon)

!***

 implicit none

 integer :: L

 logical,dimension(L,L) :: isConductor

 real(8),dimension(L,L) :: V,rho

 real(8) :: epsilon

 integer :: i,j,icount

 real(8) :: Vav,error,dV

 icount = 0

 do while (.TRUE.)

 error = 0.0D0

 do j=2,L-1

 do i=2,L-1

!We change the voltage only for non conductors:

 if(.NOT. isConductor(i,j))then

 Vav = (V(i-1,j)+V(i+1,j)+V(i,j+1)+V(i,j-1)+rho(i,j))&

 *0.25D0

 dV = DABS(V(i,j)-Vav)

 if(error .LT. dV) error = dV !maximum error

 V(i,j) = Vav

 endif

 enddo

 enddo

 icount = icount + 1

 if(error .LT. epsilon) exit

 enddo

 print *,icount,’ err= ’,error

end subroutine laplace

!***

subroutine print_results(V,L)

!***

 implicit none

 integer :: L

 real(8),dimension(L,L) :: V

 integer :: i,j

 open(unit=11,file="data")

 do i=1,L

 do j =1,L

 write(11,*)i,j,V(i,j)

 enddo

 write (11,*)’’ !empty line for gnuplot,separate isolines

 enddo

end subroutine print_results

 In the bibliography the algorithm described above is called the Gauss–Seidel
method. In this method, the right hand side of equation (7.14) uses the updated
values of the potential in the calculation of [image: V (i,j)] and [image: V (i,j)] is immediately
updated. In contrast, the Jacobi method uses the old values of the potential in the
right hand side of (7.14) and the new value computed is stored in order
to be used in the next sweep. The Gauss–Seidel method is superior to
the Jacobi method as far as speed of convergence is concerned. We can
generalize Jacobi’s method by defining the residual [image: R
 i,j] of equation
(7.14)

 	

[image: R = V (i+ 1, j)+ V (i− 1,j) + V (i,j + 1)+ V(i,j − 1)− 4V (i,j)+ ρ˜(i,j),
 i,j
]
	(7.15)

which vanishes when [image: V (i,j)] is a solution of equation (7.14) . Then, using [image: Ri,j],
Jacobi’s method can be formulated as

 	

[image: V (n+1)(i,j) = V (n)(i,j) + 1R (ni,)j ,
 4

]
	(7.16)

where the quantities with index [image: (n)] refer to the values of the potential during
the [image: n]-th sweep. The successive overrelaxation (SOR) method is given
by:

 	

[image: (n+1) (n) ω (n)
V (i,j) = V (i,j) + -R i,j .
 4
]
	(7.17)

When [image: ω < 1] we have “underrelaxation” and we obtain slower convergence than
the Jacobi method. When [image: 1 < ω < 2] we have “overrelaxation” and an
appropriate choice of [image: ω] can lead to an improvement compared to the Jacobi
method. When [image: ω > 2] SOR diverges. Further study of the SOR methods is left as
an exercise to the reader.

 7.8 Problems

 	Reproduce the figures with the electric field lines and equipotential
 lines shown in section 7.2.

 	Take the charge distributions that you used in the previous problems,
 make all the charges to be positive and remake the figures of the field
 lines and the equipotential lines. Then repeat by taking half of the
 charges to be twice in magnitude than the others.

 	The program ELines.f90 gets stuck when you apply it on a charge
 distribution of four equal charges located at the vertices of a square.
 How can you correct this pathology?

 	Make the necessary changes to the program in the file ELines.f90 so
 that the number of field lines starting near a charge [image: q] is proportional
 to [image: q].

 	 Improve the program in EPotential.f90 so that the equipotential lines are
 drawn with a density proportional to the magnitude of the electric
 field.
Hint:

 	Write a subroutine that calculates the potential [image: V (x,y)] at the
 point [image: (x, y)].

 	From each point charge draw a line in the radial direction and
 calculate the potential on points that are at small distance [image: Δl]
 from each other.

 	Calculate the maximum/minimum value of the potential
 [image: Vmax]/[image: Vmin] and use them in order to choose the values
 of the potential on the equipotential lines that you plan to

 draw. If e.g. you choose to draw 5 equipotential lines, take
 [image: δV = (Vmax − Vmin)∕4] and [image: Vi = Vmin + iδV] [image: i = 0,...,4].

 	Repeat the second step. When the potential at a point takes
 approximately one of the values [image: Vi] chosen in the previous step,
 draw an equipotential line from that point.

 	Compute the electric potential using the program in the file LaplaceEq.f90
 for

 	L= 31, V1=100, V2=100

 	L= 31, V1=100, V2=0

 and construct the corresponding plot for [image: V (i,j)].

 	Compute the electric potential using the program in the file LaplaceEq.f90
 for

 	V1=100, V2=100

 	V1=100, V2=100

 	V1=100, V2=0

 for L=31,61,121,241,501 and construct the corresponding plot for
 [image: V (i,j)]. Vary epsilon=0.1, 0.01, 0.001, 0.0001, 0.00001,
 0.000001. What is the dependence of the number of sweeps [image: N] on
 epsilon? Make the plot of [image: N](epsilon). Put the points and curves of
 [image: N](epsilon) for all values of L on the same plot.

 	Compute the electrostatic potential of a square conductor when the
 potential on each side is V1, V2, V3, V4. Repeat what you did in the
 previous problem for

 	V1=10, V2=5, V3=10, V4= 5

 	V1=10, V2=0, V3=0, V4= -10

 	V1=10, V2=0, V3=0, V4= 0

 	 Compute the electrostatic potential of a system of square conductors where
 the one is inside the other as shown in figure 7.11. The side of each
 conductor has L1, L2 sites respectively and the value of the potential
 is V1,V2 respectively. Take L2= L1/5 and repeat the steps in the
 previous problem for V1=10, V2=-10 and L1= 25, 50, 100, 200.

[image: pict]

Figure 7.11: The square conductors described in problem 7.9.

 	Perform a numerical computation of the capacitance [image: C = Q ∕V] of the
 system of conductors of the previous problem when [image: V1 = V], [image: V2 = − V]. In
 order to calculate the charge [image: Q], compute the surface charge density [image: σ]
 using the equation

 [image: En-
σ = 4π ,
]
 where [image: En] is the perpendicular component of the electric field on the
 surface. Use the approximation

 [image: δV-
En = − δr ,
]
 where [image: δV] is the potential difference between a point on the conductor and
 its nearest neighbor. By integrating (i.e. summing) you can estimate the
 total charge on each conductor. If these are opposite and their absolute
 value is [image: Q], then the capacitance can be calculated from the equation
 [image: C = Q∕V]. Perform the calculation described above for [image: V = 10] and
 L1=25, 75.

 	In the system of the previous problem compute the function [image: Q (V)]. Verify
 that the capacitance is independent of [image: V]. Use L1=25,50, V1= -V2 =1, 2,
 5, 10, 15, 20, 25.

 	Reproduce figures 7.8, 7.9 and 7.10. Compare the result of the first case with
 the known solution of a point charge in empty space.

 	Introduce the lattice spacing [image: a] in the corresponding equations in the
 program in the file PoissonEq.f90. Set the length of each side to be [image: l = 1]
 and print the results in the file data as [image: (xi,yi,V(xi,yi))] instead of
 [image: (i,j,V (i,j))]. Take L=51,101,151,201,251 and plot [image: V (x,y)] in the square
 [image: 0 < x < 1], [image: 0 < y < 1]. Study the convergence of the solutions by plotting
 the section [image: V (x,1∕2)] for each L.

 	Write a program that implements the SOR algorithm given by equation
 (7.16) for the problem solved in LaplaceEq.f90. Compare the speed
 of convergence of SOR with that of the Gauss-Seidel method for
 [image: L = 51], [image: ω = 1.0], [image: 0.9], [image: 0.8], [image: 0.6], [image: 0.4], [image: 0.2]. What happens when
 [image: ω > 1]?

 	Write a program that implements the SOR algorithm given by equation
 (7.16) for the problem solved in PoissonEq.f90. Compare the speed

 of convergence of SOR with that of the Gauss-Seidel method for
 [image: L = 51], [image: ω = 1.0], [image: 0.9], [image: 0.8], [image: 0.6], [image: 0.4], [image: 0.2]. What happens when
 [image: ω > 1]?

Chapter 8
Diffusion Equation

 8.1 Introduction

The diffusion equation is related to the study of random walks. Consider a
particle moving on a line (one dimension) performing a random walk. The motion
is stochastic and the kernel

 	

[image: K (x, x0;t),
]
	(8.1)

is interpreted as the probability density to observe the particle at position [image: x] at
time [image: t] if the particle is at [image: x0] at [image: t = 0]. The equation that determines
[image: K (x,x0; t)] is

 	

[image: ∂K (x, x0;t) ∂2K (x,x0;t)
------------= D -------2----,
 ∂t ∂x
]
	(8.2)

which is the diffusion equation. The coefficient [image: D] depends on the
details of the system that is studied. For example, for the Brownian
motion of a dust particle in a fluid which moves under the influence of

random collisions with the fluid particles, we have that [image: D = kT ∕γ],
where [image: T] is the (absolute) temperature of the fluid, [image: γ] is the friction
coefficient1
of the particle in the fluid and [image: k] is the Boltzmann constant.

 Usually the initial conditions are chosen so that at [image: t = 0] the particle is localized at one
point [image: x0], i.e.2

 	

[image: K (x, x0;0) = δ(x − x0).
]
	(8.3)

 The interpretation of [image: K (x,x0;t)] as a probability density implies that for every [image: t] we
should have that3

 	

[image: ∫
 +∞
 K (x,x0; t)dx = 1.
 −∞
]
	(8.4)

It is not obvious that this relation can be imposed for every instant of time. Even
if [image: K (x,x0; t)] is normalized so that (8.4) holds for [image: t = 0], the time evolution of
[image: K (x,x0; t)] is governed by equation (8.2) which can spoil equation (8.4) at
later times.

 If we impose equation (8.4) at [image: t = 0], then it will hold at all times
if

 	

[image: ∫
-d + ∞
dt K (x,x0;t)dx = 0.
 −∞
]
	(8.5)

By taking into account that [image: ∫
ddt +−∞∞ K (x, x0;t)dx =] [image: ∫
 +−∞∞ ∂K(x∂,xt0;t)dx] and that
[image: ∂K-(x,x0;t)
 ∂t =] [image: ∂2K(x,x0;t)
D ∂x2] we obtain

[image: d ∫ + ∞ ∫ + ∞ ∂ (∂K (x, x ;t))
-- K (x,x0; t)dx = D --- --------0--- dx
dt − ∞ | − ∞ ∂x ∂x |
 ∂K (x,x0;t)| ∂K (x,x0;t)|
 = D ------------|| − D -----------|| . (8.6)
 ∂x x→+ ∞ ∂x x→ −∞
]

The above equation tells us that for functions for which the right hand side
vanishes, the normalization condition will be valid for all [image: t > 0].
 A careful analysis of equation (8.2) gives that the asymptotic behavior of
[image: K (x,x0; t)] for small times is

 	

[image: − |x−4xD0t|2-∑∞
K (x,x0; t) ∼ e------- ai(x, x0)ti.
 td∕2 i=0
]
	(8.7)

This relation shows that diffusion is isotropic (the same in all directions) and that the
probability of detecting the particle drops exponentially with the distance squared
from the initial position of the particle. This relation cannot hold for all times, since
for large enough times the probability of detecting the particle will be the same
everywhere4 .

 The return probability of the particle to its initial position is

 	

[image: ∞
 -1--∑ i
PR (t) = K (x0,x0;t) ∼ td∕2 ai(x0, x0)t.
 i=0
]
	(8.8)

The above relation defines the spectral dimension [image: d] of space. [image: d = 1] in our
case.

 The expectation value of the distance squared of the particle at time [image: t] is easily
calculated5

 	

[image: ∫ +∞
⟨r2⟩ = ⟨(x − x0)2⟩(t) = (x − x0)2K (x,x0;t)dx ∼ 2Dt.
 −∞
]
	(8.9)

This equation is very important. It tells us that the random walk (Brownian
motion) is not a classical motion but it can only be given a stochastic description:
A classical particle moving with constant velocity [image: v] so that [image: x − x0 ∼ vt] results
in [image: r2 ∼ t2].

 In the following sections we take6
[image: D = 1] and define

 	

[image: u(x,t) ≡ K (x − x0,x0;t).
]
	(8.10)

 8.2 Heat Conduction in a Thin Rod

Consider a thin rod of length [image: L] and let [image: T(x,t)] be the temperature distribution
within the rod at time [image: t]. The two ends of the rod are kept at constant
temperature [image: T (0, t) = T (L,t) = T0]. If the initial temperature distribution in the
rod is [image: T (x,0)], then the temperature distribution at all times is determined by
the diffusion equation

 	

[image: ∂T (x,t) ∂2T(x,t)
--------= α -----2--,
 ∂t ∂x
]
	(8.11)

where [image: α = k∕(c ρ)
 p] is the thermal diffusivity, [image: k] is the thermal conductivity, [image: ρ]
is the density and [image: cp] is the specific heat of the rod.

 Define

 	

[image: T (xL, L2t) − T
u(x,t) = -------α-------0,
 T0
]
	(8.12)

where [image: x ∈ [0, 1]]. The function [image: u (x,t)], giving the fraction of the temperature
difference to the temperature at the ends of the rod, is dimensionless
and

 	

[image: u(0,t) = u(1,t) = 0.
]
	(8.13)

These are called Dirichlet boundary
conditions7 .

 Equation (8.11) becomes

 	

[image: ∂u-(x,t) ∂2u-(x,t)
 ∂t = ∂x2
]
	(8.14)

 Equation (8.6) becomes

 	

[image: d ∫ 1 ∂u || ∂u||
-- u(x,t)dx = ---|| − --||
dt 0 ∂x x=1 ∂x x=0
]
	(8.15)

 The relation above cannot be equal to zero at all times due to the boundary
conditions (8.13) . This can be easily understood with an example. Suppose
that

 	

[image: u (x, 0) = sin(πx),
]
	(8.16)

then it is easy to confirm that the boundary conditions are satisfied and that the
function

 	

[image: 2
u(x,t) = sin(πx)e− πt,
]
	(8.17)

is the solution to the diffusion equation. It is easy to see that

[image: ∫ 1 2 2
 u(x,t)dx = -e−π t
 0 π]

drops exponentially with time and that

[image: ∫ 1
-d u(x,t)dx = − 2πe− π2t,
dt 0]

which is in agreement with equations (8.15) .
 The exponential drop of the magnitude of [image: u (x, t)] is in agreement with the
expectation that the rod will have constant temperature at long times, which will
be equal to the temperature at its ends ([image: limt→+ ∞ u (x,t) = 0]).

 8.3 Discretization

The numerical solution of equation (8.14) will be computed in the interval
[image: x ∈ [0,1]] for [image: t ∈ [0,tf]]. The problem will be defined on a two dimensional
discrete lattice and the differential equation will be approximated by finite
difference equations.

 The lattice is defined by [image: Nx] spatial points [image: xi ∈ [0, 1]]

 	

[image: x = 0 + (i − 1)Δx i = 1,...,N ,
 i x
]
	(8.18)

where the [image: Nx − 1] intervals have the same width

 	

[image: 1 − 0
Δx = -------,
 Nx − 1
]
	(8.19)

and by the [image: Nt] time points [image: tj ∈ [0,tf]]

 	

[image: tj = 0 + (j − 1)Δt j = 1,...,Nt,
]
	(8.20)

where the [image: N − 1
 t] time intervals have the same duration

 	

[image: tf − 0
Δt = -------.
 Nt − 1
]
	(8.21)

We note that the ends of the intervals correspond to

 	

[image: x1 = 0, xNx = 1, t1 = 0, tNt = tf.
]
	(8.22)

The function [image: u(x,t)] is approximated by its values on the [image: Nx × Nt]
lattice

 	

[image: ui,j ≡ u(xi,tj).
]
	(8.23)

The derivatives are replaced by the finite differences

 	

[image: ∂u (x,t) u (xi,tj + Δt) − u(xi,tj) 1
-------- ≈ ------------------------ ≡ --- (ui,j+1 − ui,j),
 ∂t Δt Δt
]
	(8.24)

[image: ∂2u-(x,t) u(xi +-Δx,-tj)-−-2u(xi,tj) +-u-(xi-−-Δx,-tj)
 ∂x2 ≈ (Δx)2

 ≡ --1---(ui+1,j − 2ui,j + ui−1,j). (8.25)
 (Δx)2
]

By equating both sides of the above relations according to (8.14) , we obtain the
dynamic evolution of [image: ui,j] in time
 	

[image: -Δt---
ui,j+1 = ui,j + (Δx)2 (ui+1,j − 2ui,j + ui−1,j).
]
	(8.26)

This is a one step iterative relation in time. This is very convenient, because
one does not need to store the values [image: u
 i,j] for all [image: j] in the computer
memory.

 The second term (the “second derivative”) in (8.26) contains only the nearest
neighbors [image: ui±1,j] of the lattice point [image: ui,j] at a given time slice [image: tj]. Therefore it
can be used for all [image: i = 2,...,Nx − 1]. The relations (8.26) are not needed for
the points [image: i = 1] and [image: i = N
 x] since the values [image: u =
 1,j] [image: u = 0
 Nx,j] are kept
constant.

 The parameter

 	

[image: Δt
-----2
(Δx)
]
	(8.27)

determines the time evolution in the algorithm. It is called the Courant parameter
and in order to have a time evolution without instabilities it is necessary to
have

 	

[image: -Δt--- 1-
(Δx)2 < 2.
]
	(8.28)

This condition will be checked in our analysis empirically.

[image: pict]

Figure 8.1: The function [image: u(x,t)] for Nx=10, Nt=100, tf= 0.4.

 8.4 The Program

The fact that equation (8.26) is a one time step iterative relation, leads to a
substantial simplification of the structure of the program. Because of
this, at each time step, it is sufficient to store the values of the second
term (the “second derivative”) in one array. This array will be used in
order to update the values of [image: ui,j]. Therefore we will define only two
arrays [image: u
 i], [image: i = 1,...,N
 x] and [image: (∂2u ∕∂x2)
 i], [image: i = 1,...,N
 x] which store
the values of [image: ui,j] and [image: 2
Δt ∕(Δx) (ui+1,j − 2ui,j + ui−1,j)] at time [image: tj]
respectively. In the program listed below, the names of these arrays are u(P) and
d2udx2(P).

 The data is stored in the array positions u(1) ... u(Nx) and d2udx2(1) ...
d2udx2(Nx) and the parameter P is taken large enough so that Nx is always
smaller than P.

 The user enters the [image: Nx =] Nx, [image: Nt =]Nt and [image: tf =]tf interactively. The
values of [image: Δx], [image: Δt] and [image: Δt ∕Δx2 =] courant are calculated during the
initialization.

 On exit, we obtain the results in the file d.dat which contains [image: (t ,x ,u)
 j i i,j] in
three columns. When a time slice is printed, the program prints an empty line so
that the output is easily read by the three dimensional plotting function splot of
gnuplot.

 The program is in the file diffusion.f90 and is listed below:

!===

! 1-dimensional Diffusion Equation with simple

! Dirichlet boundary conditions u(0,t)=u(1,t)=0

! 0<= x <= 1 and 0<= t <= tf

!

! We set initial condition u(x,t=0) that satisfies

! the given boundary conditions.

! Nx is the number of points in spatial lattice:

! x = 0 + (j-1)*dx, j=1,...,Nx and dx = (1-0)/(Nx-1)

! Nt is the number of points in temporal lattice:

! t = 0 + (j-1)*dt, j=1,...,Nt and dt = (tf-0)/(Nt-1)

!

! u(x,0) = sin(pi*x) tested against analytical solution

! u(x,t) = sin(pi*x)*exp(-pi*pi*t)

!

!===

program diffusion_1d

 implicit none

 integer,parameter :: P =100000 ! Max no of points

 real(8),parameter :: PI=3.1415926535897932D0

 real(8),dimension(P) :: u, d2udx2

 real(8) :: t,x,dx,dt,tf,courant

 integer Nx,Nt,i,j

! --- Input:

 print *, ’# Enter: Nx, Nt, tf: (P= ’,P,’ Nx must be < P)’

 read *, Nx,Nt,tf

 if(Nx .ge. P) stop ’Nx >= P’

 if(Nx .le. 3) stop ’Nx <= 3’

 if(Nt .le. 2) stop ’Nt <= 2’

! --- Initialize:

 dx = 1.0D0/(Nx-1)

 dt = tf /(Nt-1)

 courant = dt/dx**2

 print * ,’# 1d Diffusion Equation: 0<=x<=1, 0<=t<=tf’

 print * ,’# dx= ’,dx,’ dt= ’,dt,’ tf= ’, tf

 print * ,’# Nx= ’,Nx,’ Nt= ’,Nt

 print * ,’# Courant Number= ’,courant

 if(courant .gt. 0.5D0) print *,’# WARNING: courant > 0.5’

 open(unit=11,file=’d.dat’) ! data file

! --- Initial condition at t=0 ------------------------------

!u(x,0) = sin(pi x)

 do i= 1, Nx

 x = (i-1)*dx

 u(i) = sin(PI*x)

 enddo

 u(1) = 0.0d0

 u(Nx) = 0.0d0

 do i= 1,Nx

 x = (i-1)*dx

 write(11,*) 0.0D0, x, u(i)

 enddo

 write(11,*)’ ’

! --

! --- Calculate time evolution:

 do j=2,Nt

 t = (j-1)*dt

! ----- second derivative:

 do i=2,Nx-1

 d2udx2(i) = courant*(u(i+1)-2.0D0*u(i)+u(i-1))

 enddo

! ----- update:

 do i=2,Nx-1

 u(i) = u(i) + d2udx2(i)

 enddo

 do i=1,Nx

 x = (i-1)*dx

 write(11,*) t, x, u(i)

 enddo

 write(11,*)’ ’

 enddo ! do j=2,Nt

 close(11)

end program diffusion_1d

 8.5 Results

The compilation and running of the program can be done with the commands:

> gfortran diffusion.f90 -o d

> echo "10 100 0.4" | ./d

 # Enter: Nx, Nt, tf: (P= 100000 Nx must be < P)

 # 1d Diffusion Equation: 0<=x<=1, 0<=t<=tf

 # dx= 0.11111111111111110 dt= 4.04040404040404040E-3 tf= 0.4

 # Nx= 10 Nt= 100

 # Courant Number= 0.32727272727272733

 The input to the program ./d is read from the stdin and it is given by the
stdout of the command echo through a pipe, as shown in the second line in the
listing above. The lines that follow are the standard output stdout of the
program.

 The three dimensional plot of the function [image: u(x,t)] can be made with the
gnuplot commands:

gnuplot> set pm3d

gnuplot> set hidden3d

gnuplot> splot "d.dat" with lines

gnuplot> unset pm3d

 In order to make the plot of [image: u(x,t)] for a fixed value of [image: t] we first note that an
empty line in the file d.dat marks a change in time. The following awk program
counts the empty lines of d.dat and prints only the lines when the number of
empty lines that have been encountered so far is equal to 3. The counter n=0, 1,
..., Nt-1 determines the value of [image: tj = tn−1]. We save the results in the file
tj which can be plotted with gnuplot. We repeat as many times as we
wish:

> awk ’NF<3{n++}n==3 {print}’ d.dat > tj

gnuplot> plot "tj" using 2:3 with lines

 The above task can be completed without creating the intermediate file tj by
using the awk filter within gnuplot. For example, the commands

gnuplot> ! echo "10 800 2" | ./d

gnuplot> plot "<awk ’NF<3{n++}n==3 {print}’ d.dat" u 2:3 w l

gnuplot> replot "<awk ’NF<3{n++}n==6 {print}’ d.dat" u 2:3 w l

gnuplot> replot "<awk ’NF<3{n++}n==10 {print}’ d.dat" u 2:3 w l

gnuplot> replot "<awk ’NF<3{n++}n==20 {print}’ d.dat" u 2:3 w l

gnuplot> replot "<awk ’NF<3{n++}n==30 {print}’ d.dat" u 2:3 w l

gnuplot> replot "<awk ’NF<3{n++}n==50 {print}’ d.dat" u 2:3 w l

gnuplot> replot "<awk ’NF<3{n++}n==100{print}’ d.dat" u 2:3 w l

 run the program for Nx=10, Nt=800, tf= 2 and construct the plot in figure 8.2

[image: pict]

Figure 8.2: The function [image: u(x,t)] for Nx=10, Nt=800, tf= 2 for different values of
the time [image: tj]. We take [image: j = 4,7,11,21,31,51,101] and observe that the function [image: u(x,t)]
decreases then [image: j] increases.

 It is instructive to compare the results with the known solution
[image: 2
u (x, t) = sin(πx)e −π t]. We compute the relative error

[image: ui,j-−-u(xi,tj)
 ui,j ,]

which can be done within gnuplot with the commands:

gnuplot> du(x,y,z) = (z - sin(pi*x)*exp(-pi*pi*y))/z

gnuplot> plot "<awk ’NF<3{n++}n==2 ’ d.dat" u 2:(du($2,$1,$3))

gnuplot> plot "<awk ’NF<3{n++}n==6 ’ d.dat" u 2:(du($2,$1,$3))

gnuplot> plot "<awk ’NF<3{n++}n==20 ’ d.dat" u 2:(du($2,$1,$3))

gnuplot> plot "<awk ’NF<3{n++}n==200’ d.dat" u 2:(du($2,$1,$3))

gnuplot> plot "<awk ’NF<3{n++}n==600’ d.dat" u 2:(du($2,$1,$3))

gnuplot> plot "<awk ’NF<3{n++}n==780’ d.dat" u 2:(du($2,$1,$3))

[image: pict]

Figure 8.3: The absolute value of the relative error of the numerical computation for
Nx=10, Nt=800, tf= 2 for different times [image: tj]. We take [image: j = 3,7,21,201,601,781] and
observe that the relative error increases with [image: j].

 The results can be seen in figure 8.3.

 8.6 Diffusion on the Circle

In order to study the kernel [image: K (x, x0;t)] for the diffusion, or random walk,
problem, we should impose the normalization condition (8.4) for all times.
In the case of the function [image: u(x, t)] defined for [image: x ∈ [0, 1]] the relation
becomes

 	

[image: ∫ 1

 0 u(x, t)dx = 1.
]
	(8.29)

In order to maintain this relation at all times, it is necessary that the right hand
side of equation (8.15) is equal to 0. One way to impose this condition is to
study the diffusion problem on the circle. If we parametrize the circle using the
variable [image: x ∈ [0,1]], then the points [image: x = 0] and [image: x = 1] are identified and we
obtain

 	

[image: ∂u(0,t) ∂u(1,t)
u (0, t) = u (1, t), --------= -------.
 ∂x ∂x
]
	(8.30)

The second relation in the above equations makes the right hand side of equation
(8.15) to vanish. Therefore if [image: ∫ 1
 0 u(x,0)dx = 1], we obtain [image: ∫ 1
 0 u (x, t)dx = 1],
[image: ∀t > 0].

 Using the above assumptions, the discretization of the differential equation is
done exactly as in the problem of heat conduction. Instead of keeping
the values [image: u(0,t) = u(1,t) = 0], we apply equation (8.26) also for the
points [image: x1], [image: xNx]. In order to take into account the cyclic topology we
take

 	

[image: -Δt---
u1,j+1 = u1,j + (Δx)2 (u2,j − 2u1,j + uNx,j),
]
	(8.31)

and

 	

[image: Δt
uNx,j+1 = ui,j +-----2 (u1,j − 2uNx,j + uNx −1,j) ,
 (Δx)
]
	(8.32)

since the neighbor to the right of the point [image: xNx] is the point [image: x1] and the
neighbor to the left of the point [image: x1] is the point [image: xNx]. For the rest of the points
[image: i = 2,...,Nx − 1] equation (8.26) is applied normally.

 The program that implements the problem described above can be found in
the file diffusionS1.f90. The boundary conditions (8.30) are enforced in the
lines

 nnr = i+1

 if(nnr .gt. Nx) nnr = 1

 nnl = i-1

 if(nnl .lt. 1) nnl = Nx

 d2udx2(i) = courant*(u(nnr)-2.0D0*u(i)+u(nnl))

 The initial conditions at [image: t = 0] are chosen so that the particle is located at
[image: xNx ∕2]. For each instant of time we perform measurements in order to verify
the equations (8.4) and (8.9) and the fact that [image: limt→+ ∞ u (x, t) =]
const.

 The variable prob [image: ∑
= Ni=x1 ui,j] and we should check that its value is
conserved and is always equal to 1.

 The variable r2 [image: ∑Nx 2
= i=1(xi − xNx∕2)ui,j] is a discrete estimator of
the expectation value of the distance squared from the initial position.
For small enough times it should follow the law given by equation (8.9)
.

 These variables are written to the file e.dat together with the values [image: u
 Nx∕2,j],
[image: uNx ∕4,j] and [image: u1,j]. The latter are measured in order to check if for large enough
times they obtain the same constant value according to the expectation
[image: limt→+ ∞ u (x, t) =] const.

 The full code is listed below:

!===

! 1-dimensional Diffusion Equation with

! periodic boundary conditions u(0,t)=u(1,t)

! 0<= x <= 1 and 0<= t <= tf

!

! We set initial condition u(x,t=0) that satisfies

! the given boundary conditions.

! Nx is the number of points in spatial lattice:

! x = 0 + (j-1)*dx, j=1,...,Nx and dx = (1-0)/(Nx-1)

! Nt is the number of points in temporal lattice:

! t = 0 + (j-1)*dt, j=1,...,Nt and dt = (tf-0)/(Nt-1)

!

! u(x,0) = \delta_{x,0.5}

!

!===

program diffusion_1d

 implicit none

 integer,parameter :: P =100000 ! Max no of points

 real(8),parameter :: PI=3.1415926535897932D0

 real(8),dimension(P) :: u, d2udx2

 real(8) :: t,x,dx,dt,tf,courant,prob,r2,x0

 integer Nx,Nt,i,j,nnl,nnr

! --- Input:

 print *, ’# Enter: Nx, Nt, tf: (P= ’,P,’ Nx must be < P)’

 read *, Nx,Nt,tf

 if(Nx .ge. P) stop ’Nx >= P’

 if(Nx .le. 3) stop ’Nx <= 3’

 if(Nt .le. 2) stop ’Nt <= 2’

! --- Initialize:

 dx = 1.0D0/(Nx-1)

 dt = tf /(Nt-1)

 courant = dt/dx**2

 print * ,’# 1d Diffusion Equation on S1: 0<=x<=1, 0<=t<=tf’

 print * ,’# dx= ’,dx,’ dt= ’,dt,’ tf= ’, tf

 print * ,’# Nx= ’,Nx,’ Nt= ’,Nt

 print * ,’# Courant Number= ’,courant

 if(courant .gt. 0.5D0) print *,’# WARNING: courant > 0.5’

 open(unit=11,file=’d.dat’) ! data file

 open(unit=12,file=’e.dat’) ! data file

! --- Initial condition at t=0 ------------------------------

 do i= 1, Nx

 x = (i-1)*dx

 u(i) = 0.0D0

 enddo

 u(Nx/2) = 1.0D0

 do i= 1,Nx

 x = (i-1)*dx

 write(11,*) 0.0D0, x, u(i)

 enddo

 write(11,*)’ ’

! --

! --- Calculate time evolution:

 do j=2,Nt

 t = (j-1)*dt

! ----- second derivative:

 do i=1,Nx

 nnr = i+1

 if(nnr .gt. Nx) nnr = 1

 nnl = i-1

 if(nnl .lt. 1) nnl = Nx

 d2udx2(i) = courant*(u(nnr)-2.0D0*u(i)+u(nnl))

 enddo

! ----- update:

 prob = 0.0D0

 r2 = 0.0D0

 x0 = ((Nx/2)-1)*dx !original position

 do i=1,Nx

 x = (i-1)*dx

 u(i) = u(i) + d2udx2(i)

 prob = prob + u(i)

 r2 = r2 + u(i)*(x-x0)*(x-x0)

 enddo

 do i=1,Nx

 x = (i-1)*dx

 write(11,*) t, x, u(i)

 enddo

 write(11,*)’ ’

 write(12,*) ’pu ’,t, prob,r2,u(Nx/2),u(Nx/4),u(1)

 enddo ! do j=2,Nt

 close(11)

end program diffusion_1d

 8.7 Analysis

For each moment of time, the program writes the following quantities to the file
e.dat:

 	

[image: ∑Nx
Uj = ui,j
 i=1
]
	(8.33)

which is an estimator of (8.29) and we expect to obtain [image: Uj = 1] for all
[image: j],

 	

[image: Nx
⟨r2⟩ = ∑ u (x − x)2
 j i,j i Nx∕2
 i=1
]
	(8.34)

which is an estimator of (8.9) for which we expect to obtain

 	

[image: 2
⟨r ⟩j ∼ 2tj,
]
	(8.35)

for small times as well as the values of [image: uNx∕2,j], [image: uNx∕4,j], [image: u1,j].

 The values of [image: tj], [image: Uj], [image: ⟨r2⟩j], [image: uNx∕2,j], [image: uNx ∕4,j], [image: u1,j] are found in
columns 2, 3, 4, 5, 6 and 7 respectively of the file e.dat. The gnuplot
commands

gnuplot> ! gfortran diffusionS1.f90 -o d

gnuplot> ! echo "10 100 0.4" | ./d

 compile and run the program within gnuplot. They set [image: N = 10
 x], [image: N = 100
 t],
[image: tf = 0.4], [image: Δx ≈ 0.111], [image: Δt ≈ 4.0404], [image: 2
Δt∕ Δx ≈ 0.327].

[image: pict]

Figure 8.4: The functions [image: u
 Nx∕2,j], [image: u
 Nx∕4,j], [image: u
 1,j] are given as a function of [image: t
 j] for
[image: Nx = 10], [image: Nt = 100], [image: tf = 0.4]. We observe that for large times they are consistent with
uniform diffusion.

[image: pict]

Figure 8.5: The expectation value [image: ⟨r2⟩
 j] as a function of [image: t
 j] for [image: N = 10
 x], [image: N = 100
 t],
[image: tf = 0.4]. For small values of [image: tj] we obtain [image: 2
⟨r ⟩j ≈ 2tj]. The solid line is the straight
line [image: 2t].

 The gnuplot commands

gnuplot> plot "e.dat" u 2:5 w l

gnuplot> replot "e.dat" u 2:6 w l

gnuplot> replot "e.dat" u 2:7 w l

 construct the plot in figure 8.4. We observe that for large times we obtain
uniform diffusion.

 The relation [image: Uj = 1] can be easily confirmed by inspecting the values recorded
in the file e.dat.

 The asymptotic relation [image: 2
⟨r ⟩j ∼ 2tj] can be confirmed with the commands

gnuplot> plot [:][:0.11] "e.dat" u 2:4,2*x

 which construct the plot in figure 8.5.

 Finally we make a plot of the function [image: u(x,t)] with the commands

gnuplot> ! echo "10 100 0.16" | ./d

gnuplot> set pm3d

gnuplot> splot [0:0.16][0:1][0: 1] "d.dat" w l

gnuplot> splot [0:0.16][0:1][0:.2] "d.dat" w l

[image: pict] [image: pict]

Figure 8.6: The function [image: u(x,t)] for [image: N = 10
 x], [image: N = 100
 t], [image: t = 0.16
f]. The second
plot differs only in the scale of the [image: z] axis so that we can easily see the details of the
diffusion away from the point [image: x0 ≡ xNx∕2 = x5].

 and the result is shown in figure 8.6.

 8.8 Problems

 	Reproduce the results in figure 8.3.

 	The temperature distribution [image: u(x,t)] in a thin rod satisfies equation
 (8.14) together with the boundary conditions (8.13) at the ends
 [image: x = 0,1]. The initial temperature distribution at [image: t = 0] is given by
 the function

 [image: { 0.5 x ∈ [x ,x]
u(x,0) = 1 2 ,
 0.3 x ∕∈ [x1,x2]
]
 where [image: x1 = 0.25] and [image: x2 = 0.75].

 	Calculate the temperature distribution [image: u(x,tf)] for [image: tf = 0.0001],
 [image: 0.001], [image: 0.01], [image: 0.05]. Take [image: Nx = 100] and [image: Nt = 1000]. Do the
 same for [image: tf = 0.1] by choosing appropriate [image: Nx] and keeping
 [image: Nt = 1000]. Plot the functions [image: u(x,tf)] in the same plot.

 	Calculate the maximum value of the temperature graphically
 for [image: tf = 0.0001], [image: 0.001], [image: 0.01], [image: 0.05], [image: 0.1], [image: 0.15], [image: 0.25]. Take
 [image: N = 100
 x] and choose an appropriate value for the corresponding
 [image: Nt].

 	Calculate the time at which the temperature of the rod becomes
 everywhere less than [image: 0.1].

 Hint: Make your program print only the final temperature distribution
 [image: u(x,tf)].

 	The temperature distribution [image: u(x,t)] in a thin rod satisfies the
 equation

 [image: ∂u ∂2u
---= α---2.
∂t ∂x
]
 The temperature at the ends of the rod is [image: u(0,t) = u(1,t) = 0], and when
 [image: t = 0]

 [image: ([(2πx)]
 { 0.5 1 − cos -b- 0 ≤ x < b
u(x,0) = 0 b ≤ x ≤ 1 .
 (
]

 	Calculate the temperature distribution [image: u (x,tf)] for [image: α = 0.5],
 [image: b = 0.09] and for [image: tf =] [image: 0.0001], [image: 0.001], [image: 0.01], by taking
 [image: Nx = 300], [image: Nt = 1000]. Do the same for [image: tf = 0.05] by choosing
 appropriate [image: Nx]. Plot the functions [image: u(x,tf)] in the same plot.

 	Using the same parameters, calculate the time evolution of the
 values of the temperature distribution at the points [image: x = 0.05
 1],
 [image: x2 = 0.50] and [image: x3 = 0.95] for [image: 0 ≤ t ≤ 0.05]. Plot the functions
 [image: u(x1,2,3,t)] in the same plot.

 	Calculate the temperature distribution [image: u(x,tf)] for [image: b = 0.09] and
 [image: α = 5,2,1] for [image: tf = 0.001]. Plot the functions [image: u(x,tf)] in the
 same plot. Comment on the effect of the parameter [image: α] on your
 results.

 	The temperature distribution [image: u (x, t)] in a thin rod of length [image: L] satisfies
 equation

 [image: 2
∂u-= D(x)∂-u-− -4D (x)∂u-,
∂t ∂x2 L ∂x
]
 where [image: −4x∕L
D (x) = ae] is the [image: x]-dependent thermal diffusivity. The
 temperature of the rod at its ends is such that [image: u(0,t) = u(L,t) = 0], and at
 time [image: t = 0], the temperature distribution is

 [image: −(x−L∕2)2∕σ2
u(x,0) = Ce .
]

 	Write a program where the user enters the parameters [image: L], [image: a],
 [image: C], [image: σ], [image: N
 x], [image: N
 t] and [image: t
 f] interactively. On exit, the program
 calculates [image: u(x, tf)] and writes the points [image: (xi,u(xi,tf))] in two
 columns to a file d.dat.

 	Run the program for
 [image: L = 4], [image: a = 0.2], [image: C = 1], [image: σ = 1∕2], [image: Nx = 400], [image: Nt = 20000]
 and calculate [image: u(x,tf)] for [image: tf = 0.05,1.0,5.0]. Plot the functions
 [image: u(x,t)
 f] in the same plot.

 	Using the same parameters, calculate the time evolution of the
 temperature distribution at the points [image: x = 1
 1] and [image: x = 2
 2] for
 [image: 0 ≤ t ≤ 5]. Plot the functions [image: u(x1,2,t)] in the same plot.

 	Reproduce the results shown in figures 8.4 and 8.5.

Chapter 9
The Anharmonic Oscillator
 In this chapter we will use matrix
methods in order to compute the quantum mechanical energy spectrum of the
anharmonic oscillator. This problem cannot be solved exactly and one has to
resort to perturbative or other approximation methods. We will approach
this problem numerically by representing the Hamiltonian [image: H] as a real
symmetric matrix in an appropriately chosen basis of the Hilbert space [image: ℋ] of
quantum mechanical states. The energy spectrum is obtained from the
eigenvalues of this matrix and the numerical problem reduces to that of
the diagonalization of a real symmetric matrix. Since the Hamiltonian is
represented in [image: ℋ] by an infinite size matrix, we have to restrict ourselves to a
finite dimensional subspace [image: ℋN] of dimension [image: N]. In this space the
Hamiltonian is represented by an [image: N × N] real symmetric matrix. The
eigenvalues of this matrix will be calculated numerically using standard
methods and the energy eigenvalues will be obtained in the [image: N → ∞]
limit.
For the calculation of the eigenvalues we will use software that is found in the
well known library Lapack which contains high quality, freely available,
linear algebra software. Part of the goals of this chapter is to show to
the reader how to link her programs with software libraries. In order to
solve the same problem using Mathematica or Matlab see [40] and [41]
respectively.

 9.1 Introduction

The Hamiltonian of the harmonic oscillator is given by

 	

[image: p2 1 2 2
H0 = ---+ -m ω x .
 2m 2
]
	(9.1)

Define the position and momentum scales [image: ∘ --------
x0 = ℏ∕ (m ω)], [image: √-----
p0 = ℏm ω] so that
we can express the above equation using dimensionless terms:

 	

[image: ()2 ()2
H0- 1- -p- 1- x--
ℏ ω = 2 p0 + 2 x0 .
]
	(9.2)

If we take the units of energy, distance and momentum to be [image: ℏ ω], [image: x0] and [image: p0],
then we obtain

 	

[image: H = 1p2 + 1x2,
 0 2 2
]
	(9.3)

where [image: H0], [image: p] and [image: x] are now dimensionless. The operator [image: H0] can be
diagonalized with the help of the creation and annihilation operators [image: a] and [image: a†],
defined by the relations:

 	

[image: 1 i
x = √---(a† + a) p = √--(a† − a),
 2 2
]
	(9.4)

or

 	

[image: a = √1-(x + ip) a † = √1-(x − ip),
 2 2
]
	(9.5)

which obey the commutation relation

 	

[image: [a, a†] = 1,
]
	(9.6)

which leads to

 	

[image: H = a†a + 1.
 0 2
]
	(9.7)

The eigenstates [image: |n⟩], [image: n = 0,1,2, ...] of [image: H0] span the Hilbert space of states [image: ℋ]
and satisfy the relations

 	

[image: √------ √ --
a†|n ⟩ = n + 1|n + 1 ⟩ a|n⟩ = n|n − 1⟩ a |0⟩ = 0,
]
	(9.8)

therefore

 	

[image: †
a a|n⟩ = n|n⟩,
]
	(9.9)

and

 	

[image: H |n⟩ = E |n⟩, E = n + 1.
 0 n n 2
]
	(9.10)

The position representation of the eigenstates [image: |n ⟩] is given by the wavefunctions:

 	

[image: 1 2
ψn (x) = ⟨x|n⟩ = ∘------√--e−x ∕2Hn (x),
 2nn! π
]
	(9.11)

where [image: Hn (x)] are the Hermite polynomials.

 From equations (9.4) and (9.8) we obtain

[image: -1-√ ------ -1-√ --
xnm = ⟨n|x|m ⟩ = √2-- m + 1δn,m+1 + √2-- m δn,m−1 (9.12)
 √----------
 = 1- n + m + 1δ|n−m |,1 (9.13)
 2
 -i-√ ------ -i-√ --
pnm = ⟨n|p|m ⟩ = √ 2 m + 1δn,m+1 − √ 2 m δn,m−1. (9.14)
]

 From the above equations we can easily calculate the Hamiltonian of the
anharmonic oscillator

 	

[image: 4
H (λ) = H0 + λx .
]
	(9.15)

The matrix elements of [image: H] in this representation are:

[image: 4
Hnm (λ) ≡ ⟨n|H (λ)|m ⟩ = ⟨n|H0|m ⟩ + λ⟨n|x |m ⟩ (9.16)
 1- 4
 = (n + 2)δn,m + λ(x)nm (9.17)
]

where [image: 4
(x)nm] can be calculated from equation (9.12) :
 	

[image: ∞∑
(x4)nm = xni1xi1i2xi2i3xi3m.
 i1,i2,i3=0
]
	(9.18)

This relation computes the matrix elements of the matrix [image: x4] from the matrix
product of [image: x] with itself.

 The problem of the calculation of the energy spectrum has now been reduced
to the problem of calculating the eigenvalues of the matrix [image: Hnm].

 9.2 Calculation of the Eigenvalues of [image: Hnm (λ)]

We start by choosing the dimension [image: N] of the subspace [image: ℋN] of the Hilbert space
of states [image: ℋ]. We will restrict ourselves to states within this subspace and we will
use the [image: N] dimensional representation matrices of [image: x], [image: H0] and [image: H (λ)] in [image: ℋN].
For example, when [image: N = 4] we obtain

 	

[image: (1)
 0 √2- 0 0
 | √1- 0 1 0 |
x = || 2 ∘ 3-||
 |(0 1 0 2 |)
 ∘ 3-
 0 0 2 0
]
	(9.19)

 	

[image: ()
 1 0 0 0
 | 02 3 0 0 |
H0 = |(2 5 |)
 0 0 2 07
 0 0 0 2
]
	(9.20)

 	

[image: (1 3λ- 3√λ-)
 2 + 4 0 2 ∘0--
 || 0 3+ 15λ- 0 3 3λ ||
H (λ) = || -3λ- 2 4 5 27λ- 2 ||
 (√2- ∘0-- 2 + 4 0)
 0 3 3λ 0 7+ 15λ-
 2 2 4
]
	(9.21)

 Our goal is to write a program that calculates the eigenvalues [image: En(N, λ)] of
the [image: N × N] matrix [image: H (λ)
 nm]. Instead of reinventing the wheel, we will use ready
made routines that calculate eigenvalues and eigenvectors of matrices found in the
Lapack library. This library can be found in the high quality numerical software
repository Netlib and more specifically at http://www.netlib.org/lapack/.
Documentation can be found at http://www.netlib.org/lapack/lug/, but it
is also easily accessible online by a Google search or by using the man
pages1 .

 As inexperienced users we will first look for driver routines that perform a
diagonalization process. Since our task is to diagonalize a real symmetric matrix,
we pick the subroutine DSYEV (D = double precision, SY = symmetric, EV =
eigenvalues with optional eigenvectors). If the documentation of the library is
installed in our system, we may use the Linux man pages for accessing
it:2

> man dsyev

 From this page we learn how to use this subroutine:

SUBROUTINE DSYEV(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)

 CHARACTER JOBZ, UPLO

 INTEGER INFO, LDA, LWORK, N

 DOUBLE PRECISION A(LDA, *),W(*), WORK(*)

ARGUMENTS

 JOBZ (input) CHARACTER*1

 = ’N’: Compute eigenvalues only;

 = ’V’: Compute eigenvalues and eigenvectors.

 UPLO (input) CHARACTER*1

 = ’U’: Upper triangle of A is stored;

 = ’L’: Lower triangle of A is stored.

 N (input) INTEGER

 The order of the matrix A. N >= 0.

 A (input/output) DOUBLE PRECISION array, dimension (LDA, N)

 On entry, the symmetric matrix A. If UPLO = ’U’, the

 leading N-by-N upper triangular part of A contains the

 upper triangular part of the matrix A. If UPLO = ’L’,

 the leading N-by-N lower triangular part of A contains

 the lower triangular part of the matrix A. On exit, if

 JOBZ = ’V’, then if INFO = 0, A contains

 the orthonormal eigenvectors of the matrix A. If

 JOBZ = ’N’, then on exit the lower triangle (if UPLO=’L’)

 or the upper triangle (if UPLO=’U’) of A, including the

 diagonal, is destroyed.

 LDA (input) INTEGER

 The leading dimension of the array A. LDA >= max(1,N).

 W (output) DOUBLE PRECISION array, dimension (N)

 If INFO = 0, the eigenvalues in ascending order.

 WORK (workspace/output) DOUBLE PRECISION array, dimension

 (LWORK).

 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

 LWORK (input) INTEGER

 The length of the array WORK. LWORK >= max(1,3*N-1).

 For optimal efficiency, LWORK >= (NB+2)*N, where NB is

 the blocksize for DSYTRD returned by ILAENV.

 If LWORK = -1, then a workspace query is assumed; the

 routine only calculates the optimal size of the WORK

 array, returns this value as the first entry of the

 WORK array, and no error message related to LWORK is

 issued by XERBLA.

 INFO (output) INTEGER

 = 0: successful exit

 < 0: if INFO = -i, the i-th argument had an illegal value

 > 0: if INFO = i, the algorithm failed to converge; i

 off-diagonal elements of an intermediate tridiagonal

 form did not converge to zero.

 These originally cryptic pages contain all the necessary information and
the reader should familiarize herself with its format. For a quick and
dirty use of the routine, all we need to know is the types and usage of its
arguments. These are classified as “input”, “output” and “working space”
variables (some are in more than one classes). Input is the necessary data
that the routine needs in order to perform the computation. Output is
where the results of the computation are stored. And working space is the
memory provided by the user to the routine in order to store intermediate
results.

 From the information above we learn that the matrix to be diagonalized is A
which is a rectangular matrix with the number of its rows and columns [image: ≤ N].
The number of rows LDA (LDA= “leading dimension of A”) can be larger than
N is which case DSYEV will diagonalize the upper left N[image: ×]N part of the
matrix3 .
In our program we define a large matrix A(LDA,LDA) and diagonalize a smaller
submatrix A(N,N). This way we can study many values of [image: N] using the same
matrix. The subroutine can be used in two ways:

 	If JOBZ=’N’, it calculates only the eigenvalues of the matrix A(N,N)
 and stores them in the array W(N), sorted in ascending order. We
 have to be careful because, upon return, the routine destroys the
 upper (UPLO=’U’) or lower (UPLO=’L’) triangular part of A. Since A is
 symmetric, only this part is needed by DSYEV. If we need to reuse the
 matrix A, we have to make a backup copy before the call to DSYEV.

 	If JOBZ=’V’, it calculates both the eigenvalues and the eigenvectors of
 the matrix A(N,N). The eigenvalues are stored in the array W(N) as
 before, whereas the corresponding eigenvectors in the columns of the
 matrix A(N,N). In order to use the eigenvectors, we can use a statement
 like v = A(1:N,j) where the array v(N) stores the components of the
 j-th eigenvector of the matrix corresponding to the eigenvalue [image: λj]. The
 eigenvectors are normalized to unity, i.e. [image: ∑
 N
 i=1]v(i)*v(i)[image: = 1]. The
 matrix A(N,N) is destroyed after the call to DSYEV and if we need it we
 have to make a backup copy before the call.

The reader should also familiarize herself with the use of the workspace array WORK.
This is memory space given to the routine for all its intermediate calculations.
Determining the size of this array needs some care. This is given by LWORK
and if performance is an issue the reader should read the documentation
carefully for its optimal determination. We will make the simple choice
LWORK=3*LDA-1. The variable INFO is used as a flag which informs the user
whether the calculation was successful, in which case its value is set to 0.
In our case, if INFO takes a non zero value, the program will abort the
calculation.

 Before using the program in a complicated calculation, it is necessary to test
its use in a simple, easily controlled problem. We will familiarize ourselves with
the use of DSYEV by writing the following program:

program test_evs

 implicit none

 integer, parameter :: P = 100 ! P= LDA

 integer, parameter :: LWORK = 3*P-1

 real(8) :: A(P,P),W(P),WORK(LWORK)

 integer :: N ! DSYEV diagonalizes A(N,N)

 integer :: i,j

 integer :: LDA,INFO

 character(1) :: JOBZ,UPLO

!Define the **symmetric** matrix to be diagonalized

!The subroutine uses the upper triangular part (UPLO=’U’)

!therefore the lower triangular part needs not to be defined

 N=4

 A(1,1)=-7.7;

 A(1,2)= 2.1;A(2,2)= 8.3;

 A(1,3)=-3.7;A(2,3)=-16.;A(3,3)=-12.

 A(1,4)= 4.4;A(2,4)= 4.6;A(3,4)=-1.04;A(4,4)=-3.7

!We print the matrix A before calling DSYEV since it is

!destroyed after the call.

 do i=1,N

 do j=i,N

 print *,’A(’,i,’ , ’,j,’)=’,A(i,j)

 enddo

 enddo

!We ask for eigenvalues AND eigenvectors (JOBZ=’V’)

 JOBZ=’V’; UPLO=’U’

 print *,’COMPUTING WITH DSYEV:’

 LDA=P !notice that LDA-> P>N !!

 call DSYEV(JOBZ,UPLO,N,A,LDA,W,WORK,LWORK,INFO)

 print *,’DSYEV: DONE. CHECKING NOW:’

!If INFO is nonzero, then there is an error:

 if(INFO .ne. 0)then

 print *,’DSYEV FAILED. INF0= ’,INFO

 stop

 endif

!Print results: W(I) has the eigenvalues:

 print *,’DSYEV: DONE.:’

 print *,’EIGENVALUES OF MATRIX:’

 do i=1,N

 print *,’LAMBDA(’,i,’)=’,W(i)

 enddo

!Eigenvectors are in stored in the columns of A:

 print *,’EIGENVECTORS OF MATRIX’

 do J=1,N

 print *,’EIGENVECTOR ’,j,’ FOR EIGENVALUE ’,W(j)

 do i=1,N

 print *,’V_’,j,’(’,i,’)= ’,A(i,j)

 enddo

 enddo

end program test_evs

 The next step is to compile and link the program. In order to link the program
to Lapack we have to instruct the linker ld where to find the libraries Lapack and
BLAS4
and link them to our program. A library contains compiled software in archives of
object files. The convention for their names in a Unix environment is to start with
the string “lib” followed by the name of the library and a .a or .so extension.
For example, in our case the files we are interested in have the names
liblapack.so and libblas.so which can be searched in the file system by the
commands:

> locate libblas

> locate liblapack

 In order to see the files that they contain we give the
commands5 :

> ar -t /usr/lib/libblas.so

> ar -t /usr/lib/liblapack.so

 In the commands shown above you may have to substitute /usr/lib with the
path appropriate for your system. If the program is in the file test.f90, the
compilation/linking command is:

> gfortran test.f90 -o test -L/usr/lib -llapack -lblas

 The option -L/usr/lib instructs the linker to look for libraries in the /usr/lib
directory6 ,
whereas the options -llapack -lblas instructs the linker to look for any
unresolved symbols (i.e. names of external functions and subroutines not coded in
our program) first in the library liblapack.a and then in the library
libblas.a.

 The command shown above produces the executable file test which, when
run, produces the result:

 EIGENVALUES OF MATRIX:

 LAMBDA(1)= -21.4119907

 LAMBDA(2)= -9.93394359

 LAMBDA(3)= -2.55765591

 LAMBDA(4)= 18.8035905

 EIGENVECTORS OF MATRIX

 EIGENVECTOR 1 FOR EIGENVALUE -21.4119907

 V_ 1(1)= -0.197845668

 V_ 1(2)= -0.464798676

 V_ 1(3)= -0.854691009

 V_ 1(4)= 0.119676904

 EIGENVECTOR 2 FOR EIGENVALUE -9.93394359

 V_ 2(1)= 0.824412399

 V_ 2(2)= -0.132429396

 V_ 2(3)= -0.191076519

 V_ 2(4)= -0.516039161

 EIGENVECTOR 3 FOR EIGENVALUE -2.55765591

 V_ 3(1)= 0.502684215

 V_ 3(2)= -0.247784372

 V_ 3(3)= 0.132853329

 V_ 3(4)= 0.817472616

 EIGENVECTOR 4 FOR EIGENVALUE 18.8035905

 V_ 4(1)= 0.168848655

 V_ 4(2)= 0.839659187

 V_ 4(3)= -0.464050682

 V_ 4(4)= 0.226096318

 We are now ready to tackle the problem of computing the energy spectrum of the
anharmonic oscillator. The main program contains the user interface where the
basic parameters for the calculation are read from the stdin. The user can
specify the dimension DIM [image: ≡ N] of [image: ℋN] and the coupling constant [image: λ].
Then the program computes the eigenvalues [image: En(N, λ)] of the [image: N × N]
matrix [image: Hnm (λ)], which represents the action of the operator [image: H (λ)] in the
[image: {|n⟩}n=0,1,...,N− 1] representation in [image: ℋN]. The tasks are allocated to the
subroutines calculate_X4, calculate_evs and calculate_H. The subroutine
calculate_X4 calculates the [image: N × N] matrix [image: 4
(x)nm]. First, the matrix [image: xnm] is
calculated and then [image: (x4)nm] is obtained by computing its fourth power. The

matrix [image: 4
(x)nm] can also be calculated analytically and this is left as an
exercise to the reader. The subroutine calculate_H calculates the matrix
[image: Hnm (λ)] using the result for [image: (x4)nm] given by calculate_X4. Finally
the eigenvalues are calculated in the subroutine calculate_evs by a
call to DSYEV, which are returned to the main program for printing to
the stdout. The program is listed below and can be found in the file
anharmonic.f90:

!==

program anharmonic_elevels

!==

 implicit none

 integer,parameter :: P = 1000

 integer,parameter :: LWORK = 3*P-1

 integer :: DIM

 real(8),dimension(P,P) :: H,X,X4 !Hamiltionian+Position Ops

 real(8),dimension(P) :: E !energy eigenvalues

 real(8),dimension(LWORK):: WORK

 real(8) :: lambda

 integer :: i

 print *,’# Enter Hilbert Space dimension:’

 read *,DIM

 print *,’# Enter lambda:’

 read *,lambda

 print *,’# lambda= ’,lambda

!Print Message:

 print *,’# ##’

 print *,’# Energy spectrum of anharmonic oscillator’

 print *,’# using matrix methods.’

 print *,’# Hilbert Space Dimension DIM = ’,DIM

 print *,’# lambda coupling = ’,lambda

 print *,’# ##’

 print *,’# Outpout: DIM lambda E_0 E_1 E_{N-1}’

 print *,’# --’

!Calculate X^4 operator:

 call calculate_X4(X,X4,DIM)

!Calculate eigenvalues:

 call calculate_evs(H,X4,E,WORK,lambda,DIM)

 write(6,100)’EV ’,DIM,lambda,(E(i),i=1,DIM)

100 FORMAT(A3,I8,20000G25.15)

end program anharmonic_elevels

!==

subroutine calculate_evs(H,X4,E,WORK,lambda,DIM)

!==

 implicit none

 integer,parameter :: P = 1000

 integer,parameter :: LWORK = 3*P-1

 real(8),dimension(P,P) :: H,X4

 real(8),dimension(P) :: E

 real(8),dimension(LWORK) :: WORK

 integer :: DIM

 real(8) :: lambda

 character(1) :: JOBZ,UPLO

 integer :: LDA,INFO,i,j

 call calculate_H(H,X4,lambda,DIM)

 JOBZ=’V’;UPLO=’U’

 call DSYEV(JOBZ,UPLO,DIM,H,P,E,WORK,LWORK,INFO)

 print *,’# ********************** EVEC *******************’

 do j=1,DIM

 write(6,101)’# EVEC ’,lambda,(H(i,j), i=1,DIM)

 enddo

 print *,’# ********************** EVEC *******************’

101 FORMAT(A7,F15.3,20000G14.6)

!If INFO is nonzero then we have an error

 if(INFO .ne. 0)then

 print *,’dsyev failed. INFO= ’,INFO

 stop

 endif

end subroutine calculate_evs

!==

subroutine calculate_H(H,X4,lambda,DIM)

!==

 implicit none

 integer,parameter :: P = 1000

 real(8),dimension(P,P) :: H,X4

 integer :: DIM

 real(8) :: lambda

 integer :: i,j

 do j=1,DIM

 do i=1,DIM

 H(i,j)=lambda*X4(i,j)

 enddo

 H(j,j) = H(j,j) + DBLE(j) - 0.5D0 !E_n=n+1/2,n=j-1=>E_n=j-1/2

 enddo

 print *,’# ********************** H *******************’

 do j=1,DIM

 write(6,102)’# HH ’,(H(i,j), i=1,DIM)

 enddo

 print *,’# ********************** H *******************’

102 FORMAT(A5,20000G20.6)

end subroutine calculate_H

!==

subroutine calculate_X4(X,X4,DIM)

!==

 implicit none

 integer,parameter :: P=1000

 real(8),dimension(P,P):: X,X4,X2

 integer :: DIM

 integer :: i,j,m,n

 real(8),parameter :: isqrt2=1.0D0/sqrt(2.0D0)

!Compute the position operator:

 X = 0.0D0

!Compute the nonzero elements

 do i=1,DIM

 n=i-1 !indices 0,...,DIM-1

! The delta_{n,m+1} term, i.e. m=n-1

 m=n-1 !the energy level n -> i=n+1, m-> j=m+1

 j=m+1

 if(j.ge.1) X(i,j)=isqrt2*sqrt(DBLE(m+1))

! The delta_{n,m-1} term, i.e. m=n+1

 m=n+1

 j=m+1

 if(j.le.DIM) X(i,j)=isqrt2*sqrt(DBLE(m))

 enddo

!Compute the Hamiltonian operator:

!Start with the X^4 operator:

 X2 = MATMUL(X ,X) !first X2,then X4:

 X4 = MATMUL(X2,X2)

end subroutine calculate_X4

[image: pict]

Figure 9.1: The ground state energy [image: E0(λ)] for [image: λ = 0.2,0.9] is calculated in the large
[image: N] limit of the eigenvalues [image: E0(N,λ)]. Convergence is satisfactory for relatively small
values of [image: N] and it is slightly faster for [image: λ = 0.2] than it is for [image: λ = 0.9].

[image: pict]

Figure 9.2: The 9th excited state [image: E9(λ)] for [image: λ = 0.2,0.9] is given by the large [image: N]
limit of the eigenvalues [image: E9(N, λ)].

[image: pict]

Figure 9.3: The 20th excited state [image: E20(λ)] for [image: λ = 0.2,0.9] is given by the large [image: N]
limit of the eigenvalues [image: E20(N,λ)]. Convergence has not been achieved for the displayed
values of [image: N ≤ 80].

 9.3 Results

Compiling and running the program can be done with the commands:

> gfortran -O2 anharmonic.f90 -o an -llapack -lblas

> ./an

 # Enter Hilbert Space dimension:

4

 # Enter lambda:

0.0

.....

********************** H *******************

HH 0.50 0.00 0.00 0.00

HH 0.00 1.50 0.00 0.00

HH 0.00 0.00 2.50 0.00

HH 0.00 0.00 0.00 3.50

********************** H *******************

********************** EVEC ****************

EVEC 0.000 1.00 0.00 0.00 0.00

EVEC 0.000 0.00 1.00 0.00 0.00

EVEC 0.000 0.00 0.00 1.00 0.00

EVEC 0.000 0.00 0.00 0.00 1.00

********************** EVEC ****************

EV 4 0.000 0.50 1.50 2.50 3.50

 In the above program we used [image: N = 4] and [image: λ = 0]. The [image: λ = 0] choice leads us
to the simple harmonic oscillator and we obtain the expected solutions:
[image: Hnm = (n + 1∕2)δn,m], [image: En = (n + 1∕2)] and the eigenstates (eigenvectors of
[image: Hnm]) [image: ∑3
|n ⟩λ=0 = |n ⟩ = m=0 δn,m |m⟩]. Similar results can be obtained for larger
[image: N].

 For non zero values of [image: λ], the finite [image: N] calculation contains systematic errors
from neglecting all the matrix elements [image: Hnm (λ)] for [image: n ≥ N] or [image: m ≥ N]. Our
program calculates the eigenvalues [image: En (N, λ)] of the finite matrix [image: Hnm (λ)],
[image: m, n = 0,...,N − 1] and one expects that

 	

[image: En (λ) = lim En (N, λ),
 N→ ∞
]
	(9.22)

where

 	

[image: H (λ)|n ⟩λ = En(λ)|n⟩λ,
]
	(9.23)

is the true [image: n]-th level eigenvalue of the Hamiltonian [image: H (λ)]. In practice the limit
9.22 for given [image: λ] and [image: n] is calculated by computing [image: En (N, λ)] numerically for
increasing values of [image: N]. If convergence to a desired level of accuracy is achieved
for the accessible values of [image: N], then the approached limit is taken as an
approximation to [image: E (λ)
 n]. This process is shown graphically in figures 9.1-9.3 for
[image: λ = 0.2,0.9]. Convergence is satisfactory for quite small [image: N] for [image: n = 0,9] but
larger values of [image: N] are needed for [image: n = 20]. Increasing the value of [image: n] for fixed
[image: λ] makes the use of larger values of [image: N] necessary. Similarly for a given energy
level [image: n], increasing [image: λ] also makes the use of larger values of [image: N] necessary. A
session that computes this limit for the ground level energy [image: E (λ = 0.9)
 0] is shown
below7 :

> tcsh

> gfortran -O2 anharmonic.f90 -llapack -lblas -o an

> foreach N (4 8 12 16 24 32)

foreach? (echo $N;echo 0.9) |./an >> data

foreach? end

> grep ^EV data | awk ’{print $2,$4}’

4 0.711467845686790

8 0.786328966767866

12 0.785237674919165

16 0.784964461939594

24 0.785032515135677

32 0.785031492177730

> gnuplot

gnuplot> plot "<grep ^EV data | awk ’{print 1/$2,$4}’"

 Further automation of this process can be found in the shell script file
anharmonic.csh in the accompanying software. We note the large [image: N]
convergence of [image: E0 (N,0.9)] and that we can take [image: E0(0.9) ≈ 0.78503]. For higher
accuracy, a computation using larger [image: N] will be necessary.

 We can also compute the expectation values [image: ⟨A⟩n(λ)] of an operator
[image: A = A (p, q)] when the anharmonic oscillator is in a state [image: |n⟩λ]:

 	

[image: ⟨A⟩n(λ) = λ⟨n |A |n ⟩λ.
]
	(9.24)

In practice, the expectation value will be computed from the limit

 	

[image: ⟨A ⟩n (λ) = lNi→m∞⟨A ⟩n(N, λ) ≡ Nli→m∞ N,λ⟨n|A|n⟩N,λ,
]
	(9.25)

where [image: |n ⟩N,λ] are the eigenvectors of the finite [image: N × N] matrix [image: Hnm (λ)]
computed numerically by DSYEV. These are determined by their components
[image: cm (N, λ)], where

 	

[image: N∑− 1
|n⟩N,λ = cm(N, λ)|m ⟩,
 m=0
]
	(9.26)

which are stored in the columns of the array H after the call to DSYEV:

 	

[image: cm (N, λ) = H (m + 1,n + 1).
]
	(9.27)

Substituting equation (9.26) to (9.24) we obtain

 	

[image: N∑−1
⟨A⟩ (λ) = c∗(N, λ)c ′(N, λ)A ′,
 n ′ m m mm
 m,m =0
]
	(9.28)

and we can use (9.27) for the computation of the sum.

 As an application, consider the expectation values of the operators [image: x2], [image: x4]
and [image: 2
p]. Taking into account that [image: ⟨x ⟩n =] [image: ⟨p⟩n = 0], we obtain the uncertainties
[image: Δxn ≡] [image: ∘ ---2-------2
 ⟨x ⟩n − ⟨x⟩n =] [image: ∘ --2---
 ⟨x ⟩n] and [image: Δpn =] [image: ∘ --2--
 ⟨p ⟩n]. Their product
should satisfy Heisenberg’s uncertainty relation [image: Δxn ⋅ Δpn ≳ 1∕2]. The results are
shown in table 9.1 and in figures 9.4-9.5. The calculation is left as an exercise to
the reader.

[image: pict]

Figure 9.4: The expectation values [image: 2 1∕2
⟨x ⟩n (λ)], [image: 2 1∕2
⟨p ⟩n (λ)] and the product of
uncertainties [image: Δxn ⋅Δpn] for [image: n = 9] and [image: λ = 0.5] calculated from the large [image: N] limits of
[image: ⟨x2⟩1∕n2(N,λ)], [image: ⟨p2⟩1n∕2(N,λ)].

[image: pict]

Figure 9.5: The expectation values [image: 2 1∕2
⟨x ⟩n (λ)], [image: 2 1∕2
⟨p ⟩n (λ)] and the product of
uncertainties [image: Δxn ⋅Δpn] for [image: n = 9].

 	
	
	
	
	
	
	

	 	 [image: λ = 0.5]
 	 [image: λ = 2.0]

	
	
	
	
	
	
	

	[image: n]	 [image: 2
⟨x ⟩]
 	 [image: 2
⟨p ⟩]
 	[image: Δx ⋅ Δp]
	 [image: 2
⟨x ⟩]
 	 [image: 2
⟨p ⟩]
 	[image: Δx ⋅ Δp]

	
	
	
	
	
	
	

	 0	0.305814	0.826297	 0.502686	 0.21223	1.19801	 0.504236
	 1	0.801251	 2.83212	 1.5064	0.540792	4.21023	 1.50893

	 2	 1.15544	 5.38489	 2.49438	0.761156	8.15146	 2.49089
	 3	 1.46752	 8.28203	 3.48627	0.958233	12.6504	 3.48166

	 4	 1.75094	 11.4547	 4.47845	 1.13698	 17.596	 4.47285

	 5	 2.01407	 14.8603	 5.47079	 1.30291	22.9179	 5.46443

	 6	 2.2617	 18.4697	 6.4632	 1.45905	28.5683	 6.45619

	 7	 2.49696	 22.2616	 7.45562	 1.60735	34.5124	 7.44805

	 8	 2.72198	 26.2196	 8.44804	 1.74919	40.7234	 8.43998

	 9	 2.93836	 30.3306	 9.44045	 1.88558	47.1801	 9.43194

	
	
	
	
	
	
	

	

 Table 9.1: The expectation values [image: ⟨x2⟩], [image: ⟨p2⟩], [image: Δx ⋅Δp] for the anharmonic oscillator
for the states [image: |n⟩], [image: n = 0,...,9]. We observe a decrease of [image: ∘ -2--
Δx = ⟨x ⟩] and an increase
of [image: ∘ ----
Δp = ⟨p2⟩] as [image: λ] is increased. The product [image: Δx ⋅Δp] seems to remain very close to
the values [image: (n +1∕2)] of the harmonic oscillator for both values of [image: λ].

 The physics of the anharmonic oscillator can be better understood by studying
the large [image: λ] limit. As shown in figure 9.5, the term [image: λx4] dominates in this limit
and the expectation value [image: 2
⟨x ⟩n(λ)] decreases. This means that states that
confine the oscillator to a smaller range of [image: x] are favored. This, using the
uncertainty principle, implies that the typical momentum of the oscillator
also increases in magnitude. This is confirmed in figure 9.5 where we
observe the expectation value [image: ⟨p2⟩ (λ)
 n] to increase with [image: λ]. In order to
understand quantitatively these competing effects we will use a scaling
argument due to Symanzik. We redefine [image: −1∕6
x → λ x], [image: 1∕6
p → λ p] in the
Hamiltonian [image: H (λ) = p2∕2 + x2∕2 + λx4] and for large enough [image: λ] we
obtain8
the asymptotic behavior

 	

[image: H (λ) ∼ λ1∕3h(1), λ → ∞,
]
	(9.29)

where [image: 2 4
h(λ) = p ∕2 + λx] is the Hamiltonian of the anharmonic “oscillator” with
[image: ω = 0]. Since the operator [image: h (1)] is independent of [image: λ], the energy spectrum will
have the asymptotic behavior

 	

[image: En(λ) ∼ Cnλ1∕3, λ → ∞.
]
	(9.30)

In reference [42] it is shown that for [image: λ > 100] we have that

 	

[image: E0(λ) = λ1∕3(0.66798625918 + 0.14367 λ−2∕3 − 0.0088 λ−4∕3 + ...) ,
]
	(9.31)

with an accuracy better than one part in [image: 6
10]. For large values of [image: n], the authors
obtain the asymptotic behavior

 	

[image: ()4∕3
En(λ) ∼ Cλ1∕3 n + 1- , λ → ∞, n → ∞,
 2
]
	(9.32)

where [image: 4∕3 2 8∕3
C = 3 π ∕ Γ (1∕4)] [image: ≈ 1.37650740]. This relation is tested
in figure 9.6 where we observe good agreement with our calculations.

[image: pict]

Figure 9.6: Test of the asymptotic relation (9.32) . The vertical axis is
[image: En λ−1∕3(n + 1∕2)−4∕3] where for large enough [image: n] and [image: λ] should approach the value
[image: C = 34∕3π2∕Γ (1∕4)8∕3] [image: ≈ 1.37650740] (horizontal line).

 Table 9.2: Numerical calculation of the energy levels of the anharmonic oscillator given
in reference [42].

 	
	
	
	
	
	

	[image: λ] 	 [image: E0] 	 [image: E1] 	 [image: E2] 	 [image: E3] 	 [image: E4]

	
	
	
	
	
	

	0.002 	0.501 489 66	1.507 419 39	2.519 202 12	3.536 744 13	4.559 955 56
	0.006 	0.504 409 71	1.521 805 65	2.555 972 30	3.606 186 33	4.671 800 37

	0.01 	0.507 256 20	1.535 648 28	2.590 845 80	3.671 094 94	4.774 913 12
	0.05 	0.532 642 75	1.653 436 01	2.873 979 63	4.176 338 91	5.549 297 81

	0.1 	0.559 146 33	1.769 502 64	3.138 624 31	4.628 882 81	6.220 300 90
	0.3 	0.637 991 78	2.094 641 99	3.844 782 65	5.796 573 63	7.911 752 73

	0.5 	0.696 175 82	2.324 406 35	4.327 524 98	6.578 401 95	9.028 778 72
	0.7 	0.743 903 50	2.509 228 10	4.710 328 10	7.193 265 28	9.902 610 70

	1 	0.803 770 65	2.737 892 27	5.179 291 69	7.942 403 99	 10.963 5831
	2 	0.951 568 47	3.292 867 82	6.303 880 57	9.727 323 19	 13.481 2759

	50 	2.499 708 77	8.915 096 36	 17.436 9921 	 27.192 6458 	 37.938 5022
	200 	3.930 931 34	 14.059 2268 	 27.551 4347 	 43.005 2709 	 60.033 9933

	1000 	3.694 220 85	 23.972 2061 	 47.017 3387 	 73.419 1140 	 102.516 157
	8000 	 13.366 9076 	 47.890 7687 	 93.960 6046 	 146.745 512 	 204.922 711

	20000	 18.137 2291 	 64.986 6757 	 127.508 839 	 199.145 124 	 278.100 238

	
	
	
	
	
	

	[image: λ] 	 [image: E5] 	 [image: E6] 	 [image: E7] 	 [image: E8] 	

	
	
	
	
	
	

	0.002 	5.588 750 05	6.623 044 60	7.662 759 33	8.707 817 30	

	0.006 	5.752 230 87	6.846 948 47	7.955 470 29	9.077 353 66	

	0.01 	5.901 026 67	7.048 326 88	8.215 837 81	9.402 692 31	

	0.05 	6.984 963 10	8.477 397 34	 10.021 9318 	 11.614 7761 	

	0.1 	7.899 767 23	9.657 839 99	 11.487 3156 	 13.378 9698 	

	0.3 	 10.166 4889 	 12.544 2587 	 15.032 7713 	 17.622 4482 	

	0.5 	 11.648 7207 	 14.417 6692 	 17.320 4242 	 20.345 1931 	

	0.7 	 12.803 9297 	 15.873 6836 	 19.094 5183 	 22.452 9996 	

	1 	 14.203 1394 	 17.634 0492 	 21.236 4362 	 24.994 9457 	

	2 	 17.514 1324 	 21.790 9564 	 26.286 1250 	 30.979 8830 	

	50 	 49.516 4187 	 61.820 3488 	 74.772 8290 	 88.314 3280 	

	200 	 78.385 6232 	 97.891 3315 	 118.427 830 	 139.900 400 	

	1000 	 133.876 891 	 167.212 258 	 202.311 200 	 239.011 580 	

	8000 	 267.628 498 	 334.284 478 	 404.468 350 	 477.855 700 	

	20000	 363.201 843 	 453.664 875 	 548.916 140 	 648.515 330 	

	
	
	
	
	
	
	

 9.4 The Double Well Potential

We can also use matrix methods in order to calculate the energy spectrum of a
particle in a double well potential given by the Hamiltonian:

 	

[image: 2 2 4
H = p--− x--+ λx--.
 2 2 4
]
	(9.33)

The equilibrium points of the classical motion are located at the minima:

 	

[image: x = ± √1--,V = − -1-.
 0 λ min 4λ
]
	(9.34)

[image: pict]

Figure 9.7: The potential energy [image: V(x)] for the double well potential for [image: λ = 0.1,0.2].

 When the well is very deep, then for the lowest energy levels the potential can
be well approximated by that of a harmonic oscillator with angular frequency
[image: ω2 = V′′(x0)], therefore

 	

[image: E ≈ V + 1ω.
 min min 2
]
	(9.35)

In this case the tunneling effect is very weak and the energy levels are arranged in
almost degenerate pairs. The corresponding eigenstates are symmetric and
antisymmetric linear combinations of states localized near the left and right
minima of the potential. For example, for the two lowest energy levels we expect
that

 	

[image: Δ
E0,1 ≈ Emin ± --,
 2
]
	(9.36)

where [image: Δ ≪ |E |
 min] and

 	

[image: |0⟩λ ≈ |+-⟩√ +-|−-⟩, |1⟩λ ≈ |+-⟩√ −-|−-⟩,
 2 2
]
	(9.37)

where the states [image: |+⟩] and [image: |− ⟩] are localized to the left and right well of the
potential respectively (see also figure 10.4 of chapter 10).

 We will use equations (9.12) in order to calculate the Hamiltonian (9.33) .
We need to make very small modifications to the code in the file anharmonic.f90.
We will only add a routine that calculates the matrices [image: p
 nm]. The resulting
program can be found in the file doublewell.f90:

!==

program doublewell_elevels

!==

! H : Hamiltonian operator H0+(lambda/4)*X^4

! H0 : Hamiltonian H0=1/2 P^2-1/2 X^2

! X,X2,X4: Position operator and its powers

! iP : i P operator

! P2 : P^2 = -(iP)(iP) operator

! E : Energy eigenvalues

! WORK : Workspace for lapack routine DSYEV

!==

 implicit none

 integer,parameter :: P=1000

 integer,parameter :: LWORK=3*P-1

 real(8),dimension(P,P) :: H,H0,X,X4,X2,iP,P2

 real(8),dimension(P) :: E

 real(8),dimension(LWORK):: WORK

 real(8) :: lambda,lambda0,lambdaf,dlambda

 integer :: DIM0,DIMF,dDIM,DIM

 integer :: i

!Minimum and maximum values of Hilbert space dimensions:

 print *,’Enter Hilbert Space dimensions (DIM0,DIMF,DDIM):’

 read *,DIM0,DIMF,DDIM

!Minimum and maximum values of lambda (step dlambda):

 print *,’Enter lambda0,lambdaf,dlambda:’

 read *,lambda0,lambdaf,dlambda

 print *,’lambda0= ’,lambda0

!Print Message:

 print *,’# ##’

 print *,’# Energy levels of double well potential’

 print *,’# using matrix methods.’

 print *,’# Hilbert Space Dimensions = ’,DIM0,’ - ’,DIMF,&

 ’ step= ’,dDIM

 print *,’# lambda coupling = ’,lambda0,’ - ’,lambdaf,&

 ’ step= ’,dlambda

 print *,’# ##’

 print *,’# Outpout: DIM lambda E_0 E_1 E_{N-1}’

 print *,’# --’

 do DIM=DIM0,DIMF,dDIM

 call calculate_operators(X,X2,X4,iP,P2,H0,DIM)

 lambda = lambda0

 do while (lambda .le. lambdaf)

 call calculate_evs(H,H0,X4,E,WORK,lambda,DIM)

 write(6,100)’EV ’,DIM,lambda,(E(i),i=1,DIM)

 lambda = lambda+dlambda

 enddo

 enddo

100 FORMAT(A3,I5,1000G25.15)

end program doublewell_elevels

!==

subroutine calculate_evs(H,H0,X4,E,WORK,lambda,DIM)

!==

 implicit none

 integer,parameter :: P=1000

 integer,parameter :: LWORK=3*P-1

 real(8),dimension(P,P) :: H,H0,X4

 real(8),dimension(P) :: E

 real(8),dimension(LWORK) :: WORK

 integer :: DIM

 real(8) :: lambda

 character(1) :: JOBZ,UPLO

 integer :: LDA,INFO,i,j

 call calculate_H(H,H0,X4,lambda,DIM)

 JOBZ=’V’;UPLO=’U’

 call DSYEV(JOBZ,UPLO,DIM,H,P,E,WORK,LWORK,INFO)

 print *,’# ********************** EVEC *******************’

 do j=1,DIM

 write(6,101)’# EVEC ’,DIM,lambda,(H(i,j), i=1,DIM)

 enddo

 print *,’# ********************** EVEC *******************’

101 FORMAT(A7,I5,F8.4,1000G14.6)

 if(INFO .ne. 0)then

 print *,’dsyev failed. INFO= ’,INFO

 stop

 endif

end subroutine calculate_evs

!==

subroutine calculate_H(H,H0,X4,lambda,DIM)

!==

 implicit none

 integer,parameter :: P=1000

 real(8),dimension(P,P) :: H,H0,X4

 integer :: DIM

 real(8) :: lambda

 integer :: i,j

 do j=1,DIM

 do i=1,DIM

 H(i,j)=H0(i,j)+0.25D0*lambda*X4(i,j)

 enddo

 enddo

 print *,’# ********************** H *******************’

 do j=1,DIM

 write(6,102)’# HH ’,(H(i,j), i=1,DIM)

 enddo

 print *,’# ********************** H *******************’

102 FORMAT(A5,1000G14.6)

end subroutine calculate_H

!==

subroutine calculate_operators(X,X2,X4,iP,P2,H0,DIM)

!==

 implicit none

 integer,parameter :: P=1000

 real(8),dimension(P,P) :: X,X4,X2,iP,P2,H0

 integer :: DIM

 integer :: i,j,m,n

 real(8),parameter :: isqrt2=1.0D0/sqrt(2.0D0)

 X =0.0D0;X2=0.0D0;X4=0.0D0

 iP=0.0D0;P2=0.0D0

 do i=1,DIM

 n=i-1 !indices 0,...,DIM-1

! The delta_{n,m+1} term, i.e. m=n-1

 m=n-1 !energy level: n -> i=n+1, m-> j=m+1

 j=m+1

 if(j.ge.1) X (i,j) = isqrt2*sqrt(DBLE(m+1))

 if(j.ge.1) iP(i,j) = -isqrt2*sqrt(DBLE(m+1))

! The delta_{n,m-1} term, i.e. m=n+1

 m=n+1

 j=m+1

 if(j.le.DIM) X (i,j) = isqrt2*sqrt(DBLE(m))

 if(j.le.DIM) iP(i,j) = isqrt2*sqrt(DBLE(m))

 enddo !do i=1,DIM

 X2 = MATMUL(X, X)

 P2 = -MATMUL(iP,iP)

 X4 = MATMUL(X2,X2)

!The Hamiltionian:

 H0 = 0.5D0*(P2-X2)

end subroutine calculate_operators

 Where is the particle’s favorite place when it is in the states [image: |+ ⟩] and [image: |− ⟩]? The
answer to this question is obtained from the study of the expectation value of the
position operator [image: ⟨x⟩] in each one of them. We know that when the particle is in
one of the energy eigenstates, then we have that

 	

[image: ⟨x⟩n(λ) = λ⟨n |x |n ⟩λ = 0

]
	(9.38)

because the potential [image: V (x) = V(− x)] is even. Therefore

[image: ⟨x⟩±(λ) = ⟨± |x |± ⟩

 = √1--(λ⟨0|x |0 ⟩λ ± λ⟨1|x|0⟩λ ± λ⟨0|x |1⟩λ + λ⟨1|x|0⟩λ)
 2
 = ± √2-⟨1|x|0 ⟩, (9.39)
 λ
]

where in the last line we used the relation (9.38) [image: λ⟨0|x|0⟩λ =]
[image: λ⟨1|x|1⟩λ = 0] and that the amplitudes [image: λ⟨1|x|0⟩λ =] [image: λ⟨0|x |1⟩λ].
Also9
we have that [image: λ⟨1|x|0⟩λ > 0]. Therefore, if we have that [image: ∑ ∞ (0)
|0⟩λ = m=0 cm |m ⟩] and
[image: ∑
|1⟩λ = ∞m=0 c(m1)|m ⟩], we obtain
 	

[image: √ -- ∑∞
⟨x⟩±(λ) = ± 2 c(0m)c(m1)′Xmm ′.
 m,m ′=0
]
	(9.40)

Given that for finite [image: N], the subroutine DSYEV returns approximations to the

coefficients [image: (n)
cm] in the columns of the matrix H(DIM,DIM) so that [image: (n)
cm ≈]
H(m+1,n+1), you may compare the value of [image: ⟨x ⟩±(λ)] with the classical values
[image: √ --
x0 = ±1 ∕ λ] as [image: λ] is increased.

[image: pict]

Figure 9.8: Calculation of the difference of the energy levels [image: Δn = En+1 − En]
for [image: n = 0,6,30] for the double well potential from the program doublewell.f90.
The difference vanishes as the well becomes deeper with decreasing [image: λ]. The states
[image: |±⟩ = (|n+ 1⟩ ± |n⟩)∕√2-
 λ λ] are more and more localized to the right or left well
respectively.

 9.5 Problems

 	Calculate the matrix [image: H (λ)] for [image: N = 2,3] analytically. Calculate its
 eigenvalues for [image: N = 2]. Compare your results with the numerical values
 that you obtain from your program.

 	Add the necessary code to the program in the file test.f90 so that it
 checks that the eigenvectors satisfy their defining relations [image: Avi = λivi]
 and that they form an orthonormal basis [image: vi ⋅ vj = δij].

 	Calculate [image: E5(λ)] and [image: E9(λ)] for [image: λ = 0.8,1.2] with an accuracy better
 than [image: 0.01]%.

 	For how large [image: n] can you calculate [image: En(λ)] for [image: λ = 1] with an accuracy
 better than [image: 2]% when [image: N = 64]?

 	Calculate [image: E3(λ)] and [image: E12(λ)] for [image: 0 ≤ λ ≤ 4] with step [image: δλ = 0.2] by
 achieving accuracy better than [image: 0.01]%. How large should [image: N] be taken
 in each case?

 	Calculate the expression that gives the matrix elements of the operator
 [image: 4
x] in the [image: |n ⟩] representation analytically. Modify the program in
 anharmonic.f90 in order to incorporate your calculation. Verify that
 the results are the same and test if it has an effect in the total
 computation time with and without calculating the eigenvalues and
 eigenvectors of the Hamiltonian. Compute in each case the dependence
 of the cpu time on [image: N] by computing the exponent (cpu time)[image: a
∼ N]
 for [image: N = 40 − 1000].

 	Modify the code in the file anharmonic.f90 so that the arrays H, X,
 X4, E, WORK are ALLOCATABLE and their dimension is determined by
 the variable DIM read by the program interactively.
(Hint: Look at the file anharmonicSPEED.f90.)

 	Make an attempt to reproduce the results of Hioe and Montroll [42]
 given in table 9.2 for [image: n = 3] and [image: n = 5]. What is the largest value of
 [image: λ] that you can study given your computational resources?

 	Make an attempt to reproduce the results of Hioe and Montroll [42]
 given by equation (9.31) . Calculate the ground state energy [image: E0] for
 [image: 200 < λ < 20000] and then fit your results to a function of the form
 [image: λ1∕3(a + bλ −2∕3 + cλ −4∕3)]. What is the accuracy in the calculation of
 the coefficients [image: a], [image: b] and [image: c] and how good is the agreement with
 equation (9.31) ?

 	Modify the code in the file anharmonic.f90 so that it calculates the
 expectation values [image: ⟨x2⟩n(N, λ)], [image: ⟨p2⟩n(N, λ)] and the corresponding
 products [image: Δx ⋅ Δp].
(Hint: See the file anharmonicOBS.f90.)

 	Reproduce the results shown in figure 9.4. Repeat your calculation for
 [image: λ = 2.0,10.0,100.0]. Repeat your calculations for [image: n = 20].

 	Reproduce the results shown in figure 9.5. Repeat your calculations for
 [image: n = 20].

 	Reproduce the results shown in figure 9.6. Repeat your calculation for
 [image: n = 3,7,12, 18,24].

 	Write a program that calculates the energy levels of the anharmonic
 oscillator
 	

 [image: 1 1
H (λ,μ) = --p2 + -x2 + λx4 + μx6.
 2 2
]
	(9.41)

 Calculate [image: En(λ)] for [image: n = 0, 3,8,20], [image: λ = 0.2] and [image: μ = 0.2,0.5, 1.0,2.0,10.0].

 	Modify the program of the previous problem so that it calculates the
 expectation values [image: ⟨x2 ⟩n (N, λ)], [image: ⟨p2⟩n(N, λ)] and the products [image: Δx ⋅ Δp].
 Calculate the expectation values [image: ⟨x2⟩ (λ)
 n], [image: ⟨p2⟩ (λ)
 n] and [image: Δx ⋅ Δp] for
 [image: n = 0,3,8, 20], [image: λ = 0.2] and [image: μ = 0.2,0.5, 1.0,2.0,10.0].

 	Use the program doublewell.f90 in order to calculate the energy
 level pairs [image: En, En+1] for [image: n = 0,4,20] and [image: λ = 0.2,0.1,0.05,0.02].
 Calculate the difference [image: Δn = En+1 − En] and comment on your
 results.

 	Define the energy values

 [image: ()
𝜖 = − -1- + n + 1- .
 n 4 λ 2
]
 Compare the results for [image: En, En+1] of the previous problem with
 [image: 𝜖n − Δn ∕2] and [image: 𝜖n + Δn ∕2] respectively. Explain your results.

 	Modify the program doublewell.f90, so that it calculates the expectation
 values [image: ⟨x ⟩±(λ)] given by equation (9.40) . Compare [image: ⟨x ⟩± (λ)] with the
 classical values [image: √ --
x0 = ±1 ∕ λ] for [image: λ = 0.2,0.1,0.05,0.02,0.01].

 	Repeat the previous problem when the states [image: √ --
|± ⟩ = (1∕ 2)(|n⟩λ ± |n + 1⟩λ)]
 for [image: n = 6] and [image: n = 30].

 	For the simple harmonic oscillator, the energy levels are equidistant,
 i.e. [image: Δn = En+1 − En = 1], [image: (Δn+2 − Δn)∕Δn = 0]. Calculate these
 quantities for the anharmonic oscillator and the double well potential for
 [image: λ = 1,10, 100,1000] and [image: n = 0,8, 20]. What do you conclude from your
 results?

Chapter 10
Time Independent Schrödinger Equation

In this chapter, we will study the time independent Schrödinger equation
for a non relativistic particle of mass [image: m], without spin, moving in one
dimension, in a static potential [image: V (x)]. We will only study bound states. The
solutions in this case yield the discrete energy spectrum [image: {En }] as well as
the corresponding eigenstates of the Hamiltonian [image: { ψn(x)}] in position
representation.

 From a numerical analysis point of view, the problem consists of solving for
the eigensystem of a differential equation with boundary conditions. Part of the
solution is the energy eigenvalue which also needs to be determined.

 As an exercise, we will use two different methods, one that can be applied to a
particle in an infinite well with [image: V (x) = V (− x)], and one that can be applied to
more general cases. The first method is introduced only for educational
purposes and the reader may skip section 10.2 to go directly to section
10.3.

 10.1 Introduction

The wave functions [image: ψ(x)], which are the position representation of the energy
eigenstates, satisfy the Schrödinger equation

 	

[image: ℏ2-∂2ψ-(x)
− 2m ∂x2 + V (x)ψ(x) = E ψ (x),
]
	(10.1)

with the normalization condition

 	

[image: ∫ +∞
 ∗
⟨ψ |ψ ⟩ = −∞ ψ (x)ψ(x)dx = 1.
]
	(10.2)

The Hamiltonian operator is given in position representation by

 	

[image: 2 2
ˆH = − ℏ---∂--+ V(ˆx),
 2m ∂x2
]
	(10.3)

and it is Hermitian, i.e. [image: ˆ† ˆ
H = H]. Equation (10.1) is an eigenvalue
problem

 	

[image: ˆH ψ(x) = E ψ(x),
]
	(10.4)

which, for bound states, has as solutions a discrete set of real functions
[image: ψ ∗n(x) = ψn(x)] such that [image: Hˆψn (x) = En ψn(x)]. The numbers [image: E0 ≤ E1 ≤ E2 ≤ ...]
are real and they are the (bound) energy spectrum of the particle in the
potential1
[image: V (x)]. The minimum energy [image: E0] is called the ground state energy and the
corresponding ground state is given by a non trivial function [image: ψ0(x)]. According to
the Heisenberg uncertainty principle, in this state the uncertainties in momentum
[image: Δp > 0] and position [image: Δx > 0] so that [image: Δp ⋅ Δx ≥ ℏ ∕2].

 The eigenstates [image: ψn(x)] form an orthonormal basis

 	

[image: ∫
 +∞ ∗
⟨ψn|ψm ⟩ = ψn(x)ψm (x)dx = δn,m.
 ∞
]
	(10.5)

so that any (square integrable) wave function [image: ϕ (x)] which represents the state
[image: |ϕ⟩] is given by the linear combination

 	

[image: ∑∞
ϕ (x) = cnψn (x).
 n=0
]
	(10.6)

The amplitudes [image: cn = ⟨ψn |ϕ ⟩][image: ∫+ ∞
= −∞ ψ∗n(x)ϕ (x)dx] are complex numbers
that give the probability [image: pn = |cn|2] to measure energy [image: En] in the state
[image: |ϕ⟩].

 For any state [image: |ϕ⟩] the function

 	

[image: 2 ∗
pϕ (x) = |ϕ (x)| = ϕ (x)ϕ (x)
]
	(10.7)

is the probability density of finding the particle at position [image: x], i.e. the probability
of detecting the particle in the interval [image: [x1,x2]] is given by

 	

[image: ∫ x2 ∫ x2
𝒫 (x < x < x) = p (x)dx = ϕ∗(x)ϕ (x)dx.
 ϕ 1 2 x1 ϕ x1
]
	(10.8)

The normalization condition (10.2) reflects the conservation of probability

(independent of time, respected by the time dependent Schrödinger equation) and
the completeness (in this case the certainty that the particle will be observed
somewhere on the [image: x] axis).

 The classical observables [image: 𝒜(x, p)] of this quantum mechanical system are
functions of the position and the momentum and their quantum mechanical
versions are given by operators [image: ˆ
𝒜 (ˆx, ˆp)]. Their expectation values when the
system in a state [image: |ϕ ⟩] are given by

 	

[image: ∫
 ˆ ˆ +∞ ∗ ˆ
⟨𝒜 ⟩ϕ = ⟨ϕ|𝒜 |ϕ ⟩ = ϕ (x)𝒜 (ˆx,pˆ)ϕ (x)dx.
 −∞
]
	(10.9)

 From a numerical point of view, the eigenvalue problem (10.1) requires the
solution of an ordinary second order differential equation. There are certain
differences in this problem compared to the ones studied in previous sections:

 	Instead of an initial value problem (i.e. the values of the function and its
 derivative are given at one point), we have a boundary value problem
 (values of the function or its derivative given at two different points).

 	The eigenvalue (energy) is unknown and should be determined as part
 of the solution.

As an introduction to such classes of problems, we will present some simple methods
which are special to one dimension.

 For the numerical solution of the above equation we renormalize [image: x], the
function [image: ψ (x)] and the parameters so that we deal only with dimensionless
quantities. Equation (10.1) is rewritten as:

 	

[image: 2
d--ψ (x) + 2m-(E − V(x))ψ (x) = 0.
dx2 ℏ2
]
	(10.10)

Then we choose a length scale [image: L] which is defined by the parameters of the
problem2
and we redefine [image: ˜x = x ∕L]. We define [image: ψ˜(˜x) = ψ(x)] [image: ψ˜′(x˜) = dψ(x)∕d ˜x = Ld ψ(x)∕dx]
and we obtain

 	

[image: ′′ 2mL2
˜ψ (˜x) +--ℏ2--(E − V(˜xL))˜ψ(˜x) = 0.
]
	(10.11)

We define [image: v(˜x) = 2mL2V (x)∕ℏ2] [image: = 2mL2V (˜xL)∕ ℏ2], [image: 𝜖 = 2mL2E ∕ℏ2] and
change notation to [image: ˜x → x], [image: ψ˜→ ψ]. We obtain

 	

[image: ψ ′′(x) = − (𝜖 − v (x))ψ (x).
]
	(10.12)

The solutions of equation (10.1) can be obtained from those of equation (10.12) by using the
following “dictionary”3 :

 	

[image: 2 2
x → x-, E = --ℏ---𝜖, V (x) = --ℏ---v(x∕L).
 L 2mL2 2mL2
]
	(10.13)

The dimensionless momentum is defined as [image: ˜p = − i∂∕∂ ˜x] [image: = − iL∂∕ ∂x] and we
obtain

 	

[image: ˜p = L-p.
 ℏ
]
	(10.14)

The commutation relation [image: [x, p] = iℏ] becomes [image: [˜x, ˜p] = i]. The kinetic energy
[image: 2
T = -p--
 2m] is given by

 	

[image: 2 2 2
 -ℏ---- 2 --ℏ----∂--
T = 2mL2 p˜ = − 2mL2 ∂ ˜x2,
]
	(10.15)

and the Hamiltonian [image: H = T + V]

 	

[image: ℏ2 () ℏ2 (∂2)
H = ----2- ˜p2 + v(˜x) = -----2 − ---2 + v(˜x) .
 2mL 2mL ∂x˜
]
	(10.16)

In what follows, we will omit the tilde above the symbols and write [image: x] instead of
[image: ˜x].

[image: pict]

Figure 10.1: The potentials given by equations (10.17) , (10.26) and (10.27) .

 10.2 The Infinite Potential Well

The simplest model for studying the qualitative features of bound states is the
infinite potential well of width [image: L] where a particle is confined within the interval
[image: [− L∕2,L ∕2]]:

 	

[image: {
 0 |x | < 1
v(x) = + ∞ |x | ≥ 1
]
	(10.17)

The length scale chosen here is [image: L∕2] and the dimensionless variable [image: x]
corresponds to [image: x ∕(L∕2)] when [image: x] is measured in length units.

 The solution of (10.12) can be easily computed. Due to the symmetry

 	

[image: v(− x) = v(x),
]
	(10.18)

of the potential, the solutions have well defined parity. This property will be
crucial to the method used below. The method discussed in the next section can

also be used on non even potentials.

 The solutions are divided into two categories, one with even parity
[image: ψn (x) ≡ ψ(n+)(− x)] [image: = ψn(+)(x)] for [image: n = 1,3,5, 7,...] and one with odd parity
[image: ψ (x) ≡ − ψ(−)(− x)
 n n] [image: = ψ(−)(x)
 n] for [image: n = 2,4,6,8,...].

 	

[image: (
 { ψ (n+)(x) = cos(nπ2 x) |x| < 1 n = 1,3,5,7,...
ψn(x) = ψ (−)(x) = sin (nπx) |x| < 1 n = 2,4,6,8,...
 (n 2
]
	(10.19)

where

 	

[image: ()2
𝜖n = nπ- ,
 2
]
	(10.20)

and the normalization has been chosen so

that4
[image: ∫1 (ψn(x))2dx = 1
 −1].

 The solutions can be found by using the parity of the wave functions. We note
that for the positive parity solutions

 	

[image: ψ(+)(0) = A ψ(+)′(0) = 0,
 n n
]
	(10.21)

whereas for the negative parity solutions

 	

[image: ψ(n−)(0) = 0 ψ (n−)′(0) = A.
]
	(10.22)

The constant [image: A] depends on the normalization of the wave function. Therefore
we can set [image: A = 1] originally and then renormalize the wave function so

that equation (10.2) is satisfied. If the energy is known, the relations
(10.21) and (10.22) can be taken as initial conditions in relation (10.12) .
By using a Runge–Kutta algorithm we can evolve the solution towards
[image: x = ±1]. The problem is that the energy [image: 𝜖] is unknown. If the energy
is not allowed by the quantum theory we will find that the boundary
conditions

 	

[image: ψ(n±)(±1) = 0
]
	(10.23)

are violated. As we approach the correct value of the energy, we obtain
[image: (±)
ψ n (±1) → 0].

[image: pict] [image: pict]

Figure 10.2: Convergence of the solution [image: ψ (x)
 i] of (10.12) with the potential
(10.17) as a function of the number of iterations [image: i] in the program well.f90. Initially
energy = 2.0 and parity = 1. After 29 iterations the solution converges to the ground
state [image: ψ1(x) = cos(πx∕2)] with energy [image: 𝜖 = (π∕2)2] and with relative accuracy [image: ∼ 10−9].
The bottom plot shows the error as a function of the number of iterations in a
logarithmic scale. For [image: i ≡]iter = 1,2,3,5,10,12,20 we obtain energy = 2.4, 2.6,
2.4, 2.4625, 2.46875, 2.4673828125.

 Therefore we follow the steps described below:

 	We choose an initial value for the energy [image: 𝜖] that is lower than the
 one we are looking for. We can use estimates from known solutions
 of similar looking potential wells or simply start from a value slightly
 higher than the absolute minimum of the potential.

 	We choose the parity of the solution and we set initial conditions
 according to equations (10.21) and (10.22) .

 	We evolve the solutions using a 4th order Runge-Kutta method from
 5
 [image: x = 0] to [image: x = +1].

 	If equation (10.23) is not satisfied, we increase the energy by [image: δ𝜖] and
 we repeat.

 	We repeat until [image: (±)
ψ n (1)] changes sign. Then we lower the energy by
 [image: δ𝜖 = − δ𝜖∕2].

 	The process is ended when [image: |ψ(n±)(1)| < δ] for appropriately chosen
 small [image: δ].

 For the evolution of the solution from [image: x = 0] to [image: x = 1] we use the 4th order
Runge-Kutta method programmed in the file rk.f90 of chapter 4. We copy the
subroutine RKSTEP in a local file rk.f90. The integration of (10.12) can by done
by using the function [image: ϕ(x) ≡ ψ ′(x)]

[image: ′
ψ (x) = ϕ(x)
ϕ ′(x) = (v(x) − 𝜖)ψ (x), (10.24)
]

with the initial conditions

[image: ′
ψ(0) = 1 , ϕ (0) ≡ ψ (0) = 0 even parity
ψ(0) = 0 , ϕ (0) ≡ ψ′(0) = 1 odd parity. (10.25)
]

We use the notation [image: ψ(x) →] psi, [image: ϕ (x) →] psip. The functions f1 and f2
correspond to the right hand side of (10.24) . They are the derivatives of
[image: ψ (x)] and [image: ϕ (x)] respectively and f1=psip, f2=(V-energy)*psi. The
code of f1 and f2 is put in a different file so that we can easily reuse
the code for many different potentials [image: v(x)]. The file wellInfSq.f90
contains the necessary program for the potential of equation (10.17)
:

!===

!file: wellInfSq.f

!

!Functions used in RKSTEP routine. Here:

!f1 = psip(x) = psi(x)’

!f2 = psip(x)’= psi(x)’’

!

!All one has to set is V, the potential

!===

!-------- trivial function: derivative of psi

real(8) function f1(x,psi,psip)

 real(8) :: x,psi,psip

 f1=psip

end function f1

!===

!-------- the second derivative of wavefunction:

!psip(x)’ = psi(x)’’ = -(E-V) psi(x)

real(8) function f2(x,psi,psip)

 implicit none

 real(8) :: x,psi,psip,energy,V

 common /params/energy

!------- potential, set here:

 V = 0.0D0

!------- Schroedinger eq: RHS

 f2 = (V-energy)*psi

end function f2

!===

 We stress that the energy [image: 𝜖 =] energy is put in a common block so that it can
be accessed by the main program.

 The main program is in the file well.f90. The user enters the parameters
(energy, parity, Nx) and the loop

 do while (iter .lt. 10000)

 if(DABS(psinew) .le. epsilon) EXIT

 if(psinew*psiold .lt. 0.0D0) de = -0.5D0*de

 energy = energy + de

 enddo ! do while

 exits when [image: ψ (1) =]psinew has an absolute value which is less than epsilon, i.e.
when the condition (10.23) is satisfied to the desired accuracy. The value of the
energy increases up to the point where the sign of the wave function at [image: x = 1]
changes (psinew*psiold[image: < 0]). Then the value of the energy is overestimated
and we change the sign of the step de and reduce its magnitude by a half. The
algorithm described on page 1064 is implemented inside the loop. After exiting
the loop, the energy has been determined with the desired accuracy and the rest
of the program stores the solution in the array psifinal(STEPS). The results
are written to the file psi.dat. Note how the variable parity is used so
that both cases parity[image: = ±1] can be studied. The full program is listed
below:

!===

!file: well.f

!

!Computation of energy eigenvalues and eigenfunctions

!of a particle in an infinite well with V(-x)=V(x)

!

!Input: energy: initial guess for energy

! parity: desired parity of solution (+/- 1)

! Nx-1 : Number of RK4 steps from x=0 to x=1

!Output: energy: energy eigenvalue

! psi.dat: final psi(x)

! all.dat: all psi(x) for trial energies

!===

program even_potential_well

 implicit none

 integer,parameter :: P=10000

 real(8) :: energy,dx,x,epsilon,de

 common /params/energy

 integer :: parity,Nx,iter,i

 real(8) :: psi,psip,psinew,psiold

 real(8) :: psifinal(-P:P),xstep(-P:P)

!------ Input:

 print *,’Enter energy,parity,Nx:’

 read *, energy,parity,Nx

 if(Nx .gt. P) stop ’Nx > P’

 if(parity .gt. 0) then

 parity = 1

 else

 parity = -1

 endif

 print *,’# #######################################’

 print *,’# Estart= ’,energy,’ parity= ’,parity

 dx = 1.0D0/(Nx-1)

 epsilon = 1.0D-6

 print *,’# Nx= ’,Nx ,’ dx = ’,dx,’ eps= ’,epsilon

 print *,’# #######################################’

!----- Calculate:

 open(unit=11,file=’all.dat’)

 iter = 0

 psiold = 0.0D0 ! calculated values of psi at x=1

 psinew = 1.0D0

 de = 0.1D0*DABS(energy) ! original change in energy

 do while (iter .lt. 10000)

!---------- Initial conditions at x=0

 x = 0.0D0

 if(parity .eq. 1)then

 psi = 1.0D0

 psip = 0.0D0

 else

 psi = 0.0D0

 psip = 1.0D0

 endif

 write(11,*) iter,energy, x, psi,psip

! --------- Use Runge-Kutta to forward to x=1

 do i=2,Nx

 x = (i-2)*dx

 call RKSTEP(x,psi,psip,dx)

 write(11,*) iter,energy,x,psi,psip

 enddo ! do i=2,Nx

 psinew = psi

 print *,iter, energy, de,psinew

! --------- Stop if value of psi close to 0

 if(DABS(psinew) .le. epsilon) EXIT

! --------- Change direction of energy search:

 if(psinew*psiold .lt. 0.0D0) de = -0.5D0*de

 energy = energy + de

 psiold = psinew

 iter = iter + 1

 enddo ! do while

 close(11)

!We found the solution: calculate it once again and store it

 if(parity .eq. 1)then

 psi = 1.0D0

 psip = 0.0D0

 node = 0 ! count number of nodes of function

 else

 psi = 0.0D0

 psip = 1.0D0

 node = 1

 endif

 x = 0.0D0

 xstep (0) = x

 psifinal(0) = psi ! array that stores psi(x)

 psiold = 0.0D0

!------- Use Runge-Kutta to move to x=1

 do i=2,Nx

 x = (i-2)*dx

 call RKSTEP(x,psi,psip,dx)

 xstep (i-1) = x

 psifinal(i-1) = psi

! ------ Use parity to compute psi(-x)

 xstep (1-i) = -x

 psifinal(1-i) = parity*psi

!------- Print final solution:

 open(unit=11,file=’psi.dat’)

 print *,’Final result: E= ’,energy,’ n= ’,node,&

 ’ parity= ’,parity

 write(11,*)’# E= ’ ,energy,’ n= ’,node,&

 ’ parity= ’,parity

 do i=-(Nx-1),(Nx-1)

 write(11,*) xstep(i),psifinal(i)

 enddo

 close(11)

end program even_potential_well

 The compilation and running of the program can be done with the commands

> gfortran well.f90 wellInfSq.f90 rk.f90 -o well

> ./well

 Enter energy,parity,Nx:

2.0 1 400

 # #######################################

 # Estart= 2.0000000000000000 parity= 1

 # Nx= 400 dx = 2.50626566416E-003 eps= 9.9999999999E-007

 # #######################################

 0 2.0000000000000 0.200000000000 0.15594369476721

 1 2.2000000000000 0.200000000000 8.74448016806986E-2

..

 28 2.4674072265624 1.220703125000E-5 -1.95005436858826E-6

 29 2.4674011230468 -6.103515625000E-6 -7.24621589476086E-9

 Final result: E= 2.4674011230468746 parity= 1

 The energy is determined to be [image: 𝜖 =]2.467401123 which can be compared to the
exact value [image: 𝜖 = (π∕2)2 ≈] 2.467401100. The fractional error is [image: ∼ 10 −8]. The
convergence can be studied graphically in figure 10.2.

 The calculation of the excited states is done by changing the parity and by
choosing the initial energy slightly higher than the one determined in the previous
step6 .
The results are in table 10.1. The agreement with the exact result [image: 𝜖n = (n π∕2)2]
is excellent.

 	
	
	
	
	

	[image: n]	 [image: (nπ∕2)2] 	 Square 	 Triangular 	 Double Well

	
	
	
	
	

	 1 	2.467401100	2.467401123	 5.248626709 	15.294378662
	 2 	9.869604401	9.869604492	14.760107422	15.350024414

	 3 	 22.2066099 	 22.2066040 	 27.0690216 	 59.1908203
	 4 	 39.47841 	 39.47839 	 44.51092 	 59.96887

	 5 	 61.6850275 	 61.6850242 	 66.6384315 	 111.3247375
	 6 	 88.82643 	 88.82661 	 93.84588 	 126.37628

	 7 	 120.902653 	 120.902664 	 125.878830 	 150.745215

	 8 	 157.91367 	 157.91382 	 162.92569 	 194.07578

	 9 	 199.859489 	 199.859490 	 204.845026 	 235.017471

	 10 	 246.74011 	 246.74060 	 251.74813 	 275.67383

	 11 	 298.555533 	 298.555554 	 303.545814 	 331.428306

	 12 	 355.3057 	 355.3064 	 360.3107 	 388.7444

	
	
	
	
	

	

 Table 10.1: Energy eigenvalues for the square, triangular and double well potentials
(equations (10.17) , (10.26) with [image: v0 = 10] and equation (10.27) with [image: v0 = 100],
[image: a = 0.3]). The agreement of the results for the square potential with the exact ones is
excellent. For the other potentials, we note that as we move further from the bottom of
the well we obtain energy levels very close to those of the square well: The particle does
not feel the influence of the details at the bottom of the well. For the double well potential
we obtain [image: E1 ≈ E2] and [image: E3 ≈ E4] according to the analysis on page 1077.

 We close this section with two more examples. First, we study a potential well
with triangular shape at its bottom

 	

[image: ({ v |x | |x| < 1
 0
v(x) = (+ ∞ |x| > 1
]
	(10.26)

and then a double well potential with

 	

[image: (
 ||{ v0 |x| < a
 0 a < |x| < 1
v(x) = | + ∞ 1 < |x|
 |(
]
	(10.27)

where the parameters [image: v0,a] are positive numbers. A qualitative plot of these
functions is shown in figure 10.1.

 For the triangular potential we take [image: v = 10
 0], whereas for the double well
potential [image: v0 = 100] and [image: a = 0.3]. The code in wellInfSq.f90 is appropriately
modified and saved in the files wellInfTr.f90 and wellInfDbl.f90 respectively.

All we have to do is to change the line computing the value of the potential in the
function f2. For example the file wellInfTr.f90 contains the code

!------- potential, set here:

 V = 10.0D0*DABS(x)

 whereas the file wellInfDbl.f90 contains the code

!------- potential, set here:

 if(DABS(x) .le. 0.3D0)then

 V = 100.0D0

 else

 V = 0.0D0

 endif

 The analysis is performed in exactly the same way and the results are shown in
table 10.1. Note that, for large enough [image: n], the energy levels of all the potentials
that we studied above tend to have identical values. This happens because, when
the particle has energy much larger than [image: v0], the details of the potential at the
bottom do not influence its dynamical properties very much. For the triangular
potential, the energy levels have higher values than the corresponding ones of the
square potential. This happens because, on the average, the potential energy is
higher and the potential tends to confine the particle to a smaller region ([image: Δx] is
decreased, therefore [image: Δp] is increased). This can be seen in figure 10.3
where the wave functions of the particle in each of the two potentials are
compared.

 Similar observations can be made for the double well potential. Moreover, we
note the approximately degenerate energy levels, something which is expected for
potentials of this form. This can be understood in terms of the localized
states given by the wave functions [image: √ --
ψ+ (x) = (1 ∕ 2)(ψ1 (x) + ψ2(x))] and
[image: ψ (x) = (1∕√2-)(ψ (x) − ψ (x))
 − 1 2]. The first one represents a state where
the particle is localized in the left well and the second one in the right.
This is shown in figure 10.4. As [image: v0 → +∞] the two wells decouple and
the wave functions [image: ψ ±(x)] become equal to the energy eigenstate wave
functions of two particles in separate infinite square wells of width [image: 1 − a]
with energy eigenvalues [image: 𝜖 = 𝜖 = (π∕ (1 − a))2
 +,1 −,1]. The difference of [image: 𝜖
 1]
and [image: 𝜖2] from these two values is due to the finite [image: v0] (see problem 4).

[image: pict] [image: pict]

[image: pict] [image: pict]

[image: pict] [image: pict]

Figure 10.3: The wave functions of the energy eigenstates of the infinite square and
triangular well potentials for [image: n = 1,2,3,4,8,12] given by equations (10.17) and (10.26)
with [image: v0 = 10]. We observe the influence of the shape of the potential on the wave functions
with small [image: n], while for [image: n ≥ 8] the influence becomes weaker.

[image: pict] [image: pict]

[image: pict] [image: pict]

[image: pict] [image: pict]

Figure 10.4: The functions [image: √-
ψ ±(x) = (1∕ 2)(ψn(x)± ψn+1(x))] for [image: n = 1,3,5] for the
double well potential (equation (10.27) with [image: v0 = 100,a = 0.3]) are plotted using bold
red lines. We observe that the more degenerate the states, the stronger the localization of
the particle to the left or right well. The other plots are those of the energy eigenfunctions
for [image: n = 1,2,3,4,5,6].

 We will now discuss the limitations of this method. First, the method can be
used only on potential wells that are even, i.e. [image: v(x) = v(− x)]. We used this
assumption in equations (10.21) and (10.22) giving the initial conditions for
states of well defined parity. When the potential is even, the energy eigenstates
have definite parity. The other problem can be understood by solving problem 4:
When [image: v(0) ≫ 𝜖], the wave function is almost zero around [image: x = 0] and
the integration from [image: x = 0] to [image: x = 1] will be dominated by numerical
errors. The same is true when the particle has to go through high potential
barriers.

 This method can also we used on potential wells that are not infinite. In that
case we can add infinite walls at points that are far enough so that the wave
function is practically zero there. Then the influence of this artificial wall will be
negligible (see problem 3).

 10.3 Bound States

[image: PIC]

Figure 10.5: Integration of Schrödinger’s equation by the use of the algorithm of
section 10.3. The wave functions and their derivatives are given small trial values at
xmin and xmax which are in the classically forbidden regions of [image: x]. The point [image: xm]
is calculated from the equation [image: v(xm) = 𝜖]. The wave functions are evolved to [image: xm]
according to (10.24) and we obtain the solutions [image: ψ (+)(x)] and [image: ψ(−)(x)]. We renormalize
[image: ψ (−)(x)] so that [image: ψ(+)(x) = ψ(−)(x)
 m m] and we vary the energy until the derivatives
[image: (+)′ (−)′
ψ (xm) ≈ ψ (xm)].

 A serious problem with the method discussed in the previous section is that it
is numerically unstable. You should have already realized that if you tried to solve
problem 3. In that problem, when the walls are moved further than [image: |x | = 3], the
convergence of the algorithm becomes harder. You can understand this by
realizing that in the integration process the solution is evolved from the classically
allowed into the classically forbidden region so that an oscillating solution
changes into an exponentially damped one. But as [image: |x| → + ∞] there are two
solutions, one that is physically acceptable [image: ψ(x) ∼ e −k|x|] and one that is
diverging [image: +k|x|
ψ(x) ∼ e] which is not acceptable due to (10.2) . Therefore, in
order to achieve convergence to the physically acceptable solution, the
energy has to be finely tuned, especially when we integrate towards large
[image: |x|]. For this reason it is preferable to integrate from the exponentially
damped region towards the oscillating region. The idea is to start integrating
from these regions and try to match the solutions and their derivatives at
appropriately chosen matching points. The matching is achieved at a
point [image: xm] by trying to determine the value of the energy that sets the
ratio

 	

[image: (+)′ (+) (−)′ (−)
f(𝜖) = ψ----(xm)∕ψ----(xm-)-−-ψ----(xm-)∕ψ---(xm-)
 ψ (+)′(xm)∕ψ (+)(xm) + ψ(−)′(xm)∕ψ (−)(xm)
]
	(10.28)

equal to zero, within the attainable numerical accuracy. It is desirable to
choose a point [image: xm] within the classical region ([image: 𝜖 > v (x)]) and usually
we pick a turning point [image: 𝜖 = v(x)]. By renormalizing [image: ψ(±)(x)] we can
always set [image: (+) (−)
ψ (xm) = ψ (xm)], therefore [image: f(𝜖) ≪ 1] means that
[image: ψ (+)′(xm) ≈ ψ(−)′(xm)]. The denominator of (10.28) sets the scale of the desired

accuracy7
The idea is depicted in figure 10.5. The algorithm is the following:

 	Choose the integration interval [xmin,xmax].

 	Choose the initial conditions [image: ψ (−)(xmin)], [image: ψ(−)′(xmin)],
 [image: ψ(+)(xmax)], [image: ψ(+)′(xmax)]. This choice depends on the potential
 [image: v(x)]. Usually we take xmin and xmax deep enough in the classically
 forbidden region and choose the values [image: (−)
ψ (xmin)], [image: (+)
ψ (xmax)] to
 be zero or exponentially small (e.g. [image: ∼ e −k|x|], [image: k2 = v(x) − 𝜖]). The
 corresponding values of the derivatives [image: ψ (−)′(xmin)], [image: ψ(+)′(xmax)]
 are also taken to be small. The arbitrary normalization of [image: ψ(x)] allows
 these initial values to be chosen in a crude way. The relative sign of
 the derivatives at large [image: |x |] (determined e.g. by the parity of the wave
 function for even potentials) is also taken care by the renormalization
 of [image: ψ (−)(x)] when applying the matching condition. For an infinite well,
 the points xmin,xmax are the ones where the potential becomes infinite
 and [image: (−) (+)
ψ (xmin) = ψ (xmax) = 0].

 	Choose the initial value of the energy [image: 𝜖] and of the energy variation
 step [image: δ𝜖].

 	 Calculate xm from the initial value of the energy and the solution of
 [image: v(x) = 𝜖]. Choose the solution that is at the left most side8 .

 	Evolve the equations (10.24) from xmin to xm and obtain the solutions
 [image: ψ(−)(x)],[image: ψ (−)′(x)].

 	Evolve the equations (10.24) from xmax to xm and obtain the solutions
 [image: ψ(+)(x)],[image: ψ (+)′(x)].

 	Renormalize [image: (−) (−) ((+) (−))
ψ (x) → ψ (x) ψ (xm)∕ψ (xm)], so that
 [image: ψ(+)(xm) = ψ (−)(xm)].

 	Compute the ratio [image: f(𝜖)] of equation (10.28) .

 	If [image: |f(𝜖)| < δ] for appropriately chosen [image: δ > 0], the calculation ends.
 The result for the energy eigenvalue and eigenfunction is considered to
 be determined with adequate accuracy and we may proceed with the
 analysis of the results.

 	If [image: f(𝜖)] changes sign it means that we have crossed the energy
 eigenvalue. Reverse the direction of search by taking [image: δ𝜖 → − δ𝜖∕2].

 	Change the energy [image: 𝜖 → 𝜖 + δ𝜖] and repeat by going back to the fourth
 step.

When we exit the above loop, the current wave function is a good approximation to
the eigenfunction [image: ψ (x)
 n] corresponding to the eigenvalue [image: 𝜖
 n]. We normalize the
wave function according to equation (10.2) and we calculate the expectation
values according to (10.9) . It is also interesting to determine the number of
nodes9
[image: n0] of the wave function which is related to [image: n] by [image: n = n0 + 1].

 Our program needs to implement the Runge–Kutta algorithm. We use the
routine RKSTEP (see page 539) which performs a 4th order Runge–Kutta step. Its
code is copied to the file rk.f90.

 The potential [image: v(x)] is coded in the function V(x). The boundary conditions
are programmed in the subroutine boundary(xmin, xmax, psixmin, psipxmin,
psixmax, psipxmax) which returns the values of psixmin = [image: (−)
ψ (xmin)],
psipxmin = [image: (−)′
ψ (xmin)], psixmax = [image: (+)
ψ (xmax)], psipxmax = [image: (−)′
ψ (xmax)]
to the calling program. These routines are put in a separate file for each
potential that we want to study. The name of the file is related to the form
of the potential, e.g. we choose schInfSq.f90 for the infinite potential
well of (10.17) . The same file contains the code for the functions f1,
f2:

!===

!file: schInfSq.f

!

!Functions used in RKSTEP routine. Here:

!f1 = psip(x) = psi(x)’

!f2 = psip(x)’= psi(x)’’

!

!One has to set:

! 1. V(x), the potential

! 2. The boundary conditions for psi,psip at x=xmin and x=xmax

!

!===

!----- potential:

real(8) function V(x)

 implicit none

 real(8) :: x

 V = 0.0D0

end function V

!----- boundary conditions:

subroutine &

 boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)

 implicit none

 real(8) :: xmin,xmax,psixmin,psipxmin,psixmax,psipxmax,V

!for infinite square well we set psi=0 at boundary

!and psip=+/-1

 psixmin = 0.0D0

 psipxmin = 1.0D0

 psixmax = 0.0D0

 psipxmax = -1.0D0

!----- Initial values at xmin and xmax

end subroutine boundary

!===

!===

!----- trivial function: derivative of psi

real(8) function f1(x,psi,psip)

 real(8) :: x,psi,psip

 f1=psip

end function f1

!===

!----- the second derivative of wavefunction:

!psip(x)’ = psi(x)’’ = -(E-V) psi(x)

real(8) function f2(x,psi,psip)

 implicit none

 real(8) :: x,psi,psip,energy,V

 common /params/energy

!----- Schroedinger eq: RHS

 f2 = (V(x)-energy)*psi

end function f2

!===

 We note that if the potential becomes infinite for [image: x <] xmin and/or [image: x >]xmax,
then this will be determined by the boundary conditions at xmin and/or
xmax.

 The main program is in the file sch.f90. The code is listed below and it
includes the function integrate(psi, dx, Nx) used for the normalization of the
wave function. It performs a numerical integration of the square of a function
whose values psi(i) i=1,...,Nx are given at an odd number of Nx equally
spaced points by a distance dx using Simpson’s rule.

!===

!

! File: sch.f90

!

! Integrate 1d Schrodinger equation from xmin to xmax.

! Determine energy eigenvalue and eigenfunction by matching

! evolving solutions from xmin and from xmax at a point xm.

! Matching done by equating values of functions and their

! derivatives at xm. The point xm chosen at the left most

! turning point of the potential at any given value of the

! energy. The potential and boundary conditions chosen in

! different file.

! --

! Input: energy: Trial value of energy

! de: energy step, if matching fails de -> e+de, if

! logderivative changes sign de -> -de/2

! xmin, xmax, Nx

! --

! Output: Final value of energy, number of nodes of

! wavefunction in stdout

! Final eigenfunction in file psi.dat

! All trial functions and energies in file all.dat

!===

program schroedinger_equation_1D

 implicit none

 integer,parameter :: P=20001

 integer :: Nx,NxL,NxR

 real(8) :: psi(P),psip(P)

 real(8) :: dx

 real(8) :: xmin,xmax,xm !left/right/matching points

 real(8) :: psixmin,psipxmin,psixmax,psipxmax

 real(8) :: psileft ,psiright ,psistep,psinorm

 real(8) :: psipleft,psipright,psipstep

 real(8) :: energy,de,epsilon,integrate

 common/params/energy

 real(8) :: matchlogd,matchold,psiold,norm,x

 integer :: iter,i,imatch,nodes

 real(8) :: V

!---------- Input:

 print *,’# Enter energy,de,xmin,xmax,Nx’

 read *,energy,de,xmin,xmax,Nx

!--- need even intervals for normalization integration

 if(mod(Nx,2).eq.0)Nx=Nx+1

 if(Nx .gt. P) stop ’Fatal Error: Nx>P’

 if(xmin .ge. xmax) stop ’Error: xmin >= xmax’

 dx = (xmax - xmin)/(Nx-1)

 epsilon = 1.0D-6

 call boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)

 print *,’# #######################################’

 print *,’# Estart= ’,energy, ’ de= ’,de

 print *,’# Nx= ’,Nx ,’ eps= ’,epsilon

 print *,’# xmin= ’,xmin,’ xmax= ’,xmax, ’ dx= ’,dx

 print *,’# psi(xmin)= ’,psixmin,’ psip(xmin)= ’,psipxmin

 print *,’# psi(xmax)= ’,psixmax,’ psip(xmax)= ’,psipxmax

 print *,’# #######################################’

!----- Calculate:

 open(unit=11,file=’all.dat’)

 matchold = 0.0d0

 do iter=1,10000

!----- Determine matching point at turning point from the left:

 imatch = -1

 do i=1,Nx

 x = xmin + (i-1)*dx

 if(imatch .lt. 0 .and. (energy-V(x)) .gt. 0.0D0) imatch = i

 enddo

 if(imatch .le. 100 .or. imatch .ge. Nx-100) imatch = Nx/5

 xm = xmin + (imatch-1)*dx

 NxL = imatch

 NxR = Nx-imatch+1

!----- Evolve wavefunction from the left:

 psi (1) = psixmin

 psip (1) = psipxmin

 psistep = psixmin

 psipstep = psipxmin

 do i=2,NxL

 x = xmin + (i-2)*dx !this is x before the step

 call RKSTEP(x,psistep,psipstep, dx)

 psi (i) = psistep

 psip(i) = psipstep

 enddo

! use this to normalize eigenfunction to match at xm

 psinorm = psistep

 psipleft = psipstep

!----- Evolve wavefunction from the right:

 psi (Nx) = psixmax

 psip(Nx) = psipxmax

 psistep = psixmax

 psipstep = psipxmax

 do i=2,NxR

 x = xmax - (i-2)*dx

 call RKSTEP(x,psistep,psipstep,-dx)

 psi (Nx-i+1) = psistep

 psip(Nx-i+1) = psipstep

 enddo

 psinorm = psistep/psinorm

 psipright = psipstep

!----- Renormalize psil so that psil(xm)=psir(xm)

 do i=1,NxL-1

 psi (i) = psinorm * psi (i)

 psip(i) = psinorm * psip(i)

 enddo

 psipleft = psinorm * psipleft

!----- print current solution:

 do i=1,Nx

 x = xmin + (i-1)*dx

 write(11,*)iter,energy,x,psi(i),psip(i)

 enddo

!----- matching using derivatives:

!Careful: this can fail if psi’(xm) = 0 !! (use also |de|<1e-6

!criterion)

 matchlogd = &

 (psipright-psipleft)/(DABS(psipright)+DABS(psipleft))

 print *,’# iter,energy,de,xm,logd: ’,&

 iter,energy,de,xm,matchlogd

!----- Exit condition:

 if(DABS(matchlogd).le.epsilon.or.DABS(de/energy).lt.1.0D-12)&

 EXIT

 if(matchlogd * matchold .lt. 0.0D0) de = -0.5D0*de

 energy = energy + de

 matchold = matchlogd

 enddo ! do iter=1,10000

 close(11)

!---

!----- Solution has been found and now it is stored:

 norm = integrate(psi,dx,Nx)

 norm = 1.0D0/sqrt(norm)

 do i=1,Nx

 psi(i) = norm*psi(i)

 enddo

!----- Cound number of zeroes, add one and get energy level:

 nodes = 1

 psiold = psi(1)

 do i=2,Nx-1

 !should be 0 within epsilon

 if(DABS(psi(i)) .gt.epsilon)then

 if(psiold*psi(i).lt.0.0D0)nodes = nodes+1

 psiold = psi(i)

 endif

 enddo !i=2,Nx-1

!------- Print final solution:

 open(unit=11,file=’psi.dat’)

 print *,’Final result: E= ’,energy,’ n= ’,nodes,&

 ’ norm = ’ ,norm

 if(DABS(matchlogd) .gt. epsilon) print *&

 ,’Final result: SOS: logd>epsilon. logd= ’,matchlogd

 write(11,*)’# E= ’ ,energy,’ n= ’,nodes,&

 ’ norm = ’ ,norm

 do i=1,Nx

 x = xmin + (i-1)*dx

 write(11,*) x,psi(i)

 enddo

 close(11)

end program schroedinger_equation_1D

!===

!Simpson’s rule to integrate psi(x)*psi(x) for proper

!normalization. For n intervals of width dx (n even)

!Simpson’s rule is:

!int(f(x)dx) =

! (dx/3)*(f(x_0)+4 f(x_1)+2 f(x_2)+...+4 f(x_{n-1})+f(x_n))

!

!Input: Discrete values of function psi(Nx)

! Integration step dx

!Returns: Integral(psi(x)psi(x) dx)

!===

real(8) function integrate(psi,dx,Nx)

 implicit none

 integer :: Nx

!------------- Note: we need P due to geometry of array

 real(8) :: psi(Nx),dx

!-------------

 real(8) :: int

 integer :: i

!----- zeroth order point:

 i = 1

 int = psi(i)*psi(i)

!----- odd order points (i=k+1 is even):

 do i=2,Nx-1,2

 int = int + 4.0D0*psi(i)*psi(i)

 enddo

!----- even order points:

 do i=3,Nx-2,2

 int = int + 2.0D0*psi(i)*psi(i)

 enddo

!----- last point:

 i = Nx

 int = int + psi(i)*psi(i)

!----- measure normalization:

 int = int*dx/3.0D0

!----- final result:

 integrate = int

end function integrate

!===

 The reproduction of the results of the previous section for the infinite potential
well is left as an exercise. The compilation and running of the program can be
done with the commands:

> gfortran sch.f90 schInfSq.f90 rk.f90 -o s

> ./s

 # Enter energy,de,xmin,xmax,Nx

1 0.5 -1 1 2000

 # #######################################

 # Estart= 1.000 de= 0.5

 # Nx= 2001 eps= 1.0E-006

 # xmin= -1.000 xmax= 1.000 dx= 1.000E-003

 # psi(xmin)= 0.000 psip(xmin)= 1.000

 # psi(xmax)= 0.000 psip(xmax)= -1.000

 # #######################################

 # iter,energy,de,xm,logd: 1 1.0000 0.500 -0.601 -0.9748

 # iter,energy,de,xm,logd: 2 1.5000 0.500 -0.601 -0.6412

.....

 # iter,energy,de,xm,logd: 30 2.4674 -3.815E-6 -0.601 -1.0E-6

 # iter,energy,de,xm,logd: 31 2.4674 1.907E-6 -0.601 2.7E-7

 Final result: E= 2.467401504516602 n= 1 norm = 1.5707965025

 We set xmin= -1, xmax = 1, Nx= 2000 and [image: 𝜖 = 1], [image: δ𝜖 = 0.5]. The energy of
the ground state is found to be [image: 𝜖1 = 2.4674015045166016]. The wave
function is stored in the file psi.dat and can be plotted with the gnuplot
command

gnuplot> plot "psi.dat" using 1:2 with lines

[image: pict]

Figure 10.6: The convergence of the solutions to the solution of Schrödinger’s equation
for the ground state of the infinite potential well according to the discussion on page 1100.

 The functions computed during the iterations of the algorithm are stored in
the file all.dat. The first column is the iteration number (here we have iter =
0, ... 31) and we can easily filter each one of them with the commands

gnuplot> plot "<awk ’$1==1’ all.dat" using 3:4 w l t "iter=1"

gnuplot> replot "<awk ’$1==2’ all.dat" using 3:4 w l t "iter=2"

gnuplot> replot "<awk ’$1==3’ all.dat" using 3:4 w l t "iter=3"

gnuplot> replot "<awk ’$1==4’ all.dat" using 3:4 w l t "iter=4"

.....

 which reproduce figure 10.6.

 10.4 Measurements

The action of an operator [image: 𝒜ˆ(ˆx, ˆp)] on a state [image: |ψ ⟩] can be easily calculated in the
position representation by its action on the corresponding wave function [image: ψ(x)].
The action of the operators

 	

[image: ∂
ˆxψ (x) = xψ (x) ˆpψ (x) = − i--ψ (x)
 ∂x
]
	(10.29)

yield10

 	

[image: 𝒜ˆ(ˆx,pˆ)ψ (x) = 𝒜 (x,− i ∂-)ψ (x).
 ∂x
]
	(10.30)

Using equation (10.9) we can calculate the expectation value [image: ⟨𝒜 ⟩] of the
operator [image: 𝒜] when the system is at the state [image: |ψ ⟩]. Interesting examples are the
observables “position” [image: x], “position squared” [image: x2], “momentum” [image: p], “momentum
squared” [image: p2], “kinetic energy” [image: T], “potential energy” [image: V], “energy” or
“Hamiltonian” [image: H = T + V] whose expectation values are given by the relations

[image: ∫ +∞
 ⟨x⟩ = ψ ∗(x)xψ (x)dx
 −∞
 ∫ +∞
⟨x2⟩ = ψ ∗(x)x2ψ (x)dx
 ∫−∞ ()
 +∞ ∗ ∂--
 ⟨p⟩ = ψ (x) − i∂x ψ(x)dx
 ∫−∞+∞ ()
 2 ∗ -∂2-
 ⟨p ⟩ = −∞ ψ (x) − ∂x2 ψ(x)dx
 2 ∫ + ∞ (2)
 ⟨T⟩ = --ℏ--- ψ∗(x) − -∂-- ψ (x)dx
 2mL2 − ∞ ∂x2
 2 ∫ + ∞
 ⟨V⟩ = --ℏ--- ψ∗(x)v(x)ψ (x)dx
 2mL2 − ∞
 ℏ2 ∫ + ∞ (∂2)
⟨H ⟩ = -----2 ψ∗(x) − ---2 + v(x) ψ (x)dx. (10.31)
 2mL − ∞ ∂x
]

We remind the reader that we used the dimensionless [image: x,p] as well as
equations (10.15) and (10.16) . Especially interesting are the “uncertainties”
[image: 2 2 2
Δx = ⟨x ⟩ − ⟨x⟩], [image: 2 2 2
Δp = ⟨p ⟩ − ⟨p⟩] that satisfy the inequality (“Heisenberg’s
uncertainty relation”)
 	

[image: 1-
Δx ⋅ Δp ≥ 2.
]
	(10.32)

In the previous section we described how to calculate numerically the
eigenfunctions of the Hamiltonian. If [image: Hˆψ (x) = E ψ(x)], we obtain that
[image: ⟨H ⟩ = (1∕2mL2)𝜖]. Other operators need a numerical approximation
for the calculation of their expectation values. If the values of the wave
function are given at [image: N] equally spaced points [image: x1,x2,...,xN], then we

obtain

 	

[image: ∂-ψ(xi) ≈ ψ-(xi+1) −-ψ-(xi−1)
 ∂x 2h
]
	(10.33)

where [image: h = xi+1 − xi] and

 	

[image: ∂2ψ-(xi) ψ(xi+1)-−-2ψ-(xi)-+-ψ-(xi−-1)-
 ∂x2 ≈ h2 .
]
	(10.34)

Both equations entail an error of the order of [image: 𝒪 (h2)]. Special care should be taken at
the endpoints of the interval [image: [x ,x]
 1 N]. As a first approach we will use the naive
approximations11

[image: ∂-ψ(x1) ≈ ψ-(x2) −-ψ-(x1)
 ∂x h
∂ψ-(xN-)- ψ-(xN)-−-ψ-(xN−1)-
 ∂x ≈ h (10.35)
]

and

[image: ∂2ψ(x1) ψ (x3) − 2ψ(x2) + ψ(x1)
 ----2--- ≈ ------------2-----------
 2 ∂x h
∂-ψ-(xN)- ψ-(xN-) −-2ψ-(xN−-1) +-ψ-(xN−-2)
 ∂x2 ≈ h2 . (10.36)
]

The relevant program that calculates [image: ⟨x⟩], [image: ⟨x2⟩], [image: ⟨p⟩], [image: ⟨p2⟩], [image: Δx], [image: Δp] can be
found in the file observables.f90 and is listed below:

!===

!

! File observables.f90

! Compile: gfortran observables.f90 -o o

! Usage: ./o <psi.dat>

!

! Read in a file with a wavefunction in the format of psi.dat:

! # E= <energy>

! x1 psi(x1)

! x2 psi(x2)

!

!

! Outputs expectation values:

! normalization Energy <x> <p> <x^2> <p^2> Dx Dp DxDp

! where Dx = sqrt(<x^2>-<x>^2) Dp = sqrt(<p^2>-<p>^2)

! DxDp = Dx * Dp

!

!===

program observables_expectation

 implicit none

 integer,parameter :: P=50000

 integer Nx,i

 real(8) :: xstep(P),psi(P),obs(P)

 real(8) :: xav, pav, x2av, p2av, Dx, Dp, DxDp,energy,h,norm

 real(8) :: integrate

 character(20) :: psifile,scratch

!the first argument of the command line must be the path

!to the file with the wavefunction. (GNU fortran extension...)

 if(iargc() .ne. 1) stop ’Usage: o <filename>’

 call getarg(1,psifile)

!If the file does not exist, we go to label 100 (stop):

 open(unit=11,file=psifile,status=’OLD’,err=100)

 print *,"# reading wavefunction from file:", psifile

!we read the first comment line from the file:

 read(11,*) scratch,scratch,energy

!---

!Input data: psi(x)

 Nx = 1

 do while(.TRUE.)

 if(Nx .ge. P) stop ’Too many points’

 read(11,*,end=101) xstep(Nx),psi(Nx)

 Nx = Nx+1

 enddo !do while(.TRUE.)

101 continue

 Nx = Nx - 1

 if(mod(Nx,2) .eq. 0) Nx = Nx - 1

 h = (xstep(Nx)-xstep(1))/(Nx-1)

!---

!Calculate:

!---------- norm:

 do i=1,Nx

 obs(i) = psi(i)*psi(i)

 enddo

 norm = integrate(obs,h,Nx)

!---------- <x> :

 do i=1,Nx

 obs(i) = xstep(i)*psi(i)*psi(i)

 enddo

 xav = integrate(obs,h,Nx)/norm

!---------- <p>/i :

 obs(1) = psi(1)*(psi(2)-psi(1))/h

 do i=2,Nx-1

 obs(i) = psi(i)*(psi(i+1)-psi(i-1))/(2.0D0*h)

 enddo

 obs(Nx) = psi(Nx)*(psi(Nx)-psi(Nx-1))/h

 pav = -integrate(obs,h,Nx)/norm

!--------- <x^2>

 do i=1,Nx

 obs(i) = xstep(i)*xstep(i)*psi(i)*psi(i)

 enddo

 x2av = integrate(obs,h,Nx)/norm

!-------- <p^2>

 obs(1) = psi(1)*(psi(3)-2.0D0*psi(2)+psi(1))/(h*h)

 do i=2,Nx-1

 obs(i) = psi(i)*(psi(i+1)-2.0D0*psi(i)+psi(i-1))/(h*h)

 enddo

 obs(Nx) = psi(Nx)*&

 (psi(Nx)-2.0D0*psi(Nx-1)+psi(Nx-2))/(h*h)

 p2av = -integrate(obs,h,Nx)/norm

!-------- Dx

 Dx = sqrt(x2av - xav*xav)

!-------- Dp

 Dp = sqrt(p2av - pav*pav)

!-------- Dx . Dp

 DxDp = Dx*Dp

!print results:

 print *,’# norm E <x> <p>/i <x^2> <p^2> Dx Dp DxDp’

 print ’(10G25.17)’,norm,energy,xav,pav,x2av,p2av,Dx,Dp,DxDp

 stop !normal execution ends here. Error messages follow

100 stop ’Cannot open file’

end program observables_expectation

!===

!

!Simpson’s rule to integrate psi(x).

!For n intervals of width dx (n even)

!Simpson’s rule is:

!int(f(x)dx) =

! (dx/3)*(f(x_0)+4 f(x_1)+2 f(x_2)+...+4 f(x_{n-1})+f(x_n))

!

!Input: Discrete values of function psi(Nx)

! Integration step dx

!Returns: Integral(psi(x)psi(x) dx)

!===

real(8) function integrate(psi,dx,Nx)

 implicit none

 integer :: Nx

 real(8) :: psi(Nx),dx

 real(8) :: int

 integer i

!----- zeroth order point:

 i = 1

 int = psi(i)

!----- odd order points (i=k+1 is even):

 do i=2,Nx-1,2

 int = int + 4.0D0*psi(i)

 enddo

!----- even order points:

 do i=3,Nx-2,2

 int = int + 2.0D0*psi(i)

 enddo

!----- last point:

 i = Nx

 int = int + psi(i)

!----- measure normalization:

 int = int*dx/3.0D0

!----- final result:

 integrate = int

end function integrate

!===

 The program needs to read in the wave function at the points [image: x1,...,xNx] in the
format produced by the program in sch.f90. The first line should have the energy
written at the 3rd column, whereas from the 2nd line and on there should be two
columns with the [image: (xi,ψ(xi))] pairs. It is not necessary to have the wave
function properly normalized, the program will take care of it. If this data is
stored in a file psi.dat, then the program can be used by running the
commands

> gfortran observables.f90 -o obs

> ./obs psi.dat

 The program prints the normalization constant of [image: ψ(x)], the value of the
energy12 ,
[image: ⟨x⟩], [image: ⟨x2⟩], [image: ⟨p⟩∕i], [image: ⟨p2⟩], [image: Δx], [image: Δp] and [image: Δx ⋅ Δp] to the stdout.

 Some details about the program: In order to read in the data from the file
psi.dat we use the functions iargc(), getarg(n,string). The former
returns the number of arguments of the command line and the latter
stores the n-th argument to the CHARACTER variable string. Therefore, the
statements

 character(20) :: psifile,scratch

 if(iargc() .ne. 1) stop ’Usage: o <filename>’

 call getarg(1,psifile)

 stop the program if the command line does not have exactly one argument and
store the first argument to the variable file.

 The command

 open(unit=11,file=psifile,status=’OLD’,err=100)

100 stop ’Cannot open file’

 opens a file which should already exist (status=’OLD’), otherwise an
error message is issued. The option err=100 transfers the control of the
program to the statement labeled ’100’. In the example shown above, the
program stops and prints an error message ’Cannot open filename’ to the
stdout.

 The commands

 Nx = 1

 do while(.TRUE.)

 read(11,*,end=101) xstep(Nx),psi(Nx)

 Nx = Nx+1

 enddo !do while(.TRUE.)

101 continue

 read the opened file line by line. The option end=101 at the statement
read(11,*,end=101) transfers the control of the program to the labeled
statement with label 101 (i.e. outside the do loop) when we reach the end of
file.

 The rest of the commands are applications of equations (10.33) , (10.34) ,
(10.35) and (10.36) to the formulas (10.31) and the reader is asked to study
them carefully. The program uses the function integrate in order to perform the
necessary integrals.

 10.5 The Anharmonic Oscillator - Again...

In the previous chapter 9 we studied the quantum mechanical harmonic and
anharmonic oscillator in the representation of the energy eigenstates of the
harmonic oscillator [image: |n ⟩]. In this section we will revisit the problem by using the
position representation. We will calculate the eigenfunctions [image: ψn,λ(x)] that
diagonalize the Hamiltonian (9.15) , which are the solutions of the Schrödinger
equation. By setting [image: ∘ ------
L = ℏ∕m ω] in equation (10.13) , equation (10.12)
becomes

 	

[image: ′′
ψ (x) = − (𝜖 − v(x))ψ (x),
]
	(10.37)

where [image: v(x) = x2 + 2λx4]. For [image: λ = 0] we obtain the harmonic oscillator with

 	

[image: ()
ψn(x) = ∘---1-√---e−x2∕2Hn (x),𝜖n = 2 n + 1- ,
 2nn! π 2
]
	(10.38)

where [image: Hn (x)] are the Hermite polynomials.

 We start with the simple harmonic oscillator where the exact solution is
known. The potential and the initial conditions are programmed in the file
schHOC.f90. The changes that we need to make concern the functions V(x),
boundary(xmin, xmax, psixmin, psipxmin, psixmax, psipxmax):

!===

!file: schHOC.f

!..............

!----- potential:

real(8) function V(x)

 implicit none

 real(8) :: x

 V = x*x

end function V

!----- boundary conditions:

subroutine &

 boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)

 implicit none

 real(8) :: xmin,xmax,psixmin,psipxmin,psixmax,psipxmax,V

 psixmin = exp(-0.5D0*xmin*xmin)

 psipxmin = -xmin*psixmin

 psixmax = exp(-0.5D0*xmax*xmax)

 psipxmax = -xmax*psixmax

end subroutine boundary

!===

.................

 The code omitted at the dots is identical to the one discussed in the previous section.
The initial conditions are inspired by the asymptotic behavior of the solutions to
Schrödinger’s13
equation [image: ψ (x) ∼ e−x2∕2
 0], [image: ψ ′(x) ∼ − xψ (x)
 n n]. You are encouraged to test the
influence of other choices on the results.

[image: pict] [image: pict]

[image: pict] [image: pict]

Figure 10.7: The eigenfunctions [image: ψ0(x)], [image: ψ9(x)] calculated by the program in sch.f90,
schHOC.f90. The plot to the right shows the difference of the results from the known
values (10.38) .

 The results are depicted in figure 10.7 where, besides the qualitative
agreement, their difference from the known values (10.38) is also shown. This
difference turns out to be of the order of [image: 10 −11]–[image: 10− 7]. The values of the energy
[image: 𝜖
 n] for [image: n ≤ 14] are in agreement with (10.38) with relative accuracy better than
[image: − 9
10].

 Then we calculate the expectation values [image: ⟨x ⟩], [image: 2
⟨x ⟩], [image: ⟨p⟩], [image: 2
⟨p ⟩], [image: Δx] and
[image: Δp]. These are easily calculated using equations (9.4) and (9.8) . We
see that [image: √--
⟨x⟩ = ⟨n|(a† + a)∕ 2 |n ⟩ = 0], [image: √ --
⟨p⟩ = ⟨n |i(a† − a)∕ 2|n ⟩ = 0],
whereas

 	

[image: ()
⟨x2 ⟩ = ⟨p2⟩ = ⟨n |1-(a†a + aa†)|n ⟩ = n + 1- .
 2 2
]
	(10.39)

The program observables.f90 calculates [image: ⟨x⟩ = 0] with accuracy [image: − 6
∼ 10] and
[image: ⟨p⟩ = 0] with accuracy [image: ∼ 10−11]. The expectation values [image: ⟨x2⟩], [image: ⟨p2⟩] are shown
in table 10.2.

 	
	
	
	

	[image: n]	 [image: ⟨x2⟩]
 	 [image: ⟨p2⟩]
 	 [image: Δx ⋅ Δp]

	
	
	
	

	 0	 0.500000000	 0.4999977	 0.4999989
	 1	 1.500000284	 1.4999883	 1.4999943

	 2	 2.499999747	 2.4999711	 2.4999854
	 3	 3.499999676	 3.4999441	 3.4999719

	 4	 4.499999607	 4.4999082	 4.4999539
	 5	 5.499999520	 5.4998633	 5.4999314

	 6	 6.499999060	 6.4998098	 6.4999044

	 7	 7.499999642	 7.4995484	 7.4997740

	 8	 8.499999715	 8.4994203	 8.4997100

	 9	 9.499999837	 9.4992762	 9.4996380

	 10	10.500000012	10.4991160	10.4995580

	 11	11.499999542	11.4994042	11.4997019

	 12	12.499999610	12.4992961	12.4996479

	 13	13.499999705	13.4991791	13.4995894

	 14	14.499999835	14.4990529	14.4995264

	
	
	
	

	

 Table 10.2: The expectation values [image: ⟨x2⟩], [image: ⟨p2⟩] and the product [image: Δx ⋅Δp] for the
simple harmonic oscillator for the states [image: |n⟩], [image: n = 0,...,14].

 Next, the calculation is repeated for the anharmonic oscillator for
[image: λ = 0.5,2.0]. We copy the file schHOC.f90 to schUOC.f90 and change the
potential in the function V(x):

!===

!file: schUOC.f

!...................

!----- potential:

real(8) function V(x)

 implicit none

 real(8) :: x, lambda

 lambda = 2.0D0

 V = x*x+2.0D0*lambda*x*x*x*x

end function V

....................

[image: pict] [image: pict] [image: pict] [image: pict] [image: pict] [image: pict]

Figure 10.8: The wave functions of the anharmonic oscillator [image: ψ (x)
 n,λ] for
[image: n = 0,1,2,3,4,5] and [image: λ = 0.5,2.0] compared to the respective ones of the simple
harmonic oscillator. Increasing [image: λ] yields stronger confinement of the particle in space.

 	
	
	
	

	[image: n]	 [image: 𝜖n]
 	[image: 𝜖n,λ=0.5]
	[image: 𝜖n,λ=2.0]

	
	
	
	

	 0	 1.0000	 1.3924	 1.9031
	 1	 3.0000	 4.6488	 6.5857

	 2	 5.0000	 8.6550	 12.6078
	 3	 7.0000	 13.1568	 19.4546

	 4	 9.0000	 18.0576	 26.9626

	 5	11.0000	 23.2974	 35.0283

	 6	13.0000	 28.8353	 43.5819

	 7	15.0000	 34.6408	 52.5723

	 8	17.0000	 40.6904	 61.9598

	 9	19.0000	 46.9650	 71.7129

	
	
	
	

	

 Table 10.3: The values of the energy [image: 𝜖n] for the harmonic and anharmonic oscillator for
[image: λ = 0.5,2.0]. The values of the corresponding energy levels are increased with increasing
[image: λ].

 	
	
	
	
	
	
	

	 	 [image: λ = 0.5]
 	 [image: λ = 2.0]

	
	
	
	
	
	
	

	[image: n]	[image: 2
⟨x ⟩]
	 [image: 2
⟨p ⟩]
 	[image: Δx ⋅ Δp]
	[image: 2
⟨x ⟩]
	 [image: 2
⟨p ⟩]
 	[image: Δx ⋅ Δp]

	
	
	
	
	
	
	

	 0	0.3058	 0.8263	 0.5027	0.2122	 1.1980	 0.5042
	 1	0.8013	 2.8321	 1.5064	0.5408	 4.2102	 1.5089

	 2	1.1554	 5.3848	 2.4944	0.7612	 8.1513	 2.4909
	 3	1.4675	 8.2819	 3.4862	0.9582	12.6501	 3.4816

	 4	1.7509	11.4545	 4.4784	1.1370	17.5955	 4.4728

	 5	2.0141	14.8599	 5.4707	1.3029	22.9169	 5.4643

	 6	2.2617	18.4691	 6.4631	1.4590	28.5668	 6.4560

	 7	2.4970	22.2607	 7.4555	1.6074	34.5103	 7.4478

	 8	2.7220	26.2184	 8.4478	1.7492	40.7206	 8.4397

	 9	2.9384	30.3289	 9.4402	1.8856	47.1762	 9.4316

	
	
	
	
	
	
	

	

 Table 10.4: The expectation values [image: ⟨x2⟩], [image: ⟨p2⟩] and the product [image: Δx ⋅Δp] for
the anharmonic oscillator for the states [image: |n⟩], [image: n = 0,...,9]. Note the decrease of
[image: ∘ ----
Δx = ⟨x2⟩] and the increase of [image: ∘ ----
Δp = ⟨p2⟩] with increasing [image: λ]. The uncertainty
product [image: Δx ⋅Δp] seems to take values close to the corresponding ones of the harmonic
oscillator for both values of [image: λ]. Compare the results in this table with the ones in table
9.1.

 The wave functions are plotted in figure 10.8. We see that by increasing [image: λ] the
particle becomes more confined in space as expected. In table 10.3 we list the
values of the energy [image: 𝜖
 n] for [image: n = 0,...,9]. By increasing [image: λ], [image: 𝜖 (λ)
 n] is increased.
Table 10.4 lists the expectation values [image: 2
⟨x ⟩], [image: 2
⟨p ⟩] and [image: Δx ⋅ Δp] for the
anharmonic oscillator for the states [image: |n ⟩], [image: n = 0,...,9]. By increasing [image: λ],
[image: ∘ ----
Δx = ⟨x2⟩] is decreased and [image: ∘ ----
Δp = ⟨p2⟩] is increased. The product of the
uncertainties [image: Δx ⋅ Δp] seems to be quite close to the corresponding values for the
harmonic oscillator. The results should be compared with the ones obtained in
table 9.1 of chapter 9.

 10.6 The Lennard–Jones Potential

The Lennard–Jones potential is a simple phenomenological model of the
interaction between two neutral atoms in a diatomic molecule. This is given
by

 	

[image: { (σ)12 (σ)6 }
V (x) = 4V0 -- − -- .
 x x
]
	(10.40)

The repulsive term describes the Pauli interaction due to the overlapping of the
electron orbitals, whereas the attractive term describes the Van der Waals force.
The first one dominates at short distances and the latter at long distances. We
choose [image: L = σ] in (10.13) and define [image: v0 = 2m σ2V0 ∕ℏ2]. Equation (10.40)
becomes

 	

[image: { ()12 ()6}
 1- 1-
v (x) = 4v0 x − x ,
]
	(10.41)

whereas the eigenvalues [image: 𝜖n] are related to the energy values [image: En] by

 	

[image: ()
 En
𝜖n = 4v0 --- .
 V0
]
	(10.42)

The plot of the potential is shown in figure 10.5 for [image: v = 250
 0]. The minimum is
located at [image: 1∕6
xm = 2 ≈ 1.12246] and its value is [image: − v0]. The code for this
potential is in the file schLJ.f90. The necessary changes to the code discussed in
the previous sections are listed below:

!===

!file: schLJ.f90 (Lennard-Jones)

!..................

!----- potential:

real(8) function V(x)

 implicit none

 real(8) :: x,V0

 V0 = 250.0D0

 V = 4.0D0*V0*(1.0D0/x**12-1.0D0/x**6)

end function V

!----- boundary conditions:

subroutine &

 boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)

 implicit none

 real(8) :: xmin,xmax,psixmin,psipxmin,psixmax,psipxmax,V

 real(8) :: energy

 common/params/energy

!----- Initial values at xmin and xmax

 psixmin = exp(-xmin*sqrt(DABS(energy-V(xmin))))

 psipxmin = sqrt(DABS(energy-V(xmin)))*psixmin

 psixmax = exp(-xmax*sqrt(DABS(energy-V(xmax))))

 psipxmax = -sqrt(DABS(energy-V(xmax)))*psixmax

end subroutine boundary

............................

 	
	
	
	
	
	
	
	
	

	[image: n]
	 [image: 𝜖n]
 	[image: ⟨x⟩]
	 [image: ⟨p⟩]
 	[image: ⟨x2⟩]
	[image: ⟨p2 ⟩]
	[image: Δx]
	[image: Δp]
	[image: Δx ⋅ Δp]

	
	
	
	
	
	
	
	
	

	 0	-173.637	1.186	 1.0e-10	1.415	34.193	0.091	5.847	 0.534
	 1	 -70.069	1.364	 6.0e-11	 1.893	56.832	0.178	7.539	 1.338

	 2	 -18.191	1.699	-4.5e-08	2.971	39.480	0.291	6.283	 1.826

	 3	 -1.317	2.679	-2.6e-08	7.586	 9.985	0.638	3.160	 2.016

	
	
	
	
	
	
	
	
	

	

 Table 10.5: The results for the Lennard-Jones potential with [image: v0 = 250]. We find 4
bound states.

[image: pict]

Figure 10.9: The four bound states for the Lennard-Jones potential with [image: v = 250
0].
The bold red line is the potential [image: v(x)∕v0]. We plot the energy levels [image: 𝜖n∕v0] and the
corresponding wave functions.

[image: pict] [image: pict] [image: pict] [image: pict]

Figure 10.10: Comparison of the results of the calculation of the wave functions
[image: ψn,λ(x)] of the anharmonic oscillator for [image: λ = 2.0] using the methods described in
problem 12. The wave functions [image: ψsch(x)] are the wave functions [image: ψn,λ(x)] calculated
using the methods described in this chapter. The wave functions [image: ψmat(x)] are the wave
functions [image: ψn,λ(x)] calculated using the methods described in chapter 9 for Hilbert space
dimension [image: N = 40]. Note the difference at large [image: x]. This is because the amplitudes
[image: ψn,λ(x) = ⟨x|n⟩λ] for large [image: x] receive contributions from states [image: |m ⟩] with large [image: m]
(why?).

 For the integration we choose [image: v0 = 250] and xmin = 0.7, [image: 4 <]xmax [image: < 10].
The results are plotted in figure 10.9. There are four bound states. The first
two ones are quite confined within the potential well whereas the last
ones begin to “spill” out of it. Table 10.5 lists the results. We observe
that [image: ⟨p⟩ = 0] within the attained accuracy as expected for real, bound
states14 .

 10.7 Problems

 	 Add the necessary code to the program in the file well.f90 so that the
 final wave function printed in the file psi.dat is properly normalized. The
 integral [image: ∫ 1
 − 1ψ (x)ψ(x)dx] can be computed using the Simpson rule

 [image: ∫
 b
 f (x)dx = (h∕3)(f (x0) + 4f (x1) + 2f (x2) + ...
 a
 +2f (xn−2) + 4f(xn −1) + f (xn).)
]

The interval [image: [a,b]] is discretized by [image: n] points [image: x0 = a,x1,x2,...,xn = b]
 where [image: n] is even. Each interval [image: [x ,x]
 i i+1] has width [image: h].

 	 Add the necessary code to the program in the file well.f90 in order to
 calculate the number of nodes (zeroes) of the wave function. Using this

 result, the program should print the level [image: n] of the calculated wave function
 [image: ψn(x)].

 	 Calculate the wave functions of the energy eigenstates for the potential
 (10.27) with [image: v0 < 0]. This is the problem of the (finite) potential well.
 Solve the problem for [image: v = − 100
 0] and [image: a = 0.3]. How many bound states do
 you find? Next study the influence of the wall on the solutions. Introduce a
 parameter [image: b] so that [image: v(x ≥ b) = + ∞] and study the dependence of the
 solutions on [image: b]. Take [image: b = 0.35,0.4,0.5,0.6,0.8,1.0,1.5, 2.0,2.5,3.0] and
 compute the difference of the first two energy eigenvalues. Estimate the
 accuracy of the method. Next lower the value of [image: |v |
 0] until there is no
 bound state. What is the relation between [image: a] and [image: v0] when this happens?
 Compare with the analytic result which you know from your quantum
 mechanics course.
Hint: For the largest values of [image: b], take Nx > 1000. When convergence is not
 achieved decrease epsilon.

 	 Set [image: v0 = 1000, 5000] to the double well potential. Observe the (almost)
 degenerate states and plot the wave functions [image: √ --
ψ±,n = (1∕ 2)(ψn (x) ± ψn+1 (x))],
 where [image: n] is odd. Compare the results with the corresponding energy levels
 and eigenfunctions of the infinite square well. Increase [image: v0] to the point
 where you cannot solve the problem numerically.
Hint: For large [image: v0] the numerical effort is increased. For [image: |x| < a] the wave
 function is almost zero and it is hard to obtain the non trivial wave function
 for [image: a < |x| < 1]. As the accuracy deteriorates, you should increase
 epsilon in the program so that convergence is achieved relatively
 fast.

 	 Repeat problems 3 and 4 using the program sch.f90. Compare the
 results.

 	 Study the bound states in the potentials

 [image: (
 ||{ 0 a < |x|
 − V0 b < |x | < a
v(x) = || − V1 |x | < b
 (
]
 for [image: a = 1,b = 0.2,V0 = 100, V1 = 0,50] and

 [image: (
 ||{ V1 x < 0
v(x) = − V0 0 < x < a
 || 0 a < x
 (
]
 for [image: a = 1,V0 = 100,V1 = + ∞, 10,100] and

 [image: (
 ||{ V1 a < |x|
v(x) = − V0 b < |x | < a
 || 0 c < |x | < b
 (− V0 |x | < c
]
 for [image: a = 1,b = 0.7,c = 0.6,0.3,V0 = 100,V1 = +∞, 10,0]. In each case
 calculate [image: ⟨x⟩], [image: ⟨x2⟩], [image: ⟨p⟩], [image: ⟨p2⟩], [image: Δx], [image: Δp], [image: Δx ⋅ Δp].

 	Write a program that calculates the probability that a particle is
 found in an interval [image: [x1,x2]] given the wave function calculated
 by the program in the file sch.f90. Apply your program on the

 results of the previous problem and calculate the intervals [image: [− x1,x1]]
 where the probability to find the particle inside them is equal to
 [image: 1∕3].

 	 Fill the tables 10.3 and 10.4 with the results for [image: λ = 0.2], [image: 0.7], [image: 1.0], [image: 1.3],
 [image: 1.6], [image: 2.5], [image: 3.0] and plot each expectation value as a function of
 [image: λ].

 	 A particle is under the influence of a potential

 [image: 2 { }
V (x) = ℏ--α2 λ(λ − 1) 1-− -----1---- .
 2m 2 cosh2 (αx)
]
 The energy spectrum is given by

 [image: { }
 -ℏ2- 2 λ(λ-−-1)- 2
En = 2m α 2 − (λ − 1 − n)
]
 for the values of [image: n = 0, 1,2,...] for which [image: En > Vmin]. Calculate the
 energy levels [image: 𝜖n] of the bound states numerically by setting [image: L = 1∕α] in
 equation (10.13) and [image: λ = 4]. Plot the potential [image: v (x)] and the
 corresponding eigenfunctions. Calculate the expectation values of the
 position and momentum, the uncertainties in position and momentum and
 their product. Repeat for [image: λ = 2,6,8,10].

 	 Write a program that reads in a wavefunction and calculates the
 expectation value of the Hamiltonian

 [image: ∫ +∞ (ℏ2 ∂2)
⟨ ˆH ⟩ = ψ (x) − ------2 + V (x) ψ(x)dx,
 −∞ 2m ∂x
]
 by assuming that [image: ψ (x)] is real. Calculate [image: ψ (x)
 n] for the harmonic
 oscillator for [image: n = 1,...,10] and show (numerically) that [image: ˆ
⟨H ⟩n = En].

 	 Consider a particle in the Morse potential

 [image: { }
 (−a(r−re))2
V(x) = De 1 − e − 1 .
]
 Calculate the energy spectrum of the bound states. Choose [image: L = 1∕a],
 [image: x = ar], [image: xe = are], [image: 2 2 2
λ = 2mDe ∕a ℏ] and obtain

 [image: 2(−2(x−xe) − (x−xe))
v(x) = λ e − 2e .

]
 Compare your results with the known analytic solutions

 [image: ()
 1 2
𝜖n = λ − n − --
 2
]

 [image: ψn(z) = Nnz λ−n− 1∕2e− z∕2L2λn− 2n− 1(z)
]
 where [image: z = 2λe −(x− xe)], [image: ∘ -----------------------------------
Nn = n! (2λ − 2n − 1)∕(Γ (n + 1)Γ (2λ − n))], and
 [image: Lαn (z)] is a Laguerre polynomial given by [image: L αn(z) = (z−αez∕n!)(dn∕dzn)(zn+ αe−z)]
 [image: = (Γ (α + 2)∕(Γ (n + 2)Γ (α − n + 2)) F (− n,α + 1, z)
 1 1]. You can take
 [image: λ = 4], [image: xe = 1] and calculate [image: ⟨x ⟩], [image: 2
⟨x ⟩], [image: ⟨p⟩], [image: 2
⟨p ⟩], [image: Δx], [image: Δp],
 [image: Δx ⋅ Δp].

 	 Calculate the wave functions of the eigenstates of the Hamiltonian for the
 anharmonic oscillator for [image: λ = 2.0] and [image: n = 0,...,15]. Calculate the
 wavefunctions using the program anharmonic.f90 of chapter 9 for
 [image: N = 15,40,100] and compare the two results.
Hint: Write a program that calculates the energy eigenfunctions of the
 simple harmonic oscillator

 [image: ----1----- −x2∕2
ψn (x) = ∘2nn!--√-πe Hn (x)
]
 where the Hermite polynomials satisfy the relations

 [image: Hn+1 (x) = 2xHn (x) − 2nHn −1(x), H0 (x) = 1, H1 (x) = 2x.
]
 The program anharmonic.f90 calculates the eigenstates of the anharmonic
 oscillator

 [image: N∑−1
|n ⟩λ = H (m + 1,n + 1)|m ⟩
 m=0
]
 by storing the coefficients of the linear expansion in the elements of the
 array H(N,N). The same relation holds for the corresponding wave functions
 [image: ψn,λ(x)], [image: ψn(x)]. From [image: ψn (x)] and H(i,j) calculate [image: ψn,λ(x)] for
 [image: − 8 < x < 8] and determine the accuracy achieved by the calculation for
 each [image: N]. For which values of [image: x] do you obtain large discrepancies between
 your results? Remember that for large [image: x], the states of high energy
 contribute more than for small [image: x]. Figure 10.10 can help you understanding
 this statement.

Chapter 11
The Random Walker

In this chapter we will study the typical path followed by a ... drunk when he
decides to start walking from a given position. Because of his drunkenness, his
steps are in random directions and uncorrelated. These are the basic properties of
the models that we are going to study. These models are related to specific
physical problems like the Brownian motion, the diffusion, the motion of
impurities in a lattice, the large distance properties of macromolecules etc. In the
physics of elementary particles random walks describe the propagation of free
scalar particles and they most clearly arise in the Feynman path integral
formulation of the euclidean quantum field theory. Random walks are precursors
to the theory of random surfaces which is related to the theory of two dimensional
“soft matter” membranes, two dimensional quantum gravity and string theory
 [44].

 The geometry of a typical path of a simple random walk is not classical and this
can be seen from two of its non classical properties. First, the average distance
traveled by the random walker is proportional to the square root of the time
traveled, i.e. the classical relation [image: r = vt] does not apply. Second, the geometry of
the path of the random walker has fractal dimension which is larger than
one1 .
Similar structures arise in the study of quantum field theories and random
surfaces, where the non classical properties of a typical configuration can be
described by appropriate generalizations of these concepts. For further study we
refer to [7, 43, 44, 45].

 In order to simulate a stochastic system on the computer, it is necessary to use
random number generators. In most of the cases, these are deterministic
algorithms that generate a sequence of pseudorandom numbers distributed
according to a desired distribution. The heart of these algorithms generate
numbers distributed uniformly from which we can generate any other complex
distribution. In this chapter we will study simple random number generators and
learn how to use high quality, research grade, portable, random number
generators.

 11.1 (Pseudo)Random Numbers

The production of pseudorandom2
numbers is at the heart of a Monte Carlo simulation. The algorithm used in their
production is deterministic: The generator is put in an initial state and the
sequence of pseudorandom numbers is produced during its “time evolution”. The
next number in the sequence is determined from the current state of the generator
and it is in this sense that the generator is deterministic. Same initial
conditions result in exactly the same sequence of pseudorandom numbers. But
the “time evolution” is chaotic and “neighboring” initial states result
in very different, uncorrelated, sequences. The chaotic properties of the
generators is the key to the pseudorandomness of the numbers in the sequence:
the numbers in the sequence decorrelate exponentially fast with “time”.
But this is also the weak point of the pseudorandom number generators.
Bad generators introduce subtle correlations which produce systematic
errors. Truly random numbers (useful in cryptography) can be generated
by using special devices based on e.g. radioactive decay or atmospheric
noise3 .
Almost random numbers are produced by the special files /dev/random and
/dev/urandom available on unix systems, which read bits from an entropy pool
made up from several external sources (computer temperature, device noise
etc).

 Pseudorandom number generators, however, are the source of random numbers
of choice when efficiency is important. The most popular generators are the
modulo generators (D.H. Lehmer, 1951) because of their simplicity. Their state is
determined by only one integer [image: xi−1] from which the next one [image: xi] is generated by
the relation

 	

[image: xi = axi−1 + c(modm)
]
	(11.1)

for appropriately chosen values of [image: a], [image: c] and [image: m]. In the bibliography, there is a
lot of discussion on the good and bad choices of [image: a], [image: c] and [image: m], which
depend on the programming language and whether we are on a 32–bit
or 64–bit systems. For details see the chapter on random numbers in
 [8].

 The value of the integer [image: m] determines the maximum period of the sequence.
It is obvious that if the sequence encounters the same number after [image: k] steps, then
the exact same sequence will be produced and [image: k] will be the period of the
sequence. Since there are at most [image: m] different numbers, the period is at most
equal to [image: m]. For a bad choice of [image: a], [image: c] and [image: m] the period will be much smaller.
But [image: m] cannot be arbitrarily large since there is a maximum number of bits that
computers use for the storage of integers. For 4-byte (32 bit) unsigned integers the
maximum number is [image: 32
2 − 1], whereas for signed integers [image: 31
2 − 1]. One can
prove4
that a good choice of [image: a], [image: c] and [image: m] results in a sequence which is a permutation
[image: {π ,π ,...,π }
 1 2 m] of the numbers [image: 1,2, ...,m]. This is good enough for simple
applications that require fast random number generation but for serious
calculations one has to carefully balance efficiency with quality. Good quality
random generators are more complicated algorithms and their states are
determined by more than one integer. If you need the source code for such
generators you may look in the bibliography, like in e.g. [4], [5], [8],
 [47]. If portability is an issue, we recommend the RANLUX random
number generator [47] or the Marsaglia, Zaman and Tsang generator.
The Fortran code for RANLUX can also be found in the accompanying
software, whereas the MZT generator can be found in Berg’s book/site [5].

 In order to understand the use of random number generators, but also in order
to get a feeling of the problems that may arise, we list the code of the two
functions naiveran() and drandom(). The first one is obviously problematic and
we will use it in order to study certain type of correlations that may exist in
the generated sequences of random numbers. The second one is much

better and can be used in non–trivial applications, like in the random
walk generation or in the Ising model simulations studied in the following
chapters.

 The function naiveran() is a simple application of equation (11.1) with
[image: a = 1277], [image: c = 0] and [image: m = 217]:

!===

!File: naiveran.f90

!Program to demonstrate the usage of a modulo

!generator with a bad choice of constants

!resulting in strong pair correlations between

!generated numbers

!===

real(8) function naiveran()

 implicit none

 integer :: iran=13337

 common /naiveranpar/ iran

 integer,parameter :: m = 131072 ! equal to 2**17

 integer,parameter :: a = 1277

 iran = a*iran

 iran = MOD(iran,m)

 naiveran = iran/DBLE(m)

end function naiveran

 The function drandom() is also an application of the same equation,
but now we set [image: 5
a = 7], [image: c = 0] and [image: 31
m = 2 − 1]. This is the choice of
Lewis, Goodman and Miller (1969) and provides a generator that passes
many tests and, more importantly, it has been used countless of times
successfully. One technical problem is that, when we multiply [image: x
 i−1] by [image: a],
we may obtain a number which is outside the range of 4-byte integers
and this will result in an “integer overflow”. In order to have a fast and
portable code, it is desirable to stay within the range of the [image: 231 − 1]
positive, 32-bit (4 byte), signed integers. Schrage has proposed to use the
relation

 	

[image: ([]
 || a (xi− 1 modq) − r xi−1- if it is ≥ 0
 { [q]
(axi−1) modm = | a (xi− 1 modq) − r xi−q1- + m if it is < 0
 |(
]
	(11.2)

where [image: m = aq + r], [image: q = [m ∕a]] and [image: r = m moda]. One can show that if
[image: r < q] and if [image: 0 < x < m − 1
 i−1], then [image: 0 ≤ a (x modq) ≤ m − 1
 i− 1],
[image: 0 ≤ r[xi−1∕q] ≤ m − 1] and that (11.2) is valid. The period of the generator is
[image: 31 9
2 − 2 ≈ 2 × 10]. The proof of the above statements is left as an exercise to the
reader.

!==

!File: drandom.f90

!Implementation of the Schrage algorithm for a

!portable modulo generator for 32 bit signed integers

!(from numerical recipes)

!

!returns uniformly distributed pseudorandom numbers

! 0.0 < x < 1.0 (0 and 1 excluded)

!==

real(8) function drandom()

 implicit none

 integer,parameter :: a = 16807 ! a = 7**5

 integer,parameter :: m = 2147483647 ! m = a*q+r = 2**31-1

 integer,parameter :: q = 127773 ! q = [m/a]

 integer,parameter :: r = 2836 ! r = MOD(m,a)

 real(8),parameter :: f = (1.0D0/m)

 integer :: p

 integer :: seed

 real(8) :: dr

 common /randoms/seed

101 continue

 p = seed/q ! = [seed/q]

 seed = a*(seed- q*p) - r*p ! = a*MOD(seed,q)-r*[seed/q]

 if(seed .lt. 0) seed = seed + m

 dr = f*seed

 if(dr .le. 0.0D0 .or. dr .ge. 1.0D0) goto 101

 drandom = dr

end function drandom

 The line that checks the result produced by the generator is necessary in order
to check for the number [image: 0] which appears once in the sequence. This
adds a [image: 10 − 20]% overhead, depending on the compiler. If you don’t
care about that, you may remove the line. Note that the number seed
is put in a common block so it can be accessed by other parts of the
program.

 Now we will write a program in order to test the problem of correlations in the
sequence of numbers produced by naiveran(). The program will produce pairs of
integers [image: (i,j)], where [image: 0 ≤ i,j < 10000], which are subsequently mapped on
the plane. This is done by taking the integer part of the numbers [image: Lu]
with [image: L = 10000] and [image: 0 ≤ u < 1] is the random number produced by the
generator:

!==

!Program that produces N random points (i,j) with

!0<= i,j < 10000. Simple qualitative test of serial

!correlations of random number generators on the plane.

!

!compile:

!gfortran correlations2ran.f90 naiveran.f90 drandom.f90

!==

program correlations2

 implicit none

 integer,parameter :: L = 10000

 integer :: i,N

 character(10) :: arg

 real(8) :: naiveran,drandom

 integer :: seed

 common /randoms/ seed

!Read the number of points from first command argument

 if(IARGC() .EQ. 1)then

 call GETARG(1,arg); read(arg,*)N !convert string->integer

 else !default value, if no N given by user:

 N=1000

 endif

 seed = 348325

 do i=1,N

 print *,INT(L * naiveran()),INT(L * naiveran())

! print *,INT(L * drandom ()),INT(L * drandom ())

 enddo

end program correlations2

 The program can be found in the file correlations2ran.f90. In order to test
naiveran() we compile with the command

> gfortran correlations2ran.f90 naiveran.f90 -o naiveran

 whereas in order to test drandom() we uncomment the print lines as
follows

! print *,INT(L * naiveran()),INT(L * naiveran())

 print *,INT(L * drandom ()),INT(L * drandom ())

 and recompile:

> gfortran correlations2ran.f90 drandom.f90 -o drandom

 These commands result in two executable files naiveran and drandom. In order
to see the results we run the commands

> ./naiveran 100000 > naiveran.out

> ./drandom 100000 > drandom.out

> gnuplot

gnuplot> plot "naiveran.out" using 1:2 with dots

gnuplot> plot "drandom.out" using 1:2 with dots

 which produce [image: 105] points used in the plots in figures 11.1 and 11.2. In the plot
of figure 11.1, we see the pair correlations between the numbers produced by
naiveran(). Figure 11.2 shows the points produced by drandom(), and we can
see that the correlations shown in figure 11.1 have vanished. The plot in figure
11.2 is qualitative, and a detailed, quantitative, study of drandom() shows that
the pairs [image: (ui,ui+1)] that it produces, do not pass the [image: χ2] test when we have more
than [image: 107] points, which is much less than the period of the generator. In order to
avoid such problems, there are many solutions that have been proposed and the
simplest among them “shuffle” the results so that the low order serial
correlations vanish. Such generators will be discussed in the next section.

[image: pict]

Figure 11.1: Pairs of pseudorandom numbers produced by the function naiveran().
The correlations among pairs of such numbers show in the distribution of such pairs on a
clearly seen lattice.

[image: pict]

Figure 11.2: Pairs of pseudorandom numbers produced by the function drandom().
These points have a random distribution on the plane compared to those generated by
naiveran().

 The uniform distribution of the random numbers produced
can be examined graphically by constructing a histogram of the
relative frequency of their appearance. In order to construct the
histograms we use the script histogram which is written in the awk
language5
as shown below:

> histogram -v f=0.01 drandom.out > drandom.hst

> gnuplot

gnuplot> plot "drandom.hst" using 1:3 with histeps

gnuplot> plot [:][0:] "drandom.hst" using 1:3 with histeps

 The command histogram -v f=0.01 constructs a histogram of the data so that
the bin width is [image: 1 ∕0.01 = 100]. The reciprocal of the number following the option
-v f=0.01 defines the bin width. The histogram is saved in the file drandom.out.

[image: pict]

Figure 11.3: The relative frequency distribution of the pseudorandom numbers
generated by drandom(). The distribution is uniform within [image: (0,1)] and we see the
deviations from the average value.

[image: pict]

Figure 11.4: Same as in figure 11.3, but with the scale enlarged, so that the dispersion
of the histogram values is clearly seen.

[image: pict]

Figure 11.5: The relative frequency distribution of the pseudorandom numbers
generated by drandom() as a function of the sample size [image: n] for [image: n = 1000,10000,100000].

[image: pict]

Figure 11.6: The dependence of the variance (11.3) on [image: n] for the distribution of
random numbers generated by drandom().

 The results are shown in figures 11.3 and 11.4. Next, we study the variance of
the measurements, shown in figure 11.3. The variance is decreased with
the size of the sample of the collected random numbers. This is seen in
the histogram of figure 11.5. For a quantitative study of the dependence
of the variance on the size [image: n] of the sample, we calculate the standard
deviation

 	

[image: ┌│ ------(------------(---------)2-)-
 ││ 1 1 ∑n 1 ∑n
σ = ∘ -----(-- x2i − -- xi),
 n − 1 n i=1 n i=1
]
	(11.3)

where [image: {xi}] is the sequence of random numbers. Figure 11.6 plots this relation.
By fitting

 	

[image: ln σ ∼ 1ln(n),
 2
]
	(11.4)

to a straight line, we see that

 	

[image: σ ∼ √1--.
 n
]
	(11.5)

 If we need to generate random numbers which are distributed according to the
probability density [image: f (x)] we can use a sequence of uniformly distributed random
numbers in the interval [image: (0,1)] as follows: Consider the cumulative distribution
function

 	

[image: ∫ x
0 ≤ u ≡ F(x) = f(x′)dx′ ≤ 1,
 −∞
]
	(11.6)

which is equal to the area under the curve [image: f(x)] in the interval [image: (− ∞, x]] and it
is equal to the probability [image: ′
P (x < x)]. If [image: u] is uniformly distributed in the
interval [image: (0,1)] then we have that [image: ′
P(u < u) = u]. Therefore [image: −1
x = F (u)] is such
that [image: P (x′ < x) = u = F (x)] and follows the [image: f (x)] distribution. Therefore, if
[image: ui] form a sequence of uniformly distributed random numbers, then the
numbers

 	

[image: xi = F− 1(ui)
]
	(11.7)

form a sequence of random numbers distributed according to [image: f(x)].

 Consider for example the Cauchy distribution

 	

[image: 1 c
f(x) = --------- c > 0.
 π c2 + x2
]
	(11.8)

Then

 	

[image: ∫ x ′ ′ 1 1 −1(x)
F (x) = f(x)dx = --+ --tan -- .
 −∞ 2 π c
]
	(11.9)

According to the previous discussion, the random number generator is given by
the equation

 	

[image: xi = ctan (πui − π∕2)
]
	(11.10)

or equivalently (for a more efficient generation)

 	

[image: xi = c tan(2πui).
]
	(11.11)

 The generator of Gaussian random numbers is found in many applications.
The Gaussian distribution is given by the probability density

 	

[image: ---1-- − x2∕(2σ2)
g(x) = √ 2π σe
]
	(11.12)

The cumulative distribution function is

 	

[image: ∫ ()
 x ′ ′ 1- 1- --x--
G (x) = g(x)dx = 2 + 2erf √2-σ
 − ∞
]
	(11.13)

where [image: ∫
erf(x) = x exp{ − (x′)2}dx′
 −∞] is the error function. The error function, as
well as its inverse, can be calculated numerically, but this would result in a slow
computation. A trick to make a more efficient calculation is to consider the
probability density [image: ρ (x, y)] of two independent Gaussian random variables [image: x]
and [image: y]

 	

[image: 1 2 2 1 2 2 1 2 2
ρ (x, y)dxdy = √-----e−x ∕(2σ)√-----e−y ∕(2σ)dxdy = ----2e− r∕(2σ)rdrdϕ
 2πσ 2πσ 2π σ
]
	(11.14)

where [image: x = rcos ϕ], [image: y = r sin ϕ]. Then we have that

 	

[image: ∫ r ∫ 2π
u = G(r) = drd ϕρ(r,ϕ) = 1 − e−r2∕(2σ2),
 0 0
]
	(11.15)

which, upon inversion, it gives

 	

[image: ∘ -------------
r = σ − 2 ln (1 − u).
]
	(11.16)

Therefore it is sufficient to generate a sequence [image: {ui}] of uniformly distributed
random numbers and take

[image: ∘ ---------
 ri = σ − 2ln(ui) (11.17)
 ϕ = 2πu (11.18)
 i i+1
 xi = ricosϕi (11.19)
xi+1 = risin ϕi. (11.20)
]

The algorithm shown above gives a sequence of pseudorandom numbers [image: {xi}], which follow the
Gaussian distribution6 .
The program for [image: σ = 1] is listed below:

!===

!Function to produce random numbers distributed

!according to the gaussian distribution

!g(x) = 1/(sigma*sqrt(2*pi))*exp(-x**2/(2*sigma**2))

!===

real(8) function gaussran()

 implicit none

 real(8),parameter :: sigma = 1.0D0

 real(8) :: r,phi

 logical,save :: new = .TRUE.

 real(8),save :: x

 real(8),parameter :: PI2 = 6.28318530717958648D0

 real(8) :: drandom

 if(new)then

 new = .FALSE.

 r = drandom()

 phi = PI2*drandom()

 r = sigma*sqrt(-2.0D0*log(r))

 x = r*cos(phi)

 gaussran = r*sin(phi)

 else

 new = .TRUE.

 gaussran = x

 endif

end function gaussran

[image: pict]

Figure 11.7: The distribution of pseudorandom numbers generated by gaussran() for
[image: σ = 1] and [image: σ = 2]. The histogram is superimposed to the plot of (11.12) .

 The result is shown in figure 11.7. Notice the SAVE attribute for the variables
new and x. This means that their values are saved between calls of drandom. We
do this because each time we calculate according to (11.17) , we generate two
random numbers, whereas the function returns only one. The function needs to
know whether it is necessary to generate a new pair [image: (xi,xi+1)] (this is what the
“flag” new marks) and, if not, to return the previously generated number, saved in
the variable x. The analysis of the results is left as an exercise to the
reader.

 11.2 Using Pseudorandom Number Generators

The function drandom() is good enough for the problems studied in this
book. However, in many demanding and high accuracy calculations, it is
necessary to use higher quality random numbers and/or have the need of
much longer periods. In this section we will discuss how to use two high
quality, efficient and portable generators which are popular among many
researchers.

 The first one is an intrinsic procedure in the Fortran language, the subroutine
RANDOM_NUMBER. The algorithm implemented is not universal and depends on the Fortran
environment7 .
For the gfortran compiler RANDOM_NUMBER uses the “multiply-with-carry”
algorithm of George Marsaglia in combination with a modulo and shift-register
generator. The period is larger than [image: 2123 ≈ 1037]. The state of the generator is
determined by more than one numbers. In order to use it we should learn

 	how to start from a new state

 	how to save the current state

 	how to restart from a previously saved state

 	and, of course, how to obtain the random numbers.

Saving the current state of the generator is very important when we execute a job
that is split in several parts (checkpointing). This is done very often on
computer systems that set time limits for jobs or when our jobs are so long
(more than 8-10 hours) that it will be painful to loose the resources (time
and money) spent for the calculation in case of a computer crash. If we
want to restart the job from exactly the same state as it was before we
stopped, we also need to restart the random number generator from the same
state.

 Starting from a new, fresh state is called seeding. The seeding of RANDOM_NUMBER
is done by an unspecified number of NSEEDS integers. In order to get this number,
we should call the subroutine RANDOM_SEED(size = NSEEDS) which returns the
number of seeds NSEEDS when its argument is size = NSEEDS. Then we
have to define the integer values of the array seeds(NSEEDS) and call
again the routine RANDOM_SEED(PUT = seeds) with the argument PUT =
seeds, which will seed the generator from the seeds in seeds. In the code
listed below we show how to seed the generator by using only one integer
seed:

 integer :: NSEEDS

 integer,allocatable :: seeds(:)

 integer :: seed

!---------------------------------------

 seed = 47279823

 call RANDOM_SEED(size = NSEEDS)

 ALLOCATE(seeds(NSEEDS))

 seeds = seed + 37 * (/ (i - 1, i = 1, NSEEDS) /)

 call RANDOM_SEED(PUT = seeds)

 The last line8
uses the values stored in the array seeds(1) ... seeds(NSEEDS) in
order to initialize RANDOM_NUMBER. It is important to note that, using this
method, the same seed will generate the same sequence of pseudorandom
numbers.

 Sometimes we need to initialize the random number generator from as a
random initial state as possible, so that each time that we run our program, a
different sequence of random numbers is generated. For Unix like systems, like the
GNU/Linux system, we can use the two special files /dev/random and
/dev/urandom in order to generate cryptographic-grade random numbers. These
generate random bits from the current state of the computer and it is practically
impossible to predict the obtained sequence of bits. It is preferable to use
/dev/urandom because /dev/random ceases to work when there are no new
random bits in its pool and waits until they are safely generated. The code that
uses9
/dev/urandom for seeding is

 open(unit=13, file=’/dev/urandom’, access=’stream’, &

 form=’unformatted’)

 call RANDOM_SEED(size = NSEEDS)

 ALLOCATE(seeds(NSEEDS))

 read (13) seeds

 close(13)

 The special file /dev/urandom provides binary, non printable, data so it is
necessary to open it with the unformatted option. For the same reason, the
command read does not have a format instruction but only the unit number. It
reads the number of bits necessary to fill the array seeds. If we need to work in
an environment where the special file /dev/urandom is not available, it is
possible to seed using the current time and the process number ID. The
latter is necessary in case we start several processes in parallel and we
need different seeds. Check the file seed.f90 in order to see how to do
it10 .

 In order to save the current state of the random number generator use the
subroutine RANDOM_SEED(GET = seeds) with argument GET = seeds.
The call stores the necessary information in the array seeds. We can
save the values of the array seeds in order to use them to restart the
random number generator from exactly the same state. The necessary code
is:

 integer :: NSEEDS

 integer,allocatable :: seeds(:)

!----------------------------------

 call RANDOM_SEED(size = NSEEDS)

 ALLOCATE(seeds(NSEEDS))

 call RANDOM_SEED(GET = seeds)

 open(unit=11,file=’state’)

 write(11,*)seeds

 In order to restart the generator from a saved state, we read the values of the
array seeds and call RANDOM_SEED(PUT = seeds) with argument PUT = seeds.
The following code reads seeds from a file named state:

 open(unit=11,file=’state’)

 read(11,*)seeds

 call RANDOM_SEED(PUT = seeds)

 In order to generate random numbers, we can use a scalar variable and generate
them one by one or we can use an array which RANDOM_NUMBER will fill with
random numbers. The first method has a small overhead and in same cases
we will prefer the second one. The code that applies the first method
is

 real(8) :: r

!---------------------------------------

 do icount = 1,10

 call RANDOM_NUMBER(r)

 print *,r

 enddo

 and the code that applies the second is

 integer,parameter :: NR=20

 real(8),dimension(NR) :: randoms

 call RANDOM_NUMBER(randoms)

 print *,randoms

 The code in the file test_random_number.f90 implements all of the above tasks
and we list it below:

program use_random_number

 implicit none

 integer :: NSEEDS

 integer,allocatable :: seeds(:)

 integer :: seed

 real(8) :: r

 integer,parameter :: NR=20

 real(8),dimension(NR) :: randoms

 integer(8) :: icount

 integer :: i

!---------------------------------------

!start from a new seed:

 seed = 47279823

!get number of seeds for generator:

 call RANDOM_SEED(size = NSEEDS)

 ALLOCATE(seeds(NSEEDS))

!fill in the rest of the seeds:

 seeds = seed + 37 * (/ (i - 1, i = 1, NSEEDS) /)

!initialize the generator from the arrays seeds:

 call RANDOM_SEED(PUT = seeds)

!---------------------------------------

!generate random numbers one by one:

 do icount = 1,10

 call random_number(r)

 print *,r

 enddo

!generate random numbers in an array:

 call random_number(randoms)

 print ’(1000G28.17)’,randoms

!---------------------------------------

!save state of random_number:

 open(unit=11,file=’rannum.seed’)

 call RANDOM_SEED(GET = seeds)

 write(11,’(5I20)’)seeds

 close(11)

!---------------------------------------

!generate some randoms:

 call random_number(randoms)

 print ’(A,1000G28.17)’,’#FIRST :’,randoms

!---------------------------------------

!read state of random_number:

 open(unit=11,file=’rannum.seed’)

 read(11,*)seeds

 call RANDOM_SEED(PUT = seeds)

!---------------------------------------

!generate same randoms:

 call random_number(randoms)

 print ’(A,1000G28.17)’,’#SECOND:’,randoms

end program use_random_number

 Use the following commands in order to compile and see the results:

> gfortran test_random_number.f90 -o random_number

> ./random_number

 A very high quality, portable random number generator was proposed by
Martin Lüscher [47], and a program that implements it is Ranlux. Besides the
high quality random numbers and a period greater than [image: 10171], a great advantage
of RANLUX is that it will run in any Fortran environment. The code, which can also
be found in the accompanying software, has been written by Fred James and you
can download it in its original form from the links given in the bibliography [47].
The generator uses a subtract-with-borrow algorithm by Marsaglia and Zaman
 [49], which has a very large period but fails some of the statistical tests. Based
on the chaotic properties of the algorithm, Lüscher attributed the problems to
short time autocorrelations and proposed a solution in order to eliminate
them.

 In order to start RANLUX using a single seed, use the subroutine RLUXGO. The
necessary code is:

 integer :: seed,ranlux_level

!---------------------------------------

 seed = 58266273

 ranlux_level = 2

 call RLUXGO(ranlux_level,seed,0,0)

 The value of the variable ranlux_level determines the quality of random
numbers and it can take the values 1, 2, 3 or 4. Setting ranlux_level=2 is enough
for the needs of this book and ranlux_level=3 is the default value. A larger
value of ranlux_level requires more computational effort (see problem).

 In order to save the current state of RANLUX, we need an integer array of size
25. A call to the subroutine RLUXUT saves the necessary information in this array.
We can save this array in order to read it at a later time and start the
sequence of random numbers from the same point. The necessary code
is:

 integer,parameter :: NSEEDS = 25

 integer,dimension(NSEEDS) :: seeds

!---------------------------------------

 open(unit=11,file=’ranlux.seed’)

 call RLUXUT(seeds)

 write(11,*)seeds

 close(11)

 In order to start RANLUX from a previously saved state we call the subroutine
RLUXIN as follows:

 integer,parameter :: NSEEDS = 25

 integer,dimension(NSEEDS) :: seeds

 open(unit=11,file=’ranlux.seed’)

 read(11,*)seeds

 call RLUXIN(seeds)

 We can generate random numbers one by one and store them in a scalar
variable

 real(8) :: r

!---------------------------------------

 call ranlux(r,1)

 print *,r

 or generate many random numbers with one call and store them in a one
dimensional array

 integer,parameter :: NR=20

 real(8),dimension(NR) :: randoms

!---------------------------------------

 call ranlux(randoms,NR)

 print *,randoms

 where the parameter NR is set equal to the desired value. The program in the
file test_ranlux.f90 implements all of the above tasks and we list it
below:

program use_ranlux

 implicit none

 integer,parameter :: NSEEDS = 25

 integer,dimension(NSEEDS) :: seeds

 integer :: seed,ranlux_level

 integer(8) :: icount

 real(8) :: r

 integer,parameter :: NR=20

 real(8),dimension(NR) :: randoms

!---------------------------------------

!start from a new seed:

 seed = 58266273

 ranlux_level = 2

 call RLUXGO(ranlux_level,seed,0,0)

!---------------------------------------

!generate random numbers one by one:

 do icount = 1,10

 call ranlux(r,1)

 print *,r

 enddo

!generate random numbers in an array:

 call ranlux(randoms,NR)

 print ’(1000G28.17)’,randoms

!---------------------------------------

!save state of ranlux:

 open(unit=11,file=’ranlux.seed’)

 call RLUXUT(seeds)

 write(11,’(5I20)’)seeds

 close(11)

!---------------------------------------

!generate some randoms:

 call ranlux(randoms,NR)

 print ’(A,1000G28.17)’,’#FIRST :’,randoms

!---------------------------------------

!read state of ranlux:

 open(unit=11,file=’ranlux.seed’)

 read(11,*)seeds

 call RLUXIN(seeds)

!---------------------------------------

!generate same randoms!

 call ranlux(randoms,NR)

 print ’(A,1000G28.17)’,’#SECOND:’,randoms

end program use_ranlux

 Compile the file together with the file ranlux.F, which contains the RANLUX code,
and run it with the commands

> gfortran test_ranlux.f90 ranlux.F -o ranlux

> ./ranlux

 11.3 Random Walks

Consider a particle which is located at one of the sites of a two dimensional square
lattice. After equilibrating at this position, it can jump randomly to one of its
nearest neighbor positions. There, it might need some time to equilibrate again
before jumping to a new position. During this time, the momentum that it had at
its arrival is lost, therefore the next jump is made without “memory”
of the previous position where it came from. This process is repeated
continuously. We are not interested in the mechanism that causes the
jumping11 ,
and we seek a simple phenomenological description of the process.

 Assume that the particle jumps in each direction with equal probability and
that each jump occurs after the same time [image: τ]. The minimum distance between
the lattice sites is [image: a] (lattice constant). The vector that describes the change of
the position of the particle during the [image: i]-th jump is a random variable [image: ⃗ξi] and it
always has the same magnitude [image: |⃗ξ| = a
 i]. This means that, given the
position [image: ⃗rk] of the particle at time [image: tk = k τ], its position [image: ⃗rk+1] at time
[image: tk+1 = (k + 1)τ = tk + τ] is

 	

[image: ⃗rk+1 = ⃗rk + ⃗ξk,
]
	(11.21)

where

 	

[image: (
 || aˆx with probability 14
⃗ { − aˆx with probability 14
ξk = | aˆy with probability 1 .
 |(41
 − aˆy with probability 4
]
	(11.22)

The vectors [image: ξ⃗i] and [image: ⃗ξj] are uncorrelated for [image: i ⁄= j] and we have that

 	

[image: ⟨⃗ξi ⋅ ⃗ξj⟩ = ⟨⃗ξi⟩ ⋅ ⟨⃗ξj⟩.
]
	(11.23)

The possible values of [image: ξ⃗
 i] are equally probable, therefore we obtain

 	

[image: ⟨⃗ξi⟩ = ⃗0.
]
	(11.24)

This is because the positive and negative terms in the sum performed in the
calculation of [image: ⃗
⟨ξi⟩] occur with the same frequency and they cancel each other.
Therefore [image: ⟨⃗ξi ⋅ ⃗ξj⟩ = 0] for [image: i ⁄= j]. Since the magnitude of the vectors [image: |⃗ξi| = a] is
constant, we obtain

 	

[image: ⟨⃗ξ ⋅ξ⃗⟩ = a2δ .
 i j i,j
]
	(11.25)

The probability for a path [image: CN] of length [image: N] to occur
is12

 	

[image: 1
p (CN) = ---,
 zN
]
	(11.26)

where [image: z = 4] is the number of nearest neighbors of a lattice site. This
probability depends on the length of the path and not on its geometry.
This can be easily seen using the obvious relation [image: p(CN+1) = 1zp(CN)],
since there are exactly [image: z] equally probable cases. The partition function
is

 	

[image: ZN = zN ,
]
	(11.27)

and it counts the number of different paths of length [image: N].

 After time [image: t = N τ] the particle is displaced from its original position
by

 	

[image: N
⃗R = ∑ ⃗ξ .
 i
 i=1
]
	(11.28)

The average value of the displacement vanishes

 	

[image: N
⟨⃗R ⟩ = ∑ ⟨⃗ξ⟩ = ⃗0.
 i
 i=1
]
	(11.29)

The expectation value of the displacement squared is non zero

 	

[image: N N
 2 ⃗ ⃗ ∑ ⃗ ⃗ 2 ∑ 2
⟨R ⟩ = ⟨R ⋅ R⟩ = ⟨ξi ⋅ξj⟩ = a δi,j = a N .
 i,j=1 i,j=1
]
	(11.30)

The conclusion is that the random walker has been displaced from its original
position rather slowly

 	

[image: ∘ ----- √ --- √ -
Rrms = ⟨R2 ⟩ = a N ∝ t.
]
	(11.31)

For a particle with a non zero average velocity we expect that [image: Rrms ∝ t].

 Equation (11.31) defines the critical exponent [image: ν]

 	

[image: ⟨R2⟩ ∼ N 2ν,
]
	(11.32)

where [image: ∼] means asymptotic behavior in the limit [image: N → ∞]. For a classical
walker [image: ν = 1], whereas for the random walker [image: ν = 1
 2].

 The Random Walker (RW) model has several variations, like the Non Reversal
Random Walker (NRRW) and the Self Avoiding Walk (SAW) . The NRRW model
is defined by excluding the vector pointing to the previous position of the
walker and by selecting the remaining vectors [image: ⃗ξi] with equal probability.
The SAW is a NRRW with the additional requirement that, when the
walker ends in a previously visited position, the ... walking ends! Some
models studied in the literature include, besides the infinite repulsive force,
an attractive contribution to the total energy for every pair of points of
the path that are nearest neighbors. In this case, each path is weighted
with the corresponding Boltzmann weight according to equation (12.4)
.

 For the NRRW, equation (11.32) is similar to that of the RW, i.e. [image: 1
ν = 2].
Even though the paths differ microscopically, their long distance properties are

the same. They are examples of models belonging to the same universality class
according to the discussion in section 13.1.

 This is not the case for the SAW. For this system we have that [50]

 	

[image: 2 SAW 2ν 3-
⟨R ⟩ ∼ N ν = 4,
]
	(11.33)

therefore the typical paths in this model are longer than those of the RW. If we
introduce a nearest neighbor attraction according to the previous discussion, then
there is a critical temperature [image: β
 c] such that for [image: β < β
 c] we have similar behavior
given by equation (11.33) , whereas for [image: β > βc] the attractive interaction
dominates, the paths collapse and we obtain [image: ν = 1∕3 < νRW]. For [image: β = βc] we
have that [image: ν = 12]. For more information we refer the reader to the book of Binder
and Heermann [7].

 In order to write a program that simulates the RW we apply the following
algorithm:

 	Set the number of the random walks to be generated

 	Set the number of steps of each walk

 	Set the initial position of the walk

 	At each step on the walk, pick a random direction with equal probability

 	After the walk is completed, measure [image: ⃗R], [image: R2], etc

 	After all walks have been generated, compute the expectation values of
 the measured quantities and the statistical error of their measurement.

 All we need to explain is how to program the choice of “random direction”.
The program is in the file rw.f90

program random_walker

 implicit none

 integer,parameter :: Nwalk = 1000

 integer,parameter :: Nstep = 100000

 integer :: iwalk,istep,ir

 real(8) :: x,y

 real(8) :: drandom

 integer :: seed

 common /randoms/ seed

 seed = 374676287

 open(unit=20,file=’dataR’)

 do iwalk = 1,Nwalk

 x = 0.0D0 ; y = 0.0D0

 open(unit=21,file=’data’)

 do istep=1,Nstep

 ir = INT(drandom()*4)

 select case(ir)

 case(0)

 x = x + 1.0D0

 case(1)

 x = x - 1.0D0

 case(2)

 y = y + 1.0D0

 case(3)

 y = y - 1.0D0

 end select

 write(21,*) x,y

 enddo !do istep=1,Nstep

 close(21)

 call sleep(2)

 write(20,*) x*x+y*y

 call flush(20)

 enddo !do iwalk = 1,Nwalk

end program random_walker

 The length of the paths is Nstep and the number of the generated paths
is Nwalk. Their values are hard coded and a run using different values
requires recompilation. The results are written to the files dataR and
data. The square of the final displacement of the walker [image: R2] is written to
dataR and the coordinates [image: (x,y)] of the points visited by the walker
in each path is written to data. In order to make the contents of the
files available immediately, we empty the I/O buffers by a call to the
subroutine flush(unit). The file data is truncated at the beginning
of each path, therefore it contains the coordinates of the current path
only.

 Each path is made of Nstep steps. The random vector [image: ⃗
ξistep] is chosen and it
is added in the current position [image: ⃗ristep = (x,y)]. The choice on [image: ⃗ξistep] is made in
the line

 ir = INT(drandom()*4)

 where the variable ir [image: = 0,1,2,3] because the function INT returns the integer
part of a real. The values of ir correspond to the four possible directions
of [image: ⃗
ξ]. We use the construct select case(ir) in order to move in the
direction chosen by ir. Depending on its value, the control of the program is
transferred to the command that moves the walker to the corresponding
direction.

 Compiling and running the program can be done with the commands

> gfortran rw.f90 drandom.f90 -o rw

> ./rw

 Because of the command call sleep(2), the program temporarily halts
execution for 2 seconds at the end of each generated path (you should remove this
line at the production stage). This allows us to monitor the generated
paths graphically. During the execution of the program, use gnuplot
in order to plot the random walk which is currently stored in the file
data:

gnuplot> plot "data" with lines

 Repeat for as many times as you wish to see new random walks. The automation
of this process is taken care in the script eternal-rw:

> ./rw &

> ./eternal-rw &

> killall rw eternal-rw gnuplot

 The last command ends the execution of all programs.

[image: pict]

Figure 11.8: Four typical paths of the RW for [image: N = 10000].

 Some typical paths are shown in figure 11.8. Figure 11.9 shows the results for
the expectation value [image: ⟨R2⟩] for [image: N = 10,...,100000] which confirm equation
(11.30) [image: ⟨R2 ⟩ = N].

[image: pict]

Figure 11.9: Numerical
confirmation of the relation [image: 2
⟨R ⟩ = N] for [image: N = 10,...,100000]. The straight line is the
fit of the data to the function [image: y = ax] with [image: a = 0.9994(13)].

 You can reproduce this figure as follows:

 	Set the values of Nwalk and Nstep in the file rw.f90. Delete the
 commands call sleep(2) and write(21,*) x,y and compile the
 code.

 	Run the program and analyze the data in the file dataR:

 > ./rw

> awk ’{av += $1}END{print av/NR}’ dataR

 Write the results in a file r2.dat in two columns with the length of the
 paths [image: N] in the first column and with [image: 2
⟨R ⟩] in the second. The
 command13
 {av+=$1} in the awk program adds the first column of each line of
 the file dataR to the variable av. After reading the whole file, the
 command END{print av/NR}, prints the variable av divided by the
 number of lines in the file (NR = “Number of Records”). This is a
 simple way for computing the mean of the first column of the file
 dataR.

 	Use a linear squares method in order to find the optimal line [image: y = ax + b]
 going through the points ([image: lnN],[image: 2
ln⟨R ⟩]). You can also use the fit
 command in gnuplot as follows:

 gnuplot> fit a*x+b "r2.dat" u (log($1)):(log($2)) via a,b

 	Construct the plot with the command:

 gnuplot> plot a*x+b,"r2.dat" u (log($1)):(log($2)) w e

The obtained results are meaningless without their statistical errors. Since each
measurement is statistically independent, the true expectation value is
approached in the limit of infinite measurements with a speed proportional to
[image: √---
∼ 1∕ M], where [image: M] is the number of measurements. For the same
reason14 ,
the statistical error is given by equation (11.3) , e.g.

 	

[image: ┌ -------(------------------------------)-
 ││ M∑ (∑M)2
δ⟨R2 ⟩ = │∘ ---1---(1-- (R2)2 − -1- R2).
 M − 1 M i M i
 i=1 i=1
]
	(11.34)

We can add the calculation of the error in the program in rw.f90 or we can leave
this task to external utilities. For example we can use the awk script, which is
written in the file average:

#!/usr/bin/awk -f

{

 av += $1; # the sum of data

 er += $1*$1; # the sum of squares of data

}

END{

 av /= NR; # NR = "Number of Records" = number of lines

 er /= NR;

 # formula for error of uncorrelated measurements

 er = sqrt((er - av*av)/(NR-1));

 print av, "+/-", er;

}

The contents of this file is an example of a script interpreted by the awk program.
The operating system knows which program to use for the interpretation by
reading the first line #!/bin/awk -f where the first two characters of the program
should be exactly #!. For the commands to be interpreted and executed, one has
to make the script executable using the command chmod a+x average. Then the
command

> ./average dataR

 executes the script using the awk interpreter. We remind to the
reader that the commands between curly brackets { ... } are
executed by awk for every line of the file dataR. The commands between
END{ ... } are executed after the last line of the file has been
read15 .
Therefore the lines

 av += $1; # the sum of data

 er += $1*$1; # the sum of squares of data

add the first column of the file dataR and its square to the variables av and er
respectively. The commands

 av /= NR; # NR = "Number of Records" = number of lines

 er /= NR;

 are executed after the whole file dataR has been read and divide the variables av
and er with the predefined variable NR which counts the total number of lines
read so far. The last lines of the script compute the error according to equation
(11.34) and print the final result. The shell script in the file rw1-anal.csh codes
all of the above commands in a script. Read the comments in the file for usage
instructions.

 11.4 Problems

 	Reproduce the results shown in figure 11.6 and confirm the validity of
 equation (11.5) .

 	Generate a sequence of pseudorandom numbers which follow a Gaussian
 distribution with standard deviation [image: √ --
σ = 1∕ 2]. Construct the plot
 of relative frequencies together with the plot of the probability density
 function.

 	Generate a sequence of pseudorandom numbers which follow the
 Cauchy distribution with [image: c = 1]. Construct the plot of relative
 frequencies together with the plot of the probability density function.

 	Write a program that calculates the period of the function drandom().
 Check whether the numbers 0 and 1 belong to the sequence.

 	Compute the CPU time cost of the random number generation as follows: If
 you have an executable file, e.g. random, run the /usr/bin/time command
 with ./random as its argument:

 > /usr/bin/time ./random

 Upon exit of the command, the program /usr/bin/time prints the total
 CPU time in seconds to the stderr. Compute the time needed to generate
 [image: 9
10] random numbers using the function drandom() and the subroutines
 random_number and ranlux. For RANLUX, measure the CPU time for each
 value of ranlux_level from 1 to 4. How does this time depend on
 whether the random numbers are generated one by one or in groups of
 1000 by calls to random_number and ranlux having as an argument
 an array of size 1000? How does the time change if the random
 numbers are generated in groups of 10000 instead? (Hint: see the file
 performance_ran.f90)

 	For each of the random number generators drandom(), random_number and
 ranlux, generate 10 random numbers. Then save the state of the
 generator in a file. Then generate 10 more random numbers. Read from
 the file the saved state of the generator and generate 10 random
 numbers. Check that the last two sequences of random numbers are
 identical.

 	Make the appropriate changes in the file seed.f90 so that it can be used for
 seeding RANLUX. Do it in two different ways: (a) by generating one seed and
 use RLUXGO for the initialization. (b) By generating 25 seeds and use RLUXIN
 for the initialization.

 	Show that if the expectation values of the vectors [image: ⟨⃗ξi⟩ = ⃗vτ] then
 [image: ⃗
⟨R⟩ = ⃗v τN] and we obtain a linear relation between displacement–length of
 path. The quantity [image: v] is the expectation value of the speed of the particle.
 Compute [image: ⟨R2 ⟩] for large values of [image: N].

 	Confirm the relations computed in the previous problem numerically. In
 your program, set the first line in (11.22) equal to [image: 1∕2] and the rest equal
 to [image: 1∕6]. Compute the expectation values [image: ⟨(ξi)x⟩] and [image: ⟨(ξi)y⟩] and use them
 to calculate the average speed of the particle. Check the validity of the

 relations [image: 2 α
⟨R ⟩ ∼ N] and [image: 2ax
⟨Rx ⟩ ∼ N] [image: 2ay
⟨Ry⟩ ∼ N]. What is the
 relation between [image: a], [image: ax] and [image: ay]?

 	Make the appropriate changes in the file rw.f90 so that the user can enter
 the values Nwalk and Nstep interactively using the command line
 arguments. For example, if she wants to generate 100 random walks with
 [image: N = 2000], she should run the command ./rw 100 2000. You will need to
 use the Fortran intrinsic functions GETARG and IARGC. (Hint: Look in the file
 rw1.f90)

 	We know that for the RW we have that [image: ⟨⃗R ⟩ = ⃗0]. Calculate [image: ⟨x ⟩] and [image: ⟨y⟩]
 numerically for [image: N = 100, 100000]. Are they really equal to zero? Why? How
 does this depend on the number of measurements?

 	Compute the expectation value of the number of returns of the RW to his
 initial position as a function of [image: N]. What happens as [image: N → ∞]?
 Why?

 	 Reproduce figure 11.9 for the RW.

 	 Write a program that implements the NRRW and reproduce the results in
 figure 11.9 for the NRRW.

 	In the program rw.f90 the RW’s position is determined by two REAL(8)
 variables x,y. The next position is calculated by the statements
 x=x+1.0D0, y=y+1.0D0. What are the limitations on the size of random
 walks that can be studied with this choice? What happens if one
 uses REAL variables x,y instead? Take into account the fact that
 [image: 2
⟨R ⟩ = N].

 	Repeat the previous problem by using INTEGER(8) variables x,y. The next
 position is calculated by the statements x=x+1, y=y+1. Discuss the pros and
 the cons of each choice.

 	Repeat the previous problems by using INTEGER(4) variables x,y. Discuss

 the pros and the cons of each choice by considering also the running time of
 the program. Use the command /usr/bin/time.

 	Write a straightforward code that implements the SAW. How big [image: N] can
 you simulate? Check whether the CPU time for computing a given number
 of random walks increases exponentially with [image: N]. Search the internet
 for the most efficient algorithm that simulates the SAW for large
 [image: N].

Chapter 12
Monte Carlo Simulations

In this chapter we review the basic principles of Monte Carlo simulations in
statistical mechanics. In the introduction, we review some of the fundamental
concepts of statistical physics. The reader should have a basic understanding of
concepts like the canonical ensemble, the partition function, the entropy,
the density of states and the quantitative description of fluctuations of
thermodynamic quantities. For a more in depth discussion of these concepts, see
 [4, 43, 51, 52, 53, 54].

 For most of the interesting systems, the partition function cannot be
calculated analytically, and in such a case we may resort to a numerical
computation. This is what is done most effectively using Monte Carlo simulations,
which consist of collecting a statistical sample of states of the system
with an appropriately chosen probability distribution. It is remarkable
that, by collecting a sample which is a tiny fraction of the total number
of states, we can perform an accurate calculation of its thermodynamic
quantities1 .
But this is no surprise: it happens in our labs all the
time2 !

 12.1 Statistical Physics

Statistical physics describes systems with a very large number of degrees of
freedom [image: N]. For simple macroscopic systems [image: 23
N ≈ 10] – [image: 44
10]. For such
systems, it is practically impossible to solve the microscopic equations that

govern their dynamics. Even if we could, the solution would have had much
more information than we need (and capable of analyzing!). It is enough,
however, to know a small number of bulk properties of the system in
order to have a useful description of it. E.g. it is enough to know the
internal energy and magnetization of a magnet or the energy and density of
a fluid instead of the detailed knowledge of the position, momentum,
energy and angular momentum of each particle they are made of. These
quantities provide a thermodynamic description of a system. Statistical
physics makes an attempt to derive these quantities from the microscopic
degrees of freedom and their dynamics given by the Hamiltonian of the
system.

 Consider a system which can be in a set of discrete states which belong to a countable
set [image: {μ}]. The energy spectrum of those states is assumed to consist of discrete
values3
[image: E0 < E1 < ... < En < ...]. This system is in contact and interacts with a large
heat reservoir which has temperature [image: β = 1∕kT]. The contact with the
reservoir results in random transitions which change the energy of the
system4 .
The system is described by the weights [image: w μ(t)] which give the probability to find
the system in a state [image: μ] at time [image: t]. These weights are the connection between the
microscopic and statistical description of the system. When this system is in
thermal equilibrium with the reservoir, its statistical properties are described by
the, so called, canonical ensemble.

 Let [image: R(μ → ν)] be the transition rates from the state [image: μ → ν], i.e.

 	

[image: R (μ → ν)dt = Transition probability μ → ν in time dt,
]
	(12.1)

which depend on the interaction between the system and the thermal reservoir.
The master equation for the weights [image: w (t)
 μ] is

[image: dw (t) ∑
 ---μ--- = {wν(t)R (ν → μ) − w μ(t)R (μ → ν)}
 dt ν
∑
 w μ(t) = 1. (12.2)
 μ
]

The first of the above equations tells us that the change in [image: w (t)
 μ] is equal to
the rate that the system comes into the state [image: μ] from any other state
[image: ν], minus the rate of leaving the state [image: μ]. The second equation is a
result of the probability interpretation of the weights [image: w μ(t)] and states
that the probability of finding the system in any state is equal to 1 at all
times.
 The transition rates [image: R (μ → ν)] are assumed to be time independent
and then the above system of equations for [image: wμ(t)] is linear with real
parameters. This, together with the constraint [image: 0 ≤ w μ(t) ≤ 1], implies
that5 ,
in the large time limit, [image: dwμ(t)
 dt = 0] and the system reaches equilibrium. Then, the
[image: w μ(t)] converge to finite numbers [image: pμ ≥ 0]. These are the equilibrium occupation
probabilities

[image: ∑
pμ = lim w μ(t), pμ = 1. (12.3)
 t→∞ μ
]

For a system in thermodynamic equilibrium with a reservoir in temperature [image: T],
with [image: β = 1∕kT], the probabilities [image: pμ] follow the Boltzmann distribution (Gibbs
1902)
 	

[image: 1
pμ = -e− βEμ,
 Z
]
	(12.4)

and define the, so called, canonical ensemble. The parameter [image: β] will be frequently
referred to as simply “the temperature” of the system, although, strictly speaking,
it is the inverse of it. Its appearance in the exponential in equation (12.4) ,
defines a characteristic energy scale of the system. The Boltzmann constant
[image: k ≈ 1.38 × 10 −23JK −1] is simply a conversion constant between units of
energy6 .

 The normalization [image: Z] in equation (12.4) is the so called partition function of
the system. The condition [image: ∑ pμ = 1
 μ] implies

 	

[image: ∑ −βEμ
Z (β) = e
 μ
]
	(12.5)

 The measurement of a physical quantity, or observable, of a thermodynamic
system has a stochastic character. For systems with very large number of degrees
of freedom [image: N], one is interested only in the average value of such a quantity. This
is because the probability of measuring the quantity to take a value significantly
different from its average is ridiculously small. The average, or expectation value,
[image: ⟨𝒪 ⟩] of a physical observable [image: 𝒪] whose value in a state [image: μ] is [image: 𝒪 μ] is equal
to

 	

[image: ∑ ∑
⟨𝒪 ⟩ = pμ𝒪 μ = 1- 𝒪 μe−βEμ.
 μ Z
]
	(12.6)

As we will see later, the standard deviation [image: Δ 𝒪] for a typical thermodynamic
system is such that

 	

[image: Δ-𝒪- --1-
 𝒪 ∼ √N--,
]
	(12.7)

which is quite small for macroscopic
systems7 .
In such cases, the fluctuations of the values of [image: 𝒪] from its expectation value
[image: ⟨𝒪 ⟩] can be neglected. The limit [image: N → ∞] is the so called thermodynamic limit,
and it is in this limit in which we are studying systems in statistical mechanics.
Most systems in the lab are practically in this limit, but in the systems simulated
on a computer we may be far from it. The state of the art is to invent methods
which can be used to extrapolate the results from the study of the finite system to
the thermodynamic limit efficiently.

 Because of (12.5) , the partition function encodes all the statistical
information about the system. It is not just a simple function of one or more
variables, but it counts all the states of the system with the correct weight. Its
knowledge is equivalent to being able to compute any thermodynamic
quantity like, for example, the expectation value of the energy [image: ⟨E ⟩] of the
system8 :

[image: 1 ∑ 1 ∑ ∂ 1 ∂ ∑
U ≡ ⟨E ⟩ = -- E μe−βEμ = − -- ---e−βEμ = − ----- e− βEμ
 Z μ Z μ ∂β Z ∂ β μ
 1 ∂Z ∂ ln Z
 = − -- ----= − ------. (12.8)
 Z ∂β ∂ β
]

 Similarly, one can calculate the specific heat from

 	

[image: 2 2
C = ∂U-= ∂β-∂U--= (− k β2)(− ∂-ln-Z) = k β2∂-ln-Z-.
 ∂T ∂T ∂β ∂β2 ∂β2
]
	(12.9)

 12.2 Entropy

The entropy [image: S] of a thermodynamic system is defined by

 	

[image: ∂F
S = − ----, F = U − T S,
 ∂T
]
	(12.10)

where [image: F] is the free energy if the system. We will attempt to provide microscopic
definitions that are consistent with the above equations.

 We define the free energy from the relation

[image: −βF ∑ −βEμ
e = Z ≡ e , (12.11)
 μ
]

or equivalently

[image: 1
F = − --lnZ. (12.12)
 β
]

Note that for [image: T → 0] the free energy becomes the ground state
energy9 .
Indeed, as [image: β → ∞] only the lowest energy term in equation (12.11) survives.
For this reason, equation (12.10) gives [image: limT →0 S = 0], which is the third law of

thermodynamics.
 The definition (12.11) is consistent with (12.10) since

 	

[image: ∂-ln-Z- -∂- ∂F-- ∂F--
U = − ∂ β = − ∂β (− βF) = F + β ∂β = F − T ∂T = F + T S.
]
	(12.13)

 The relation of the entropy [image: S] to the microscopic degrees of freedom can be
derived from equations (12.11) and (12.10) :

 	

[image: S- U-−--F- ∑ 1-
k = kT = β(U − F) = β(pμE μ + β ln Z).
 μ
]
	(12.14)

But

 	

[image: − βEμ
pμ = e----- ⇒ Eμ = − 1(lnpμ + lnZ),
 Z β
]
	(12.15)

therefore

[image: S ∑ (1 1)
-- = β − -(lnpμ + lnZ)pμ + --lnZ
k μ β β
 ∑ ∑
 = − pμ ln pμ − lnZ pμ + lnZ
 μ μ
 ∑
 = − pμ ln pμ. (12.16)
 μ
]

Finally
 	

[image: ∑
S = − k pμ ln pμ.
 μ
]
	(12.17)

 Let’s analyze the above relation in some special cases. Consider a
system10
where all possible states have the same energy. For such a system, using equation
(12.17) , we obtain that

 	

[image: 1-
p μ = g = const. ⇒ S = k ln g.
]
	(12.18)

Therefore, the entropy simply counts the number of states of the system. This is
also the case in the microcanonical ensemble. Indeed, equation (12.18) is also
valid for the distribution

 	

[image: {
 --1- Eμ = E
pμ = g(E) ,
 0 Eμ ⁄= E
]
	(12.19)

which can be considered to be equivalent to the microcanonical ensemble
since it enforces [image: Eμ = E = const.] Equation (12.19) can viewed as an
approximation to a distribution sharply peaked at [image: E]. In such a case, [image: S] counts,
more or less, the number of states of the system with energy close to
[image: E].

 In general, the function11
[image: g(E)] is defined to be equal to the number of states with energy equal to [image: E].
Then the probability [image: p(E)] to measure energy [image: E] in the canonical ensemble
is

 	

[image: ∑ 1-∑ −βEμ -1 − βE ∑
p(E) = ⟨δE,Eμ⟩ = p μδE,E μ = Z e δE,Eμ = Z e δE,Eμ.
 μ
]
	(12.20)

Since [image: ∑ δE,E = g(E)
 μ μ], we obtain

 	

[image: g(E)e− βE
p(E) = ⟨δE,E μ⟩ = ---------.
 Z
]
	(12.21)

For a generic system we have that

 	

[image: g (E) ∼ E αN ,
]
	(12.22)

where [image: N] is the number of degrees of freedom of the system and [image: α] is a constant.

[image: pict]

Figure 12.1: The probability [image: p(E)] as a result of the competition of the Boltzmann
factor [image: −βE
e] and the density of states [image: αN
g(E) ∼ E]. [image: ∗
E] is the most probable value of
the energy and [image: ΔE] is a measure of the energy fluctuations.

 The qualitative behavior of the distribution (12.21) is shown in figure 12.1.
For such a system the most probable values of the energy are sharply peaked
around a value [image: E∗] and the deviation [image: ΔE] is a measure of the energy
fluctuations. The ratio [image: ΔE ∕E] drops with [image: N] as [image: 1∕ √N---]. Indeed, the
function12

 	

[image: αN − βE −βE −αN lnE
p˜(E) = E e = e
]
	(12.23)

has a maximum when

 	

[image: || ||
∂-lnp˜(E-)| = 0 ⇒ -∂-(− βE + αN ln E)| = − β + αN-- = 0
 ∂E |E=E ∗ ∂E |E=E ∗ E∗
]
	(12.24)

or

 	

[image: ∗ α
E = βN .
]
	(12.25)

As the temperature increases ([image: β] decreases), [image: E ∗] shifts to larger values. [image: E ∗] is
proportional to the system size. By Taylor expanding around [image: E ∗] we obtain

[image: ||
ln ˜p(E) = ln ˜p(E∗) + (E − E ∗) ∂ ln-˜p(E)-|
 ∂E |E=E ∗
 1 ∂2ln ˜p(E)||
 + -(E − E ∗)2 ------2--|| + ...
 2 ∂E (E=E ∗)
 ∗ 1 ∗ 2 αN
 = ln ˜p(E) + -(E − E) − ---∗-2 + ..., (12.26)
 2 (E)
]

where we used equation (12.24) and computed [image: 2 |
∂-ln∂pE˜(2E)||
 E=E ∗]. Therefore
 	

[image: (E−E∗)2
p(E) ≈ p(E ∗)e −αN-2(E-∗)2 ,
]
	(12.27)

which is a Gaussian distribution with standard deviation

 	

[image: ∘ ------ ∘ -αN---- √ ---
 (E-∗)2 (-β-)2 --N-
ΔE ∼ αN = αN ∼ β .
]
	(12.28)

Therefore we confirm the relation (12.7)

 	

[image: √ --
ΔE -βN 1
--∗-∼ -N--= √---.
E β N
]
	(12.29)

In the analysis above we assumed analyticity (Taylor expansion, equation (12.26)
), which is not valid at a critical point of a phase transition in the thermodynamic
limit.

 Another important case where the above analysis becomes slightly more
complicated is when the distribution [image: p(E)] has more than one equally probable
maxima13
separated by a large probability barrier as shown in figure 12.2 like when the
system undergoes a first order phase transition. Such a transition occurs when ice
turns into water or when a ferromagnet looses its permanent magnetization due to
temperature increase past its Curie point. In such a case the two states, ice –
water / ferromagnet – paramagnet, are equally probable and coexist. This is
qualitatively depicted in figure 12.2.

[image: pict]

Figure 12.2: Two peak structure in the distribution [image: p(E)] of the energy [image: E] for a
system undergoing a first order phase transition. The two maxima correspond to two
coexisting states (“ice”–”water”) and [image: ΔE ∕N] is the latent heat. In the thermodynamic
limit [image: N → ∞], [image: R = pmin∕pmax] decreases like [image: R ∼ e−fA], where [image: A] is the minimal
surface separating the two phases and [image: f] is the interface tension.

 12.3 Fluctuations

The stochastic behavior of every observable [image: 𝒪] is given by a distribution function
[image: p(𝒪)] which can be derived from the Boltzmann distribution (12.4) . Such a
distribution is completely determined by its expectation value [image: ⟨𝒪 ⟩] and
all its higher order moments, i.e. the expectation values [image: ⟨(𝒪 − ⟨𝒪 ⟩)n⟩],
[image: n = 1,2,3....]. The most commonly studied moment is the second moment
([image: n = 2])

 	

[image: (Δ 𝒪)2 ≡ ⟨(𝒪 − ⟨𝒪 ⟩)2⟩ = ⟨𝒪2 ⟩ − ⟨𝒪⟩2.
]
	(12.30)

For a distribution with a single maximum, [image: Δ 𝒪] is a measure of the fluctuations
of [image: 𝒪] away from its expectation value [image: ⟨𝒪 ⟩]. When [image: 𝒪 = E] we obtain

 	

[image: 2 2 2 2
(ΔE) ≡ ⟨(E − ⟨E ⟩) ⟩ = ⟨E ⟩ − ⟨E ⟩ ,
]
	(12.31)

and using the relations

 	

[image: 2 1-∑ 2 −βEμ 1-∂2--∑ −βEμ -1 ∂2Z-
⟨E ⟩ = Z E μe = Z ∂β2 e = Z ∂β2 ,
 μ μ
]
	(12.32)

and

 	

[image: ∑ ∑
⟨E ⟩ = 1- Eμe −βEμ = − 1--∂- e−βE μ = − 1-∂Z-,
 Z μ Z ∂β μ Z ∂β
]
	(12.33)

we obtain that

 	

[image: 2 ()2 2
(ΔE)2 = ⟨E2 ⟩ − ⟨E ⟩2 = -1∂--Z − − 1-∂Z-- = ∂--ln-Z-,
 Z ∂β2 Z ∂ β ∂β2
]
	(12.34)

which, according to (12.9) , is the specific heat

 	

[image: ∂-⟨E-⟩ 2 2
C = ∂T = k β (ΔE) .
]
	(12.35)

This way we relate the specific heat of a system (a thermodynamic quantity) with
the microscopic fluctuations of the energy.

 This is true for every physical quantity which is linearly coupled to an external
field (in the case of [image: E], this role is played by [image: β]). For a magnetic system in a
constant magnetic field [image: B], such a quantity is the magnetization [image: M]. If [image: M μ] is
the magnetization of the system in the sate [image: μ] and we assume that its direction is
parallel to the direction of the magnetic field [image: ⃗B], then the Hamiltonian of the
system is

 	

[image: H = E − BM ,

]
	(12.36)

and the partition function is

 	

[image: ∑ −βE +βBM
Z = e μ μ.
 μ
]
	(12.37)

“Linear coupling” signifies the presence of the linear term [image: BM] in the
Hamiltonian. The quantities [image: B] and [image: M] are called conjugate to each other.
Other well known conjugate quantities are the pressure/volume ([image: P]/[image: V]) in a gas
or the chemical potential/number of particles ([image: μ]/[image: N]) in the grand canonical
ensemble.

 Because of this linear coupling we obtain

 	

[image: 1-∑ −βEμ+βBM μ -1-∂Z-- ∂F--
⟨M ⟩ = Z M μe = βZ ∂B = − ∂B ,
 μ
]
	(12.38)

which is analogous to (12.8) . The equation corresponding to (12.34) is obtained
from (12.30) for [image: 𝒪 = M]

 	

[image: 2 2 2 2
(ΔM) ≡ ⟨(M − ⟨M ⟩) ⟩ = ⟨M ⟩ − ⟨M ⟩ .
]
	(12.39)

From (12.37) we obtain

 	

[image: 1 ∑ 1 ∂2Z
⟨M 2⟩ = -- M μ2e −βEμ+βBM μ = --2- ---2,
 Z μ β Z ∂B
]
	(12.40)

therefore

 	

[image: { 2 ()2 } 2
(ΔM)2 = -1- -1-∂-Z-− 1-- ∂Z-- = 1--∂-lnZ--= 1∂-⟨M-⟩.
 β2 Z ∂B2 Z2 ∂B β2 ∂B2 β ∂B
]
	(12.41)

The magnetic susceptibility [image: χ] is defined by the equation

 	

[image: -1-∂⟨M-⟩- β-- 2
χ = N ∂B = N ⟨(M − ⟨M ⟩) ⟩,
]
	(12.42)

where we see its relation to the fluctuations of the magnetization. This analysis
can be repeated in a similar way for every pair of conjugate quantities.

 12.4 Correlation Functions

The correlation functions can be obtained is a similar manner when we consider
external fields which are space dependent. For simplicity, consider a system
defined on a discrete lattice, whose sites are mapped to natural numbers
[image: i = 1,...,N]. Then the magnetic field [image: Bi] is a function of the position [image: i] and
interacts with the spin [image: si] so that

 	

[image: ∑
H = E − Bisi.
 i
]
	(12.43)

Then the magnetization per site
[image: mi ≡ si]14
at position [image: i] is

 	

[image: ⟨si⟩ = 1-∂-ln-Z-.
 β ∂Bi
]
	(12.44)

The connected two point correlation function is defined by

 	

[image: 1 ∂2 ln Z
G (c2)(i,j) = ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)⟩ = ⟨sisj⟩ − ⟨si⟩⟨sj⟩ =----------.
 β2 ∂Bi∂Bj
]
	(12.45)

When the values of [image: si] and [image: sj] are strongly correlated, i.e. they “vary together”
in the random samples that we take, the function (12.45) takes on large positive
values. When the values of [image: si] and [image: sj] are not at all correlated with
each other, the terms [image: (si − ⟨si⟩)(sj − ⟨sj⟩)] in the sum over [image: μ] in the
expectation value [image: ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)⟩] cancel each other and [image: (2)
G c (i,j)] is
zero15 .

[image: pict]

Figure 12.3: The connected two point correlation function [image: G (2)(i,j)
 c] for [image: ξ < ∞] and
[image: ξ → ∞].

 The function [image: (2)
G c (i,j)] takes its maximum value [image: 2
⟨(si − ⟨si⟩) ⟩] for [image: i = j].
Then it falls off quite fast. For a generic system

 	

[image: (2) −|xij|∕ξ
G c (i,j) ∼ e ,
]
	(12.46)

where [image: |xij|] is the distance between the points [image: i] and [image: j]. The correlation length
[image: ξ], is a characteristic length scale of the system which is a measure of the
distance where there is a measurable correlation between the magnetic moments
of two lattice sites. It depends on the parameters that define the system
[image: ξ = ξ(β, B, N,...)]. It is important to stress that it is a length scale that arises
dynamically. In contrast, length scales like the size of the system [image: L] or the lattice
constant [image: a] are parameters of the system which don’t depend on the dynamics. In
most of the cases, [image: ξ] is of the order of a few lattice constants [image: a] and such a
system does not exhibit correlations at macroscopic scales (i.e. of the order of
[image: L]).

 Interesting physics arises when [image: ξ → ∞]. This can happen by fine tuning the parameters
on which [image: ξ] depends on to their critical values. For example, in the neighborhood of a
continuous16
phase transition, the exponential falloff in (12.46) vanishes and [image: (2)
G c (i,j)] falls
off like a power (see figure 12.3)

 	

[image: G (2)(i,j) ∼ ----1----,
 c |xij|d−2+η
]
	(12.47)

where [image: d] is the number of dimensions of space and [image: η] a critical exponent. As we approach the
critical point17 ,
correlations extend to distances [image: |xij| ≫ a]. Then the system is not sensitive to the
short distance details of the lattice and its dynamics are very well approximated
by continuum space dynamics. Then we say that we obtain the continuum limit of
a theory which is microscopically defined on a lattice. Since the microscopic
details become irrelevant, a whole class of theories with different microscopic
definitions18
have the same continuum limit. This phenomenon is called universality and plays
a central role in statistical physics and quantum field theories.

 12.5 Sampling

Our main goal is to calculate the expectation value [image: ⟨𝒪 ⟩],

 	

[image: ∑
 ∑ μ𝒪 μe− βEμ
⟨𝒪 ⟩ = pμ𝒪 μ = -∑----−βEμ--,
 μ μ e

]
	(12.48)

of a physical quantity, or observable, [image: 𝒪] of a statistical system in the canonical
ensemble approximately. For this reason we construct a sample of [image: M]
states [image: {μ ,
 1] [image: μ ,
 2] [image: ...,] [image: μ }
 M] which are distributed according to a chosen
probability distribution [image: Pμ]. We define the estimator [image: 𝒪M] of [image: ⟨𝒪 ⟩] to
be

 	

[image: ∑M − 1− βEμi
𝒪M = -∑i=1-𝒪-μiPμi e-----.
 Mi=1 Pμ−1e−βEμi
 i
]
	(12.49)

The above equation is easily understood since, for a large enough sample,
[image: P μi ≈ “Frequency of finding μi in the sample ”], and we expect that

 	

[image: ⟨𝒪 ⟩ = lim 𝒪M .
 M→ ∞
]
	(12.50)

Our goal is to find an appropriate [image: P
 μ] so that the convergence of (12.50) is as
fast as possible. Consider the following cases:

 12.5.1 Simple Sampling

We choose [image: P μ = const.], and equation (12.49) becomes

 	

[image: ∑M −βEμi
𝒪M = --∑i=1-𝒪-μie------.
 Mi=1 e−βEμi
]
	(12.51)

The problem with this choice is the small overlap of the sample with the states
that make the most important contributions to the sum in (12.48) . As we
have already mentioned in the introduction, the size of the sample in a
Monte Carlo simulation is a minuscule fraction of the total number of
states. Therefore, the probability of picking the ones that make important
contributions to the sum in (12.48) is very small. Consider for example the case
[image: 𝒪 = E] in a generic model. According to equation (12.21) we have
that

 	

[image: ∑
⟨E ⟩ = Ep (E),
 E
]
	(12.52)

where [image: p(E)] is the probability of measuring energy [image: E] in the system. A
qualitative plot of [image: p (E)] is shown in figure 12.1. From (12.25) and (12.28) we
have that [image: E ∗ ∼ 1∕β] and [image: ΔE ∼ 1∕β], therefore for [image: β = 0] and [image: β > 0] the
qualitative behavior of the respective [image: p(E)] distributions is shown in figure 12.4.

[image: pict]

Figure 12.4: The distributions [image: p(E)] for a generic model for temperatures [image: β = 0]
and [image: β > 0]. The two distributions have negligible overlap. In order that the [image: β = 0]
distribution is as shown, we assume that the energy of all states is bounded and that the
system has a finite number of degrees of freedom.

 The distribution of the simple sampling corresponds to the
case [image: β = 0] in equation (12.4) , since [image: pμ =]const. in this
case19 .
In order to calculate the sum (12.52) with acceptable accuracy for [image: β > 0] we
have to obtain a good sample in the region where the product [image: Ep β>0(E)] is
relatively important. The probability of obtaining a state such that [image: Ep β>0(E)] is
non negligible is very small when we use the [image: pβ=0(E)] distribution. This can be
seen pictorially in figure 12.4.

 Even though this method has this serious shortcoming, it could still be useful
in some cases. We have already applied it in the study of random walks. Note
that, by applying equation (12.51) , we can use the same sample for calculating
expectation values for all values of [image: β].

 12.5.2 Importance Sampling

From the previous discussion it has become clear that, for a large system, a very
small fraction of the space of states makes a significant contribution to the
calculation of [image: ⟨𝒪 ⟩]. If we choose a sample with probability

 	

[image: −βE μ
P μ = pμ = e-----,
 Z
]
	(12.53)

then we expect to sample exactly within this region. Indeed, the estimator, given
by equation (12.49) , is calculated from

 	

[image: ∑ ()−1
 Mi=1 𝒪 μi e−βEμi e− βEμi 1 ∑M
𝒪M = --∑M----(-−βEμ-)−1-−-βEμ---= M-- 𝒪μi.
 i=1 e i e i i=1
]
	(12.54)

Sampling this way is called importance sampling, and it is the method of choice in
most Monte Carlo simulations. The sample depends on the temperature [image: β] and
the calculation of the expectation values (12.54) requires a new sample for
each20
[image: β]. This extra effort, however, is much smaller than the one required in order to
overcome the overlap problem discussed in the previous subsection.

 12.6 Markov Processes

Sampling according to a desired probability distribution [image: Pμ] is not possible in a
direct way. For example, if we attempt to construct a sample according to
[image: −βEμ
P μ = e-Z--] by picking a state [image: μ] by chance and add it to the sample with
probability [image: Pμ], then we have a very small probability to accept that state in the
sample. Therefore, the difficulty of constructing the sample runs into the same
overlap problem as in the case of simple sampling. For this reason we construct a
Markov chain instead. The members of the sequence of the chain will be our
sample. A Markov process, or a Markov chain, is a stochastic process which, given
the system in a state [image: μ], puts the system in a new state [image: ν] in such a way that it
has the Markov property, i.e. that it is memoryless. This means that a chain of
states

 	

[image: μ1 → μ2 → ...→ μM ,
]
	(12.55)

is constructed in such a way that the transition probabilities [image: P (μ → ν)] from the
state [image: μ] to a new state [image: ν] satisfy the following requirements:

 	They are independent of “time”

 	They depend only on the states [image: μ] and [image: ν] and not on the path that the
 system has followed on order to get to the sate [image: μ] (memorylessness)

 	The relation
 	

 [image: ∑
 P(μ → ν) = 1
 ν
]
	(12.56)

 holds. Beware, in most of the cases [image: P (μ → μ) > 0], i.e. the system has a
 nonzero probability to remain in the same state

 	For [image: M → ∞] the sample [image: {μi}] follows the [image: P μ] distribution.

Then our sample will be [image: {μi} ≡ {μ1,μ2, ...,μM }]. We may imagine that
this construction happens in “time” [image: i = 1,2,...,M]. In a Monte Carlo
simulation we construct a sample from a Markov chain by appropriately
choosing the transition probabilities [image: P (μ → ν)] so that the convergence 4. is
fast.

 Choosing the initial state [image: μ
 1] can become a non trivial task. If it turns out
not to be a typical state of the sample, then it could take a long “time” for the
system to “equilibrate”, i.e. for the Markov process to start sampling
states typical of the simulated temperature. The required time for this to
happen is called the thermalization time which can become a serious part
of our computational effort if we make a wrong choice of [image: μ
 1] and/or
[image: P (μ → ν)].

 A necessary condition for the sample to converge to the desired distribution is
for the process to be ergodic. This means that for every state [image: μ] it is possible to
reach any other state [image: ν] in a finite number of steps. If this criterion is
not satisfied and a significant part of phase space is not sampled, then
sampling will fail. Usually, given a state [image: μ], the reachable states [image: ν] at
the next step (i.e. the states for which [image: P (μ → ν) > 0]) are very few.
Therefore the ergodicity of the algorithm considered must be checked
carefully21 .

 12.7 Detailed Balance Condition

Equation (12.2) tells us that, in order to find the system in equilibrium in the
[image: p
 μ] distribution, the transition probabilities should be such that

 	

[image: ∑ ∑
 p μP(μ → ν) = pνP (ν → μ).
 ν μ
]
	(12.57)

This means that the rate that the system comes into the state [image: μ] is equal to the
rate in which it leaves [image: μ]. From equation (12.56) we obtain

 	

[image: p = ∑ p P (ν → μ).
 μ ν
 μ
]
	(12.58)

This condition is necessary but it is not sufficient (see section 2.2.3 in [4]). A
sufficient, but not necessary, condition is the detailed balance condition. When the
transition probabilities satisfy

 	

[image: pμP (μ → ν) = pνP (ν → μ),

]
	(12.59)

then the system will equilibrate to [image: p μ] after sufficiently long thermalization time.
By summing both sides of (12.59) , we obtain the equilibrium condition (12.57) .
For the canonical ensemble (12.4) the condition becomes

 	

[image: P (μ → ν) p
---------- = -ν-= e−β(Eν−Eμ).
P (ν → μ) pμ
]
	(12.60)

One can show that if the transition probabilities satisfy the above conditions
then the equilibrium distribution of the system will be the Boltzmann
distribution (12.4) . A program implementing a Monte Carlo simulation of a
statistical system in the canonical ensemble consists of the following main
steps:

 	Write a program that codes appropriately chosen transition
 probabilities [image: P(μ → ν)] that satisfy condition (12.60)

 	Choose an initial state [image: μ1]

 	Let the system evolve until it thermalizes to the Boltzmann distribution
 (12.4) (thermalization)

 	Collect data for the observables [image: 𝒪] and calculate the estimators [image: 𝒪M]
 from equation (12.54)

 	Stop when the desired accuracy in the calculation of [image: ⟨𝒪⟩] has been
 achieved.

 Equation (12.60) has many solutions. For a given problem, we are looking for
the most efficient one. Below we list some possible choices:

 	

[image: − 12β(Eν−Eμ)
P (μ → ν) = A ⋅ e ,
]
	(12.61)

 	

[image: − β(E ν− Eμ)
P (μ → ν) = A ⋅ -e------------,
 1 + e− β(Eν− Eμ)
]
	(12.62)

 	

[image: { −β(Eν−E μ)
P (μ → ν) = A ⋅ e E ν − Eμ > 0 ,
 1 E ν − Eμ ≤ 0
]
	(12.63)

for appropriately chosen states [image: ν ⁄= μ] and

 	

[image: ∑
P(μ → μ) = 1 − P (μ → ν).
 ν
]
	(12.64)

[image: ′
P (μ → ν) = 0] for any other state [image: ′
ν]. In order for (12.64) to be meaningful,
the constant [image: A] has to be chosen so that

 	

[image: ∑
 P(μ → ν) < 1.
ν⁄=μ
]
	(12.65)

 Equation (12.65) gives much freedom in the choice of transition probabilities.
In most cases, we split [image: P (μ → ν)] in two independent parts

 	

[image: P (μ → ν) = g(μ → ν)A(μ → ν).
]
	(12.66)

The probability [image: g(μ → ν)] is the selection probability of the state [image: ν] when the
system is in the state [image: μ]. Therefore the first step in the algorithm is to select a
state [image: ν ⁄= μ] with probability [image: g(μ → ν)].

 The second step is to accept the change with probability [image: A(μ → ν)]. If the
answer is no, then the system remains in the state [image: μ]. This way equation
(12.64) is satisfied. The probabilities [image: A(μ → ν)] are called the acceptance
ratios.

 The art in the field is to device algorithms that give the maximum possible
acceptance ratios for the new states [image: ν] and that the states [image: ν] are as much as
possible statistically independent from the original state [image: μ]. An ideal situation is
to have [image: A (μ → ν) = 1] for all [image: ν] for which [image: g(μ → ν) > 0]. As we will see in a
following chapter, this is what happens in the case of the Wolff cluster
algorithm.

 12.8 Problems

 	Prove equation (12.18) .

 	Prove equation (12.19) .

 	Prove equation (12.45) .

 	Show that equations (12.61) – (12.63) satisfy (12.60) .

Chapter 13
Simulation of the [image: d = 2] Ising Model

This chapter is an introduction to the basic Monte Carlo methods used in the
simulations of the Ising model on a two dimensional rectangular lattice,
but also in a wide spectrum of scientific applications. We will introduce
the Metropolis algorithm, which is the most common algorithm used
in Monte Carlo simulations. We will discuss the thermalization of the
system and the effect of correlations between successive spin configurations
generated during the simulation. The autocorrelation function and the
time scale defined by it, the autocorrelation time, are measures of these
autocorrelations and play a central role in the study of the statistical
independence of our measurements. Beating autocorrelations is crucial in Monte
Carlo simulations since they are the main obstacle for studying large
systems, which in turn is essential for taking the thermodynamic limit
without the systematic errors introduced by finite size effects. We will also
introduce methods for the computation of statistical errors that take into
account autocorrelations. The determination of statistical errors is of
central importance in order to assess the quality of a measurement and
predict the amount of resources needed for reaching a specific accuracy
goal.

 13.1 The Ising Model

The Ising model (1925) [55] has played an important role in the evolution of
ideas in statistical physics and quantum field theory. In particular, the two
dimensional model is complicated enough in order to possess nontrivial properties
but simple enough in order to be able to obtain an exact analytic solution. The
zero magnetic field model has a 2nd order phase transition for a finite value of the
temperature and we are able to compute critical exponents and study its
continuum limit in detail. This gives us valuable information on the non analytic
properties of a system undergoing a second order phase transition, the appearance
of scaling, the renormalization group and universality. Using the exact
solution1
of Onsager (1948) [56] and others, we obtain exact results and compare them
with those obtained via approximate methods, like Monte Carlo simulations,
high and low temperature expansions, mean field theory etc. The result
is also interesting from a physics point of view, since it is the simplest,
phenomenologically interesting, model of a ferromagnetic material. Due to

universality, the model describes also the liquid/vapor phase transition at
the triple point. A well known textbook for a discussion of statistical
mechanical models that can be solved exactly is the book by Baxter [54].

[image: pict]

Figure 13.1: The two dimensional square lattice whose sites [image: i = 1,...,N] are occupied
by “atoms” or “magnets” with spin [image: si]. In this figure spins may have any orientation on
the plane (XY model). The simplest models take into account only the nearest neighbor
interactions [image: − J⃗si ⋅⃗sj], where [image: ⟨ij⟩] is a link of the lattice. We take periodic boundary
conditions which result in a toroidal topology on the lattice where the horizontal and
vertical sides of the lattice are identified. In the figure, identified sides have the same color
and their respective sites are connected by a link..

 In order to define the model, consider a two dimensional square lattice like the
one shown in figure 13.1. On each site or node of the lattice we have an “atom” or
a “magnet” of spin [image: si]. The geometry is determined by the distance of the
nearest neighbors, the lattice constant [image: a], and the number of sites [image: N].
Each side consists of [image: L] sites so that [image: d
N = L × L = L], where [image: d = 2] is
the dimension of space. The topology is determined by the way sites are
connected with each other via links. Special care is given to the sites
located on the sides of the lattice. We usually take periodic boundary
conditions which is equivalent to identifying the opposite sides of the square
by connecting their sites with a link. This is depicted in figure (13.1) .
Periodic boundary conditions endow the plane on which the lattice is defined
with a toroidal topology. The system’s dynamics are determined by the
spin–spin interaction. We take it to be short range and the simplest case
considered here takes into account only nearest neighbor interactions.

[image: pict]

Figure 13.2: The Ising model spins take two possible values: “up” or “down” and the
Hamiltonian of the system is the sum of contributions of the energy of all links (“bonds”)
[image: ⟨ij⟩]. The energy of each bond takes two values, [image: + J] for opposite or [image: − J] for same
spins, where [image: J > 0] for a ferromagnetic system. The system possesses a discrete [image: Z2]
symmetry: The Hamiltonian is invariant when all [image: si → − si].

 In the Ising model, spins have two possible values, “up” or “down” which we
map2
to the numerical values [image: + 1] or [image: − 1]. For the ferromagnetic model, each link
is a “bond” whose energy is higher when the spins on each side of the
link are pointing in the same direction and lower when they point in the
opposite3
direction. This is depicted in figure 13.1. The system could also be immersed in a
constant magnetic field [image: B] whose direction is parallel to the direction of the
spins.

 We are now ready to write the Hamiltonian and the partition function of the
system. Consider a square lattice of [image: N] lattice sites (or vertices) labeled by a number
[image: i = 1,2,...,N]. The lattice has [image: Nl] links (or bonds) among nearest neighbors.
These are labeled by [image: ⟨ij⟩], where [image: (i,j)] is the pair of vertices on each side of the
link. We identify the sides of the square like in figure 13.1. Then, since two
vertices are connected by one link and four links intersect at one vertex, we have
that4

 	

[image: 2Nl = 4N ⇒ Nl = 2N .
]
	(13.1)

At each vertex we place a spin [image: si = ±1]. The Hamiltonian of the system is given
by

 	

[image: ∑ ∑
H = − J sisj − B si.
 ⟨ij⟩ i
]
	(13.2)

The first term is the spin–spin interaction and for [image: J > 0] the system is
ferromagnetic. In this book, we consider only the [image: J > 0] case. A link connecting
same spins has energy [image: − J], whereas a link connecting opposite spins
has energy [image: + J]. The difference of the energy between the two states
is [image: 2J] and the spin-spin dynamics favor links connecting same spins.
The minimum energy [image: E
 0] is obtained for the ground state, which is the
unique5 state in which all
spins point in the direction6
of [image: B]. This is equal to

 	

[image: E0 = − J Nl − BN = − (2J + B)N .
]
	(13.3)

 The partition function is

 	

[image: ∑ ∑ ∑ −βH [{si}] ∑ βJ∑ ⟨ij⟩sisj+βB ∑i si
Z = ... e ≡ e ,
 s1= ±1s2=±1 sN= ±1 {si}
]
	(13.4)

where [image: {si} ≡ {s1,s2,...,sN}] is a spin configuration of the system. The number
of terms is equal to the number of configurations [image: {si}], which is equal to [image: N
2], i.e.
it increases exponentially with [image: N]. For a humble [image: 5 × 5] lattice we have
[image: 225 ≈ 3.4 × 106] terms.

 The two dimensional Ising model for [image: B = 0] has the interesting property that,
for [image: β = βc], where

 	

[image: 1 √ --
βc = --ln(1 + 2) ≈ 0.4406867935 ...,
 2
]
	(13.5)

it undergoes a phase transition between an ordered or low temperature phase
where the system is magnetized ([image: ⟨|M |⟩ > 0]) and a disordered or high temperature
phase where the magnetization vanishes ([image: ⟨|M |⟩ = 0]). The magnetization [image: ⟨|M |⟩]
distinguishes between the two phases and it is called the order parameter. The
critical temperature [image: βc] is the Curie temperature. The phase transition is of second
order, which is a special case of a continuous phase transition. For a continuous
phase transition the order parameter is continuous at [image: β = βc], but it is non
analytic7 .
For a second order phase transition, its derivative is not continuous. This is
qualitatively depicted in figure 13.1.

[image: pict] [image: pict]

Figure 13.3: The qualitative behavior of the magnetization (left) and the specific heat
(right) near the Ising model phase transition. The continuous line is the non analytic
behavior in the thermodynamic limit, whereas the dashed lines show the behavior of the
analytic, finite [image: N] behavior. The latter converge to the former in the large [image: N] limit
(thermodynamic limit).

 For [image: β ⁄= βc] the correlation function (12.45) behaves like in equation
(12.46) resulting in a finite correlation length [image: ξ (β)]. The correlation
length8
diverges as we approach the critical temperature, and its asymptotic behavior in
this limit is given by the scaling relation

 	

[image: −ν βc − β
ξ(β) ≡ ξ(t) ∼ |t| , t = --β----.
 c
]
	(13.6)

Then the correlation function behaves according to (12.47)

 	

[image: G (c2)(i,j) ∼ --1--.
 |xij|η
]
	(13.7)

Scaling behavior is also found for the specific heat [image: C], the magnetization
[image: M ≡ ⟨|M |⟩] and the magnetic susceptibility [image: χ] according to the relations

[image: − α
 C ∼ |t| (13.8)
M ∼ |t|β (13.9)
 − γ
 χ ∼ |t| , (13.10)
]

whereas the magnetization for [image: t = 0] and nonzero magnetic field [image: B ⁄= 0] behaves
like
 	

[image: − 1∕δ
M ∼ B .
]
	(13.11)

The exponents in the above scaling relations are called critical exponents or
scaling exponents. They take universal values, i.e. they don’t depend on the details
of the lattice construction or of the interaction. A whole class of such models
with different microscopic definitions have the exact same long distance
behavior9 !
The systems in the same universality class need to share the same symmetries and
dimensionality of space and the fact that the interaction is of short range. In the
particular model that we study, these exponents take the so called Onsager
exponent values

 	

[image: α = 0, β = 1, γ = 7
 8 4
 1
δ = 15, ν = 1, η = 4.
]
	(13.12)

 Theses exponents determine the non analytic behavior of the corresponding
functions in the thermodynamic limit. Non analyticity cannot arise in the finite
[image: N] model. The partition function (13.4) is a sum of a finite number of
analytic terms, which of course result in an analytic function. The non
analytic behavior manifests in the [image: N → ∞] limit, where the finite [image: N]
analytic functions converge to a non analytic one. The loss of analyticity is
related to the appearance of long distance correlations between the spins
and the scaling of the correlation length according to equation (13.6)
.

 The two phases, separated by the phase transition, are identified by the
different values of an order parameter. Each phase is characterized by the
appearance or the breaking of a symmetry. In the Ising model, the order
parameter is the magnetization and the symmetry is the [image: Z2] symmetry
represented by the transformation [image: si → − si]. The magnetization is zero in the
disordered, high temperature phase and non zero in the ordered, low temperature
phase. This implies that the magnetization is a non analytic function of the
temperature10 .

 Universality and scale invariance appear in the [image: ξ → ∞] limit. In our case, this
occurs by tuning only one parameter, the temperature, to its critical value. A
unique, dynamical, length scale emerges from the correlation function, the
correlation length [image: ξ]. Scale invariance manifests when the correlation length

becomes much larger than the microscopic length scale [image: a] when [image: β → βc]. In the
critical region, all quantities which are functions of the distance become functions
only of the ratio [image: r∕ξ]. Everything depends on the long wavelength fluctuations
required by the symmetry of the order parameter and all models in the same
universality class have the same long distance behavior. This way one
can study only the simplest model within a universality class in order to
deduce the large distance/long wavelength properties of all systems in the
class.

 13.2 Metropolis

Consider a square lattice with [image: L] sites on each side so that [image: N = L × L = L2] is
the number of lattice sites (vertices) and [image: Nl = 2N] is the number of links (bonds)
between the sites. The relation [image: Nl = 2N] holds because we choose helical
boundary conditions as shown in figure 13.6. The choice of boundary
conditions will be discussed later. On each site [image: i] we have one degree of
freedom, the “spin” [image: si] which takes on two values [image: ± 1]. We consider the
case of zero magnetic field [image: B = 0], therefore the Hamiltonian is given
by11

 	

[image: ∑
H = − sisj.
 ⟨ij⟩
]
	(13.13)

The sum [image: ∑
 ⟨ij⟩] is a sum over the links [image: ⟨ij⟩], corresponding to the pairs of sites
[image: i,j]. Then [image: ∑ ∑N ∑N
 ⟨i,j⟩ = (1∕2) i=1 j=1] since each bond is counted twice in the

second sum. The partition function is

 	

[image: ∑ ∑ ∑ ∑ ∑
Z = ... e−βH[{si}] ≡ eβ ⟨ij⟩sisj.

 s1=±1 s2= ±1 sN=±1 {si}
]
	(13.14)

Our goal is to collect a sample of states that is distributed according to the
Boltzmann distribution (12.4) . This will be constructed via a Markov process
according to the discussion in section 12.6. Sampling is made according to (12.53)
and the expectation values are estimated from the sample using (12.54) . At
each step the next state is chosen according to (12.60) , and for large
enough sample, or “time steps”, the sample is approximately in the desired
distribution.

 Suppose that the system is in a
state12
[image: μ]. According to (12.66) , the probability that in the next step the system goes
into the state [image: ν] is

 	

[image: P (μ → ν) = g(μ → ν)A(μ → ν),

]
	(13.15)

where [image: g(μ → ν)] is the selection probability of the state [image: ν] when the system is in
the state [image: μ] and [image: A (μ → ν)] is the acceptance ratio, i.e. the probability that the
system jumps into the new state. If the detailed balance condition (12.60)

 	

[image: P(μ → ν) g(μ → ν)A(μ → ν) −β(E −E)
----------= -------------------= e ν μ
P(ν → μ) g(ν → μ)A(ν → μ)
]
	(13.16)

is satisfied, then the distribution of the sample will converge to (12.4)
[image: − βEμ
pμ = e ∕Z]. In order that the system changes states often enough, the
probabilities [image: P (μ → ν)] should be of order one and the differences in the
energy [image: E ν − E μ] should not be too large. This means that the product of
the temperature with the energy difference should be a number of order
one or less. One way to accomplish this is to consider states that differ
by the value of the spin on only one site [image: ′
si = ±1 → si ∓ 1]. Since the
energy (13.13) is a local quantity, the change in energy will be small. More
specifically, if each site has [image: z = 4] nearest neighbors, the change of the spin on
site [image: i] results in a change of sign for [image: z] terms [image: sisj] in (13.13) . The
change in the energy for each bond is [image: ± 2]. If the state [image: μ] is given by
[image: {s1,...,si,...,sN }] and the state [image: ν] by [image: ′
{s1,...,si,...,sN }] (i.e. all the spins
are the same except the spin [image: si] which changes sign), the energy difference will
be

 	

[image: |ΔE | ≤ 2z ⇔ E μ − 2z ≤ E ν ≤ E μ + 2z.
]
	(13.17)

If the site [image: i] is randomly chosen then

 	

[image: { 1- (μ, ν) differ by one spin
g(μ → ν) = g(ν → μ) = N ,
 0 otherwise
]
	(13.18)

and the algorithm is ergodic. Then we have that

 	

[image: A (μ → ν)
---------- = e−β(Eν−E μ).
A (ν → μ)
]
	(13.19)

A simple choice for satisfying this condition is (12.61)

 	

[image: − 1β(E −E)
A(μ → ν) = A0 ⋅ e 2 ν μ .
]
	(13.20)

In order to maximize the acceptance ratios we have to take [image: A = e−βz
 0].
Remember that we should have [image: A (μ → ν) ≤ 1] and [image: |ΔE | ≤ 2z]. Therefore

 	

[image: 1
A (μ → ν) = e−2β(Eν−E μ+2z).
]
	(13.21)

[image: pict] [image: pict]

Figure 13.4: The acceptance ratio [image: A(μ → ν)] for the two dimensional Ising model on
a square lattice given by equation (13.21) (left) and the Metropolis algorithm (right)
as a function of the change in energy [image: ΔE = E ν − Eμ]. For the Metropolis algorithm the
acceptance ratios are larger and the algorithm is expected to perform better.

 Figure 13.4 depicts the dependence of [image: A (μ → ν)] on the change in energy for
different values of [image: β]. We observe that this probability is small even
for zero energy change and we expect this method not to perform very
well.

 It is much more efficient to use the algorithm proposed by Nicolas Metropolis
et. al. 1953 [59] which is given by (12.63)

 	

[image: { e− β(Eν− Eμ) E − E > 0
A (μ → ν) = ν μ .
 1 E ν − Eμ ≤ 0
]
	(13.22)

According to this relation, when a change in the states lowers the energy, the
change is always accepted. When it increases the energy, the change is
accepted with a probability less than one. As we can see in figure 13.4,
this process accepts new states much more frequently than the previous
algorithm.

 The Metropolis algorithm is very widely used. It is applicable to any system, it is
simple and efficient. We note that the choice to change the spin only locally is not
a restriction put by the metropolis algorithm. There exist efficient algorithms that
make non local changes to the system’s configuration that (almost) conserve the
Hamiltonian13
and, consequently, the acceptance ratios are satisfactorily large.

 13.3 Implementation

The first step in designing a code is to define the data structure. The
degrees of freedom are the spins [image: si = ±1] which are defined on [image: N] lattice
sites. The most important part in designing the data structure in a lattice
simulation is to define the neighboring relations among the lattice sites
in the computer memory and this includes the implementation of the
boundary conditions. A bad choice of boundary conditions will make
the effect of the boundary on the results to be large and increase the
finite size effects. This will affect the speed of convergence of the results
to the thermodynamic limit, which is our final goal. The most popular
choice is the toroidal or periodic boundary conditions. A small variation of
these lead to the so called helical boundary conditions, which will be
our choice because of their simplicity. Both choices share the fact that
each site has the same number of nearest neighbors, which give the same
local geometry everywhere on the lattice and minimize finite size effects
due to the boundary. In contrast, if we choose fixed or free boundary
conditions on the sides of the square lattice, the boundary sites have
a smaller number of nearest neighbors than the ones inside the lattice.

[image: pict]

Figure 13.5: An [image: L = 5] square lattice with periodic boundary conditions. The
topology is toroidal.

[image: pict]

Figure 13.6: An [image: L = 5] square lattice with helical boundary conditions. The topology
is toroidal.

 One choice for mapping the lattice sites into the computer memory is to use
their coordinates [image: (i,j)], [image: i,j = 1,...,L]. Each spin is stored in an array s(L,L).
For a site s(i,j) the four nearest neighbors are s(i[image: ±]1,j), s(i,j[image: ±]1). The
periodic boundary conditions are easily implemented by adding [image: ± L] to i,j each
time they become less than one or greater than [image: L]. This is shown in figures 13.5
and 13.30.

 The elements of the array s(L,L) are stored linearly into the computer
memory. The element s(i,j) is at a “distance” (j-1)*L+i array positions from
s(1,1) and accessing its value involves an, invisible to the programmer,
multiplication. Using helical boundary conditions this multiplication can be
avoided. The positions of the lattice sites are now given by one number
[image: i = 1,...,L2 = N], as shown in figures 13.6 and 13.31. The spins are stored in
memory in a one dimensional array s(N) and the calculation of the nearest
neighbors of a site s(i) is easily done by taking the spins s(i[image: ±]1) and
s(i[image: ±]L). The simplicity of the helical boundary conditions is based
on the fact that, for the nearest neighbors of sites on the sides of the
square, all we have to do is to make sure that the index i stays within
the accepted range 1[image: ≤] i [image: ≤] N. This is easily done by adding or
subtracting [image: N] when necessary. Therefore in a program that we want to
calculate the four nearest neighbors nn of a site i, all we have to do is:

 nn=i+1;if(nn.gt.N)nn=nn-N

 nn=i-1;if(nn.lt.1)nn=nn+N

 nn=i+L;if(nn.gt.N)nn=nn-N

 nn=i-L;if(nn.lt.1)nn=nn+N

 We will choose helical boundary conditions for their simplicity and efficiency in calculating
nearest neighbors14 .

 The dynamics of the Monte Carlo evolution is determined by the initial state
and the Metropolis algorithm. A good choice of initial configuration can be
important in some cases. It could lead to fast or slow thermalization, or even to
no thermalization at all. In the model that we study it will not play an important
role, but we will discuss it because of its importance in the study of other systems.
We may choose a “cold” ([image: β = + ∞] - all spins aligned) or a “hot” ([image: β = 0] - all
spins are equal to [image: ± 1] with equal probability [image: 1∕2]) initial configuration.
For large lattices, it is desirable to start in one of these states and then
lower/increase the temperature in small steps. Each time that the temperature is
changed, the spin configuration is saved and used in the next simulation.

 Ergodicity and thermalization must be checked by performing independent
simulations15
and verify that we obtain the same results. Similarly, independent simulations
starting from different initial states must also be checked that yield the same
results.

 Consider each step in the Markov process defined by the Metropolis algorithm.
Assume that the system is in the state [image: μ = {sμ,...,sμ,...,sμ }
 1 k N] and consider the
transition to a new state [image: ν ν ν
ν = {s 1,...,sk,...,sN}] which differs only by the
value of the spin [image: μ
sνk = − sk] (spin flip), whereas all the other spins are the

same: [image: ν μ
sj = sj] [image: ∀j ⁄= k]. The energy difference between the two states is

[image: ∑ ν ν ∑ μ μ
E ν − E μ = (− sis j) − (− si sj)
 ⟨ij⟩ ⟨ij⟩
 = − ∑ sμ(sν− sμ)
 i k k
 ∑⟨ik⟩
 = 2 sμsμ
 i k
 ⟨ik(⟩)
 ∑
 = 2sμ(sμi) , (13.23)
 k ⟨ik⟩
]

where the second line is obtained after the cancellation of the common terms in the
sums. In the third line we used the relation [image: sν − sμ = − 2sμ
 k k k], which you can prove
easily by examining the cases [image: sμ= ±1
 k] separately. The important property of
this relation is that it is local since it depends only on the nearest neighbors. The
calculation of the energy difference [image: E ν − E μ] is fast and is always a number of order
one16 .
 The Metropolis condition is easily implemented. We calculate the sum in the
parenthesis of the last line of equation (13.23) and obtain the energy difference
[image: E ν − Eμ]. If the energy decreases, i.e. [image: Eν − E μ ≤ 0], the new state [image: ν] is
accepted and “we flip the spin”. If the energy increases, i.e. [image: E ν − E μ > 0], then
the acceptance ratio is [image: A (μ → ν) = e −β(E ν− Eμ) < 1]. In order to accept the new
state with this probability we pick a random number uniformly distributed in
[image: 0 ≤ x < 1]. The probability that this number is [image: x < A(μ → ν)] is equal

to17
[image: A (μ → ν)]. Therefore if [image: x ≤ A (μ → ν)] the change is accepted. If
[image: x > A(μ → ν)] the change is rejected and the system remains in the same state
[image: μ].

 A small technical remark is in order: The possible values of the sum
[image: (∑ μ)
 ⟨ik⟩ si = − 4,− 2,0,2,4] and these are the only values that enter in the
calculation of [image: A (μ → ν)]. Moreover, only the values that increase the energy, i.e.
[image: 2,4] are of interest to us. Therefore we only need two values of [image: A(μ → ν)], which
depend only on the temperature. These can by calculated once and for all in
the initialization phase of the program, stored in an array and avoid the
repeated calculation of the exponential [image: e− β(Eν− Eμ)] which is expensive.

 In our program we also need to implement the calculation of the observables
that we want to measure. These are the energy (13.13)

 	

[image: ∑
E = − sisj,
 ⟨ij⟩
]
	(13.24)

and the magnetization

 	

[image: || ||
 |∑ |
M = || si||.
 i
]
	(13.25)

Beware of the absolute value in the last equation! The Hamiltonian
[image: H] has a [image: Z
 2] symmetry because it is symmetric under reflection
of all the spins. The probability of appearance of a state depends only
on the value of [image: H], therefore two configurations with opposite spin are
equally probable. But such configurations have opposite magnetization,
therefore the average magnetization [image: ⟨∑ si⟩
 i] will be zero due to this
cancellation18 .

 We can measure the energy and the magnetization in two ways. The first one
is by updating their values each time a Metropolis step is accepted. This is easy
and cheap since the difference in the sum in equations (13.24) and (13.25)
depends only on the value of the spin [image: μ
s k] and its nearest neighbors. The energy
difference is already calculated by (13.23) whereas the difference in the
magnetization in (13.25) is given by

 	

[image: ∑ ∑
 sν− sμ = sν − sμ = − 2sμ
 i i i i k k k
]
	(13.26)

The second way is by calculating the full sums in (13.24) and

(13.25) every time that we want to take a measurement. The optimal
choice depends on how often one obtains a statistically independent
measurement19 .
If the average acceptance ratio is [image: A¯], then the calculation of the magnetization
using the first method requires [image: A¯N] additions per [image: N] Monte Carlo steps,
whereas the second one requires [image: N] additions per measurement.

 We use the normalization

 	

[image: 1 1
⟨e⟩ = ---⟨E ⟩ = ---⟨E ⟩,
 Nl 2N
]
	(13.27)

which gives the energy per link. We have that [image: − 1 ≤ e ≤ +1], where [image: e = − 1] for
the ground state in which all [image: 2N] links have energy equal to [image: − 1]. The
magnetization per site is

 	

[image: 1
⟨m ⟩ = --⟨M ⟩.
 N
]
	(13.28)

We have that [image: 0 ≤ m ≤ 1], where [image: m = 0] for [image: β = 0] (perfect disorder) and
[image: m = 1] for the ground state at [image: β = ∞] (perfect order). We call [image: m] the
order parameter since its value determines the phase that the system is
in.

 The specific heat is given by the fluctuations of the energy

 	

[image: c = β2N ⟨(e − ⟨e⟩)2⟩ = β2N (⟨e2⟩ − ⟨e⟩2),
]
	(13.29)

and the magnetic susceptibility by the fluctuations of the magnetization

 	

[image: 2 2 2
χ = βN ⟨(m − ⟨m ⟩) ⟩ = βN (⟨m ⟩ − ⟨m ⟩).
]
	(13.30)

 In order to estimate the amount of data necessary for an accurate
measurement of these quantities, we consider the fact that for [image: n] independent
measurements the statistical error drops as [image: √ --
∼ 1 ∕ n]. The problem of
determining how often we have independent measurements is very important and

it will be discussed in detail later in this chapter.

 13.3.1 The Program

In this section we discuss the
program20
that implements the Monte Carlo simulation of the Ising model. The code in this
section can be found in the accompanying software of this chapter in the directory
Ising_Introduction.

 In the design of the code, we follow the philosophy of modular programming.
Different independent sections of the program will be coded in different
files. This makes easier the development, maintenance and correction of
the code by one or a team of programmers. A header file contains the
definitions which are common for the code in one or more files. Then, all the
parameters and common blocks are in one place and they are easier to
modify for all program units in a unified way, therefore avoiding errors. In
our case we have only one such file, named include.inc, whose code
will be included in the beginning of each program unit using an include
statement:

!============== include.inc ==================

 implicit none

 integer,parameter :: L = 12

 integer,parameter :: N = L*L

 integer,parameter :: XNN = 1, YNN = L

 integer,dimension(N) :: s

 real(8),dimension(0:4) :: prob

 real(8) :: beta

 common /lattice/ s

 common /parameters/ beta,prob

!function definitions:

 real(8) :: drandom

 integer :: seed

 common /randoms/ seed

 The lattice size [image: L] is a constant parameter, whereas the arrays and variables
encoding the spins and the simulation parameters are put in common
blocks. The array s(N) stores the spin of each lattice site which take
values [image: ± 1]. The variable beta is the temperature [image: β] and the array
prob(0:4) stores the useful values of the acceptance ratios [image: A (μ → ν)]
according to the discussion on page 1322. The function drandom() is the one
discussed in section 11.1, which generates pseudorandom numbers uniformly
distributed in the interval [image: (0,1)] - [image: 0] and [image: 1] excluded. The parameters XNN
and YNN are used for computing the nearest neighbors in the X and Y
directions according to the discussion of section 13.3 on helical boundary
conditions. For example, for an internal site i, i+XNN is the nearest neighbor
in the [image: + x] direction and i-YNN is the nearest neighbor in the [image: − y]
direction.

 The main program is in the file main.f90 and drives the simulation:

!============== main.f90 ==================

program Ising2D

 include ’include.inc’

 integer :: start !start= 0 (cold)/1 (hot)

 integer :: isweep, nsweep

 nsweep = 1000

 beta=0.21D0;seed=9873;start=1;

 call init(start)

 do isweep = 1, nsweep

 call met

 call measure

 end do

end program Ising2D

 In the beginning we set the simulation parameters. The initial configuration is
determined by the value of start. If start=0, then it is a cold configuration and
if start=1, then it is a hot configuration. The temperature is set by the value of
beta and the number of sweeps of the lattice by the value of nsweep. One sweep
of the lattice is defined by N attempted spin flips. The flow of the simulation is
determined by the initial call to init, which performs all initialization tasks, and
the subsequent calls to met and measure, which perform nsweep Metropolis
sweeps and measurements respectively.

 One level down lies the subroutine init. The value of start is passed through
its argument so that the desired initial state is set:

!============== init.f90 ==================

! file init.f90

! init(start): start = 0: cold start

! start = 1: hot start

!===

subroutine init(start)

 include ’include.inc’

 integer :: start

 integer :: i

!----------------------

!initialize probabilities for E_\nu > E_mu

 prob=0.0D0

 do i=2,4,2 !i = dE/2 = (E_nu-E_mu)/2=2,4

 prob(i) = exp(-2.0D0*beta*i)

 enddo

!initial configuration:

 select case(start)

 case(0)!cold:

 s = 1 !all s(i) = 1

 case(1)!hot:

 do i=1,N

 if(drandom() .lt. 0.5D0)then

 s(i) = 1

 else

 s(i) = -1

 endif

 enddo

 case default

 print *,’init: start= ’,start,’ not valid. Exiting...’

 stop

 end select

end subroutine init

 At first the array prob(0:4) is initialized to the values of the acceptance ratios
[image: A (μ → ν) =] [image: e− β(Eν− Eμ) =] [image: −2βsμ ∑ sμ
e k(⟨ik⟩ i)]. Those probabilities are going to be

used when [image: μ (∑ μ)
sk ⟨ik⟩si > 0] and the possible values are obtained when this
expression takes the values 2 and 4. These are the values stored in the array
prob(0:4), and we remember that the index of the array is the expression
[image: μ (∑ μ)
sk ⟨ik⟩si], when it is positive.

 The initial spin configuration is determined by the integer start. Using the
select case block allows us to add more options in the future. When start=0
all spins are set equal to 1, whereas when start=1 each spin’s value is set
to [image: ± 1] with equal probability. The probability that drandom()<0.5
is21
[image: 1∕2] in which case we set s(i)=1, otherwise (probability [image: 1 − 1∕2 = 1∕2]) we set
s(i)=-1.

 The heart of the program is the subroutine met() which attempts N
Metropolis steps. It picks a random site N times and asks the question whether to
perform a spin flip. This is done using the Metropolis algorithm by calculating the
change in the energy of the system before and after the change of the spin value
according to (13.23) :

!============== met.f90 ==================

subroutine met()

 include ’include.inc’

 integer :: i,k

 integer :: nn,snn,dE

 do k=1,N

!pick a random site:

 i = INT(N*drandom())+1

!snn=sum of neighboring spins:

 snn = 0

 nn=i+XNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)

 nn=i-XNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)

 nn=i+YNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)

 nn=i-YNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)

!dE=change in energy/2:

 dE=snn*s(i)

!flip:

 if(dE.le.0)then

 s(i) = -s(i) !accept

 else if(drandom() < prob(dE))then

 s(i) = -s(i) !accept

 endif

 enddo !do k=1,N: end sweep

end subroutine met

 The line

 i = INT(N*drandom())+1

 picks a site i=1,...,N with equal probability. It is important that the value
i=N+1 never appears, something that happens if drandom()=1.0. This value has
been excluded according to the discussion in section 11.1.

 Next, we calculate the sum [image: (∑)
 ⟨ik⟩ sμi] in (13.23) . The nearest
neighbors of the site i have to be determined and this happens in the
lines

 snn = 0

 nn=i+XNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)

 nn=i-XNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)

 nn=i+YNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)

 nn=i-YNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)

 The variable delta is set equal to the product (13.23) [image: ()
sμ ∑ sμ
 k ⟨ik⟩ i]. If it
turns out to be negative, then the change in energy is negative and the spin flip is
accepted. If it turns out to be positive, then we apply the criterion set by (13.22)
by using the array prob(delta), which has been set in the subroutine init. The
probability that drandom()<prob(delta) is equal to prob(delta), in which case
the spin flip is accepted. In all other cases, the spin flip is rejected and s(i)
remains the same.

 After each Metropolis sweep we perform a measurement. The code is minimal
and simply prints the value of the energy and the magnetization to the stdout.
The analysis is assumed to be performed by external programs. This way we keep
the production code simple and store the raw data for a detailed and flexible
analysis. The printed values of the energy and the magnetization will be used as
monitors of the progress of the simulation, check thermalization and measure
autocorrelation times. Plots of the measured values of an observable as a
function of the Monte Carlo “time” are the so called “time histories”. Time
histories of appropriately chosen observables should always be viewed and
used in order to check the progress and spot possible problems in the
simulation.

 The subroutine measure calculates the total energy and magnetization
(without the absolute value) by a call to the functions E() and M(), which apply
the formulas (13.24) and (13.25) .

!============== measure.f90 ==================

subroutine measure()

 include ’include.inc’

 integer :: E,M

 print *, E(),M()

end subroutine measure

!=====================

integer function E()

 include ’include.inc’

 integer en,sum,i,nn

 en = 0

 do i=1,N

!Sum of neighboring spins: only forward nn necessary in the sum

 sum = 0

 nn=i+XNN;if(nn.gt.N)nn=nn-N;sum = sum + s(nn)

 nn=i+YNN;if(nn.gt.N)nn=nn-N;sum = sum + s(nn)

 en=en+sum*s(i)

 enddo

 e = -en

end function E

!=====================

integer function M()

 include ’include.inc’

 M=SUM(s)

end function M

 The compilation of the code is done with the command

> gfortran main.f90 met.f90 init.f90 measure.f90 drandom.f90 \

 -o is

 which results in the executable file is:

> ./is > out.dat

> less out.dat

-52 10

-48 40

-64 44

-92 64

......

 The output of the program is two columns with the values of the total energy
and magnetization (without the absolute value). In order to construct their time
histories we give the gnuplot commands:

gnuplot> plot "out.dat" using 1 with lines

gnuplot> plot "out.dat" using 2 with lines

gnuplot> plot "out.dat" using (($2>0)?$2:-$2) with lines

The last line calculates the absolute values of the second column. The C-like
construct ($2>0)?$2:-$2 checks whether the expression ($2>0) is true. If it is,
then it returns $2, otherwise it returns -$2.

 13.3.2 Towards a Convenient User Interface

In this section we will improve the code, mostly at the user interface level. This is
a nice exercise on the interaction of the programming language with the shell and
the operating system. The code presented can be found in the accompanying
software of this chapter in the directory Ising_Metropolis.

 An annoying feature of the program discussed in the previous section is that
the simulation parameters are hard coded and the user needs to recompile the
program each time she changes them. This is not very convenient if she has to do
a large number of simulations. Another notable change that needs to be
made in the code is that the final configuration of the simulation must be
saved in a file, in order to be read as an initial configuration by another
simulation.

 One of the parameters that the user might want to set interactively at
run time is the size of the lattice L. But this parameter determines the
required memory for the array s(N). Therefore we have to use dynamic
memory allocation for this array using the intrinsic function ALLOCATE.
Another problem is that the array s(N) needs to be accessible by several
parts of the program and allocatable arrays cannot be put in a common
block. Another mechanism for sharing data among different functions
and subroutines is the use of modules. This is the preferable method of
doing it in modern Fortran programs where the use of common blocks
is discouraged. The shared data needs to be put between the following
statements:

module global_data

 implicit none

 SAVE

end module global_data

 In place of the ... we can put variable declarations. We use the statement SAVE
so that their values are saved between function and subroutine calls. The module
has a name which in our case is global_data. Each program unit that
needs to have access to its data needs to start with the statement use
global_data:

subroutine share_global_data

 use global_data

 implicit none

end subroutine share_global_data

 In the file global_data.f90 we put all the global variables as follows:

module global_data

 implicit none

 SAVE

 integer :: L

 integer :: N

 integer :: XNN, YNN

 integer,allocatable :: s(:)

 real(8),dimension(0:4) :: prob

 real(8) :: beta

 integer :: nsweep,start

 integer :: seed,ranlux_level

 real(8) :: acceptance

 character(1024) :: prog

end module global_data

 The array s(:) is allocatable and its storage space will be allocated in the
subroutine init. The variables L, N, XNN and YNN are not parameters anymore
and their values will also be set in init. The new variables are acceptance which
computes the fraction of accepted spin flips in a simulation, ranlux_level which
determines the luxury level of RANLUX and prog which stores the command line
name of the program that runs the simulation.

 The main program has very few changes:

!============== main.f90 ==================

program Ising2D

 use global_data

 implicit none

 integer :: isweep

 call init

 do isweep = 1, nsweep

 call met

 call measure

 end do

 call endsim

end program Ising2D

 Notice the line use global_data which gives access to the data in the module
global_data. This is the first line of all program units. The subroutine endsim
finishes off the simulation. Its most important function is to store the final
configuration to a file for later use.

 The subroutine init is changed quite a bit since it performs most of the
functions that have to do with the user interface:

!============== init.f90 ==================

! start = 0: cold start

! start = 1: hot start

! start = 2: use old configuration

!===

subroutine init

 use global_data

 implicit none

 integer :: i,chk

 real(8) :: obeta=-1.0D0,r

 integer :: OL=-1

 character(1024) :: buf

 integer,parameter :: f_in=17 !file unit

 integer :: seeds(25)

!----------------------

!Define parameters from options:

 L=-1;beta=-1.0D0;nsweep=-1;start=-1;seed=-1

 ranlux_level=3

 call get_the_options

 if(start.EQ.0 .OR. start.EQ.1)then

 if(L < 0)call locerr(’L has not been set.’)

 if(seed < 0)call locerr(’seed has not been set.’)

 if(beta < 0.0D0)call locerr(’beta has not been set.’)

!Derived parameters:

 N=L*L;XNN=1;YNN=L

!Allocate memory for the spins:

 ALLOCATE(s(N),STAT=chk)

 if(chk > 0)call locerr(’allocation failure for s(N)’)

 endif !if(start.EQ.0 .OR. start.EQ.1)

 if(start < 0)call locerr(’start has not been set.’)

 if(nsweep < 0)call locerr(’nsweep has not been set.’)

!----------------------

!initialize probabilities for E_\nu > E_mu

 prob=0.0D0

 do i=2,4,2 !i = dE/2 = (E_nu-E_mu)/2=2,4

 prob(i) = exp(-2.0D0*beta*i)

 enddo

 acceptance = 0.0D0

!--

!initial configuration: cold(0),hot(1),old(2)

!--

 select case(start)

!--

 case(0)!cold:

 call simmessage(6)

 call RLUXGO(ranlux_level,seed,0,0)

 s = 1 !all s(i) = 1

!--

 case(1)!hot:

 call simmessage(6)

 call RLUXGO(ranlux_level,seed,0,0)

 do i=1,N

 call ranlux(r,1)

 if(r .lt. 0.5D0)then

 s(i) = 1

 else

 s(i) = -1

 endif

 enddo

!--

 case (2)!old:

 if(beta < 0.0D0)call locerr(’beta has not been set.’)

 open(f_in,file=’conf’,status=’OLD’,ERR=101)

 read(f_in,*)buf !read in a comment line

 read(f_in,’(A4,I5,A4,I5,A6,G28.17,A6,25I16)’)&

 buf,OL,buf,OL,buf,beta,buf,seeds

 if(L < 0) L = OL !if L has not been set, read from file

 if(L /= OL) & ! /= the same as .NE. (not equal)

 call locerr(’L different from the one read from conf.’)

 N=L*L;XNN=1;YNN=L

!Allocate memory for the spins:

 ALLOCATE(s(N),STAT=chk);

 if(chk > 0)call locerr(’allocation failure for s(N)’)

 call simmessage(6)

 print ’(A)’,’# Reading configuration from file conf’

 do i=1,N

 read(f_in,*,END=102) s(i)

 if(s(i) /= 1 .AND. s(i) /= -1)&

 call locerr(’wrong value of spin’)

 enddo

 close(f_in)

 if(seed < 0) then !initialize from seeds read from file:

 call RLUXIN(seeds)

 else !option seed sets new seed:

 call RLUXGO(ranlux_level,seed,0,0)

 endif

!--

 case default

 print *,’init: start= ’,start,’ not valid. Exiting...’

 stop 1

 end select

!--

 return

!here we put error messages:

101 call locerr(’Configuration file conf not found.’)

102 call locerr(’File conf ended before reading all spins.’)

end subroutine init

 In the beginning, the simulation parameters that are to be determined by the user
are given invalid default values. This way they are flagged as not been set. The
subroutine22
get_the_options sets the parameters to the values that the user passes through
the command line:

 L=-1;beta=-1.0D0;nsweep=-1;start=-1;seed=-1

 call get_the_options

 Upon return of get_the_options, one has to check if all the parameters have
been set to acceptable values. For example, if the user has forgotten to set the
lattice size L, the call to the subroutine locerr stops the program and prints the
error message passed through its argument:

 if(L < 0)call locerr(’L has not been set.’)

 When the value of N is calculated from L, the program allocates memory for the
array s(N):

 N=L*L

 ALLOCATE(s(N),STAT=chk)

 if(chk > 0)call locerr(’allocation failure for s(N)’)

 When memory allocation is successful, the variable chk is set to 0 by ALLOCATE.
Otherwise we stop the program with a call to locerr.

 Using the construct SELECT CASE(start) we set the initial configuration of
the simulation. A value of start=0 sets all spins equal to 1. The subroutine
simmmessage(f_unit) prints important information about the simulation to the
unit f_unit. The random number generator RANLUX is initialized with a call to
RLUXGO according to the discussion in section 11.2, page 1202. The global variable
ranlux_level is set to 3 by default, but the user can change it from the
command line (see get_the_options). If start=0 the initial configuration is
hot.

 If start=2 we attempt to read a configuration stored in a file named conf.
The format of the file is strictly set by the way we print the configuration in
the subroutine endsim. If the file does not exist, the argument ERR=101
transfers the control of the program to the labeled statement with label
101. This is near the end of the program and stops the program with a
call to locerr. In order to read the configuration properly we need to
know the format of the data in the file conf which is, more or less, as
follows:

Configuration of 2d Ising model on square lattice....

Lx= 12 Ly= 12 beta= 0.21 seed= 3718479 5267541 12092770

 -1

 1

 1

 1

 -1

.....

 All comments of the first line are discarded in the character variable buf. The
parameters L and beta of the stored configuration are stored in temporary
variables OL, obeta, so that they can be compared with the values set by the
user.

 If the user provides a seed, then her seed will be used for seeding.
Otherwise RANLUX is initialized to the state read from the file conf. Both
choices are desirable in different cases: If the user wants to split a long
simulation into several short runs, then each time she wants to restart the
random number generator at exactly the same state. If she wants to use
the same configuration in order to produce many independent results,
then RANLUX has to produce different sequences of random numbers each
time23 .
This feature is coded in the lines:

 if(seed < 0) then !initialize from seeds read from file:

 call RLUXIN(seeds)

 else !option seed sets new seed:

 call RLUXGO(ranlux_level,seed,0,0)

 endif

 When reading the spins, we have to make sure that they take only
the legal values [image: ± 1] and that the data is enough to fill the array
s(N)24 .
Reading enough data is checked by the READ argument END=102. If the READ
statement attempts to read past the end of the file conf, then the control of the
program is transferred to the labeled statement with label 102. This will happen,
e.g. if we attempt to read from a corrupted file.

 The subroutine endsim saves the last configuration in the file conf and can be
found in the file end.f90:

!============== end.f90 ==================

subroutine endsim()

 use global_data

 implicit none

 integer,parameter :: f_out = 17

 integer :: i,seeds(25)

 call RLUXUT(seeds)

 call rename(’conf’,’conf.old’)

 open(unit=f_out,file=’conf’)

 write(f_out,’(A)’)&

 ’# Configuration of 2d Ising model on square lattice...’

 write(f_out,’(A4,I5,A4,I5,A6,G28.17,A6,25I16)’)&

 ’Lx= ’,L,’ Ly= ’,L,’ beta= ’,beta,’ seed= ’,seeds

 do i=1,N

 write(f_out,’(I3)’)s(i)

 enddo

 close(f_out)

 print ’(A,F7.3)’,’# acceptance= ’,&

 acceptance/DBLE(N)/DBLE(nsweep)

end subroutine endsim

 The state of the random number generator RANLUX is saved by a call to RLUXUT
which stores the necessary information in the array seeds. The call to the
subroutine RENAME renames the file conf (if it exists) to the backup file conf.old.
The format (A4, I5, A4, I5, A6, G28.17, A6, 25I16) has to be obeyed
strictly during the output, as well as during the input of the configuration in the
subroutine init.

 The subroutine get_the_options() reads the parameters, passed through
options from the command line. The choice to use options for passing parameters
to the program has the advantage that they can be passed optionally and in any
order desired. Let’s see how they work. Assume that the executable file is named
is. The command

> ./is -L 10 -b 0.44 -s 1 -S 5342 -n 1000

 will run the program after setting L=10 (-L 10), beta=0.44 (-b 0.44), start=1
(-s 1), seed=5342 (-S 5342) and nsweep=1000 (-n 1000). The -L, -b, -s,
-S, -n are options or switches and can be put in any order in the arguments of
the command line. The arguments following an option are the values
passed to the corresponding variables. Options can also be used without
arguments, in which case a common use is to make the command function
differently25 .
In our case, the option -h is an option without an argument which makes the
program to print a usage message and exit without running the simulation:

> ./is -h

Usage: ./is [options]

 -L: Lattice length (N=L*L)

 -b: beta

 -s: start (0 cold, 1 hot, 2 old config.)

 -S: seed

 -n: number of sweeps and measurements

 -u: seed from /dev/urandom

 -r: ranlux_level

Monte Carlo simulation of 2d Ising Model. Metropolis is used by

default. Using the options, the parameters of the simulations

must be set for a new run (start=0,1). If start=2, a

configuration is read from the file conf.

 This is a way to provide a short documentation on the usage of a program.

 Let’s see the code, which is found in the file options.f90:

!============== options.f90 ==================

subroutine get_the_options

 use global_data

 use getopt_m !from getopt.f90

 implicit none

 call getarg(0,prog)

 do

 select case(getopt("-hL:b:s:S:n:r:u"))

 case(’L’)

 read(optarg,*)L

 case(’b’)

 read(optarg,*)beta

 case(’s’)

 read(optarg,*)start

 case(’S’)

 read(optarg,*)seed

 case(’n’)

 read(optarg,*)nsweep

 case(’r’)

 read(optarg,*)ranlux_level

 case(’u’)

 open (28, file="/dev/urandom", &

 access="stream", form="unformatted")

 read (28) seed

 seed = ABS(seed)

 close(28)

 case(’h’)

 call usage

 case(’?’)

 print *, ’unknown option ’, optopt

 stop

 case(char(0)) ! done with options

 exit

 case(’-’) ! use -- to exit from options

 exit

 case default

 print *, ’unhandled option ’, optopt

 end select

 enddo

end subroutine get_the_options

 The command call getarg(0,prog) stores the name of the program in the
command line to the character variable prog. The function getopt is a
function written by Mark Gates and its code is in the file getopt.f90.
It is programmed so that its usage is similar to the corresponding C
function26 .
The argument "-hL:b:s:S:n:r:u" in getopt defines the allowed options ’-’,
’L’, ’b’, ’s’, ’S’, ’n’, ’r’, ’u’. When a user passes one of those through
the command line (e.g. -L 100, -h) the do loop takes us to the corresponding
CASE. If an option does not take an argument (e.g. -h), then a set of commands
can be executed, like call usage. If an option takes an argument, this is marked
by a semicolon in the argument of getopt (e.g. L:, b:, ...) and the argument can
be accessed through the character variable optarg. For example, the
statements

 case(’L’)

 read(optarg,*)L

 and the command line arguments -L 10 set optarg to be equal to ’10’. Be
careful, ’10’ is not a number, but a string of characters! In order to convert the
character ’10’ to the integer 10 we use the command READ, where instead of a
unit number in its arguments we put the variable name. We do the same for the
other simulation parameters.

 The subroutine locerr takes a character variable in its argument which prints
it to the stderr together with the name of the program in the command line.
Then it stops the execution of the program:

subroutine locerr(errmes)

 use global_data

 implicit none

 character(*) :: errmes

 write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’

 stop 1

end subroutine locerr

 Note the use of the intrinsic function TRIM which removes the trailing blanks of a
character variable. If we hadn’t been using it, the variable character(1024) ::
prog would have been printed in 1024 character spaces, something that it
wouldn’t have been very pretty...

 The subroutine usage is ... used very often! It is a constant reminder of the
way that the program is used and helps users with weak long and/or short term
memory!

subroutine usage

 use global_data

 implicit none

 print ’(3A)’,’Usage: ’,TRIM(prog),’ [options]’

 print ’(A)’,’ -L: Lattice length (N=L*L)’

 print ’(A)’,’ -b: beta’

 print ’(A)’,’ -s: start (0 cold, 1 hot, 2 old config.)’

 print ’(A)’,’ -S: seed’

 print ’(A)’,’ -n: number of sweeps and measurements’

 print ’(A)’,’ -u: seed from /dev/urandom’

 print ’(A)’,’ -r: ranlux_level’

 print ’(A)’,’Monte Carlo simulation of 2d Ising Model....’

 stop

end subroutine usage

 The subroutine simmessage is also quite important. It “labels” our results by
printing all the information that defines the simulation. It is very important to
label all of our data with this information, otherwise it can be dangerously useless!
Imagine a set of energy measurements without knowing the lattice size and/or the
temperature... Other useful information may turn out to be crucial, even though
we might not appreciate it at programming time: The name of the computer, the
operating system, the user name, the date etc. By varying the unit number in
the argument, we can print the same information in any file we want.

subroutine simmessage(unit)

 use global_data

 implicit none

 integer :: unit

 character(100) :: user,host,mach,tdate

 call GETLOG(user)

 call GETENV(’HOST’ ,host)

 call GETENV(’HOSTTYPE’,mach)

 call FDATE (tdate)

 write(unit,’(A)’)&

 ’# ###’

 write(unit,’(A)’)&

 ’# 2d Ising Model, Metropolis algorithm on square lattice’

 write(unit,’(8A)’)&

 ’# Run on ’,TRIM(host),’ (’,TRIM(mach),’) by ’,TRIM(user),&

 ’ on ’,TRIM(tdate)

 write(unit,’(A,I6,A)’)’# L = ’,L,’ (N=L*L)’

 write(unit,’(A,I14)’)’# seed = ’,seed

 write(unit,’(A,I12,A)’)’# nsweeps = ’,nsweep,’ (No. sweeps)’

 write(unit,’(A,G28.17)’)’# beta = ’,beta

 write(unit,’(A,I4 ,A)’)’# start = ’,start,&

 ’ (0 cold, 1 hot, 2 old config)’

end subroutine simmessage

 The compilation can be done with the command:

> gfortran global_data.f90 getopt.f90 \

 main.f90 init.f90 met.f90 measure.f90 end.f90 \

 options.f90 ranlux.F -o is

 It is important to note that the files containing modules, like global_data.f90
and getopt.f90, must precede the files with the code that use the modules.

 In order to run the program we pass the parameters through options in the
command line, like for example:

> /usr/bin/time ./is -L 10 -b 0.44 -s 1 -S 5342 -n 10000 \

 >& out.dat &

 The command time is added in order to measure the computer resources (CPU
time, memory, etc) that the program uses at run time.

 A useful tool for complicated compilations is the utility make. Its
documentation is several hundred pages which can be accessed through the info
pages27
and the interested reader is encouraged to browse through it.
If in the current directory there is a file named Makefile whose
contents28
are

Makefile

FC = gfortran

OBJS = global_data.o getopt.o ranlux.o \

 main.o init.o met.o measure.o end.o options.o

FFLAGS = -O2

is: $(OBJS)

$(FC) $(FFLAGS) $^ -o $@

$(OBJS): global_data.f90

options.o: getopt.f90

%.o: %.f90

$(FC) $(FFLAGS) -c -o $@ $<

 then this instructs the program make how to “make” the executable file is. What
have we gained? In order to see that, run make for the first time. Then try making
a trivial change in the file main.f90 and rerun make. Then only the modified file
is compiled and not the ones that have not been touched. This is accomplished by
defining dependencies in Makefile which execute commands conditionally
depending on the time stamps on the relevant files. Dependencies are defined in
lines which are of the form keyword: word1 word2 For example, the line
options.o: getopt.f90 defines a dependency of the file options.o from the
file getopt.f90. Lines 2-4 in the above Makefile define variables which
can be used in the commands that follow. There are many predefined
variables29
in make which makes make programming easier. By using make in a large
project, we can automatically link to libraries, pass complicated compiler
options, do conditional compilation (depending, e.g., on the operating
system, the compiler used etc), etc. A serious programmer needs to invest
some time in order to use the full potential of make for the needs of her

project30 .

 13.4 Thermalization

The problem of thermalization can be important for some systems studied with
Monte Carlo simulations. Even though it will not be so important in the
simulations performed in this book, we will discuss it because of its importance in
other problems. The reader should bear in mind that the thermalization problem
becomes more serious with increasing system size and when autocorrelation times
are large.

 In a Monte Carlo simulation, the system is first put in a properly chosen initial
configuration in order to start the Markov process. In section 12.2 we saw that
when a system is in thermal equilibrium with a reservoir at a given temperature,
then a typical state has energy that differs very little from its average value
and belongs to a quite restricted region of phase space. Therefore, if we
choose an initial state that is far from this region, then the system has to
perform a random walk in the space of states until it finds the region
of typical states. This is the thermalization process in a Monte Carlo
simulation.

 There are two problems that need to be addressed: The first one is the
appropriate choice of the initial configuration and the second one is to find criteria
that will determine when the system is thermalized. For the Ising model the initial
configuration is either, (a) cold, (b) hot or (c) old state. It is obvious that
choosing a hot state in order to simulate the system at a cool temperature is not
the best choice, and the system will take longer to thermalize than if we choose a
cold state or an old state at a nearby temperature. This is clearly seen in figure
13.7.

[image: pict]

Figure 13.7: Magnetization per site for the Ising model in the ordered phase with
[image: L = 40], [image: β = 0.48]. We show the thermalization of the system by starting from a cold
state and three hot ones. For a hot start, thermalization takes up to 1000 sweeps.

 Thermalization depends on the temperature and the system size, but it also
depends on the physical quantity that we measure. Energy is thermalized faster
than magnetization. In general, a local quantity thermalizes fast and a non local
one slower. For the Ising model, thermalization is easier far from the critical
temperature, provided that we choose an initial configuration in the same
phase. It is easier to thermalize a small system rather than a large one.

[image: pict]

Figure 13.8: Magnetization per site for the Ising model for [image: L = 10,14,18,24] and
[image: β = 0.50]. Thermalization from a hot start takes longer for a large system.

[image: pict]

Figure 13.9: Magnetization per site for the Ising model for [image: L = 30,60,90,120] and
[image: β = 0.20]. Thermalization starting from a cold start does not depend on the system size.

 The second problem is to determine when the system becomes thermalized and
discard all measurements before that. One way is to start simulations using
different initial states, or by keeping the same initial state and using a
different sequence of random numbers. When the times histories of the
monitored quantities converge, we are confident that the system has been
thermalized. Figure 13.7 shows that the thermalization time can vary quite a
lot.

 A more systematic way is to compute an expectation value by removing an
increasing number of initial measurements. When the results converge within the
statistical error, then the physical quantity that we measure has thermalized.

[image: pict]

Figure 13.10: Magnetization per site for the Ising model with [image: L = 100] and [image: β = 0.48].
Thermalization starts from a hot state.

[image: pict]

Figure 13.11: Magnetization per site for the Ising model with [image: L = 100] and
[image: β = 0.48]. We calculate the expectation value [image: ⟨m ⟩] by neglecting an increasing number
of “thermalization sweeps” from the measurements in figure 13.10. When the neglected
sweeps reach the thermalized state, the result converges to [image: ⟨m⟩ = 0.880(1)]. This is an
indication that the system has thermalized.

 This process is shown in figures 13.10 and 13.11 where we progressively drop
[image: 0,20, 50,100,200, 400,800,1600, 3200] and [image: 6400] initial measurements until the
expectation value of the magnetization stabilizes within the limits of its statistical
error.

 13.5 Autocorrelations

In order to construct a set of independent measurements using a Markov process,
the states put in the sample should be statistically uncorrelated. But for a process
using the Metropolis algorithm this is not possible. The next state differs from the
previous one by at most one value of their spins. We would expect that we could
obtain an almost statistically independent configuration after one spin
update per site, a so called sweep of the lattice. This is indeed the case for
the Ising model for temperatures far from the critical region. But as one
approaches [image: βc], correlations between configurations obtained after a few
sweeps remain strong. It is easy to understand why this is happening.
As the correlation length [image: ξ] (12.46) becomes much larger than a few
lattice spacings, large clusters of same spins are formed, as can be seen in
figure 13.32. For two statistically independent configurations, the size,
shape and position of those clusters should be quite different. For a single
flip algorithm, like the Metropolis algorithm, this process takes a lot of
time31 .

 For the quantitative study of autocorrelations between configurations we use
the autocorrelation function. Consider a physical quantity [image: 𝒪] (e.g. energy,
magnetization, etc) and let [image: 𝒪 (t)] be its value after Monte Carlo “time” [image: t]. [image: t]
can be measured in sweeps or multiples of it. The autocorrelation function [image: ρ𝒪(t)]
of [image: 𝒪] is

 	

[image: ⟨(𝒪-(t′) −-⟨𝒪⟩)(𝒪-(t′ +-t) −-⟨𝒪-⟩)⟩t′
ρ𝒪(t) = ⟨(𝒪 − ⟨𝒪⟩)2⟩ ,
]
	(13.31)

where [image: ⟨...⟩t′] is the average value over the configurations in the sample for
[image: t′ < tmax − t]. The normalization is such that [image: ρ𝒪(0) = 1].

 The above definition reminds us the correlation function of spins in space (see
equation (12.45)) and the discussion about its properties is similar to the one of
section 12.4. In a few words, when the value of [image: 𝒪] after time [image: t] is strongly
correlated to the one at [image: t = 0], then the product in the numerator in
(13.31) will be positive most of the time and the value of [image: ρ (t)
 𝒪] will be
positive. When the correlation is weak, the product will be positive and
negative the same number of times and [image: ρ𝒪(t)] will be almost zero. In the
case of anti-correlations [image: ρ𝒪 (t)] is negative. Negative values of [image: ρ𝒪 (t)]
occur, but these are artifacts of the finite size of the sample and should be
rejected.

 Asymptotically [image: ρ𝒪 (t)] drops exponentially

 	

[image: ρ𝒪(t) ∼ e−t∕τ𝒪 .
]
	(13.32)

 [image: τ
 𝒪] is the time scale of decorrelation of the measurements of [image: 𝒪] and it is called the
autocorrelation time of [image: 𝒪]. After time [image: 2 τ𝒪], [image: ρ𝒪(t)] has dropped to the [image: 2
1∕e ≈ 14%]
of its initial value and then we say that we have an independent measurement

of32
[image: 𝒪]. Therefore, if we have [image: tmax] measurements, the number of independent
measurements of [image: 𝒪] is

 	

[image: tmax-
n𝒪 = 2τ𝒪 .
]
	(13.33)

For expensive measurements we should measure every [image: ∼ τ𝒪] sweeps. If the cost
of measurement is not significant, then we usually measure more often, since there
is still statistical information even in slightly correlated configurations. An
accurate determination of [image: τ𝒪] is not easy since it requires measuring for [image: t ≫ τ𝒪].

[image: pict]

Figure 13.12: The autocorrelation function of the magnetization [image: ρ (t)
 m] for the Ising
model for [image: L = 100], [image: β = 0.42]. We see its exponential decay and that [image: τm ≈ 200] sweeps.
One can see the finite sample effects (the sample consists of about 1,000,000 measurements)
when [image: ρ] starts fluctuating around 0.

[image: pict]

Figure 13.13: The autocorrelation function shown in figure 13.12 of the magnetization
[image: ρm (t)] for the Ising model for [image: L = 100], [image: β = 0.42] in a log plot. The plot shows a fit to
[image: Ce −t∕τ] (see equation (13.32)) with [image: τ = 235(3)] sweeps.

 An example is shown in figure 13.12 for the case of the magnetization
([image: 𝒪 = m]). We calculate the function [image: ρm (t)] and we see that a fit to equation
(13.32) is quite good for [image: τm = 235 ± 3] sweeps. The calculation is performed on a
sample of [image: 106] measurements with 1 measurement/sweep. Therefore the number
of independent measurements is [image: 6
≈ 10 ∕ (2 × 235) ≈ 2128].

 Another estimator of the autocorrelation time is the so called integrated
autocorrelation time [image: τint,𝒪]. Its definition stems from equation (13.32) where we
take

 	

[image: ∫ +∞ ∫ + ∞ −t∕τ
τint,𝒪 = dtρ𝒪 (t) ∼ dte 𝒪 = τ𝒪.
 0 0
]
	(13.34)

The values of [image: τ
 int,𝒪] and [image: τ
 𝒪] differ slightly due to systematic errors that come from the
corrections33
to equation (13.32) . The upper limit of the integral is cut off by a maximum
value [image: tmax]

 	

[image: ∫ tmax
τint,𝒪(tmax) = dtρ𝒪 (t).
 0
]
	(13.35)

For large enough [image: tmax] we observe a plateau in the plot of the value of
[image: τint,𝒪(tmax)] which indicates convergence, and we take this as the estimator of
[image: τint,𝒪]. For even larger [image: tmax], finite sample effects enter in the sum that should be
discarded.

[image: pict]

Figure 13.14: Calculation of the integrated autocorrelation time of the magnetization
for the same data used in figure 13.19. There is a plateau in the values of [image: τint,m] for
[image: τ1 = 214(1)]sweeps and a maximum for [image: τ2 ≈ 219.5] sweeps. The fall from [image: τ2] to [image: ≈ τ1]
is due to the negative values of [image: ρm (t)] due to the noise coming from finite sample effects.
We estimate that [image: τint,m = 217(3)] sweeps.

 This calculation is shown in figure 13.14 where we used the same measurements
as the ones in figure 13.12. We find that [image: τint,m = 217(3)]sweeps, which
is somewhat smaller than the autocorrelation time that we calculated
using the exponential fit to the autocorrelation function. If we are
interested in the scaling properties of the autocorrelation time with the
size of the system [image: L] or the temperature [image: β], then this difference is not
important34 .
The calculation of [image: τint,𝒪] is quicker since it involves no
fitting35 .

[image: pict]

Figure 13.15: The autocorrelation time of the magnetization for the Ising model
at (high) temperature [image: β = 0.20] for [image: L = 10,20,40,60,80]. The autocorrelation time in
sweeps is independent of [image: L].

[image: pict]

Figure 13.16: The autocorrelation time of the magnetization for the Ising model at
(low) temperature [image: β = 0.65] for [image: L = 5,10,20,40]. The autocorrelation time in sweeps is
independent of [image: L].

 Autocorrelation times are not a serious problem away from the critical region.
Figures 13.15 and 13.16 show that they are no longer than a few sweeps and that
they are independent of the system size [image: L]. As we approach the critical region,
autocorrelation times increase. At the critical region we observe scaling of their
values with the system size, which means that for large [image: L] we have that

 	

[image: τ ∼ Lz.
]
	(13.36)

 This is the phenomenon of critical slowing down. For the Metropolis
algorithm and the autocorrelation time of the magnetization, we have that
[image: z = 2.1665 ± 0.0012] [60]. This is a large value and that makes the algorithm
expensive for the study of the critical properties of the Ising model. It means that
the simulation time necessary for obtaining a given number of independent
configurations increases as

 	

[image: d+z 4.17
tCPU ∼ L ≈ L .
]
	(13.37)

In the next chapter, we will discuss the scaling relation (13.36) in more detail
and present new algorithms that reduce critical slowing down drastically.

[image: pict]

Figure 13.17: The autocorrelation function of the magnetization for the Ising model
for [image: L = 40]. It shows how the autocorrelation time increases as we approach the critical
temperature from the disordered (hot) phase.

[image: pict]

Figure 13.18: The autocorrelation function of the magnetization for the Ising model
for [image: L = 40]. It shows how the autocorrelation time increases as we approach the critical
temperature from the ordered (cold) phase.

[image: pict]

Figure 13.19: The autocorrelation function for the Ising model for [image: β = 0.4407 ≈ β
 c]
and different [image: L]. We observe the increase of the autocorrelation time with the system size
in the critical region.

[image: pict]

Figure 13.20: The integrated autocorrelation time [image: τ
 int,m] for [image: β = β
 c] in a logarithmic
scale. The continuous line is the fit to [image: 2.067(21)
0.136(10)L]. The expected result from the
bibliography is [image: z = 2.1665(12)] and the difference is a finite size effect.

 13.6 Statistical Errors

The estimate of the expectation value of an observable from its average value in a
sample gives no information about the quality of the measurement. The complete
information is provided by the full distribution, but in practice we are usually
content with the determination of the “statistical error” of the measurement. This
is defined using the assumption that the distribution of the measurements is
Gaussian, which is a very good approximation if the measurements are
independent. The statistical error is determined by the fluctuations of the values
of the observable in the sample around its average (see discussion in section 12.2
and in particular equation (12.27)). Statistical errors can be made to
vanish, because they decrease as the inverse square root of the size of the
sample.

 Besides statistical errors, one has systematic errors, which are harder to
control. Some of them are easier to control (like e.g. poor thermalization) and
others maybe hard even to realize their effect (like e.g. a subtle problem in a
random number generator). In the case of a discrete, finite, lattice, approximating
a continuous theory, there are systematic errors due to the discretization and the
finite size of the system. These errors are reduced by simulating larger systems
and by using several techniques (e.g. finite size scaling) in order to extrapolate the
results to the thermodynamic limit. These will be studied in detail in the
following chapter.

13.6.1 Errors of Independent Measurements

Using the assumption that the source of statistical errors are the thermal
fluctuations around the average value of an observable, we conclude that its
expectation value can be estimated by the mean of the sample and its error by the
error of the mean. Therefore if we have a sample of [image: n] measurements
[image: 𝒪 ,𝒪 ,...,𝒪
 0 1 n−1], their mean is an estimator of [image: ⟨𝒪 ⟩]

 	

[image: 1 n∑−1
⟨𝒪 ⟩ = -- 𝒪i.
 n i=0
]
	(13.38)

 The error of the mean is an estimator of the statistical error [image: δ𝒪]

 	

[image: { }
 1 1 n∑−1 1 ()
(δ𝒪)2 ≡ σ2𝒪 = ------ -- (𝒪i − ⟨𝒪 ⟩)2 = ------ ⟨𝒪2⟩ − ⟨𝒪 ⟩2 .
 n − 1 n i=0 n − 1
]
	(13.39)

The above equations assume that the sample is a set of statistically
independent measurements. This is not true in a Monte Carlo simulation
due to the presence of autocorrelations. If the autocorrelation time,
measured in number of measurements, is [image: τ𝒪], then according to equation
13.33 we will have [image: n = n∕(2τ)
 𝒪 𝒪] independent measurements. One can
show that in this case, the statistical error in the measurement of [image: 𝒪]
is36
 [61]

 	

[image: (δ𝒪)2 = 1-+-2τ𝒪-(⟨𝒪2 ⟩ − ⟨𝒪 ⟩2).
 n − 1
]
	(13.40)

If [image: τ𝒪 ≪ 1], then we obtain equation (13.39) . If [image: τ𝒪 ≫ 1]

[image: 2 -2τ𝒪--(2 2)
(δ𝒪) ≈ n − 1 ⟨𝒪 ⟩ − ⟨𝒪⟩
 1 ()
 ≈ -------- ⟨𝒪2⟩ − ⟨𝒪 ⟩2
 (n ∕2τ𝒪)
 ---1--- (2 2)
 ≈ n 𝒪 − 1 ⟨𝒪 ⟩ − ⟨𝒪 ⟩ (13.41)
]

which is nothing but equation (13.39) for [image: n𝒪] independent measurements (we
assumed that [image: 1 ≪ n𝒪 ≪ n]). The above relation is consistent with our
assumption that measurements become independent after time [image: ∼ 2τ𝒪].

 In some cases, the straightforward application of equations (13.41) is not
convenient. This happens when, measuring the autocorrelation time according to
the discussion in section 13.5, becomes laborious and time consuming. Moreover,
one has to compute the errors of observables that are functions of correlated
quantities, like in the case of the magnetic susceptibility (13.30) . The
calculation requires the knowledge of quantities that are not defined on
one spin configuration, like [image: ⟨m ⟩] and [image: ⟨m2 ⟩] (or [image: (mi − ⟨m ⟩)] on each
configuration [image: i]). After these are calculated on the sample, the error [image: δχ]
is not a simple function of [image: δ⟨m ⟩] and [image: δ⟨m2 ⟩]. This is because of the
correlation between the two quantities and the well known formula of
error propagation [image: 2 2 2 2 2 22
(δ(⟨m ⟩ − ⟨m ⟩)) = (δ⟨m ⟩) + (δ⟨m ⟩)] cannot be
applied.

 13.6.2 Jackknife

The simplest solution to the problems arising in the calculation of statistical
errors discussed in the previous section is to divide a sample into blocks or
bins. If one has [image: n] measurements, she can put them in [image: nb] “bins” and
each bin is to be taken as an independent measurement. This will be
true if the number of measurements per bin [image: b = (n∕n) ≫ τ
 b 𝒪]. If [image: 𝒪b
 i]
[image: i = 0,...,nb − 1] is average value of [image: 𝒪] in the bin [image: i], then the error is given by
(13.39)

 	

[image: { nb−1 }
 2 ---1--- -1-∑ b b 2
(δ 𝒪) = nb − 1 nb (𝒪i − ⟨𝒪 ⟩)
 i=0
]
	(13.42)

This is the binning or blocking method and it is quite simple in its use. Note that
quantities, like the magnetic susceptibilities, are calculated in each bin as if
the bin were an independent sample. Then the error is easily calculated
by equation (13.42) . If the bin is too small and the samples are not
independent, then the error is underestimated by a factor of [image: 2τ𝒪∕(nb − 1)] (see
equation (13.40)). The bins are statistically independent if [image: b ∼ 2τ𝒪]. If [image: τ𝒪]
is not a priori known we compute the error (13.42) by decreasing the
number of bins [image: nb]. When the error is not increasing anymore and takes on
a constant value, then the calculation converges to the true statistical
error.

 But the method of choice in this book is the jackknife method. It is
more stable and more reliable, especially if the sample is small. The basic
idea is similar to the binning method. The difference is that the bins are
constructed in a different way and equation (13.42) is slightly modified.

The data is split in [image: nb] bins which contain [image: b = n − (n ∕nb)] elements as
follows: The bin [image: j] contains the part of the sample obtained after we
we erase the contents of the [image: j]-th bin of the binning method from the
full sample [image: 𝒪0, ...,𝒪n− 1]. The procedure is depicted in figure 13.21.

[image: pict]

Figure 13.21: The jackknife method applied on a sample of [image: n = 20] measurements.
The data is split to [image: nb = 5] bins and each bin contains [image: b = n − (n∕nb) = 20− 4 = 16]
measurements (the black disks). We calculate the average value [image: 𝒪bi] in each bin and, by
using them, we calculate the error [image: ∘ -----------------
δ𝒪 = nb(⟨(𝒪b)2⟩− ⟨𝒪b ⟩2)].

 We calculate the average value of [image: 𝒪] in each bin and we obtain
[image: 𝒪b0,𝒪b1,...,𝒪bnb− 1]. Then the statistical error in the measurement of [image: 𝒪]
is

 	

[image: n∑b−1() ()
(δ𝒪)2 = 𝒪bj − ⟨𝒪b ⟩ 2 = nb ⟨(𝒪b)2⟩ − ⟨𝒪b ⟩2 .
 j=0
]
	(13.43)

In order to determine the error, one has to vary the number of bins and check for
the convergence of (13.43) , like in the case of the binning method.

 For more details and proofs of the above statements, the reader is referred to
the book of Berg [5]. Appendix 13.8.1 provides examples and a program for the
calculation of jackknife errors.

 13.6.3 Bootstrap

Another useful method for the estimation of statistical errors is the bootstrap
method. Suppose that we have [image: n] independent measurements. From these we
create [image: n
 S] random samples as follows: We choose one of the [image: n] measurements
with equal probability. We repeat [image: n] times using the same set of [image: n]
measurements - i.e. by putting the chosen measurements back to the sample. This
means that on the average [image: ∼ 1 − 1∕e ≈ 63%] of the sample will consist of the
same measurements. In each sample [image: i = 0,...,nS − 1] we calculate the average
values [image: 𝒪S
 i] and from those

 	

[image: nS∑− 1
⟨𝒪S ⟩ = -1- 𝒪Si ,
 nS i=0
]
	(13.44)

and

 	

[image: () 1 nS∑− 1()
⟨ 𝒪S 2⟩ = --- 𝒪Si 2.
 nS i=0
]
	(13.45)

The estimate for the error in [image: ⟨𝒪⟩] is37

 	

[image: 2 (S)2 S 2
(δ𝒪) = ⟨ 𝒪 ⟩ − ⟨𝒪 ⟩ .
]
	(13.46)

We stress that the above formula gives the error for independent measurements.
If we have non negligible autocorrelation times, then we must use the
correction

 	

[image: 2 ((S)2 S 2)
(δ𝒪) = (1 + 2τ𝒪) ⟨ 𝒪 ⟩ − ⟨𝒪 ⟩
]
	(13.47)

Appendix 13.8.2 discusses how to use the bootstrap method in order to calculate
the true error [image: δ𝒪] without an a priori knowledge of [image: τ
 𝒪]. For more details, the
reader is referred to the articles of Bradley Efron [62]. In appendix 13.8.2
you will find examples and a program that implements the bootstrap
method.

 13.7 Appendix: Autocorrelation Function

This appendix discusses the technical details of the calculation of the
autocorrelation function (13.31) and the autocorrelation time given by equations
(13.32) and (13.34) . The programs can be found in the directory Tools in the
accompanying software.

 If we have a finite sample of [image: n] measurements [image: 𝒪 (0),𝒪 (1),...,𝒪 (n − 1)],
then we can use the following estimator for the autocorrelation function, given by
equation (13.31) ,

 	

[image: n−1−t
 -1---1-- ∑ ′ ′
ρ𝒪 (t) = ρ0 n − t (𝒪 (t) − ⟨𝒪 ⟩0)(𝒪 (t + t) − ⟨𝒪⟩t),
 t′=0
]
	(13.48)

where the average values are computed from the
equations38

 	

[image: n−1−t n− 1− t
 --1-- ∑ ′ --1-- ∑ ′
⟨𝒪 ⟩0 ≡ n − t 𝒪 (t) ⟨𝒪 ⟩t ≡ n − t 𝒪 (t + t).
 t′=0 t′=0
]
	(13.49)

The constant [image: ρ0] is chosen so that [image: ρ𝒪 (0) = 1].

 The program for the calculation of (13.48) and the autocorrelation time
(13.34) is listed below. It is in the file autoc.f90 and you should read the
comments embedded in the code for explanations of the most important
steps.

!==

!file: autoc.f90

MODULE rho_function

 implicit none

 SAVE

 integer :: NMAX,tmax

 character(200) :: prog

 CONTAINS

!--

!rho is the unnormalized autocorrelation function at t:

 real(8) function rho(x,ndat,t)

 implicit none

 integer :: ndat,t

 real(8),dimension(0:) :: x

 integer :: n,t0

 real(8) :: xav0,xavt,r

!--------------------------------------

 n=ndat-t

 if(n<1) call locerr(’rho: n<1’)

!Calculate the two averages: xav0=<x>_0, xavt=<x>_t

 xav0 = SUM(x(0:n-1)) / n

 xavt = SUM(x(t:n-1+t)) / n

 rho = SUM((x(0:n-1)-xav0)*(x(t:n-1+t)-xavt))/n

 end function rho

!--

 subroutine locerr(errmes)

 implicit none

 character(*) :: errmes

 write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’

 stop 1

 end subroutine locerr

END MODULE rho_function

!==

program autocorrelations

 USE rho_function

 implicit none

 real(8),allocatable,dimension(:) :: r,tau,x

 real(8) :: norm

 integer :: i,ndat,t,tcut,chk

!--

!Default values for max number of data and max time for

!rho and tau:

 NMAX=2000000;tmax=1000 !NMAX=2e6 requires ~ 2e6*8=16MB

 call get_the_options

 ALLOCATE(x(0:NMAX-1),STAT=chk)

 if(chk > 0) call locerr(’Not enough memory for x’)

 ndat=0

 do while (ndat < NMAX)

 read(*,*,END=101)x(ndat)

 ndat = ndat+1

 enddo !

101 continue

 if(ndat >= NMAX) write(0,’(3A,I14,A,I14)’) &

 ’# ’,TRIM(prog), &

 ’: Warning: read ndat=’, ndat, &

 ’ and reached the limit: ’,NMAX

!We decrease tmax if it is comparable or large of ndat

 if(tmax > (ndat/10)) tmax = ndat/10

!r(t) stores the values of the autocorrelation function rho(t)

 ALLOCATE(r(0:tmax-1))

 do t=0,tmax-1

 r(t) = rho(x,ndat,t)

 enddo

 norm = 1.0D0/r(0); r = norm*r

!tau(t) stores integrated autocorrelation times with tcht=t

 ALLOCATE(tau(0:tmax-1))

 do tcut=0,tmax-1

 tau(tcut)=0.0D0

 do t=0,tcut

 tau(tcut) = tau(tcut)+r(t)

 enddo

 enddo

!Output:

 print ’(A)’,’# ===’

 print ’(A)’,’# Autoc function rho and int autoc time tau ’

 print ’(A,I12,A,I8)’,’# ndat= ’,ndat,’ tmax= ’,tmax

 print ’(A)’,’# t rho(t) tau(tcut=t) ’

 print ’(A)’,’# ===’

 do t=0,tmax-1

 print ’(I8,2G28.17)’,t,r(t),tau(t)

 enddo

end program autocorrelations

!==

subroutine get_the_options

 use rho_function

 use getopt_m !from getopt.f90

 implicit none

 call getarg(0,prog)

 do

 select case(getopt("-ht:n:"))

 case(’t’)

 read(optarg,*)tmax

 case(’n’)

 read(optarg,*)NMAX

 case(’h’)

 call usage

 case(’?’)

 print *, ’unknown option ’, optopt

 stop

 case(char(0)) ! done with options

 exit

 case(’-’) ! use -- to exit from options

 exit

 case default

 print *, ’unhandled option ’, optopt

 end select

 enddo

end subroutine get_the_options

!==

subroutine usage

 use rho_function

 implicit none

 print ’(3A)’,’Usage: ’,TRIM(prog),&

 ’ [-t <maxtime>] [-n <ndat>]’

 print ’(A)’,’ Reads data from stdin (one column) and’

 print ’(A)’,’ computes autocorrelation function and’

 print ’(A)’,’ integrated autocorrelation time.’

 stop

end subroutine usage

!==

 The calculation of the autocorrelation function is put in a separate module
rho_function which can be used by any of your programs. After the statement
CONTAINS we can add code for functions and subroutines which can be
accessed39
by any program unit that uses the module. The module makes global variables,
like NMAX, tmax and prog, accessible to all program units that use the
module.

 The compilation is done with the commands

> gfortran -O2 getopt.f90 autoc.f90 -o autoc

 If our data is written in a file named data in one column, then the calculation of
the autocorrelation function and the autocorrelation time is done with the
command

> cat data | ./autoc > data.rho

 The results are written to the file data.rho in three columns. The first one
is the time [image: t], the second one is [image: ρ (t)
 𝒪] and the third one is [image: τ (t)
 int,𝒪]
(equation (13.35)). The corresponding plots are constructed by the gnuplot
commands:

gnuplot> plot "data.rho" using 1:2 with lines

gnuplot> plot "data.rho" using 1:3 with lines

 If we wish to increase the maximum number of data NMAX or the maximum time
tmax, then we use the options -n and -t respectively:

> cat data | autoc -n 20000000 -t 20000 > data.rho

 For doing all the work at once using gnuplot, we can give the command:

gnuplot> plot "<./is -L 20 -b 0.4407 -s 1 -S 345 -n 400000|\

 grep -v ’#’|awk ’{print ($2>0)?$2:-$2;}’ |\

 autoc -t 500" using 1:2 with lines

The above command is long and it is broken into 3 lines for better printing. You
can type it in one line by removing the trailing ∖.

 A script that works out many calculations together is listed below. It is in the
file autoc_L and computes the data shown in figure 13.19.

#!/bin/tcsh -f

set nmeas = 2100000

set Ls = (5 10 20 40 60 80)

set beta = 0.4407

set tmax = 2000

foreach L ($Ls)

 set N = ‘awk -v L=$L ’BEGIN{print L*L}’‘

 set rand = ‘perl -e ’srand();print int(3000000*rand())+1;’‘

 set out = outL${L}b${beta}

 echo "Running L${L}b${beta}"

 ./is -L $L -b $beta -s 1 -S $rand -n $nmeas > $out

 echo "Autocorrelations L${L}b${beta}"

 grep -v ’#’ $out | \

 awk -v N=$N ’NR>100000{print ($2>0)?($2/N):(-$2/N)}’|\

 autoc -t $tmax > $out.rhom

end

 Then we give the gnuplot commands:

gnuplot> plot "outL5b0.4407.rhom" u 1:2 w lines title "5"

gnuplot> replot "outL10b0.4407.rhom" u 1:2 w lines title "10"

gnuplot> replot "outL20b0.4407.rhom" u 1:2 w lines title "20"

gnuplot> replot "outL40b0.4407.rhom" u 1:2 w lines title "40"

gnuplot> replot "outL60b0.4407.rhom" u 1:2 w lines title "60"

gnuplot> replot "outL80b0.4407.rhom" u 1:2 w lines title "80"

 The plots in figure 13.17 are constructed in a similar way.

 For the calculation of [image: τm] we do the following:

gnuplot> f(x) = c * exp(-x/t)

gnuplot> set log y

gnuplot> plot [:1000] "outL40b0.4407.rhom" u 1:2 with lines

gnuplot> c = 1 ; t = 300

gnuplot> fit [150:650] f(x) "outL40b0.4407.rhom" u 1:2 via c,t

gnuplot> plot [:1000] "outL40b0.4407.rhom" u 1:2 w lines,f(x)

gnuplot> plot [:] "outL40b0.4407.rhom" u 1:3 w lines

 where in the last line we compute [image: τint,m]. The fit command is just
an example and one should try different fitting ranges. The first plot
command shows graphically the approximate range of the exponential
falloff of the autocorrelation function. We should vary the upper and
lower limits of the fitting range until the value of [image: τ
 m] stabilizes and
the40 [image: 2
χ ∕dof]
is minimized41 .
The [image: χ2∕dof] of the fit can be read off from the output of the command
fit

.....

degrees of freedom (FIT_NDF) : 449

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.000939201

variance of residuals(reduced chisquare) = WSSR/ndf: 8.82099e-07

Final set of parameters Asymptotic Standard Error

======================= ==========================

c = 0.925371 +/- 0.0003773 (0.04078%)

t = 285.736 +/- 0.1141 (0.03995%)

.....

 from the line “variance of residuals”. From the next
lines we read the values of the fitted parameters with their
errors42
and we conclude that [image: τm = 285.7 ± 0.1]. We stress that this is the statistical error
of the fit for the given fitting range. But usually the largest contributions to the error
come from systematic errors, which, in our case, are seen by varying the fitting
range43 .
By trying different fitting ranges and using the criterion that the minimum
[image: χ2 ∕dof] doubles its minimum value, we find that [image: τm = 285(2)].

 In our case the largest systematic error comes from neglecting the effect of
smaller autocorrelation times. These make non negligible contributions for small
[image: t].

 By fitting to

 	

[image: −t∕τ
f (t) = ce ,
]
	(13.50)

we have taken into account only the largest autocorrelation time.

[image: pict]

Figure 13.22: Fit of the autocorrelation function [image: ρ (t)
 m] to the functions
[image: −t∕τ
f(t) = ce] and [image: −t∕τ1 −t∕τ2 −t∕τ3
h(t) = a1e + a2e + a3e]. For large times [image: f(t) ≈ h (t)],
but [image: h(t)] is necessary in order to capture the small [image: t] behavior. This choice results in
[image: τm = τ = τ1]. The values of the parameters are given in the text. The vertical axes are
in logarithmic scale.

[image: pict]

Figure 13.23: The plot of figure 13.22 for small times where the effect of smaller
autocorrelation times is most clearly seen.

 One should take into account also the smaller autocorrelation times. In this
case we expect that [image: ρm (t) ∼ a1e −t∕τ1 + a2e−t∕τ2 + ...]. We find that the data for
the autocorrelation function fit perfectly to the function

 	

[image: −t∕τ1 −t∕τ2 −t∕τ3
h (x) = a1e + a2e + a3e .
]
	(13.51)

As we can see in figures 13.22 and 13.23, the small [image: t] fit is excellent and the
result for the dominant autocorrelation time is [image: τm ≡ τ1 = 286.3(3)]. The
secondary autocorrelation times are [image: τ2 = 57(3)], [image: τ3 = 10.5(8)] which are
considerably smaller that [image: τ1].

 The commands for the analysis are listed below:

gnuplot> h(x) = a1*exp(-x/t1) + a2*exp(-x/t2) + a3*exp(-x/t3)

gnuplot> a1 = 1; t1 = 285; a2 = 0.04; t2 = 56; \

 a3 = 0.03; t3 = 10

gnuplot> fit [1:600] h(x) "outL40b0.4407.rhom" \

 using 1:2 via a1,t1,a2,t2,a3,t3

...

Final set of parameters Asymptotic Standard Error

======================= ==========================

a1 = 0.922111 +/- 0.001046 (0.1135%)

t1 = 286.325 +/- 0.2354 (0.08221%)

a2 = 0.0462523 +/- 0.001219 (2.635%)

t2 = 56.6783 +/- 2.824 (4.982%)

a3 = 0.0300761 +/- 0.001558 (5.18%)

t3 = 10.5227 +/- 0.8382 (7.965%)

gnuplot> plot [:150][0.5:] "outL40b0.4407.rhom" using 1:2 \

 with lines notit,h(x) ,f(x)

gnuplot> plot [:1000][0.01:] "outL40b0.4407.rhom" using 1:2 \

 with lines notit,h(x) ,f(x)

 13.8 Appendix: Error Analysis

 13.8.1 The Jackknife Method

In this section we present a program that calculates the errors using the jackknife
method discussed in section 13.6.2. Figure 13.21 shows the division of the data
into bins. For each bin we calculate the average value of the quantity [image: 𝒪] and then
we use equation (13.43) in order to calculate the error. The program is in the file
jack.f90 which you can find in the directory Tools in the accompanying

software. The program calculates [image: ⟨𝒪⟩], [image: δ𝒪], [image: 2
χ ≡ ⟨(𝒪 − ⟨𝒪 ⟩)⟩] and
[image: δχ].

!==

!file: jack.f90

MODULE jack_function

 implicit none

 SAVE

 integer :: JACK,MAXDAT

 character(200) :: prog

 CONTAINS

!--

!jackknife function:

 subroutine jackknife(ndat,jack,x,&

 avO,erO,avchi,erchi)

 integer :: ndat,jack !local jack...

 real(8),dimension(0:) :: x

 real(8) :: avO,erO,avchi,erchi

 integer :: i,j,binw,bin

 real(8),allocatable :: O(:),chi(:)

!--------------------------------------

 ALLOCATE(O(0:jack-1));ALLOCATE(chi(0:jack-1))

 O=0.0D0;chi=0.0D0;

 binw=ndat/jack

 if(binw<1)call locerr(’jackknife: binw < 1’)

!Average value:

 do i=0,ndat-1

 do j=0,jack-1

 if((i/binw) /= j) &

 O (j) = O (j) + x(i)

 enddo

 enddo

 O = O /(ndat-binw) !normalize

!Susceptibility:

 do i=0,ndat-1

 do j=0,jack-1

 if((i/binw) /= j) &

 chi(j) = chi(j) + (x(i)-O(j))*(x(i)-O(j))

 enddo

 enddo

 chi = chi/(ndat-binw) !normalize

!---------------

 avO = SUM(O)/jack;avchi=SUM(chi)/jack

 erO = sqrt(SUM((O -avO)*(O -avO)))

 erchi = sqrt(SUM((chi-avchi)*(chi-avchi)))

!---------------

 DEALLOCATE(O);DEALLOCATE(chi)

 end subroutine jackknife

!--

 subroutine locerr(errmes)

 implicit none

 character(*) :: errmes

 write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’

 stop 1

 end subroutine locerr

END MODULE jack_function

!==

program jackknife_errors

 use jack_function

 implicit none

 integer :: ndat,chk

 real(8) :: O,dO,chi,dchi

 real(8),allocatable :: x(:)

 MAXDAT=1000000;JACK=10

 call get_the_options

 ALLOCATE(x(0:MAXDAT-1),STAT=chk)

 if(chk > 0) call locerr(’Not enough memory for x’)

 ndat=0

 do while (ndat < MAXDAT)

 read(*,*,END=101)x(ndat)

 ndat = ndat+1

 enddo

101 continue

 if(ndat >= MAXDAT) write(0,’(3A,I14,A,I14)’) &

 ’# ’,TRIM(prog), &

 ’: Warning: read ndat=’, ndat, &

 ’ and reached the limit: ’,MAXDAT

 call jackknife(ndat,JACK,x,O,dO,chi,dchi)

 print ’(A,I14,A,I12,A)’,’# NDAT = ’,ndat, &

 ’ data. JACK = ’,JACK,’ groups’

 print ’(A)’,’# <o>, chi= (<o^2>-<o>^2)’

 print ’(A)’,’# <o> +/- err chi +/- err’

 print ’(4G28.17)’,O,dO,chi,dchi

end program jackknife_errors

!==

subroutine get_the_options

 use jack_function

 use getopt_m !from getopt.f90

 implicit none

 call getarg(0,prog)

 do

 select case(getopt("-hj:d:"))

 case(’j’)

 read(optarg,*)JACK

 case(’d’)

 read(optarg,*)MAXDAT

 case(’h’)

 call usage

 case(’?’)

 print *, ’unknown option ’, optopt

 stop

 case(char(0)) ! done with options

 exit

 case(’-’) ! use -- to exit from options

 exit

 case default

 print *, ’unhandled option ’, optopt

 end select

 enddo

end subroutine get_the_options

!===

subroutine usage

 use jack_function

 implicit none

 print ’(3A)’,’Usage: ’,TRIM(prog),’ [options]’

 print ’(A)’,’ -j : No. jack groups Def. 10’

 print ’(A)’,’ -d : Max. no. of data points read’

 print ’(A)’,’Computes <o>, chi= (<o^2>-<o>^2)’

 print ’(A)’,’Data is in one column from stdin.’

 stop

end subroutine usage

 For the compilation we use the command

> gfortran -O2 getopt.f90 jack.f90 -o jack

 If we assume that our data is in one column in the file data, the command that
calculates the jackknife errors using 50 bins is:

> cat data | jack -j 50

 The program has set a maximum of MAXDAT=1,000,000 measurements. If we need
to analyze more data, we have to use the switch -d. For example, for 2,000,000
measurements, use -d 2000000. The program reads data from the stdin and we
can construct filters in order to do complicated analysis tasks. For example, the
analysis of the magnetization produced by the output of the Ising model program
can be done with the command:

> ./is -L 20 -b 0.4407 -s 1 -S 342 -n 2000000 | grep -v # | \

 awk -v L=20 ’{print ($2>0)?($2/(L*L)):(-$2/(L*L))}’ | \

 ./jack -j 50 -d 2000000 | grep -v # | \

 awk -v b=0.4407 -v L=20 ’{print $1,$2,b*L*L*$3,b*L*L*$4}’

The command shown above can be written in one line by removing the
backslashes (’∖’) at the end of each line. Let’s explain it in detail: The first line
runs the program is for the Ising model with [image: N = L × L = 20 × 20] lattice sites
(-L 20) and [image: β = 0.4407] (-b 0.4407). It starts the simulation from a hot
configuration (-s 1) and makes 2,000,000 measurements (-n 2000000). The
command grep -v filters out the comments from the output of the program,
which are lines starting with a #. The second line calls awk and defines the awk
variable L to be equal to 20 (-v L=20). For each line in its input, it prints the
absolute value of the second column ($2) divided by the number of lattice sites
L*L. The third line makes the jackknife calculation of the average values of [image: ⟨m ⟩]
and [image: ⟨(m − ⟨m ⟩)2⟩] with their errors using the program jack. The comments of
the output of the command jack are removed with the command grep -v. The
fourth line is needed only for the calculation of the magnetic susceptibility,
using equation (13.30) . There, we need to multiply the fluctuations
[image: 2
⟨(m − ⟨m ⟩) ⟩] and their error by the factor [image: 2
βN = βL] in order to obtain
[image: χ].

 13.8.2 The Bootstrap Method

In this subsection we present a program for the calculation of the errors using the
bootstrap method according to the discussion in section 13.6.3. The program is in
the file boot.f90:

!==

!file: boot.f90

MODULE boot_function

 implicit none

 SAVE

 integer :: SAMPLES,MAXDAT

 character(200) :: prog

 integer :: seed

 CONTAINS

!--

!jackknife function:

 subroutine bootstrap(ndat,samples,x,&

 avO,erO,avchi,erchi)

 integer :: ndat,samples !local samples...

 real(8),dimension(0:) :: x

 real(8) :: avO,erO,avchi,erchi

 integer :: i,j,k

 real(8),allocatable :: O(:),O2(:),chi(:)

!--------------------------------------

 ALLOCATE(O(0:samples-1));ALLOCATE(O2(0:samples-1));

 ALLOCATE(chi(0:samples-1))

 O=0.0D0;O2=0.0D0;chi=0.0D0;

 do j=0,samples-1

 do i=0,ndat -1

 k = INT(ndat*drandom()) !0,...,ndat-1

 O (j) = O (j) + x(k)

 O2(j) = O2(j) + x(k)*x(k)

 enddo

 O (j) = O(j)/ndat; O2(j) = O2(j)/ndat

 chi(j) = O2(j)-O(j)*O(j)

 enddo

!---------------

 avO = SUM(O)/samples;avchi=SUM(chi)/samples

 erO = sqrt(SUM((O -avO)*(O -avO))/samples)

 erchi = sqrt(SUM((chi-avchi)*(chi-avchi))/samples)

!compute the real avO:

 avO = SUM(x(0:ndat-1))/ndat

!---------------

 DEALLOCATE(O);DEALLOCATE(chi)

 end subroutine bootstrap

!--

 real(8) function drandom()

 implicit none

 integer,parameter :: a = 16807

 integer,parameter :: m = 2147483647

 integer,parameter :: q = 127773

 integer,parameter :: r = 2836

 real(8),parameter :: f = (1.0D0/m)

 integer :: p

 real(8) :: dr

101 continue

 p = seed/q

 seed = a*(seed- q*p) - r*p

 if(seed .lt. 0) seed = seed + m

 dr = f*seed

 if(dr .le. 0.0D0 .or. dr .ge. 1.0D0) goto 101

 drandom = dr

 end function drandom

!--

 subroutine locerr(errmes)

 implicit none

 character(*) :: errmes

 write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’

 stop 1

 end subroutine locerr

END MODULE boot_function

!==

program bootstrap_errors

 use boot_function

 implicit none

 integer :: ndat,chk

 real(8) :: O,dO,chi,dchi

 real(8),allocatable :: x(:)

 MAXDAT=1000000;SAMPLES=1000

 call get_the_options

 ALLOCATE(x(0:MAXDAT-1),STAT=chk)

 if(chk > 0) call locerr(’Not enough memory for x’)

 ndat=0

 do while (ndat < MAXDAT)

 read(*,*,END=101)x(ndat)

 ndat = ndat+1

 enddo

101 continue

 if(ndat >= MAXDAT) write(0,’(3A,I14,A,I14)’) &

 ’# ’,TRIM(prog), &

 ’: Warning: read ndat=’, ndat, &

 ’ and reached the limit: ’,MAXDAT

 open (28, file="/dev/urandom", access="stream",&

 form="unformatted")

 read (28) seed

 seed = ABS(seed)

 close(28)

 call bootstrap(ndat,SAMPLES,x,O,dO,chi,dchi)

 print ’(A,I14,A,I12,A)’,&

 ’# NDAT = ’,ndat,’ data. SAMPLES = ’,SAMPLES,’ groups’

 print ’(A)’,&

 ’# <o>, chi= (<o^2>-<o>^2)’

 print ’(A)’,&

 ’# <o> +/- err chi +/- err’

 print ’(4G28.17)’,O,dO,chi,dchi

end program bootstrap_errors

!==

subroutine get_the_options

 use boot_function

 use getopt_m !from getopt.f90

 implicit none

 call getarg(0,prog)

 do

 select case(getopt("-hs:d:"))

 case(’s’)

 read(optarg,*)SAMPLES

 case(’d’)

 read(optarg,*)MAXDAT

 case(’h’)

 call usage

 case(’?’)

 print *, ’unknown option ’, optopt

 stop

 case(char(0)) ! done with options

 exit

 case(’-’) ! use -- to exit from options

 exit

 case default

 print *, ’unhandled option ’, optopt

 end select

 enddo

end subroutine get_the_options

!===

subroutine usage

 ...

end subroutine usage

!===

 For the compilation we use the command

> gfortran -O2 getopt.f90 boot.f90 -o boot

 If our data is in one column in the file data, then the command that calculates
the errors using 500 samples is:

> cat data | boot -s 500

 The maximum number of measurements is set to 1,000,000 as in the jack
program. For more measurements we should use the -d switch, e.g. for 2,000,000
measurements use -d 2000000. For the analysis of the magnetization from the
output of the program is we can use the following command:

> is -L 20 -b 0.4407 -s 1 -S 342 -n 2000000 | grep -v # | \

 awk -v L=20 ’{print ($2>0)?($2/(L*L)):(-$2/(L*L))}’ | \

 boot -s 1000 -d 2000000 | grep -v # | \

 awk -v b=0.4407 -v L=20 ’{print $1,$2,b*L*L*$3,b*L*L*$4}’

 13.8.3 Comparing the Methods

In this subsection we will compute errors using equation (13.40) , the jackknife
method (13.43) and the bootstrap method (13.47) . In order to appreciate the
differences, we will use data with large autocorrelation times. We use the
Metropolis algorithm on the Ising model with [image: L = 40], [image: β = 0.4407 ≈ βc] and
measure the magnetization per site (13.28) . We take [image: 1, 000,000] measurements
using the commands:

> ./is -L 40 -b 0.4407 -s 1 -S 5434365 -n 1000000 \

 > outL40b0.4407.dat &

> grep -v # outL40b0.4407.dat | \

 awk -v L=40 ’{if($2<0){$2=-$2};print $2/(L*L)}’ \

 > outL40b0.4407.m

> cat outL40b0.4407.m | autoc -t 10000 -n 1000000 \

 > outL40b0.4407.rhom

 The file outL40b0.4407.m has the measurements of the magnetization in one
column and the file outL40b0.4407.rhom has the autocorrelation function
and the integrated autocorrelation time as described after page 1429. We
obtain [image: τm = 286.3(3)]. The integrated autocorrelation time is found to be
[image: τ = 254(1)
 int,m].

 The expectation value is [image: ⟨m ⟩ = 0.638682]. The application of equation
(13.39) , valid for independent measurements, gives the (underestimated) error
[image: δcm = 0.00017]. Using equation (13.40) we obtain [image: √ -------
δm = 1 + 2τδcm ≈ 0.004].
The error of the magnetic susceptibility cannot be calculated this way.

 	

[image: ⟨m⟩ = 0.639 ± 0.004 ≡ 0.639 (4)
]
	(13.52)

[image: pict]

Figure 13.24: The error [image: δm] calculated using the bootstrap method as a function of
the number of samples [image: nS]. We observe a very fast convergence to the value obtained by
equation (13.39) [image: δcm = 0.00017].

[image: pict]

Figure 13.25: The error [image: δχ] of the magnetic susceptibility calculated using the
bootstrap method as a function of the number of samples [image: nS]. We observe convergence
for [image: nS > 1000] to the value [image: δcχ = 0.0435].

 For the calculation of the error of the magnetic susceptibility we have to resort
to the jackknife or to the bootstrap method. The latter is applied initially using a
variable number of samples [image: nS] so that the optimal number of samples is
be determined. Figure 13.24 shows the results for the magnetization.
We observe a very fast convergence to [image: δcm = 0.00017] for quite small
number of samples. The analysis could have safely used [image: nS = 100]. In the
case of the magnetic susceptibility, convergence is slower, but we can
still use [image: nS = 500]. We obtain [image: χ = 20.39] and [image: δcχ = 0.0435]. The error
assumes independent measurements, something that is not true in our case.
We should use the correction factor [image: √ --------
 1 + 2τm] which gives [image: δχ = 1].
Therefore

 	

[image: χ = 20 ± 1 ≡ 20 (1)
]
	(13.53)

We note that the error is quite large, which is because we have few independent
measurements: [image: n ∕(2τm) ≈ 1,000, 000∕(2 × 286) ≈ 1750]. The a priori knowledge
of [image: τm] is necessary in this calculation.

[image: pict]

Figure 13.26: The error [image: δm] calculated using the jackknife method as a function of the
number of bins [image: nb]. Convergence is observed for [image: 100 < nb < 800] to [image: δm = 0.0036]. The
plot shows that as we approach the limit [image: nb = n], the error approaches the value calculated
by equation (13.39) [image: δcm = 0.00017]. The horizontal lines correspond to the values [image: δcm]
and [image: √1-+-2τmδcm ≈ 0.004] where [image: τm = 286.3]. The ratio [image: δm∕δcm ≈ √1-+-2τm-].

[image: pict]

Figure 13.27: Figure 13.26 magnified in the region of the plateau in the values of [image: δm].
The horizontal lines correspond to the values [image: δcm] and [image: √ -------
 1+ 2τmδcm ≈ 0.004] where
[image: τm = 286.3]. The ratio [image: √-------
δm ∕δcm ≈ 1 + 2τm].

[image: pict]

Figure 13.28: The error [image: δχ] calculated using the jackknife method as a function of
the number of bins [image: nb]. Convergence is observed for [image: 100 < nb < 800] to [image: δχ = 0.86].
The plot shows that as we approach the limit [image: nb = n], the error approaches the same
value [image: δcχ = 0.0421] that would have been obtained if we had falsely considered the
measurements to be independent. These values are very close to the ones obtained using the
bootstrap method. The values [image: δχ] and [image: δ χ
 c] are shown in the plots by the two horizontal
lines. The ratio [image: √ -------
δχ∕δcχ ≈ 1+ 2τm].

[image: pict]

Figure 13.29: Figure 13.28 magnified in the region of the plateau in the values of [image: δχ].
Convergence is observed for [image: 100 < nb < 800] to [image: δχ = 0.86]. The values [image: δχ] and [image: δcχ]
are shown in the plots by the two horizontal lines. The ratio [image: √-------
δχ∕δcχ ≈ 1 +2τm].

 In the case of the jackknife method, the calculation can proceed without an
priori knowledge of [image: τm]. The errors are calculated for a variable number of bins
[image: nb]. Figure 13.26 shows the results for the magnetization. When [image: nb = n] the
samples consist of all the measurements except one. Then the error is equal to the
error calculated using the standard deviation formula and it is underestimated by
the factor [image: √ --------
 1 + 2τm]. This is shown in figure 13.26, where we observe a slow
convergence to the value [image: δcm = 0.00017]. The effect of the autocorrelations
vanishes when we delete [image: (bin width) ≈ 2τm] measurements from each bin. This
happens when [image: n ≈ n∕(bin width) = n∕(2τ) = 1,000,000∕572 ≈ 1750
 b m]. Of
course this an order of magnitude estimate and a careful study is necessary in
order to determine the correct value for [image: nb]. Figure 13.26 shows that the error
converges for [image: 100 < nb < 800] to the value [image: δm = 0.0036], which is quite close to
the value [image: √1-+--2τmδcm ≈ 0.004]. We note that, by using a small number
[image: nb ≈ 20 − 40], we obtain an acceptable estimate, a rule of the thumb that can be
used for quick calculations.

 Similar results are obtained for the magnetic susceptibility [image: χ], where the
error converges to the value [image: δχ = 0.86], in accordance with the previous
estimates. For [image: n → n
 b] the error converges to the underestimated error
[image: δcχ = 0.0421].

 We can use the bootstrap method, in a similar way to the jackknife method, in
order to determine the real error [image: δm], [image: δχ] without calculating [image: τm] directly. The
data is split into [image: nb] bins, whose bin width is [image: (bin width) = n∕nb]. Each
jackknife bin contains [image: n − n ∕n
 b] data elements and we apply the bootstrap
method on this data, by taking [image: nS] samples of [image: n − n ∕nb] random data. Then
each jackknife bin gives a measurement on which we apply equation (13.43) in
order to calculate errors.

 The above calculations can be reversed and used for the calculation of the
autocorrelation time. By computing the underestimated error [image: δc𝒪] and the true
error [image: δ𝒪] using one of the methods described above, we can calculate [image: τm] using
the relation [image: √ --------
δ𝒪 ∕δc𝒪 = 1 + 2τ𝒪]. Therefore

 	

[image: (()2) (()2)
τ = 1- δm-- − 1 = 1- δχ-- − 1 = ...
 m 2 δcm 2 δcχ
]
	(13.54)

By calculating [image: τm] using all the methods described here, these relations can also
be used in order to check the analysis for self-consistency and see if they agree.
This is not always a trivial work since a system may have many autocorrelation
times which influence each observable in a different way (fast modes, slow
modes).

 13.9 Problems

 	 Prove that equation (13.22) satisfies the detailed balance condition.

 	 Write a program that prints the memory used by variables of the
 type character, integer, integer(8), real, real(8) in bytes.
 Calculate the amount of memory needed for an array of size 2,000,000
 for each of the above types of variables.

 	 Make the appropriate changes in the Ising model program so that it
 measures the average acceptance ratio [image: ¯A] of the Metropolis steps. I.e.
 compute the ratio of accepted spin flips to the number of attempted
 spin flips. Compute the dependence of [image: A¯] on the temperature and
 the size of the system. Take [image: L = 20] and [image: β = 0.20,] [image: 0.30,] [image: 0.40,]
 [image: 0.42,] [image: 0.44,] [image: 0.46,] [image: 0.48,] [image: 0.50]. Then take [image: β = 0.20], [image: L = 10,] [image: 20,]
 [image: 40,] [image: 80,] [image: 100]. Repeat for the same values of [image: L] for [image: β = 0.44] and
 [image: β = 0.48].

 	 Reproduce the plots in figure 13.12 and compute [image: τm]. Repeat for [image: τe].
 Compare your results with [image: τint,m] and [image: τint,e].

 	 Reproduce the plots in figure 13.15 and repeat your calculation for the
 energy.

 	 Reproduce the plots in figure 13.17. Repeat your calculation for the
 energy. Then, construct similar plots for [image: τint,m] and [image: τint,e] as a function
 of [image: tmax] (see figure 13.14).

 	 Reproduce the plots in figures 13.19 and 13.20. Repeat your calculation
 for the energy. Then, construct similar plots for [image: τint,m] and [image: τint,e] as a
 function of [image: tmax] (see figure 13.14).

 	 Modify the Ising model program presented in the text so that it
 can simulate the Ising model in the presence of an external magnetic
 field [image: B] (see equation (13.2)). Calculate the magnetization per site
 [image: m (β,B)] for [image: L = 32] and [image: B = 0.2, 0.4,0.6,0.8,1.0] at an interesting
 range of temperatures. Use different initial configuration in order to
 study the thermalization of the system as [image: B] increases: Cold state with
 spins parallel to [image: B], cold state with spins antiparallel to [image: B] and hot
 state. Study the dependence of the critical temperature separating the
 ordered from the disordered state on the value of [image: B].

 	 Hysteresis: In the previous problem, the Ising model with [image: B ⁄= 0] has a
 first order phase transition, i.e. a discontinuity in the value of the order
 parameter which in our case is the magnetization as a function of [image: B]. Near
 a first order transition we observe the phenomenon of hysteresis. In order to
 see it, set [image: L = 32] and [image: β = 0.55] and

 	thermalize the system for [image: B = 0]

 	simulate the system for [image: B = 0.2] using as an initial state the last
 one coming from the previous step. Do 100 sweeps and calculate
 [image: ⟨m ⟩].

 	continue by increasing each time the magnetic field by [image: δB = 0.2].
 Stop when [image: ⟨m ⟩ ≈ 0.95].

 	using the last configuration from the previous step, repeat by
 decreasing the magnetic field by [image: δB = − 0.2] until [image: ⟨m ⟩ ≈ − 0.95].

 	using the last configuration from the previous step, repeat by
 increasing the magnetic field by [image: δB = 0.2] until [image: ⟨m ⟩ ≈ 0.95].

 Make the plot [image: (B, m)]. What do you observe?

For systems near a first order phase transition, the order parameter can
 take two different values with almost equal probability. This means
 that the free energy has two local minima. Only one of them is the
 true, global minimum. This is depicted in figure 12.2 where two
 equally probable values of the order parameter are shown. This
 happens exactly at the critical point. When we move away from the
 critical point, one of the peaks grows and it is favored corresponding
 to the global minimum of the free energy. The local minimum is
 called a metastable state and when the system is in such a state, it
 takes a long time until a thermal fluctuation makes it overcome the
 free energy barrier and find the global minimum. In a Monte Carlo
 simulation such a case presents a great difficulty in sampling states
 correctly near the two local minima. Repeat the above simulations, this
 time making [image: 100,000] sweeps per point. Plot the time series of
 the magnetization and observe the transitions from the metastable
 state to the stable one and backwards. Compute the histogram of
 the values of the magnetization and determine which state is the
 metastable in each case. How is the histogram changing as [image: B] is
 increased?

 	 Write a program that simulates the 2 dimensional Ising model on a
 triangular lattice using the Metropolis algorithm. The main difference is
 that the number of nearest neighbors is [image: z = 6] instead of [image: z = 4]. Look into
 chapter 13.1.2 of Newman and Barkema (esp. figure 13.4). Compute the
 change in energy for each spin flip for the Metropolis step. Calculate the
 maxima of the magnetic susceptibility and of the specific heat and see if
 they are close to the expected critical temperature [image: βc ≈ 0.274653072].
 Note that even though [image: βc] is different than the corresponding value
 on the square lattice, the critical exponents are the same due to
 universality.

 	 Write a program that simulates the three dimensional Ising model on a
 cubic lattice using the Metropolis algorithm. Use helical boundary
 conditions (all you need in this case is to add a parameter ZNN=L*L together
 with the XNN=1 and YNN=L).

 	 Write a program that simulates the three dimensional Ising model on a
 cubic lattice using the Metropolis algorithm. Use periodic boundary
 conditions. (Hint: Use a one dimensional array s(N). During initialization,
 compute the arrays XNN(-N:N), YNN(-N:N), ZNN(-N:N) which store the
 nearest neighbors of the position i on the lattice in XNN(i), XNN(-i),
 YNN(i), YNN(-i), ZNN(i), ZNN(-i).)

 	 Simulate the antiferromagnetic two dimensional Ising model on a square
 lattice using the Metropolis algorithm. You may use the same code that you
 have and enter negative temperatures. Find the ground state(s) of the
 system.
 Define the staggered magnetization [image: ms] to be the magnetization per site of
 the sublattice consisting of sites with odd [image: x] and [image: y] coordinate. Set
 [image: L = 32] and compute the energy, the [image: ms], the specific heat, the
 magnetic susceptibility [image: χ] and the staggered magnetic susceptibility
 [image: χs = βN ∕4 ⟨(ms − ⟨ms ⟩)2⟩].

[image: χ] has a maximum in the region [image: β ≈ 0.4407]. Compute its value at this
 temperature for [image: L = 32 − 120]. Show that [image: χ] does not diverge as [image: L → ∞],
 therefore [image: χ] does not show a phase transition.

Repeat the calculation for [image: χs]. What do you conclude? Compare the
 behavior of [image: ⟨ms ⟩] for the antiferromagnetic Ising model with [image: ⟨m ⟩] of the
 ferromagnetic.

 	 Modify the program in boot.f90 so that it bins its input data. Reproduce
 the plots in figures ?? and ??. (Hint: See the file boot_bin.f90)

[image: pict]

Figure 13.30: Horizontal motion on the [image: L = 5] square lattice with periodic boundary
conditions. The trajectory is a circle.

[image: pict]

Figure 13.31: Horizontal motion on the [image: L = 5] square lattice with helical boundary
conditions. The trajectory is a spiral.

[image: pict] [image: pict] [image: pict] [image: pict]

Figure 13.32: Spin configurations for the Ising model with [image: L = 400], [image: β = 0.4292]
after 4000, 9000, 12000 and 45000 sweeps respectively. We observe the formation of large
clusters of same spin. This makes hard to form a new independent configuration with the
Metropolis algorithm and results in large autocorrelation times.

Chapter 14
Critical Exponents
 In the previous chapters, we saw that when a system
undergoes a continuous phase transition as [image: β → βc], or equivalently as the reduced
temperature1
 	

[image: βc-−-β-
t ≡ βc → 0,
]
	(14.1)

the correlation length [image: ξ ≡ ξ(β, L = ∞)], calculated in the thermodynamic limit
diverges according to the relation

 	

[image: −ν
ξ ∼ |t| (ν = 1 for 2d -Ising).
]
	(14.2)

The behavior of such systems near the phase transition is characterized by
critical exponents, such as the exponent [image: ν], which are the same for all
systems in the same universality class. The critical exponents describe the
leading non analytic behavior of the observables in the thermodynamic

limit2
[image: L → ∞], when [image: t → 0]. Systems with the same long distance behavior, but which
could possibly differ microscopically, belong to the same universality class. For
example, if we add a next to nearest neighbor interaction in the Hamiltonian
of the Ising model or if we consider the system on a triangular instead
of a square lattice, the system will still belong to the same universality
class. As [image: ξ → ∞] these details become irrelevant and all these systems
have the same long distance behavior. Microscopic degrees of freedom of
systems in the same universality class can be quite different, as is the
case of the liquid/vapor phase transition at the triple point and the Ising
model.

The critical exponents of the 2d Ising model universality class are the Onsager
exponents:

 	

[image: χ ∼ |t|−γ , γ = 7∕4,
]
	(14.3)

 	

[image: −α
c ∼ |t| , α = 0 and
]
	(14.4)

 	

[image: β
⟨m ⟩ ∼ |t| t < 0, β = 1∕8.
]
	(14.5)

This behavior is seen only in the thermodynamic limit [image: L → ∞]. For a finite
lattice, all observables are analytic since they are calculated from the
analytic3
partition function [image: Z (β)] given by equation (13.4) . When [image: 1 ≪ ξ ≪ L] the
model behaves approximately as the infinite system. As [image: β ≈ βc] and [image: ξ ∼ L]
finite size effects dominate. Then the fluctuations, e.g. [image: χ] and [image: c], on the finite
lattice have a maximum for a pseudocritical temperature [image: βc(L)] for which we have
that4

 	

[image: lim βc(L) = βc.
L→ ∞
]
	(14.6)

For the Ising model on the square lattice, defined by (13.14) , we have that
[image: √ --
βc = log(1 + 2)∕2].

 Because of (14.2) , when on the finite lattice we take [image: β = βc(L)], we have
that [image: ξ(t,L) ∼ L ⇒ |t| =] [image: |(β − β (L))∕β |
 c c c][image: ∼ L −1∕ν], therefore equations
(14.3) – (14.5) become

 	

[image: χ ∼ Lγ∕ν,
]
	(14.7)

 	

[image: α∕ν
c ∼ L ,
]
	(14.8)

 	

[image: m ∼ L −β∕ν.
]
	(14.9)

The left hand sides of the above relations are normally evaluated at [image: β = βc(L)], but
they can also be evaluated at any temperature in the pseudocritical region. Most of
the times, one calculates the observables for [image: β = βc(L)], but one can also use e.g.
[image: β = βc]5.
In the next sections we will show how to calculate the critical exponents by using
the scaling relations (14.3) – (14.5) and (14.7) – (14.9) .

 14.1 Critical Slowing Down

The computation of critical exponents is quite involved and requires accurate
measurements, as well as simulations of large systems in order to reduce finite size
effects. The Metropolis algorithm suffers from severe critical slowing down, i.e.
diverging autocorrelation times with large dynamic exponent [image: z] according
to (13.36) , near the critical region, which makes it impossible to study
large systems. In this section we will discuss the cause of this effect whose
understanding will lead us to new algorithms that beat critical slowing down.
These are the cluster algorithms and, in particular, the Wolff algorithm. The
success of these algorithms is based on the dynamics of the system and, therefore,
they have a more specialized range of applications. In contrast, the Metropolis

algorithm can, in principle, be applied on any system studied with the Monte
Carlo method.

 According to the discussion in section 13.5, the Ising model simulation using
the Metropolis algorithm near the critical region exhibits an increase in
autocorrelation times given by the scaling relation (13.36)

 	

[image: τ ∼ ξz.
]
	(14.10)

The correlation length of the finite system becomes [image: ξ ∼ L] in this region, and we
obtain equation (13.36) , [image: z
τ ∼ L]. When [image: z > 0] we have the effect of critical
slowing down.

 Critical slowing down is the main reason that prohibits the
simulation of very large systems, at least as far as CPU time [image: tCPU] is
concerned6 .
The generation of a given number of configuration requires an effort [image: d
tCPU ∼ L].
But the measurement of a local quantity, like [image: ⟨m ⟩], for a given number
of times requires no extra cost, since each configuration yields [image: Ld]
measurements7 .
In this case, measuring for the largest possible [image: L] is preferable, since it reduces
finite size effects. We see that, in the absence of critical slowing down, the cost of
measurement of [image: ⟨m ⟩] is [image: t⟨CmPU⟩ ∼ L0].

 Critical slowing down, however, adds to the cost of production of independent
configurations and we obtain [image: t⟨m⟩ ∼ Lz
 CPU], making the large [image: L] simulations
prohibitively expensive. For the Metropolis algorithm on the two dimensional
Ising model we have that [image: z ≈ 2.17]; and the problem is severe. Therefore, it is

important to invent new algorithms that beat critical slowing down. In the case of
the Ising model and similar spin systems, the solution is relatively easy. It is
special to the specific dynamics of spin systems and does not have a universal
application.

 The reason for the appearance of critical slowing down is the divergence of the
correlation length [image: ξ]. As we approach the critical temperature [image: β → βc] from the
disordered phase, the typical configurations are dominated by large clusters of
same spins. The Metropolis algorithm makes at most one spin flip per step and
the acceptance ratios for spins inside a cluster are small. For example, a spin with
four same neighboring spins can flip with probability [image: e− 8βc ≈ 0.029],
which is quite small. The spins that change more often are the ones with
more neighbors having opposite spins, therefore the largest activity is
observed at the boundaries of the large clusters. In order to obtain a
statistically independent configuration, we need to destroy and create
many clusters, something that happens very slowly using the Metropolis
algorithm who realizes this process mostly by moving the boundaries of the
clusters.

 14.2 Wolff Cluster Algorithm

Beating critical slowing down requires new algorithms so that at
each step a spin configuration is changed at the scale of a spin
cluster8 .
The cluster algorithms construct such regions of same spins in a way that the
proposed new configuration has all the spins of the clusters flipped. For such an
algorithm to be successful, the acceptance ratios should be large. The most
famous ones are the Swendsen-Wang [63] and the Wolff [64] cluster algorithms.

[image: pict]

Figure 14.1: Two spin configurations that differ by the flip of a Wolff cluster. The
bonds that are destroyed/created during the transition belong to the boundary of the
cluster.

 The process of constructing the clusters is stochastic and depends on the
temperature. Small clusters should be favored for [image: β ≪ βc], whereas large clusters
of size [image: ∼ L] should dominate for [image: β ≫ β
 c].

 The basic idea of the Wolff algorithm is to choose a site randomly, a so called
seed of the cluster, and construct a spin cluster around it. At each step, we add
new members to the cluster with probability [image: Padd = Padd(β)]. If [image: Padd(β)] is
properly chosen, the detailed balance condition (12.59) is satisfied and the new
configuration is always accepted. This process is depicted in figure 14.1. In the
state [image: μ], the cluster is enclosed by the dashed line. The new state [image: ν] is obtained
by flipping all the spins in the cluster, leaving the rest of the spins to be the
same.

 The correct choice of [image: Padd] will yield equation (12.60)

 	

[image: P-(μ-→--ν) = e− β(Eν−E μ).
P (ν → μ)
]
	(14.11)

The discussion that follows proves (14.11) and can be found in the book by
Newman and Barkema [4]. The crucial observation is that the change in
energy in the exponent of the right hand side of (14.11) is due to the
creation/destruction of bonds on the boundary of the cluster. The structure of the
bonds in the interior of the cluster is identical in the two configurations [image: μ] and
[image: ν]. This can be seen in the simple example of figure 14.1. By properly choosing
the selection probability [image: g(μ → ν)] of the new state [image: ν] and the acceptance ratio
[image: A (μ → ν)], so that

 	

[image: P (μ → ν) = g(μ → ν)A(μ → ν),
]
	(14.12)

we will succeed in satisfying (14.11) and maximize the acceptance ratio. In fact
in our case we will find that [image: A (μ → ν) = 1]!

 The selection probability [image: g(μ → ν)] is the probability of constructing a
particular cluster and can be split in three factors:

 	

[image: g(μ → ν) = p × pint× pborder.
 seed yes no
]
	(14.13)

 The first term is the probability to start the cluster from the particular seed.
By choosing a lattice site with equal probability we obtain

 	

[image: 1
pseed = ---.
 N
]
	(14.14)

 Then the cluster starts growing around its seed. The second term [image: int
pyes] is the
probability to include all cluster members found in the interior of the cluster. This
probability is complicated and depends on the size and shape of the cluster.
Fortunately, it is not important to calculate it. The reason is that in the
opposite transition [image: ν → μ], the corresponding term is exactly the same since
the two clusters are exactly the same (the only differ by the value of the
spin)!

 	

[image: pinytes(μ → ν) = pinytes(ν → μ) ≡ C μν.
]
	(14.15)

 The third term is the most interesting one. The cluster stops growing when we
are on the boundary and say “no” to including all nearest neighbors with same
spins, which are not already in the cluster (obviously, the opposite spins are not
included). If [image: Padd] is the probability to include a nearest neighbor of same spin to
the cluster, the probability of saying “no” is [image: 1 − Padd]. Assume that we have [image: m]
“bonds”9
of same spins on the boundary of the cluster in the state [image: μ], and that we have [image: n]
such bonds in the state [image: ν]. In figure 14.1, for example, we have that
[image: m = 5] and [image: n = 7]. Therefore, the probability to stop the cluster in
the state [image: μ] is to say “no” [image: m] times, which happens with probability

[image: m
(1 − Padd)]:

 	

[image: pbnoorder(μ → ν) = (1 − Padd)m.
]
	(14.16)

Similarly, the cluster in the state [image: ν] stops at the same boundary with
probability

 	

[image: pborder(ν → μ) = (1 − Padd)n.
 no
]
	(14.17)

Therefore

 	

[image: 1C (1 − P)mA (μ → ν)
P-(μ-→--ν) = N--μν------add-------------= e−β(Eν−E μ).
P (ν → μ) 1N-Cμν(1 − Padd)nA (ν → μ)
]
	(14.18)

The right hand side of the above equation depends only on the number of bonds
on the boundary of the cluster. The energy difference depends only on the
creation/destruction of bonds on the boundary of the cluster and the internal
bonds don’t make any contribution to it. Each bond created during the transition
[image: μ → ν] decreases the energy by 2 and each bond destroyed increases the energy
by 2:

 	

[image: E ν − Eμ = (− 2n) − (− 2m) = 2(m − n),
]
	(14.19)

which yields

 	

[image: m− nA (μ → ν) −2β(m −n) A(μ → ν) [2β]n−m
(1 − Padd) ----------= e ⇒ ----------= e (1 − Padd) .
 A (ν → μ) A(ν → μ)
]
	(14.20)

From the above relation we see that if we choose

 	

[image: −2β − 2β
1 − Padd = e ⇒ Padd = 1 − e ,
]
	(14.21)

then we can also choose

 	

[image: A(μ → ν) = A (ν → μ) = 1!
]
	(14.22)

Therefore, we can make the condition (14.11) to hold by constructing a cluster
using the [image: Padd] given by (14.21) , flipping its spins, and always accepting the
resulting configuration as the new state.

 Summarizing, the algorithm for the construction of a Wolff cluster consists of
the following steps:

 	Choose a seed by picking a lattice site with probability [image: 1
pseed = N-].
 This is the first new member of the cluster

 	Repeat: For each new member of the cluster, visit its nearest neighbors
 that do not already belong to the cluster. If they have the same spin,
 add them to the “new members” of the cluster with probability [image: Padd].
 The original spin is not a “new member” anymore

 	When there are no more “new members”, the construction of the cluster
 ends

 	Flip the spin of all the members of the cluster.

The algorithm is ergodic, since every state can be obtained from any other state
by constructing a series of clusters of size 1 (equivalent to single flips).

[image: pict]

Figure 14.2: The Wolf cluster size as a function of the temperature. The plot shows the
average cluster size as a fraction of the lattice size [image: N]. In the high temperature regime,
[image: β ≪ βc], this is [image: ∼ 1∕N], and in the low temperature regime, [image: β ≫ βc], it becomes [image: ∼ 1].
The data is for the Ising model on the square lattice for [image: L = 40].

 The probability [image: Padd] depends on the temperature [image: β]. It is quite small for
[image: β ≪ βc] and almost 1 for [image: β ≫ βc]. Therefore, in the first case the algorithm
favors very small clusters (they are of size 1 for [image: β = 0]) and in the second
case it favors large clusters. In the high temperature regime, we have
almost random spin flips, like in the Metropolis algorithm. In the low
temperature regime, we have large probability of flipping the dominant cluster of
the lattice. This is clearly seen in figure 14.2, where the fraction of the
average cluster size to the lattice size [image: ⟨n ⟩∕N] is plotted as a function of the
temperature. For small [image: β], [image: ⟨n⟩∕N → 1∕N] whereas for large [image: β], [image: ⟨n⟩∕N → 1].

[image: pict] [image: pict]

Figure 14.3: A typical spin configuration in the disordered phase (left, [image: β = 0.25]) and
in the ordered phase (right, [image: β = 0.5556]) for the Ising model on the square lattice for
[image: L = 100].

 Figure 14.3 shows typical spin configurations in the high and low temperature
regimes. For small [image: β], most of the time the algorithm chooses a lattice site
randomly and constructs a small cluster around it and flips its spins. The
Metropolis algorithm picks a lattice site randomly and flips it most of the
times. In both cases, the two algorithms function almost the same way and
construct the high temperature disordered spin configurations. For large [image: β],
a typical spin configuration is a “frozen” one: A large cluster of same
spins with a few isolated thermal fluctuations of different spins. Most of
the times, the Wolff algorithm picks a seed in the dominant cluster and
the new cluster is almost the same as the dominant cluster: Most of its
sites are included with few ones excluded, which upon flipping of the
spins, they will form the new thermal fluctuations. After the flips, the old
thermal fluctuations have the same spin as the dominant cluster and they
become part of the new dominant cluster. The Metropolis algorithm picks
lattice sites randomly: When they belong to the dominant cluster they are
seldomly flipped, whereas the thermal fluctuations are flipped most of the
time. Both algorithms function similarly and have the same efficiency.

[image: pict] [image: pict]

Figure 14.4: Two typical spin configurations in the (pseudo)critical region
([image: β = 0.4348]) for the Ising model on the square lattice for [image: L = 100]. The two
configurations differ by 5000 Metropolis steps.

 Figure 14.4 shows typical spin configurations in the critical region. These are
dominated by large clusters whose size, shape and position are random. The Wolff
algorithm constructs large clusters easily, therefore, large clusters are easily
created and destroyed in a few steps (figure 14.2 shows that [image: ⟨n ⟩∕N ≈ 0.5]). In
contrast, the Metropolis algorithm modifies clusters by slowly moving their
boundaries and large clusters are destroyed/created very slowly. Autocorrelation
times are expected to reduce drastically when using the Wolff algorithm in the
critical region.

 The expectation value of the size of the Wolff clusters is a dynamical quantity.
In order to see this, we will show that in the disordered phase ([image: β < βc]) we have
that

 	

[image: χ = β⟨n⟩.
]
	(14.23)

 We take the discussion from Newmann and Barkema [4]: Create
a bond on each link of the lattice connecting two same spins with
probability [image: Padd = 1 − e−2β]. In the end, the lattice will be divided in [image: Nc]
Wolff10
clusters. Each one will consist of [image: ni] sites, whose spin is [image: Si]. Choose a lattice site
randomly and flip the spins of the cluster it belongs to. Destroy the bonds and repeat the

process11 .
The total magnetization is:

 	

[image: ∑Nc
M = Sini,
 i=1
]
	(14.24)

and

 	

[image: (Nc) (Nc)
 2 ∑ ∑ ∑ ∑ 2 2
⟨M ⟩ = ⟨ Sini Sjnj ⟩ = ⟨ SiSjninj⟩ + ⟨ Sini⟩.
 i=1 j=1 i⁄=j i
]
	(14.25)

The values [image: Si = ±1] are equally probable due to the symmetry of the model,
therefore the first term vanishes. Since [image: S2 = 1
 i], we obtain

 	

[image: 1 1 ∑
⟨m2 ⟩ = --- ⟨M 2⟩ = ---⟨ n2i⟩.
 N 2 N 2 i
]
	(14.26)

 In the Wolff algorithm, the creation of a cluster is equivalent to the choice of
one of the clusters we created by following the procedure described above. The
probability of selecting the cluster [image: i] is

 	

[image: ni
pi = --,
 N
]
	(14.27)

therefore the average value of the size of the Wolff clusters will be

 	

[image: ∑ ∑ n
⟨n⟩ = ⟨ pini⟩ = ⟨ -ini⟩ = N ⟨m2 ⟩.
 i i N

]
	(14.28)

By using equation (14.26) and the fact that for [image: β < βc] we have that
[image: ⟨m ⟩ = 0]12,
therefore

 	

[image: 2 2
χ = βN (⟨m ⟩ − ⟨m ⟩) = β⟨n⟩.
]
	(14.29)

 14.3 Implementation

In order to create a cluster around a seed, we need a memory buffer for storing
the new members of the cluster. We draw cluster sites from this buffer, and
examine whether to add their nearest neighbors to the cluster.

 There are two data structures that can be used in this job. The first one is the
stack (or LIFO: last in – first out) and the second one is the queue (or FIFO: first
in – first out). They are both one dimensional arrays, the only difference is how
we draw data from them. In the case of a stack, we draw the last element that we
stored in it. In the case of the queue, we draw the first element that we stored in
it.

 The stack is implemented as a one dimensional array

stack(0:N-1)13
in which we “push” a new value that we want to store and we “pop” one
that we want to retrieve. We use an integer m as a pointer to the last
value that we stored in the position stack(m-1). m is also the number of
active elements in the stack. In order to push a value e into the stack
we:

 	check if there exist available positions in the stack (i.e. if m<N)

 	set stack(m) = e

 	increase m by 1.

In order to pop a value and store it in the variable e we:

 	check if the stack is non empty (i.e. if m>0)

 	reduce m by 1

 	set e = stack(m)

[image: pict]

Figure 14.5: Data topology in a queue. In the array depicted here, we have 8
elements stored in queue(N-3) ... queue(4). We have that m=5, n=N-3, m-n = 8 mod
N. An element is added to the queue(m)=queue(5) and an element is popped by calling
queue(n)=queue(N-3).

 The queue implementation is different. The data topology is cyclic, as
shown in figure 14.5. We use an array queue(0:N-1) and two integers m, n
which point at the beginning and at the end of the buffer. The beginning
of the data is the element queue(m-1) and the end of the data is the
element queue(n). When the queue is empty, we have that m=n and the
same is true when it is full. Therefore we need a flag that flags whether
the queue is empty or full. In the beginning we set flag=0 (queue is
empty)14 .
The number (m-n) mod N is the number of stored
elements15 .
When the queue has data, we set flag=1. In order to store a value e into the
queue we:

 	check whether the queue is full (m=n and flag=1)

 	set flag=1

 	set queue(m) = e

 	increase m by [image: 1 modN].

In order to pop a value and store it in the variable e we:

 	check whether the queue is empty (m=n and flag=0)

 	set e = queue(n)

 	increase n by [image: 1 modN]

 	if m=n set flag=0.

 Summarizing, the algorithm for constructing a Wolff cluster for the Ising
model is the following:

 	choose a seed by randomly picking a site with probability [image: 1∕N]

 	check its nearest neighbors. If they have the same spin, add them to
 the cluster with probability [image: −2β
Padd = 1 − e]. The new members of
 the cluster are pushed into the stack stack(0:N-1) according to the
 previous discussion

 	pop a site from the stack stack(0:N-1). If the stack is empty we stop
 the construction and move on to the next step. If not, we check the
 site’s nearest neighbors. If they are not already in the cluster and they
 have the same spin, we add them to the cluster with probability [image: Padd]

 	record the size of the cluster and flip the spin of its members.

 The choice between stack or queue is not important. The results are the
same and the performance similar. The only difference is the way that the
clusters are constructed (for the stack, the cluster increases around the
seed whereas for the queue it increases first in one direction and then in
another). The careful programmer will try both during the debugging phase
of the development. Bad random number generators can be revealed in
such a test, since the Wolff algorithm turns out to be sensitive to their
shortcomings.

 14.3.1 The Program

The heart of the algorithm is coded in the
subroutine16
wolff() in the file wolff.f90. Each call to wolff() constructs a Wolff cluster,
flips its spin and records its size.

 The buffer stack(0:N-1) is used in order to store the new members of the
cluster. We call the function ALLOCATE for dynamically allocating the necessary
memory and use DEALLOCATE before returning to the calling program in
order to return this memory back to the system - and avoid memory
leaks.

 ALLOCATE(stack(0:N-1),STAT=chk)

 if(chk>0) call locerr(’allocation failure for stack in wolff’)

 DEALLOCATE(stack)!free memory of stack

 If the requested memory is not available, then chk>0 and the subroutine
locerr() stops the program.

 The seed is chosen randomly by a call to ranlux:

 call ranlux(r,1)

 cseed = INT(N*r)+1

 stack(0) = cseed

 nstack = 1 !the stack has 1 member, the seed

 sold = s(cseed)

 snew = -s(cseed) !the new spin value of the cluster

 s(cseed) = snew !we flip all new members of cluster

 ncluster = 1 !size of cluster=1

 The seed is stored in cseed which is immediately added to the cluster
(stack(0)=cseed). The variable nstack records the number of elements
in the stack and it is originally set equal to 1. The variable ncluster
counts the number of sites in the cluster and it is originally set equal to 1.
sold=s(cseed) is the old value of the spin of the cluster and snew=-sold
is the new one. The value of the spin of a new member of the cluster
is immediately changed (s(cseed)=snew)! This increases the efficiency
of the algorithm. By checking whether the spin of a nearest neighbor
is equal to sold, we check whether the spin is the same as that of the
cluster and if it has already been included in the cluster during a previous
check.

 The loop over the new members of the cluster is summarized below:

 do while(nstack > 0)

!pull a site off the stack:

 nstack = nstack - 1; scluster = stack(nstack)

!check its four neighbors:

!-------------scluster + XNN:

 nn = scluster + XNN; if(nn > N) nn = nn - N

 if(s(nn) == sold)then

 call ranlux(r,1)

 if(r<padd)then

 stack(nstack)=nn; nstack = nstack + 1

 s(nn) =snew

 ncluster =ncluster+1

 endif

 endif

! ... check other 3 nearest neighbors ...

 enddo

 The loop do while(nstack > 0) is executed while nstack>0, i.e. as long as the
stack is not empty and there exist new members in the cluster. The variable
scluster is the current site drawn from the stack in order to check its nearest
neighbors. The line nn = scluster + XNN; if(nn > N) nn = nn - N
chooses the nearest neighbor to the right and stores it in the variable nn. If
the spin s(nn) of nn is equal to sold, then this neighbor has the same
spin as that of the cluster and it has not already been included to the
cluster (otherwise its spin would have been flipped). The variable padd is
equal to [image: Padd](it has been set in init) and if r<padd (which happens
with probability [image: Padd]), then we add nn to the cluster: We add nn to the
stack, we flip its spin (s(nn)=snew) and increase the cluster size by 1.
We repeat for the rest of the nearest neighbors. The full code is listed
below:

subroutine wolff

 use global_data

 implicit none

 integer :: cseed,nstack,sold,snew,scluster,nn,chk

 integer :: ncluster

 real(8) :: r

 integer,allocatable :: stack(:)

!allocate stack memory:

 ALLOCATE(stack(0:N-1),STAT=chk)

 if(chk>0) call locerr(’allocation failure for stack in wolff’)

!choose a seed for the cluster, put it on the stack and flip it

 call ranlux(r,1)

 cseed = INT(N*r)+1

 stack(0) = cseed

 nstack = 1 !the stack has 1 member, the seed

 sold = s(cseed)

 snew = -s(cseed) !the new spin value of the cluster

 s(cseed) = snew !we flip all new members of cluster

 ncluster = 1 !size of cluster=1

!start the loop on spins in the stack:

 do while(nstack > 0)

!pull a site off the stack:

 nstack = nstack - 1; scluster = stack(nstack)

!check its four neighbors:

!-------------scluster + XNN:

 nn = scluster + XNN; if(nn > N) nn = nn - N

 if(s(nn) == sold)then

 call ranlux(r,1)

 if(r<padd)then

 stack(nstack)=nn; nstack = nstack + 1

 s(nn) =snew

 ncluster =ncluster+1

 endif

 endif

!-------------scluster - XNN:

 nn = scluster - XNN; if(nn < 1) nn = nn + N

 if(s(nn) == sold)then

 call ranlux(r,1)

 if(r<padd)then

 stack(nstack)=nn; nstack = nstack + 1

 s(nn) =snew

 ncluster =ncluster+1

 endif

 endif

!-------------scluster + YNN:

 nn = scluster + YNN; if(nn > N) nn = nn - N

 if(s(nn) == sold)then

 call ranlux(r,1)

 if(r<padd)then

 stack(nstack)=nn; nstack = nstack + 1

 s(nn) =snew

 ncluster =ncluster+1

 endif

 endif

!-------------scluster - YNN:

 nn = scluster - YNN; if(nn < 1) nn = nn + N

 if(s(nn) == sold)then

 call ranlux(r,1)

 if(r<padd)then

 stack(nstack)=nn; nstack = nstack + 1

 s(nn) =snew

 ncluster =ncluster+1

 endif

 endif

 enddo !do while(nstack > 0)

 print ’(A,I14)’,’#clu ’,ncluster

!--------------------------------------

 DEALLOCATE(stack)!free memory of stack

!--------------------------------------

end subroutine wolff

 In order to link the subroutine with the rest of the program so that we construct one cluster
per “sweep”17 ,

we modify main() accordingly:

!============== main.f90 ==================

program Ising2D

 use global_data

 implicit none

 integer :: isweep

 call init

 do isweep = 1, nsweep

 if(algorithm .eq. 1)then

 call wolff

 else

 call met

 endif

 call measure

 end do

 call endsim

end program Ising2D

 The (global) variable algorithm controls whether the
Wolff18
or the Metropolis algorithm will be used for the spin updates. The (global)
variable padd[image: ≡ P = 1 − e− 2β
 add] is defined in init(). The following lines are
added: into the file global_data.f90

 real(8) :: padd

 integer :: algorithm

 The following lines are added to the file init.f90

 algorithm=0 !default is metropolis,1 is wolff

 padd = 1.0D0 - exp(-2.0D0*beta)

 The following lines are added to the file options.f90

 select case(getopt("-hL:b:s:S:n:r:uw"))

 case(’w’)

 algorithm = 1

 in order to add the option -w to the command line. This option sets
algorithm=1, which makes the program run the Wolff algorithm instead of the
Metropolis. Some extra info must also be added to the help message printed by
usage and simmessage and ... we are ready! For the compilation we use the
Makefile

FC = gfortran

OBJS = global_data.o getopt.o main.o init.o met.o wolff.o \

 measure.o end.o options.o ranlux.o

FFLAGS = -O2

is: $(OBJS)

$(FC) $(FFLAGS) $^ -o $@

$(OBJS): global_data.f90

options.o: getopt.f90

%.o: %.f90

$(FC) $(FFLAGS) -c -o $@ $<

 The commands

> make

> ./is -h

Usage: ./is [options]

 -L: Lattice length (N=L*L)

 -b: beta (options beta overrides the one in config)

 -s: start (0 cold, 1 hot, 2 old config.)

 -S: seed (options seed overrides the one in config)

 -n: number of sweeps and measurements of E and M

 -w: use wolff algorithm for the updates

> ./is -L 20 -b 0.44 -s 1 -S 34235322 -n 5000 -w > outL20b0.44

 do the compilation, print the usage instructions of the program and perform a
test run for [image: L = 40], [image: β = 0.44], by constructing 5000 clusters, starting from a
hot configuration and writing the data to the file outL20b0.44.

 14.4 Production

In order to study the Ising model on a square lattice of given size [image: N], we have to
perform simulations for many values of [image: β]. Then, we want to study the finite
size properties and extrapolate the results to the thermodynamic limit,
by repeating the process for several values of [image: N]. The process is long
and ... boring. Moreover, a bored researcher makes mistakes and several
bugs can enter into her calculations. Laziness is a virtue in this case and
it is worth the trouble and the time investment in order to learn some
techniques that will make our life easier, our work more efficient, and
our results more reliable. Shell scripting can be used in order to code
repeated tasks of the command line. In its simplest form, it is just a series of
commands written into a text file. Such an example can be found in the file
run1:

run1

./is -L 20 -b 0.10 -s 1 -n 5000 -w -S 3423 > outL20b0.10

./is -L 20 -b 0.20 -s 2 -n 5000 -w > outL20b0.20

./is -L 20 -b 0.30 -s 2 -n 5000 -w > outL20b0.30

./is -L 20 -b 0.40 -s 2 -n 5000 -w > outL20b0.40

./is -L 20 -b 0.42 -s 2 -n 5000 -w > outL20b0.42

./is -L 20 -b 0.44 -s 2 -n 5000 -w > outL20b0.44

./is -L 20 -b 0.46 -s 2 -n 5000 -w > outL20b0.46

./is -L 20 -b 0.48 -s 2 -n 5000 -w > outL20b0.48

./is -L 20 -b 0.50 -s 2 -n 5000 -w > outL20b0.50

./is -L 20 -b 0.60 -s 2 -n 5000 -w > outL20b0.60

./is -L 20 -b 0.70 -s 2 -n 5000 -w > outL20b0.70

 The first line is a comment, since everything after a # is ignored by the shell. The
second line starts a simulation from a hot configuration (-s 1), lattice size L=20
(-L 20) and temperature [image: β = 0.10] (-b 0.10). The seed for the random number
generator is set equal to 3423 (-S 3423) and we measure on 5000 Wolff clusters
(-n 5000 -w). The results, printed to the stdout, are redirected to the file
outL20b0.10 (> outL20b0.10).

 The next ten lines continue the simulation for [image: β = 0.20] – [image: 0.70]. Each
simulation starts from the configuration stored in the file conf at the end of the
previous simulation.

 In order to run these commands, the file run1 should be given execute
permissions (only once, the permissions ... stay after that) using the command
chmod:

> chmod a+x run1

 Then run1 can be executed like any other command:

> ./run1

 Not bad... But we can do better! Instead of adding one line for each simulation,
we can use the programming capabilities of the shell. Let’s see how. The file run2
contains the commands:

#!/bin/tcsh -f

run2

set L = 20

set betas = (0.10 0.20 0.30 0.40 0.42 0.44 0.46 0.48 0.50\

 0.60 0.70)

set start = "-s 1 -S 3423"

set nsweeps = 5000

foreach beta ($betas)

 echo "L= $L beta= $beta"

 ./is -L $L -b $beta -n $nsweeps -w $start > outL${L}b${beta}

 set start = "-s 2"

end

 The first line19
calls the shell tcsh in order to interpret the script. This was not necessary in
run1, since every shell can interpret the commands that it contains. But in this
case we use syntax which is special to the shell tcsh.

 The second line is a comment.

 The third line defines a shell variable whose name is L. Its value is set after the
= character equal to the string "20". This value is accessible by adding a $ in
front of the name of the variable. Therefore, whenever we write $L (or ${L}), the
shell substitutes the string of characters 20. For example, in place of outL${L}b
the shell constructs the string outL20b.

 The fourth line defines an array, whose name is betas. The different elements
of the array can be accessed by using the syntax $betas[number], where
“number” is the array element starting from 1. In the example shown above
$betas[1]= 0.10, $betas[2]= 0.20, ..., $betas[11]= 0.70. The special
variable $#betas is the number of elements in the array, which is equal to
11. When we write $betas, the shell expands it to all the values in the

array20 .

 The fifth line defines the variable start to be equal to the string of characters
"-s 1 -S 3423". The quotes have been put because we want it to be treated as a
single string of characters. If we omit them, then the shell treats -s, 1, -S and
3423 as separate words, and we obtain a syntax error. Everything after the
character # is a comment.

 The command foreach is a way to construct a loop in tcsh. The commands
between the foreach and end repeat once for every word in the parentheses in the
foreach line. Each time, the loop variable, whose name is put after the keyword
foreach, is set equal to the next word in the parenthesis. In our case, these words
are the values of the array betas, and the loop will execute 11 times, once for
each value [image: 0.10], [image: 0.20], ... , [image: 0.70], each time with $beta set equal to one of those
values.

 The next three lines are the commands that are repeated by the foreach loop.
The command echo “echoes” its arguments to the stdout and informs us about
the current value of the parameters used in the simulation (quite useful, especially
when the simulations take a long time). The command ./is runs the program,
each time using a different value of beta. Notice that the name of the file in which
we redirect the stdout changes each time that beta changes value. Therefore
our data will be stored in the files outL20b0.10, outL20b0.20, ...,
outL20b0.70. The third command forces the program to read the initial
configuration from the file conf. The first time that the loop is executed,
the value of start is "-s 1 -S 3423" (hot configuration, seed equal to
3423), whereas for all the next simulations, start is equal to "-s 2" (old
configuration).

 We can also include a loop over many values of L as follows:

#!/bin/tcsh -f

set Ls = (10 20 40)

set betas = (0.10 0.20 0.30 0.40 0.42 0.44 0.46 0.48 0.50\

 0.60 0.70)

set nsweeps = 5000

foreach L ($Ls)

 set start = "-s 1 -S 3423"

 foreach beta ($betas)

 echo "L= $L beta= $beta"

 ./is -L $L -b $beta -n $nsweeps -w $start > outL${L}b${beta}

 set start = "-s 2"

 end

end

 The array variable Ls stores as many L as we wish. Note that the definitions of
start are put in a special place (why?).

 14.5 Data Analysis

Data production must be monitored by looking at the time histories of properly chosen
observables. This will allow us to spot gross mistakes and it will serve as a qualitative
check of whether the system has thermalized and how long are the autocorrelation
times. It is easy to construct time histories using gnuplot. For example, the
commands21 :

gnuplot> plot "<grep -v ’#’ outL40b0.44" \

 u 1 with lines title "E"

gnuplot> plot "<grep -v ’#’ outL40b0.44" \

 u (abs($2)) with lines title "|M|"

gnuplot> plot "<awk ’/#clu/{print $2}’ outL40b0.44" \

 u 1 with lines title "n"

 show us the time histories of the energy, of the (absolute value of the)
magnetization and of the size of the clusters in a simulation with [image: L = 40] and
[image: β = 0.44].

 The expectation values of the energy per link [image: ⟨e⟩ = 21N-⟨E⟩] and the
magnetization per site [image: ⟨m ⟩ = 1⟨M ⟩
 N] with their errors can be calculated by the
jackknife program, which can be found in the file jack.f90 in the directory Tools
(see appendix 13.8). We compile the program into an executable file jack which
we copy into the current working directory. The expectation value [image: ⟨e ⟩] can be
calculated using the command:

> grep -v # outL40b0.44 |\

 awk -v L=40 ’NR>500{print $1/(2*L*L)}’ | ./jack

We pass the value L=40 to the program awk by using the option -v, therefore making
possible the calculation of the ratio of the first column $1 by [image: 2
2N = 2L]. The condition
NR>500 makes the printing command to be executed only after awk reads the first 500
lines22 .
This way we can discard a number of thermalization sweeps. The result of the
above command is printed to the stdout as follows:

NDAT = 4500 data. JACK = 10 groups

<o>, chi= (<o^2>-<o>^2)

<o> +/- err chi +/- err

-0.71091166666 0.0024162628283 0.0015719190590 7.819205433e-05

 The first three lines are the comments printed by the program jack, which
inform the user about the important parameters of the analysis. The last line
gives [image: ⟨e⟩] and its error and then the fluctuations [image: ⟨e2⟩ − ⟨e⟩2] and their error.
The latter must be multiplied by [image: 2
β N], in order to obtain the specific
heat [image: c] and its error according to (13.29) . By adding a few more lines
to the command shown above, this multiplication can be done on the
fly:

> set L = 40; set b = 0.44 ; \

 grep -v # outL${L}b${b} | \

 awk -v L=$L ’NR>500{print $1/(2*L*L)}’ | \

 ./jack | grep -v # | \

 awk -v L=$L -v b=$b \

 ’{print "e",L,b,$1,$2,b*b*L*L*$3,b*b*L*L*$4}’

 Well, why all this fuzz? Notice that all the commands shown above can be given
in one single line in the command line (by removing the trailing ∖ of each line).
By recalling the command, it is easy to obtain the results for a different value of
[image: L] and/or [image: β], by editing the values of the variables L and/or b. The result
is

e 40 0.42 -0.619523333 0.00189807 0.311391 0.0228302

 i.e. [image: ⟨e ⟩ = − 0.6195(19)] and [image: c = 0.311(23)].

 We can work in a similar way for computing the magnetization. We have to
calculate the absolute value of the second column of the stdout of the command
./is, for every line that does not start with a #:

> set L = 40 ; set b = 0.42 ; \

 grep -v # outL${L}b${b} | \

 awk -v L=$L ’NR>500{m=($2>0)?$2:-$2;print m/(L*L)}’ | \

 ./jack | grep -v # | \

 awk -v L=$L -v b=$b \

 ’{print "m",L,b,$1,$2,b*L*L*$3,b*L*L*$4}’

 The absolute value is calculated by the expression ($2>0)?$2:-$2, and it is
stored in the variable m, which in turn is printed after being divided by [image: 2
N = L].
The result is

m 40 0.44 0.6250527778 0.00900370 21.8345 1.39975

 which gives [image: ⟨m ⟩ = 0.6251 (90)] and [image: χ = 21.8(14)].

 Similarly we can calculate [image: ⟨n⟩∕N]:

> set L = 40 ; set b = 0.44 ; \

 grep ’#clu’ outL${L}b${b} | \

 awk -v L=$L ’NR>500{print $2/(L*L)}’ | \

 ./jack | grep -v # | \

 awk -v L=$L -v b=$b ’{print "n",L,b,$1,$2}’

 The result is

n 40 0.44 0.4257476389 0.01302602

 which gives [image: ⟨n⟩∕N = 0.426(13)].

[image: pict]

Figure 14.6: The results of the simulations performed by the shell script in the file
run3. The expectation value of [image: ⟨m⟩] is shown to decrease as [image: 1∕L] at high temperatures
[image: β ≪ βc].

[image: pict]

Figure 14.7: The results of the simulations performed by the shell script in the file
run3. The magnetic susceptibility [image: χ] is shown to be almost independent of the lattice
size when [image: β] takes values away from the critical region. In the critical region, its value
increases as shown in equation (13.10) .

[image: pict]

Figure 14.8: The results of the simulations performed by the shell script in the file
run3. The plot shows the expectation value [image: ⟨e⟩].

[image: pict]

Figure 14.9: The results of the simulations performed by the shell script in the file
run3. The plot shows the specific heat [image: c] which is shown to be almost independent of
[image: L] away from the critical region, whereas in the critical region it increases according to
equation (13.8) .

[image: pict]

Figure 14.10: The results of the simulations performed by the shell script in the file
run3. The plot shows [image: ⟨n ⟩∕N].

 All of the above commands can be summarized in the script in the file
run3:

#!/bin/tcsh -f

set Ls = (10 20 40 60 80 100)

set betas = (0.00 0.10 0.20 0.25 0.30 0.34 0.38 \

 0.40 0.42 0.43 0.44 0.45 0.46 0.48 \

 0.48 0.50 0.55 0.60 0.65 0.70 0.80)

set nsweeps = 100000

foreach L ($Ls)

 set start = "-s 1 -S 3423"

 foreach beta ($betas)

 ./is -L $L -b $beta -n $nsweeps -w $start > outL${L}b${beta}

 set start = "-s 2"

 # Calculate <e> = <E>/(2N and c=beta^2*N*(<e^2>-<e>^2):

 grep -v ’#’ outL${L}b${beta} | \

 awk -v L=$L ’NR>500{print $1/(2*L*L)}’ | \

 ./jack | grep -v ’#’ | \

 awk -v L=$L -v b=$beta \

 ’{print "e",L,b,$1,$2,b*b*L*L*$3,b*b*L*L*$4}’

 # Calculate <m> = <|M|>/N and chi=beta*N*(<m^2>-<m>^2)

 grep -v ’#’ outL${L}b${beta} | \

 awk -v L=$L ’NR>500{m=($2>0)?$2:-$2;print m/(L*L)}’ | \

 ./jack | grep -v ’#’ | \

 awk -v L=$L -v b=$beta \

 ’{print "m",L,b,$1,$2,b*L*L*$3,b*L*L*$4}’

 end

end

 The script is run with the command

> ./run3 > out &

 Then, we can plot the results using
gnuplot23 :

set xlabel "beta"

set ylabel "<m>"

plot "<grep ’^m 10 ’ out" u 3:4:5 with errorbars title " 10"

replot "<grep ’^m 20 ’ out" u 3:4:5 with errorbars title " 20"

replot "<grep ’^m 40 ’ out" u 3:4:5 with errorbars title " 40"

replot "<grep ’^m 60 ’ out" u 3:4:5 with errorbars title " 60"

replot "<grep ’^m 80 ’ out" u 3:4:5 with errorbars title " 80"

replot "<grep ’^m 100 ’ out" u 3:4:5 with errorbars title "100"

 The above commands plot the magnetization.

set ylabel "chi"

set log y

plot "<grep ’^m 10 ’ out" u 3:6:7 with errorbars title " 10"

replot "<grep ’^m 20 ’ out" u 3:6:7 with errorbars title " 20"

replot "<grep ’^m 40 ’ out" u 3:6:7 with errorbars title " 40"

replot "<grep ’^m 60 ’ out" u 3:6:7 with errorbars title " 60"

replot "<grep ’^m 80 ’ out" u 3:6:7 with errorbars title " 80"

replot "<grep ’^m 100 ’ out" u 3:6:7 with errorbars title "100"

 The above commands plot the magnetic susceptibility.

set ylabel "<e>"

plot "<grep ’^e 10 ’ out" u 3:4:5 with errorbars title " 10"

replot "<grep ’^e 20 ’ out" u 3:4:5 with errorbars title " 20"

replot "<grep ’^e 40 ’ out" u 3:4:5 with errorbars title " 40"

replot "<grep ’^e 60 ’ out" u 3:4:5 with errorbars title " 60"

replot "<grep ’^e 80 ’ out" u 3:4:5 with errorbars title " 80"

replot "<grep ’^e 100 ’ out" u 3:4:5 with errorbars title "100"

 The above commands plot the energy.

set ylabel "c"

plot "<grep ’^e 10 ’ out" u 3:6:7 with errorbars title " 10"

replot "<grep ’^e 20 ’ out" u 3:6:7 with errorbars title " 20"

replot "<grep ’^e 40 ’ out" u 3:6:7 with errorbars title " 40"

replot "<grep ’^e 60 ’ out" u 3:6:7 with errorbars title " 60"

replot "<grep ’^e 80 ’ out" u 3:6:7 with errorbars title " 80"

replot "<grep ’^e 100 ’ out" u 3:6:7 with errorbars title "100"

 The above commands plot the specific heat.

set ylabel "<n>/N"

plot "<grep ’^n 10 ’ out" u 3:4:5 with errorbars title " 10"

replot "<grep ’^n 20 ’ out" u 3:4:5 with errorbars title " 20"

replot "<grep ’^n 40 ’ out" u 3:4:5 with errorbars title " 40"

replot "<grep ’^n 60 ’ out" u 3:4:5 with errorbars title " 60"

replot "<grep ’^n 80 ’ out" u 3:4:5 with errorbars title " 80"

replot "<grep ’^n 100 ’ out" u 3:4:5 with errorbars title "100"

 The above commands plot [image: ⟨n⟩∕N].

 14.6 Autocorrelation Times

In the case of the Metropolis algorithm, the “unit of time” in the Monte Carlo
simulation is one “sweep”, which is equal to [image: N] attempted spin flips. In the case
of the Wolff algorithm, the size of the clusters is a stochastic variable, which
depends on temperature. Therefore, flipping the spins of a cluster is not a
convenient unit of time, and we define:

 	

[image: (1 sweep) = -N--(Wolff cluster updates)
 ⟨n ⟩
]
	(14.30)

This definition of a sweep can be compared to a Metropolis sweep defined as [image: N] accepted

spin flips24 .
For convenience, we also use the [image: β]–dependent unit of time equal to one Wolff
cluster update. We use the notation [image: τW𝒪] when the autocorrelation time of [image: 𝒪]is
measured in Wolf cluster updates, and [image: τ𝒪] when using the definition (14.30) .
Their relation is:

 	

[image: ⟨n ⟩
τ𝒪 = τW𝒪 ----.
 N
]
	(14.31)

 We simulate the Ising model for [image: L = 10,20,40,60,80] and [image: 100] at
[image: β = 0.4407] using the Wolff algorithm. We construct [image: 5 × 106] Wolff clusters. The
results are written to files with names outL${L}b0.4407. We also perform
simulations using the Metropolis algorithm with [image: 10 × 106] sweeps. The results are
written to files with names outL${L}b0.4407met. The following shell script makes
life easier:

#!/bin/tcsh -f

set Ls = (10 20 40 60 80 100)

set beta = 0.4407

set nsweeps = 5000000

set start = "-s 1 -S 3423"

Wolf cluster algorithm:

foreach L ($Ls)

 ./is -w -L $L -b $beta -n $nsweeps $start > outL${L}b${beta}

 # Mean cluster size <n>/N

 grep ’#clu’ outL${L}b${beta} | \

 awk -v L=$L ’NR>10000{print $2/(L*L)}’ | \

 ./jack -d $nsweeps | grep -v ’#’ | \

 awk -v L=$L -v b=$beta ’{print "n",L,b,$1,$2}’

end

Metropolis algorithm

set nsweeps = 10000000

foreach L ($Ls)

 ./is -L $L -b $beta -n $nsweeps $start > outL${L}b${beta}met

end

 We compile the file autoc.f90 from the Tools directory and the executable
file is named autoc and copied to the current working directory. Then, the
following shell script calculates the autocorrelation functions [image: ρm (t)]:

#!/bin/tcsh -f

set Ls = (10 20 40 60 80 100)

set b = 0.4407

Wolff

set tmax = 1000

set ndata = 5000000

foreach L ($Ls)

 set f = outL${L}b${b}

 grep -v ’#’ $f | \

 awk -v L=$L \

 ’BEGIN{N=L*L}NR>100000{print ($2>0)?($2/N):(-$2/N)}’|\

 ./autoc -t $tmax -n $ndata> $f.rhom

end

Metropolis

set tmax = 8000

set ndata = 10000000

foreach L ($Ls)

 set f = outL${L}b${b}met

 grep -v ’#’ $f | \

 awk -v L=$L \

 ’BEGIN{N=L*L}NR>100000{print ($2>0)?($2/N):(-$2/N)}’|\

 ./autoc -t $tmax -n $ndata> $f.rhom

end

 We throw away [image: 100000] sweeps for thermalization. The results are
written to files whose names have file extension .rhom. The function
[image: ρm (t)] is fitted to (13.51) using three autocorrelation times according
to the discussion in appendix 13.7. The results are shown in table
14.125

 	
	
	
	
	

	[image: L]	[image: τWm] 	[image: ⟨n⟩∕N] 	[image: τm] 	[image: τm,Metropolis]

	
	
	
	
	

	 10 	2.18(2)	0.6124(2)	1.33(1)	16.1(1)

	 20 	3.48(5)	0.5159(1)	1.80(3)	70.7(4)

	 40 	5.10(6)	0.4342(2)	2.21(3)	330(6)

	 60 	6.12(6)	0.3927(2)	2.40(2)	795(5)

	 80 	7.33(7)	0.3653(3)	2.68(3)	1740(150)

	100	8.36(6)	0.3457(1)	2.89(2)	2660(170)

	
	
	
	
	

	

 Table 14.1: The autocorrelation times for the magnetization calculated as described
in the text. The second column contains the autocorrelation time [image: W
τm] for the Wolff
algorithm, using one cluster update as the unit of time. The fourth column contains [image: τm]
in sweeps according to (14.30) and we have that [image: τm = τWm ⟨n⟩∕N] (see (14.31)). The
fifth column contains the autocorrelation times for the Metropolis algorithm in units of
sweeps defined as [image: N] attempted spin flips.

 From (14.10) we expect that [image: τm ∼ Lz] where [image: z] is the dynamic exponent.
[image: z] can be calculated by the gnuplot commands:

gnuplot> tau(x) = c*x**z

gnuplot> fit tau(x) "autoc.dat" u 1:2:3 via c,z

gnuplot> plot "autoc.dat" u 1:2:3 w e t "W steps ", tau(x)

gnuplot> fit tau(x) "autoc.dat" u 1:6:7 via c,z

gnuplot> plot "autoc.dat" u 1:6:7 w e t "W sweeps ", tau(x)

gnuplot> fit tau(x) "autoc.dat" u 1:8:9 via c,z

gnuplot> plot "autoc.dat" u 1:8:9 w e t "Metropolis", tau(x)

 The exponent [image: z] is calculated for the Wolff algorithm in Wolff steps and Wolff
sweeps. The results are

 	

[image: τWm ∼ LzW , zW = 0.54 ± 0.02
]
	(14.32)

 	

[image: τm ∼ Lz, z = 0.29 ± 0.02

]
	(14.33)

 	

[image: τ ∼ Lz, z = 2.21 ± 0.02
 m,Metropolis
]
	(14.34)

[image: pict]

Figure 14.11: Autocorrelation times [image: τW
 m] for the magnetization using the Wolff
algorithm at [image: β = 0.4407]. The unit of time is one Wolff cluster update. The dynamic
exponent is calculated from the fit to [image: W
cLz] which gives [image: zW = 0.54(2)].

[image: pict]

Figure 14.12: Autocorrelation times [image: τ
 m] for the magnetization using the Wolff
algorithm at [image: β = 0.4407]. The unit of time is one Wolff sweep. The dynamic exponent is
calculated from the fit to [image: cLz], which gives [image: z = 0.29(2)].

[image: pict]

Figure 14.13: Autocorrelation times [image: τ
 m,Metropolis] for the magnetization using the
Metropolis algorithm at [image: β = 0.4407]. The unit of time is a Metropolis sweep defined by
[image: N] attempted spin flips. The dynamic exponent is calculated from the fit to [image: cLz], which
gives [image: z = 2.21(2)].

 The plots are shown in figures 14.11-14.13. The values of [image: z] reported in the
bibliography are [image: 0.50(1)], [image: 0.25 (1)] and [image: 2.167(1)] respectively [4, 60, 67]. We
can obtain better results by increasing the statistics and the lattice size and this is
left as an exercise for the reader.

 We also mention the relation between the dynamic exponents given by
equations (14.32) and (14.33) . From (14.29) [image: χ = β ⟨n⟩], (13.10) [image: −γ
χ ∼ |t|],
and (13.6) [image: ξ ∼ |t|−ν] and using [image: ξ ∼ L], valid in the critical region, we
obtain

 	

[image: ⟨n⟩ W Lγ∕ν W
τm = τWm ----∼ Lz -----= Lz +γ∕ν−2,
 L2 L2
]
	(14.35)

where we assumed that [image: W zW
τm ∼ L], [image: W
z ≡ 0.54(2)] and [image: z
τm ∼ L]. Therefore

 	

[image: γ
z = zW + --− 2.
 ν
]
	(14.36)

Using the values given in (13.12) , [image: γ = 7∕4], [image: ν = 1], we obtain

 	

[image: 1
z = zW − -,
 4
]
	(14.37)

which is in agreement, within error, with the calculated values and the values in
the bibliography.

 	
	
	

	[image: L]	[image: γ(t < 0)] 	[image: γ (t > 0)]

	
	
	

	 40 	1.7598(44)	1.730(17)

	 60 	1.7455(24)	1.691(14)

	 80 	1.7409(21)	1.737(12)

	100	1.7420(24)	1.7226(75)

	120	1.7390(15)	1.7725(69)

	140	1.7390(23)	1.7354(72)

	160	1.7387(10)	1.746(17)

	200	1.7380(11)	1.759(15)

	500	1.7335(8) 	1.7485(83)

	
	
	

	

 Table 14.2: Calculation of the critical exponent [image: γ] from fitting the data shown in
figures 14.14 and 14.15. The second column contains the results for [image: β > β (t < 0)
 c] and
the third one for [image: β < βc(t > 0)]. The parentheses report the statistical errors of the fits
and not the systematic. We expect that [image: γ = 7∕4].

[image: pict]

Figure 14.14: The magnetic susceptibility [image: χ(t,L)] in the scaling region according to
equation (14.3) . The straight line is the fit to this relation for the largest lattice. We
observe that finite size effects decrease as [image: L] increases and that the range of temperatures
included in the fit extends to smaller [image: |t|]. The data is for [image: β > βc(t < 0)] and the critical
point is approached from the ordered phase.

[image: pict]

Figure 14.15: The magnetic susceptibility [image: χ(t,L)] in the scaling region according to
equation (14.3) . The straight line is the fit to this relation for the largest lattice. We
observe that finite size effects decrease as [image: L] increases and that the range of temperatures
included in the fit extends to smaller [image: |t|]. The data is for [image: β < βc(t > 0)] and the critical
point is approached from the disordered phase. Finite size effects are larger for [image: t < 0] due
to the larger fluctuations at the pseudocritical point [image: β (L) < β
 c c].

 	
	
	

	[image: L]	[image: β(t < 0)] 	[image: β+ (t > 0)]

	
	
	

	 40 	0.1101(7) 	0.1122(29)

	 60 	0.1129(5) 	0.1102(19)

	 80 	0.1147(5) 	0.1118(21)

	100	0.1175(3) 	0.1170(11)

	120	0.1167(4) 	0.1172(16)

	140	0.1190(2) 	0.1187(19)

	160	0.1191(4) 	0.1134(20)

	200	0.1205(10)	0.1138(24)

	500	0.1221(2) 	0.1294(50)

	
	
	

	

 Table 14.3: The calculation of the critical exponent [image: β] from fitting the data shown
in figures 14.16. The second column contains the results for [image: β > β (t < 0)
 c] and the third
for [image: β < βc(t > 0)]. The parentheses report the statistical errors of the fits and not the
systematic. We expect that [image: β = β+ = 1∕8].

[image: pict]

Figure 14.16: The magnetization [image: ⟨m ⟩(t,L)] in the scaling region according to equation
(14.5) . The straight line is the fit to this relation for the largest lattice. We observe that
finite size effects decrease as [image: L] increases and that the range of temperatures included
in the fit extends to smaller [image: |t|]. The data is for [image: β > βc(t < 0)] and the critical point is
approached from the ordered phase.

[image: pict]

Figure 14.17: The magnetization [image: ⟨m⟩(t,L)] in the scaling region fitted to equation
(14.40) . The straight line is the fit to this relation for the largest lattice. We observe that
finite size effects decrease as [image: L] increases and that the range of temperatures included
in the fit extends to smaller [image: |t|]. The data is for [image: β < βc(t > 0)] and the critical point is
approached from the disordered phase.

[image: pict]

Figure 14.18: The specific heat [image: c(t,L)] in the scaling region fitted to equation (14.44)
. Only the [image: |t|] axis is in logarithmic scale. The data is for [image: β > βc(t < 0)] and the critical
point is approached from the ordered phase.

[image: pict]

Figure 14.19: The specific heat [image: c(t,L)] in the scaling region fitted to equation (14.44)
. Only the [image: |t|] axis is in logarithmic scale. The data is for [image: β < βc(t > 0)] and the critical
point is approached from the disordered phase. The exponent [image: ν] is set equal to 1.

 	
	
	

	 [image: L] 	[image: γ∕ν] 	[image: β ∕ν]

	
	
	

	 40–100 	1.754(1)	0.1253(1)

	140–1000	1.740(2)	0.1239(3)

	 40–1000 	1.749(1)	0.1246(1)

	
	
	

	

 Table 14.4: The critical exponents [image: γ∕ν] and [image: β∕ν] given by the finite size scaling
relations (14.7) and (14.9) . The first column contains the range in [image: L] included in the
fits of [image: χ(βc,L)] and [image: ⟨m⟩(βc,L)] to [image: g
aL].

 14.7 Temperature Scaling

In this section we will discuss the extent to which relations (14.3) – (14.5) can be used
for the calculation of the critical exponents [image: γ], [image: α] and [image: β]. The result is that, although
using them it is possible to compute correct results, these relations are not the best
choice26 .
In order to see clear scaling and reduce finite size effects, we have to consider [image: t ≪ 1]
and large [image: L]. The results depend strongly on the choice of range of the data included
in the fits. The systematic errors are large and the results in some cases plain
wrong27 .

 We simulate the Ising model for [image: L = 40], [image: 60], [image: 80], [image: 100], [image: 120], [image: 140], [image: 160],
[image: 200] and [image: 500]. The temperatures chosen correspond to small enough [image: t] in order
to observe scaling. For the values of [image: β] used in the simulations, see the shell
scripts in the accompanying software.

 First we compute the exponent [image: γ] from the relation (14.3) . For
given [image: L], we fit the data for [image: χ (t)] for an appropriate range of [image: |t|] to
the function [image: a |t|−γ], which has two fitting parameters, [image: γ] and [image: a]. We
determine the range of [image: t] where [image: χ(t)] gives a linear plot in a log–log
scale28 .
For large [image: |t|], we observe deviations from the linear behavior and for very small
[image: |t|] we observe finite size effects when [image: ξ ≈ L]. As [image: L] increases, finite size effects
decrease, and the data get closer to the asymptotic behavior [image: |t|−γ] for even
smaller [image: |t|]. The results are more clear for [image: β > βc(t < 0)], because for [image: t > 0] the
fluctuations near the pseudocritical temperature [image: βc(L) < βc] are larger and the

finite size effects are larger.

 Table 14.2 shows the results for the exponent [image: γ] for all the measured values of
[image: L]. The errors reported are the statistical errors of the fits, which are smaller
than the systematic errors coming from the choice or range of [image: t] of the data
included in the fits. One has to vary this range as long as the [image: χ2∕]dof of the fit
remains acceptable, and the resulting variation in the values of the parameters has
to be included in the estimate of the error. Sometimes, this method gives an
overestimated error, and it is a matter or experience to decide which parameter
values to include in the estimate. For example, figures 14.14 and 14.15 show that
the acceptable range of fitting becomes more clear by studying [image: χ(t)] for
increasing [image: L]. As [image: L] increases, the points approach the asymptotic curve
even closer. Even though for fixed [image: L] one obtains acceptable power fits
over a larger range of [image: t], by studying the large [image: L] convergence, we can
determine the scaling region with higher accuracy. Another point to consider is
whether the parameters of the fits have reasonable values. For example, even
though the value of [image: a] is unknown, it is reasonable to expect that its
value is of order [image: ∼ 1]. By taking all these remarks into consideration we
obtain

 	

[image: γ = 1.74 ± 0.02 (t < 0),
]
	(14.38)

 	

[image: γ = 1.73 ± 0.04 (t > 0).
]
	(14.39)

Next, we compute the critical exponent [image: β] using relation (14.5) . This relation is
valid as we approach the critical point from the low temperature phase, [image: β > βc]
or [image: t < 0]. In the thermodynamic limit, the magnetization is everywhere zero for
all [image: β < βc]. For a finite lattice [image: ⟨m ⟩ > 0], and it is reasonable to expect a scaling
of the form

 	

[image: ⟨m ⟩ ∼ |t|β+− 1, t > 0,
]
	(14.40)

where [image: β+] is defined so that

 	

[image: β = β = 1∕8.
 +
]
	(14.41)

 By following the same procedure, we calculate the exponents [image: β] and [image: β+]
shown in table 14.3. By taking the systematic errors described above into
consideration, we find that

 	

[image: β = 0.121 ± 0.003 t < 0,
]
	(14.42)

 	

[image: β+ = 0.120 ± 0.007 t < 0,
]
	(14.43)

which should be compared to the expected values [image: β = β+ = 1∕8].

 The calculation of the exponent [image: α] needs special care. The expected
value is [image: α = 0]. This does not imply that [image: c ∼] const. but that
29

 	

[image: c ∼ |log |t||.
]
	(14.44)

In this case, we find that the data is better fitted to the above relation instead of
being fitted to a power. This can be seen pictorially by making a log–log plot and
comparing it to a [image: c − |log |t||] plot. We see that the second choice leads to a
better linear plot than the first one. A careful study will compute the quality of
the fits and choose the better model this way. This is left as an exercise for the
reader.

[image: pict]

Figure 14.20: The magnetic susceptibility [image: χ(β ,L)
 c] at the critical temperature for
different values of [image: L]. The axes are in a logarithmic scale and the linear plots are consistent
with the power fit [image: χ (βc,L) = cLg]. The value of [image: g] computed by the fits is consistent
with the critical exponent [image: γ ∕ν] given by equation (14.7) .

[image: pict]

Figure 14.21: The magnetization [image: ⟨m ⟩(β ,L)
 c] at the critical temperature for different
values of [image: L]. The axes are in a logarithmic scale and the linear plots are consistent with
the power fit [image: ⟨m ⟩(βc,L) = cLg]. The value of [image: g] computed by the fits is consistent with
the critical exponent [image: β∕ν] given by equation (14.9) .

[image: pict]

Figure 14.22: The specific heat [image: c(β,L)
 c] at the critical temperature for different values
of [image: L]. The horizontal axis is in a logarithmic scale and the linear plot is consistent with the
scaling relation [image: c(βc,L) = c logL]. The result is consistent with the expectation [image: α = 0]
(see equation (14.8)).

 14.8 Finite Size Scaling

In this section we will calculate the critical exponents by using relations (14.7) -
(14.9) , i.e. by using the asymptotic scaling of [image: χ(β = βc,L)], [image: c(β = βc,L)] and
[image: ⟨m ⟩(β = βc,L)] with increasing system size [image: L]. This is called “finite size
scaling”.

 In order to calculate the exponent [image: γ∕ν] given by equation (14.7) , we
calculate the magnetic susceptibility at the known [image: βc] for increasing values of [image: L].
We fit the results [image: χ(βc,L)] to the function [image: g
aL] and calculate the fitting
parameters [image: a] and [image: g]. Then, we compare the computed value of [image: g] to
the expected value of [image: γ∕ν = 7∕4 = 1.75]. In this procedure we have to
decide which values of [image: L] should be included in the fits. The most obvious
criterion is to obtain reasonable [image: 2
χ ∕dof ≲ 1] and that the error in [image: g] and
[image: a] be small. This is not enough: Table 14.4 shows small variations in
the obtained values of [image: γ∕ν], if we consider different fit ranges. These
variations give an estimate of the systematic error which enters in the
calculation. Problem 9 is about trying this calculation yourselves. Table
14.4 shows the results, and figure 14.20 shows the corresponding plot.
The final result, which includes also an estimate of the systematic errors,
is

 	

[image: γ
ν-= 1.748 ± 0.005.
]
	(14.45)

 For the calculation of the exponent [image: β∕ν] given by equation (14.9) , we
compute the magnetization [image: ⟨m ⟩(βc,L)] at the critical temperature and repeat the
same analysis. The result is

 	

[image: β-= 0.1245 ± 0.0006.
ν
]
	(14.46)

 Equation (14.9) gives the exponent [image: α ∕ν]. But the expected value [image: α = 0]
leads, in analogy with equation (14.44) , to

 	

[image: c(βc,L) ∼ log L.
]
	(14.47)

 This relation is shown in figure 14.22. The vertical axis is not in a logarithmic
scale whereas the horizontal is. The linear plot of the data shows consistency with
equation (14.47) . Problem 9 asks you to show whether the logarithmic fit is
better than a fit to a function of the form [image: cLa + b] and appreciate the difficulties
that arise in this study. By increasing the statistics, and by measuring for
larger [image: L], the data in table 14.8 will improve and lead to even clearer
conclusions.

 We observe that, by using finite size scaling, we can compute the critical
exponents more effectively, than by using temperature scaling as in section 14.7.
The data follow the scaling relations (14.7) – (14.9) suffering smaller finite size
effects30 .

 	
	
	
	
	

	 [image: L]	[image: βc(L)] 	[image: χmax] 	[image: β′c(L)] 	[image: cmax]

	
	
	
	
	

	 40	0.4308(4) 	30.68(4) 	0.437(1) 	0.5000(20)

	 60	0.4342(2) 	62.5(1) 	0.4382(7) 	0.5515(15)

	 80	0.4357(2) 	103.5(1) 	0.4388(5) 	0.5865(12)

	 100	0.4368(1) 	153.3(2) 	0.4396(2) 	0.6154(18)

	 120	0.4375(1) 	210.9(2) 	0.4396(4) 	0.6373(20)

	 140	0.43793(13)	276.2(4) 	0.4397(5) 	0.6554(18)

	 160	0.4382(1) 	349.0(5) 	0.4398(4) 	0.6718(25)

	 200	0.43870(7) 	516.3(7) 	0.4399(2) 	0.6974(17)

	 500	0.43988(4) 	2558(5) 	0.44038(8)	0.7953(25)

	1000	0.44028(4) 	8544(10)	0.44054(8)	0.8542(36)

	
	
	
	
	

	

 Table 14.5: The pseudocritical temperatures [image: βc(L)] and [image: β′c(L)] calculated from the
maxima of the magnetic susceptibilities [image: χ
 max] and the specific heat [image: c
 max] respectively.
The values of the maxima are also shown.

[image: pict]

Figure 14.23: Calculation of the critical temperature [image: β
 c] and the critical exponent
[image: ν] using relation (14.50) . By using the pseudocritical temperatures [image: βc(L)] of table
14.5, we fit the data to [image: a − c(1∕L)b]. From the calculated values of [image: a], [image: b] and [image: c]
we calculate [image: βc = a] and [image: 1∕ν = b]. The horizontal line is the exact, known value
[image: βc = log(1+ √2)∕2 = 0.44069...].

[image: pict]

Figure 14.24: Calculation of the critical temperature [image: β
 c] and the critical exponent
[image: ν] using relation (14.50) . By using the pseudocritical temperatures [image: ′
βc(L)] of table
14.5, we fit the data to [image: a − c(1∕L)b]. From the calculated values of [image: a], [image: b] and [image: c]
we calculate [image: βc = a] and [image: 1∕ν = b]. The horizontal line is the exact, known value
[image: βc = log(1+ √2)∕2 = 0.44069...].

[image: pict]

Figure 14.25: Calculation of the critical exponent [image: γ∕ν] from the maxima of the
magnetic susceptibility using the asymptotic scaling (14.9) . The values [image: χmax(L)] are
taken from table (14.5) and are fitted to a function of the form [image: aLb]. The result of the
fit is [image: γ∕ν = 1.749(1)].

[image: pict]

Figure 14.26: Calculation of the critical exponent [image: α∕ν] from the maxima of the specific
heat using the asymptotic scaling (14.8) . The values [image: cmax(L)] are taken from table (14.5)
and are fitted to a function of the form [image: alogL + b− c∕L]. We obtain [image: a = 0.107(3)],
[image: b = 0.13(1)] and [image: c = 1.2(3)] with [image: χ2∕dof = 0.9] by fitting for [image: L = 40,...,500]. The fit
to [image: aLd + b− c∕L] gives [image: d = 0.004(97)], i.e. an exponent consistent with 0 and somehow
weird values for the parameters [image: a] and [image: b]. We conclude that the data is consistent with
[image: α∕ν = 0].

14.9 Calculation of [image: βc]

In the previous sections we discussed scaling in [image: t] and [image: L] in the critical region.
In the calculations we used the exact value of the critical temperature
[image: √ --
βc = log(1 + 2)∕2]. When [image: βc] is not known, the analysis becomes harder and
its computation contributes to the total error in the value of the critical
exponents. When doing finite size scaling using the scaling relations (14.7) –
(14.9) , one has to choose the values of the temperature at which to calculate the
left hand sides. So far, these values were computed at [image: βc]. What should we do
when [image: βc] is not a priori known? A good choice is to use the pseudocritical
temperature [image: βc(L)], the temperature where the fluctuations of the order
parameter [image: χ(β)] are at their maximum. Otherwise, we can compute [image: βc]
according to the discussion in this section and use the computed [image: βc] in the finite
size scaling analysis.

 Both choices yield the same results in the large [image: L] limit, even though the
finite size effects are different. In fact any value of [image: β] in the critical region can be
used for this calculation. The reason is that as we approach the critical region for
given [image: L], the correlation length becomes [image: ξ ∼ L] and finite size effects become
important. This is the behavior that characterizes the pseudocritical region of the
finite [image: L] system. The pseudocritical region becomes narrower as [image: L] becomes
larger. Any value of [image: β] in this region will give us observables that scale at large
[image: L], but the best choice is

 	

[image: χ(βc(L),L) ≡ χmax(L).
]
	(14.48)

In this case, the values on the left hand sides of (14.7) – (14.9) should be taken
at [image: β = βc(L)].

 The definition of [image: βc(L)] in not unique. One could use, for example, the
maximum of the specific heat

 	

[image: c(β′(L),L) ≡ cmax(L),
 c
]
	(14.49)

which defines a different [image: ′
βc(L)]. Of course [image: limL → ∞ βc(L)] [image: ′
= limL → ∞ βc(L)]
[image: = βc] and both choices will yield the same results for large [image: L]. The speed of
convergence and the errors involved in the calculation of the pseudocritical
temperatures are different in each case and there is a preferred choice, which in
our case is [image: βc(L)].

 First we calculate [image: βc]. When we are in the pseudocritical region we have that
[image: ξ ≈ L], therefore (14.2) gives

 	

[image: | |
 |βc − βc(L) | − 1 − 1 c
|t| = ||----------|| ∼ ξ ν ∼ L ν ⇒ βc(L) = βc − --1.
 βc L ν
]
	(14.50)

The calculation is straightforward to do: First we measure the magnetic
susceptibility. For each [image: L] we determine the pseudocritical region and
we calculate [image: βc(L)] and the corresponding maximum value [image: χmax]. In
order to do that, we should take many measurements around [image: βc(L)]. We

have to be very careful in determining the autocorrelation time (which
increases as [image: z
τ ∼ L]), so that we can control the number of independent
measurements and the thermalization of the system. We use the relation
(14.50) and fit the results to [image: a − c∕Lb], and from the calculated parameters
[image: a,b] and [image: c] we compute [image: β = a
 c], [image: ν = 1∕b]. In cases where one of the
parameters [image: βc], [image: ν] is known independently, then it is kept constant during the
fit.

 The results are shown in figure 14.23 where we plot the numbers contained in
table 14.5. The final result is:

[image: βc = 0.44066 ± 0.00003

 1- = 1.006 ± 0.017.
 ν
]

This can be compared to the known values [image: √--
βc = log(1 + 2)∕2 ≈ 0.44069] and
[image: 1∕ν = 1].
 This process is repeated for the pseudocritical temperatures [image: ′
βc(L)] and the
maximum values of the specific heat [image: cmax]. The results are shown in figure 14.24.
The final result is:

[image: βc = 0.44062 ± 0.00008
 1
 -- = 1.09 ± 0.18.
 ν
]

Figure 14.24 and the results reported above show that the calculation using the

specific heat gives results compatible with (14.51) , but that they are less
accurate. The values of the specific heat around its maximum are more spread and
more noisy than the ones of the magnetic susceptibility.
 From the maxima of the magnetic susceptibility [image: χmax (L)] we can calculate the
exponent [image: γ∕ν]. Their values are shown in table 14.5. The data are fitted to [image: aLb],
according to the asymptotic relation (14.9) , with [image: a] and [image: b] being fitting
parameters. We find very good scaling, therefore our data are in the asymptotic
region. The result is

 	

[image: γ-= 1.749 ± 0.001,
ν
]
	(14.51)

which is consistent with the analytically computed value [image: 7 ∕4].

 From the maxima of the specific heat we can calculate the exponent [image: α∕ ν].
Since [image: α = 0], the form of the asymptotic behavior is given by (14.47) . We find
that our results are not very well fitted to the function [image: a log L] and it is possible
that the discrepancy is due to finite size effects. We add terms that are subleading
in [image: L] and find that the fit to the function [image: a log L + b − c∕L] is very
good31 .
If we attempt to fit the data to the function [image: d
aL + b − c∕L], the quality of the fit
is poor and the result for [image: d] is consistent with zero. The results are shown in
figure 14.26.

[image: pict]

Figure 14.27: Collapse of the plots [image: χ (β,L)] for several values of [image: L] according to
equation (14.59) . The known values [image: √ -
βc = ln(1+ 2)∕2], [image: ν = 1] and [image: γ∕ν = 7∕4] have
been used.

[image: pict]

Figure 14.28: Collapse of the plots [image: ⟨m ⟩(β,L)] for several values of [image: L] according to
equation (14.60) . The known values [image: √ -
βc = ln(1+ 2)∕2], [image: ν = 1] and [image: β∕ν = 1∕8] have
been used.

[image: pict]

Figure 14.29: Collapse of the plots [image: c(β,L)] for several values of [image: L] according to
equation (14.61) . The known values [image: √-
βc = ln(1+ 2)∕2] and [image: ν = 1] have been used.

 14.10 Studying Scaling with Collapse

The scaling relations (14.3) – (14.9) are due to the
appearance of a unique, dynamical length scale, the correlation
length32
[image: ξ]. As we approach the critical point, [image: ξ] diverges as [image: ξ ∼ |t|−ν], and we obtain
universal behavior for all systems in the same universality class. If we consider the
magnetic susceptibility [image: χ (β,L)], its values depend both on the temperature [image: β],
the size of the system [image: L] and of course on the details of the system’s degrees of
freedom and their dynamics. Universality leads to the assumption that the
magnetic susceptibility of the infinite system in the critical region depends only on
the correlation length [image: ξ]. For the finite system in the pseudocritical region, finite
size effects suppress the fluctuations when [image: ξ ∼ L]. The length scales
that determine the dominant scaling behavior [image: χ ∼ ξγ∕ν] are [image: ξ] and [image: L],
therefore the dimensionless variable [image: L∕ ξ] is the only independent variable in
the scaling functions. In order to obtain the scaling relation [image: χ ∼ ξγ∕ν],
valid for the infinite system, we only need to assume that for the finite
system33

 	

[image: γ∕ν (0)
χ = χ(β, L) = ξ Fχ (L∕ξ),
]
	(14.52)

where [image: (0)
Fχ (z)] is a function of one variable, such that

 	

[image: F(0)(z) = const. z ≫ 1,
 χ
]
	(14.53)

and

 	

[image: F(0)(z) ∼ zγ∕ν z → 0.
 χ
]
	(14.54)

Indeed, when [image: 1 ≪ ξ ≪ L] ([image: z ≫ 1]) the magnetic susceptibility takes values very
close to those of the infinite system, and (14.53) gives [image: χ ∼ ξγ∕ν]. As [image: ξ ∼ L],
finite size effects enter and (14.54) gives [image: χ ∼ ξγ∕ν(L ∕ξ)γ∕ν = Lγ∕ν]. The latter is
nothing but (14.7) for the maxima of the magnetic susceptibility of the finite
system that we studied in figure 14.25. Therefore the function [image: (0)
F χ (z)] describes
how the magnetic susceptibility deviates from scaling due to finite size
effects.

 The function [image: F (0)(z)
 χ] can be calculated using the measurements coming from
the Monte Carlo simulation. Since the correlation length is not directly calculated,
but appears indirectly in the measurements, we define the dimensionless

variable

 	

[image: x = L1 ∕νt,
]
	(14.55)

where [image: 1∕ν
|x| ∼ (L ∕ξ)] since34
[image: ξ ∼ |t|− ν]. We define [image: Fχ(x) ∝ x−γF (0χ)(xν)] so that (14.52) becomes

 	

[image: χ = Lγ∕νFχ (x) = Lγ∕νFχ(L1 ∕νt).
]
	(14.56)

The asymptotic properties of the scaling function [image: F χ(x)] are determined by the
relations (14.53) and (14.54) . When [image: 1∕ν
x = L t ≫ 1], equation (14.53) is
valid for [image: F (χ0)(xν)] and we obtain [image: Fχ(0)(xν) = const.] From the definition
[image: F (x) = x−γF (0)(xν)
 χ χ] we obtain [image: F (x) ∼ x −γ = (L∕ξ)− γ∕ν
 χ] and we confirm the
scaling property of the magnetic susceptibility in the thermodynamic limit
[image: χ ∼ Lγ∕νFχ(x) ∼ Lγ∕ν(L∕ξ)− γ∕ν = ξγ∕ν]. Therefore

 	

[image: − γ
F χ(x) ∼ x x ≫ 1.
]
	(14.57)

 When [image: x → 0], (14.54) is valid and we have that [image: F (0)(xν) ∼ (xν)γ∕ν = xγ
 χ].
Then we obtain [image: − γ (0) ν −γ γ
F χ(x) ∝ x Fχ (x) ∼ x x = const.] Therefore, we
confirm that, when finite size effects are dominant ([image: x → 0]), we have that
[image: χ = Lγ∕νFχ(x) ∼ Lγ∕ν]. Therefore

 	

[image: F (x) ∼ const. |x| ≪ 1.
 χ
]
	(14.58)

 By inverting equation (14.56) , we can calculate the scaling function from the
measurements of the magnetic susceptibility

 	

[image: 1∕ν −γ∕ν
F χ(L t) = L χ(β, L),
]
	(14.59)

where [image: χ(β,L)] are measurements for temperatures in the pseudocritical
region for several values of [image: L]. When equation (14.59) is valid, then
all the measurements fall onto the same curve [image: F χ(x)] independently of
the size [image: L]! Of course deviations due to finite size effects are expected,
especially when [image: L] is small. But, as we will see, convergence is quite
fast.

 Using the above procedure, we can determine the critical temperature [image: βc], the
exponent [image: ν] and the ratio [image: γ∕ν] simultaneously! In order to check (14.59) , we
have to compute the variable [image: x = L1∕νt], for which it is necessary to
know [image: βc] ([image: t = (βc − β)∕βc]) and the exponent [image: ν]. For the calculation of
[image: F χ] it is necessary to know [image: γ∕ ν] that appears on the right hand side of
(14.59) . Relation (14.59) depends quite sensitively on the parameters
[image: βc], [image: ν] and [image: γ∕ ν] and this way we obtain an accurate method for their
calculation.

 In order to do the calculation, we set initial values for the parameters
[image: (βc,ν,γ ∕ν)]. Using [image: L], [image: β], [image: βc] and [image: ν], we calculate the scaling variable
[image: x = L1∕νt = L1 ∕ν(βc − β)∕βc]. Using [image: χ(β, L)] and [image: γ∕ν], we calculate
[image: F = χ(β,L)∕L γ∕ν
 χ] and plot the points [image: (x ,F (x))
 i χ i] near the critical region
[image: t ≈ 0]. Then we vary [image: (βc,ν,γ∕ ν)] until the curves for different [image: L] collapse onto
each other. The optimal collapse determines [image: (βc,ν,γ ∕ν)].

 The collapse of the curves that are constructed from the points
[image: (L1∕ν(β − β)∕β ,L− γ∕νχ (β ,L))
 i c i c i i i] for different [image: L] is the most efficient
method for studying scaling in the critical region. Figure 14.27 shows the
function [image: F χ(x)] for the known values of the parameters [image: (βc,ν,γ ∕ν) =]
[image: √ --
(ln(1 + 2)∕2,1,7∕4)]. Small variations of the parameters lead to a sharp change
of the quality of the collapse. We can make a quick and dirty estimate of the
accuracy of the method by varying one of the parameters, and look for a
visible deviation from all data collapsing onto a single curve. The result is

[image: β = 0.44069 ± 0.00001
 c
 ν = 1.00 ± 0.01
 γ- = 1.750 ± 0.002,
 ν
]

Notice that, this crude estimate yields results whose accuracy is comparable to
the previously calculated ones!
 A similar procedure can be followed for other scaling observables, like the
specific heat and the magnetization. Equations (14.8) and (14.9) generalize
to35

 	

[image: −β∕ν 1∕ν
⟨m ⟩(β, L) = L Fm (L t),
]
	(14.60)

and

 	

[image: α∕ν 1∕ν 1∕ν
c(β,L) = L Fc(L t) = log(L)Fc(L t),
]
	(14.61)

since [image: α = 0]. The results are shown in figures 14.28 and 14.29 respectively.

 Below, we list a gnuplot program in order to construct plots like the ones shown in
figures 14.27–14.29. If we assume that the data are in a file named all in the following
format36 :

##

e L beta <e> +/- err c +/- err

m L beta <m> +/- err chi +/- err

n L beta <n>/N +/- err

--

....

e 1000 0.462721 -0.79839031 7.506e-07 0.290266 0.00027

m 1000 0.462721 0.82648701 1.384e-06 2.137 0.00179

....

 where the lines starting with the character m contain [image: (L, β,⟨m ⟩,δ⟨m ⟩,χ, δχ)]
whereas the ones starting with e contain [image: (L, β,⟨e⟩,δ⟨e⟩,c,δc)]. The program can
be found in the file scale_gamma.gpl:

Usage:

Ls = "40 60 80 100 120 140 160 200 500 1000"

bc = bcc; nu = 1 ; gnu = 1.75; load "scale_gamma.gpl";

Ls: the values of L used in the collapse

bc: the critical temperature used in the calculation of

t=(beta_c-beta)/beta_c

nu: the exponent used in the calculation of x=L^{1/nu} t

gnu: the exponent used in the calculation of

F_chi = L^{-gnu} chi(beta,L)

#the exact critical temperature (use bc=bcc is you wish):

bcc = 0.5*log(1.0+sqrt(2.0));

NLs = words(Ls); # The number of lattice sizes

LL(i) = word (Ls,i);# Returns the i_th lattice size

cplot(i) = sprintf("\

 <grep ’m %s ’ all|\

 sort -k 3,3g|\

 awk -v L=%s -v bc=%f -v nu=%f -v gnu=%f \

 ’{print L^(1.0/nu)*(bc-$3)/bc,L^(-gnu)*$6,L^(-gnu)*$7}’\

 ",LL(i),LL(i),bc,nu,gnu);

set macros

set term wxt enhanced

set title sprintf("b_c= %f nu= %f g/n= %f",bc,nu,gnu)

set xlabel "x=L^{1/nu} t"

set ylabel "F(x) = L^{-g/n} chi({/Symbol b},L)"

plot for[i=1:NLs] cplot(i) u 1:2:3 w e t sprintf("L=%s",LL(i))

In order to use the above program, we give the gnuplot commands

gnuplot> Ls = "40 60 80 100 120 140 160 200 500 1000"

gnuplot> bc = 0.4406868; nu = 1 ; gnu = 1.75;

gnuplot> load "scale_gamma.gpl"

 The first two lines define the parameters of the plot. The variable Ls contains
all the lattice sizes that we want to study, each value of [image: L] separated
from another by one or more spaces. The variables bc, nu, gnu are the
parameters [image: βc], [image: ν] and [image: γ ∕ν] that will be used in the scaling relation (14.59) .
The third command calls the program that makes the plot. If we need to
vary the parameters, then we redefine the corresponding variables and ...
repeat.

 In order to dissect the above program, look at the online help manual of
gnuplot37 .
We will concentrate on the construction of the awk filter that computes the points
in the plot properly normalized. The value of the function cplot(i) is a string of
characters which varies with [image: L] (the index i corresponds to the i-th
word of the variable Ls). For each i, this string is substituted in the plot
command, and it is of the form "< grep ... L[image: ^
(]-gnu)*$7}’". The values of
the parameters are passed using the function sprintf(), which is called
each time with a different value of i. The dirty work is done by awk,
which calculates each point (columns 6 and 7: $6, $7 are [image: χ] and its
error [image: δχ]). For a given value of [image: L], the grep component of the filter
prints the lines of the file all which contain the magnetization. The sort
component sorts data in the order of increasing temperature (column 3:
-k3,3g)

 Can we make the above study more systematic and apply quantitative criteria
for the quality of the collapse, which will help us estimate the error in the results?
One crude way to estimate errors is to split the data in [image: nb] bins and work
independently on each set of data. Each bin will give an optimal set of
parameters [image: (βc,ν,γ∕ν)] which will be assumed to be an independent
measurement. The errors can be calculated using equation (13.39) (for
[image: n = nb]).

 In order to provide a quantitative measure of the quality of the collapse, we

define a [image: 2
χ ∕dof] similar to the one used in data fitting, as discussed in appendix
13.7. When the distance between the collapsing curves increases, this [image: 2
χ ∕dof]
should increase. Assume that our measurements consist of [image: NL] sets of
measurements for [image: L = L1,L2, ...,LNL]. After setting the parameters
[image: p ≡ (β ,ν,γ∕ν)
 c] and an interval [image: Δx ≡ [x ,x]
 min max], we calculate the data sets
[image: {(xi,k,Fχ(xi,k;p, Li))}k=1,...,ni], for all [image: xi,k ∈ ΔX], using our measurements.
The data sets consist of [image: ni] points of the data for [image: L = Li], for which
the [image: xk] are in the interval [image: Δx]. For each point [image: xk], we calculate the
scaling function [image: F χ(xi,k;p,Li) = L −iγ∕νχ(βi,k,Li)], which depends on the
chosen parameters [image: p] and the lattice size [image: L
 i]. Then, we have to choose
an interpolation method, which will define the interpolation functions
[image: F χ(x;p,Li)]38,
so that we obtain a good estimate of the scaling function between two data points.
Then, each point [image: { (x ,F (x ;p, L))}
 i,k χ i,k i i] in a data set has a well defined distance
from every other data set [image: j] ([image: j = 1,...,NL] and [image: j ⁄= i]), which is defined by the
distance from the interpolating function of the other sets. This is equal
to39
[image: |Fχ(xi,k;p,Li) − Fχ(xi,k;p, Lj)|]. We define the quantity

[image: χ2(p; Δx) = --------1--------- (14.62)
 NL (NL − 1)npoints
 N∑L ∑NL ∑ni 2
 × (Fχ(xi,k;p,-Li) −-Fχ(xi,k;p,-Lj))-,
 i=1 (δF χ(xi,k;p, Li))2
 {j=1,j⁄=i}k=1
]

where [image: ∑NL
npoints = i=1 ni] is the number of terms in the sum. The normalization
constant [image: NL (NL − 1)] is used, because this is the number of pairs of curves in the
sum. Each term is weighted by its error [image: δFχ(xi,k;p, Li)], so that points with
small error have a larger contribution than points with large error. This is
the definition used in [71], but you can see other approaches in [4],
 [69].
 The [image: χ2(p; Δx)] depends on the parameters [image: p] and the interval [image: Δx]. Initially,
we keep [image: Δx] fixed and perform a minimization with respect to the parameters
[image: p]. The minimum is given by the values [image: pmin] and these values are the
estimators that we are looking for. In order to calculate the errors [image: δp] we can bin
our data according to the discussion on page 1663. Alternatively, we may assume
a [image: χ2] distribution of the measurements, and if the minimum [image: χ2 ≲ 1], then the
intervals of the parameter values that keep [image: χ2 ≲ 2] give an estimate of the errors
in the parameters.

 The results depend on the chosen interval [image: Δx]. Usually [69], this is chosen so
that its center is at the maximum of [image: F χ(x)] so that [image: Δx = [xmax − δx, xmax + δx]]. If
[image: δx] is larger than it should, then [image: χ2 (pmin;Δx)] is large and we don’t have good
scaling. If it is too small, then the errors [image: δp] will be large. By taking the limit
[image: δx → 0], we calculate [image: p] by studying the convergence of [image: pmin] to stable, optimal
with respect to error, values (see figure 8.7, page 238 in [4] as well as
 [69]).

 14.11 Binder Cumulant

Up to now, we have studied fluctuations of observables by computing second order
cumulants40 .
The calculation of the critical temperature, the order of the phase transition
and the critical exponents can also be done by computing higher order
cumulants and sometimes this calculation gives more accurate and clear
results.The most famous one is the Binder cumulant which is a fourth order
cumulant41 ,

and its name derives from Kurt Binder who studied it first [72, 73],

 	

[image: ⟨m4⟩
U = 1 − ----2-.
 3⟨m ⟩
]
	(14.63)

Appendix 14.12 discusses its properties in detail. For a continuous phase
transition

 	

[image: (
 | 0 β ≪ βc
 |{ U ∗ β = β
U = 2 c ,
 ||(3 β ≫ βc
]
	(14.64)

where for the Ising model on a square lattice [image: ∗
U = 0.610690 (1)] [73]. The value
[image: U = 0] corresponds to the Gaussian distribution, whereas the value [image: U = 2 ∕3]
corresponds to two Gaussian distributions of small width around two symmetric
values [image: ± ⟨m ⟩] (see problems 14 and 15).

 It practice, it is found that finite size corrections to [image: U ∗] are small,
therefore the calculation of [image: U(β, L)] gives an accurate measurement of
the critical temperature [image: βc]. The curves [image: U (β,L)] intersect at the point

([image: βc], [image: ∗
U]) for different [image: L] and this point gives a very good estimate of
[image: βc].

[image: pict]

Figure 14.30: Binder cumulant for the Ising model on the square lattice for
different temperatures and lattices sizes. The horizontal line is the expected value
[image: U ∗ = 0.610690(1)] [73].

 	
	
	
	
	

	 [image: L]
 	[image: βc] 	[image: U ∗]

	
	
	
	
	

	 40	 60	 80	0.44069(4)	0.6109(5)

	 60	 80	 100	0.44069(4)	0.6108(7)

	 80	100	 120	0.44068(4)	0.6108(7)

	100	120	 140	0.44069(4)	0.6108(11)

	120	140	 160	0.44069(4)	0.6109(20)

	140	160	 200	0.44067(3)	0.6102(12)

	160	200	 500	0.44067(2)	0.6105(10)

	200	500	1000	0.44068(1)	0.6106(9)

	
	
	
	
	

	

 Table 14.6: The calculation of [image: βc] and [image: U ∗] from the intersection of the curves
[image: U (β, L)] for fixed [image: L] shown in figure 14.30. Each calculation uses three values of [image: L]. The
expected values from the theory and the bibliography [73] are [image: βc = 0.44068679...] and
[image: ∗
U = 0.610690(1)] respectively.

 Figure 14.30 shows our measurements for [image: U(β, L)]. The intersection of the
curves in the figure at a single point ([image: βc], [image: U ∗]) is impressively accurate. Table
14.6 shows an attempt to calculate [image: β
 c] systematically by computing the critical
temperature from the intersection of the curves [image: U (β,L)] for three values of [image: L].
By taking into account all the measurements for [image: L = 100] – [image: 1000] the computed
result is

 	

[image: β = 0.440678(9) U∗ = 0.6107(4),
 c
]
	(14.65)

which is in a very good agreement with the expected values [image: βc = 0.44068679 ...],
[image: U ∗ = 0.610690(1)]. Notice that, in the calculation of [image: U ∗] the systematic error
due to finite size effects decreases with increasing [image: L], whereas the statistical error
increases due to the increase of the slope of the curves [image: U (β,L)] near the point
[image: β = βc]. But the accuracy of the calculation of [image: βc] turns out to be better with
increasing [image: L].

[image: pict]

Figure 14.31: Scaling of the Binder cumulant for [image: 1∕ν = 1] and by using the exactly
known critical temperature [image: βc] in [image: t = (βc − β)∕βc]. The inset zooms in the critical region.
The horizontal line is the expected result [image: U ∗ = 0.610690(1)] [73].

 Finite size scaling can also be applied to the Binder cumulant in order to
calculate [image: βc] and [image: 1∕ν]. From equation (14.90) (14.119) of appendix 14.12, we
expect that [image: U] scales as

 	

[image: U = FU (x) = FU (L1 ∕νt).
]
	(14.66)

This is confirmed in figure 14.31. From the value [image: FU (x = 0)], we obtain
[image: U ∗ = 0.6107(4)], which is consistent with the result (14.65) .

 The numerical calculation of critical exponents, and especially [image: 1∕ν], can be
hard in the general case. Therefore it is desirable to cross check results using
several observables which have known scaling behavior. We discuss some of them
below42 .
They involve the correlations of the magnetization with the energy.

 The derivative of the Binder cumulant is

 	

[image: ∂U ⟨m4E ⟩⟨m2 ⟩ + ⟨m4 ⟩(⟨m2 ⟩⟨E ⟩ − 2⟨m2E ⟩)
DU = ----= ---------------------------------------.
 ∂β 3⟨m2 ⟩3
]
	(14.67)

[image: pict]

Figure 14.32: Scaling of the derivative of the Binder cumulant [image: D
 U] (see equation
(14.67)) for [image: 1∕ν = 1] and [image: βc] equal to its known value in [image: t = (βc − β)∕βc].

 Its scaling is given by equation (14.120)

 	

[image: 1∕ν 1∕ν 1∕ν
DU = L FDU (x) = L FDU (L t),
]
	(14.68)

which us plotted in figure 14.32. Notice that [image: DU] defines a pseudocritical region
around its maximum. The scaling of the maximum as well as the scaling of its
position can be used in order to compute [image: 1∕ν], as we did in figures 14.23 and
14.25 for the magnetic susceptibility.

 It could also turn out to be useful to study correlation functions of the
form

 	

[image: ∂ ln⟨mn-⟩ ⟨Emn--⟩
Dln mn = ∂ β = ⟨E ⟩ − ⟨mn ⟩ ,
]
	(14.69)

whose scaling properties are given by equation (14.126) of appendix
14.12,

 	

[image: 1∕ν 1∕ν 1∕ν
Dln mn = L FDlnmn (x) = L FDlnmn (L t).
]
	(14.70)

In particular we are interested in the case [image: n = 1]

 	

[image: ∂ ln⟨|m |⟩ ⟨E|m |⟩
Dln |m | =--------- = ⟨E ⟩ − -------,
 ∂ β ⟨|m |⟩
]
	(14.71)

and [image: n = 2]

 	

[image: 2 2
D 2 = ∂-ln⟨m--⟩-= ⟨E ⟩ − ⟨Em--⟩-.
 lnm ∂β ⟨m2 ⟩
]
	(14.72)

[image: pict]

Figure 14.33: Scaling of [image: D
 ln|m|] (see equation (14.71)) for [image: 1∕ν = 1] using the exact
value of [image: βc] in [image: t = (βc − β)∕βc].

[image: pict]

Figure 14.34: Scaling of [image: D 2
 lnm] (see equation (14.72)) for [image: 1∕ν = 1] using the exact
value of [image: βc] in [image: t = (βc − β)∕βc].

 We also mention the energy cumulant [image: V]

 	

[image: -⟨e4⟩-
V = 1 − 3⟨e2⟩2.
]
	(14.73)

[image: pict]

Figure 14.35: The energy cumulant defined by equation (14.73) . As [image: L] is increased,
its value converges to [image: 2∕3], as expected for a second order phase transition. The position
of the minima converge to the critical temperature as [image: L−1∕ν]

 In [76], it is shown that for a second order phase transition [image: ∗
V = 2∕3],
whereas for a first order phase transition, we obtain a non trivial value. Therefore,
this parameter can be used in order to determine whereas a system undergoes a
first order phase transition. This is confirmed in figure 14.35. The minima of the
curves [image: V (β,L)] converge to the critical temperature according to (14.50)
.

 14.12 Appendix: Scaling

 14.12.1 Binder Cumulant

In section 14.11, we studied the scaling properties of the Binder cumulant

 	

[image: ⟨m4 ⟩
U = 1 − ----2-2
 3⟨m ⟩
]
	(14.74)

numerically. In this appendix, we will use the general scaling properties of a
system that undergoes a continuum phase transition near its critical temperature,
in order to derive the scaling properties of [image: U] and its derivatives. For more
details, the reader is referred to [73], [6].

 The values of [image: U] are trivial in two cases: When the magnetization follows a
Gaussian distribution, which is true in the high temperature, disordered phase, we
have that [image: U = 0]. When we are in the low temperature, ordered phase, we have
that [image: U = 2∕3]. The proof is easy and it is left as an exercise (see problems 14 and

15).

 According to the discussion in chapter 14, when the critical temperature [image: βc]
of a continuum phase transition is approached, the system exhibits scaling
properties due to the diverging correlation length [image: ξ]. If we approach [image: βc] from the
high temperature phase, then we expect that the distribution function of the
magnetization per site [image: s] (not its absolute value) is approximately of the
form

 	

[image: 1
 1 − -s2-- (βLd) 2 −s2Ldβ
P (L,s) = ∘-----2-e 2⟨s2⟩ = ---- e 2χ ,
 2π⟨s ⟩ 2π χ
]
	(14.75)

which is a Gaussian with standard deviation [image: σ2] [image: = ⟨s2⟩][image: = χ∕(βLd)]. We have
temporarily assumed that the system is defined on a [image: d]–dimensional hypercubic
lattice of edge [image: L].

 When the critical temperature is approached, the distribution function
[image: P (L,s)] scales according to the relation [73]

 	

[image: x y L
P(L, s) = L p0P˜(aL s,--),
 ξ
]
	(14.76)

where [image: ξ =][image: ξ(t)][image: = limL → ∞ ξ(β,L)], [image: t = (βc − β)∕βc], is the correlation
length in the thermodynamic limit. As we approach the critical point,
[image: limt→0 ξ(t) = + ∞], in such a way that [image: ξ ∼ |t|−ν]. Equation (14.76) is a
scaling hypothesis which plays a fundamental role in the study of critical
phenomena.

 In order to calculate the exponents in equation (14.76) , we apply the
normalization condition of a probability distribution function

[image: ∫ +∞

1 = ∞ dsP (L, s)
 ∫ +∞
 = Lxp0 ds ˜P(aLys, L-)
 ∞ ξ
 1 ∫ +∞ L
 = Lxp0 --y- dz ˜P(z, -)
 aL ∫ ∞ ξ
 x−y 1- +∞ ˜ L-
 = L p0 a dzP (z, ξ), (14.77)
 ∞
]

where we set [image: z = aLys]. For the left hand side to be equal to one, we must have
that [image: x = y],
 	

[image: ∫ +∞ L
C0 ≡ dz ˜P (z,--) < ∞,
 ∞ ξ
]
	(14.78)

and [image: p0 = a∕C0]. [image: C0 = C0(L ∕ξ)], [image: p0 = p0(L∕ξ)] and [image: p0C0 = a] is a constant
independent of [image: L] and [image: ξ]. Finally, we obtain

 	

[image: a y y L
P (L, s) = --L ˜P (aL s,--).
 C0 ξ
]
	(14.79)

The moments of the distribution of the spins [image: ⟨sk⟩] are

[image: k ∫ +∞ k
⟨s ⟩ = dss P (L,s)
 ∞ ∫
 -a- y + ∞ k ˜ y L-
 = C0 L dss P (aL s, ξ)
 ∞ ∫ +∞
 = -a-Ly -----1----- dzzk ˜P(z, L)
 C0 ak+1L (k+1)y ∞ ξ
 (L)
 = L −kyFk -- , (14.80)
 ξ
]

where the last line is the definition of the function [image: Fk(x)]. When we first take the
thermodynamic limit [image: L → ∞] and then approach the critical temperature
[image: t → 0], the correlation length [image: ξ → ∞] diverges in such a way that [image: L∕ξ → ∞].
In the region [image: β < βc] ([image: ⟨m ⟩ = 0]) we have that [image: χ = βLd ⟨s2⟩], and by using the

relations
 	

[image: }
χ = χ+t −γ χ+ γ∕ν γ∕ν
ξ = ξ t− ν ⇒ χ = -γ∕νξ ∼ ξ ,
 + ξ+
]
	(14.81)

we obtain

 	

[image: 2 −1 −d χ+ γ∕ν γ∕ν
⟨s ⟩ = β L χ = ---d-γ∕ν-ξ ∼ ξ .
 βL ξ+
]
	(14.82)

In the above equations, we introduced the universal amplitudes [image: χ+] and [image: ξ+],
which are universal constants (i.e. they are the same within a universality class)
and they are defined from equation (14.81) . In this limit, in order for
(14.80) to have consistent scaling for [image: k = 2] on the right and left hand
sides43 ,
we obtain (compare with equation (14.57))

 	

[image: () () −γ∕ν
 L- L- L-
F2 ξ ∼ ξ for ξ ≫ 1.
]
	(14.83)

In order to compute the [image: L]-scaling, we substitute the above equations to (14.80)
for [image: k = 2], and we obtain

 	

[image: + () −γ∕ν
---χ----ξγ∕ν ∼ L− 2y L- .
βLd ξγ∕ν ξ
 +
]
	(14.84)

Then, we obtain

 	

[image: −d − 2y −γ∕ν γ d ν − γ β
L ∼ L L ⇒ d = 2y + --⇒ y = ------- = --,
 ν 2 ν ν
]
	(14.85)

where we used the known44
hyperscaling relation

 	

[image: dν = γ + 2β.
]
	(14.86)

Finally, we obtain the equations [image: β < βc],

 	

[image: a β∕ν β∕ν L
P (L,s) = --L ˜P(aL s,--),
 C0 ξ
]
	(14.87)

 	

[image: ()
⟨s2⟩ = L −2β∕νF L- ,
 2 ξ
]
	(14.88)

 	

[image: (L)
⟨s4⟩ = L −4β∕νF4 -- ,
 ξ
]
	(14.89)

which are valid in the disordered phase [image: β < β
 c]. From equation (14.74) , we find
that the critical behavior of the Binder cumulant is

 	

[image: () ()
 L− 4β∕νF L- F L-
U ∼ 1 − ---------4--ξ---= 1 − 1--4--ξ--.
 −4β∕ν (L)2 3 (L)2
 3L F2 ξ F2 ξ

]
	(14.90)

Finite size effects dominate in the pseudocritical region, in which case we
take the thermodynamic limit [image: L → ∞] keeping [image: L ∕ξ] finite, and the
fluctuations get suppressed, rendering the functions [image: F (x)
 k] finite. Therefore, we
obtain45

 	

[image: lim U(t = 0,L) ≡ U∗ = 1 − 1-F4-(0)-= const.,
L→ ∞ 3 F2(0)2
]
	(14.91)

which shows why the value of [image: U] at the critical temperature turned out to be
almost independent of the system size [image: L]. [image: U∗] is found to depend on the
boundary conditions and on the anisotropy of the interaction. For the Ising model
on the square lattice we have that [73] (Kamieniarz+Blöte)

 	

[image: ∗
U = 0.610690 (1)
]
	(14.92)

 14.12.2 Scaling

Consider a change of length scale on a lattice so that

 	

[image: ξ → ξ-,
 b
]
	(14.93)

where [image: ξ] is the dimensionless correlation length in the thermodynamic
limit and [image: b] is the scaling factor. Then, the basic assumption for the
scaling of thermodynamics quantities in the region of a continuous
phase transition is that the free energy is changed according to
46

 	

[image: f(t,h) = b−df(tbyt,hbyh),

]
	(14.94)

where [image: t] is the reduced temperature and [image: h] is the external magnetic
field47 .
The above relation summarizes the scaling hypothesis, and it is a relation similar
to (14.76) . This relation can be understood through the renormalization group
approach, and the fundamental assumption is the appearance of a unique
dynamical length scale that diverges as we approach the critical point. The
arguments [image: tbyt] and [image: hbyh] give the change in the coupling constants [image: t] and
[image: h] under the change in length scale in order that the equation remains
valid.

 By applying the above relation [image: n] times we obtain

 	

[image: − nd nyt nyh
f (t,h) = b f(tb ,hb).
]
	(14.95)

If we take [image: n → ∞], [image: t → 0], keeping the product [image: tbnyt = t0 = 𝒪 (1)] fixed, we
obtain

[image: d∕yt − yh∕yt
f(t,h) = t f (t0,ht)
 ≡ td∕ytΨ (ht−yh∕yt)
 2−α −yh∕yt
 = t Ψ (ht), (14.96)
]

where we substituted [image: bn ∼ t− 1∕yt] and defined the scaling function [image: Ψ(z)] and the
critical exponent
 	

[image: α = 2 − d-.
 yt
]
	(14.97)

By applying the same reasoning to (14.93) for the correlation length we
obtains

 	

[image: ξ(t,h) = b− 1ξ(tbyt,hbyh) = ...= b− nξ(tbnyt,hbnyh).
]
	(14.98)

By taking the limit [image: n → ∞], [image: t → 0], keeping the product [image: tbnyt ∼ 𝒪(1)], the left
hand side will give a finite value, e.g. [image: ξ0 < ∞] whereas the right hand side will
give

 	

[image: 1∕y − y∕y
ξ0 = t tξ(t0,ht h t).
]
	(14.99)

By considering the case [image: h = 0], and by comparing to the known relation (14.4)
[image: −ν
ξ ∼ t], we obtain

 	

[image: ξ = ξ0t−1∕yt ⇒ ν = -1.
 yt
]
	(14.100)

 By taking the derivative of (14.96) with respect to the temperature, we
obtain

 	

[image: ∂f-∼ t1−αΨ (ht−yh∕yt) + t2−αht− yh∕yt− 1Ψ′(ht−yh∕yt).
∂t
]
	(14.101)

We use the notation [image: ∼] whenever we neglect terms that are not related to the
scaling properties of a function.

 By taking the derivative once more, and by setting [image: h = 0], we obtain the
specific heat

 	

[image: ∂2f- −α
c ∼ ∂t2 ∼ t Ψ(0).
]
	(14.102)

Therefore, the critical exponent [image: α] is nothing but the critical exponent of the
specific heat defined in equation (14.4) .

 The magnetic susceptibility can be obtained in a similar way by taking the
derivative of (14.96) with respect to [image: h]

 	

[image: ∂f- ∼ td∕ytt−yh∕ytΨ ′(ht −yh∕yt) ∼ tνd− νyhΨ ′(ht −νyh).
∂h

]
	(14.103)

By taking the derivative once more time and by setting [image: h = 0] we obtain the
magnetic susceptibility

 	

[image: ∂2f νd−2νy ′
χ ∼ ∂h2- ∼ t hΨ (0),
]
	(14.104)

and, by comparing to (14.3) [image: χ ∼ t−γ], we obtain

 	

[image: 1 γ β β + γ
γ = 2νyh − νd ⇔ yh = 2-(d + ν) = d − ν-= --ν---
]
	(14.105)

In the last two equations we used the hyperscaling relations

 	

[image: νd = γ + 2β.
]
	(14.106)

 14.12.3 Finite Size Scaling

We will now extend the analysis of the previous section to the case of a system of
finite size. We will assume that the system’s degrees of freedom are located on a
lattice whose linear size is [image: l = La] (the volume is [image: d
V = l], [image: d] is the number of
dimensions), where [image: L] is the (dimensionless) number of lattice sites and [image: a] is the
lattice constant. We consider the limit [image: L → ∞] and [image: a → 0], so that [image: l] remains
constant. By changing the [image: L]-scale

 	

[image: L
L → --⇔ L− 1 → bL −1,
 b
]
	(14.107)

and

 	

[image: a → ba,
]
	(14.108)

equation (14.94) generalizes to

 	

[image: f (t,h, L−1) = b−ndf (tbnyt,hLnyh,bnL −1).
]
	(14.109)

By taking the limit [image: t → 0], [image: n → ∞] and [image: ny
tb t = t0 < ∞][image: ⇒][image: n −1∕y
b ∼ t t]
(approach of the critical point), the above relation becomes

 	

[image: −1 d∕y −y ∕y − 1∕y − 1 d∕y −y ∕y −1∕y −1
f (t,h, L) = t tf (t0,ht h t,t tL) = t tΨ (ht h t,t tL).
]
	(14.110)

 By differentiating and setting [image: h = 0] as in the previous section we
obtain48

 	

[image: 2 |
χ (t,L −1) = ∂--f|| = t−γϕ (L −1t−ν) = t−γϕ (ξ-),
 ∂h2 |h=0 2 2 L
]
	(14.111)

where we set [image: yt = 1∕ ν], [image: ϕ2(x) = Ψ (2,0)(0,x)] [image: = ∂2Ψ (z, x)∕∂z2|z=0].

 The thermodynamic limit is obtained for [image: L ≫ ξ] where [image: ϕ2(-ξ) → ϕ2(0) < ∞
 L],
which yields the known relation [image: χ ∼ t− γ].

 When [image: L] is comparable to [image: ξ], finite size effects dominate. The large
fluctuations are suppressed and the magnetic susceptibility has a maximum at
a crossover (pseudocritical) temperature [image: tX ≡ (βc − βc(L))∕βc], where
[image: tX ∼ L−1∕ν]. The last relation holds because [image: L ∼ ξ ∼ t− ν] by assumption. We
obtain

 	

[image: − γ −1 −ν γ∕ν −1 γ∕ν γ∕ν
χmax ∼ tX ϕ2(L tX) ∼ L ϕ2(L L) ∼ L ϕ2(1) ∼ L .
]
	(14.112)

In the region of the maximum, we obtain the functional form

 	

[image: χ(t,L −1) = Lγ∕νFχ(L1 ∕νt),
]
	(14.113)

which is nothing but equation (14.59) . The function [image: F (x)
 χ] is analytic in its
argument [image: 1∕ν
x = L t], since for a finite system [image: − 1
χ(t,L)] is an analytic function of the
temperature49 .
In the thermodynamic limit ([image: L → ∞] and [image: |t| > 0], therefore [image: x → ∞])

 	

[image: −γ
F χ(x) ∼ x x ≫ 1,
]
	(14.114)

so that [image: −1
χ(t,L)] [image: γ∕ν 1∕ν
= L F χ(L t)] [image: γ∕ν 1∕ν γ − γ
∼ L (L t) ∼ t]. Near the
pseudocritical point

 	

[image: F (x) = F + F x + F x2 + ... x ≪ 1,
 χ χ,0 χ,1 χ,2
]
	(14.115)

and we expect that for [image: L1 ∕νt ≪ 1] we have that

 	

[image: ()
χ(t,L−1) = L γ∕ν 1 + χ1L1∕νt + χ2L2∕νt2 +
]
	(14.116)

 The above relations lead to the following conclusions:

 	The pseudocritical point shifts as [image: ∼ L −1∕ν] (equation (14.50))

 	The peak of the magnetic susceptibility increases as [image: χmax ∼ L γ∕ν]

 	The direction of the shifting of the maximum of the magnetic susceptibility
 depends on the boundary conditions:

 	Periodic boundary conditions suppress the effects of the
 fluctuations, since the wave vectors are limited by [image: 2π-
L n]. This
 increases the pseudocritical temperature [image: Tc(L)] ([image: βc(L) < βc]
 [image: ⇒ c > 0] in (14.50)).

 	Free boundary conditions lead to free fluctuations on the
 boundary, which decrease the pseudocritical temperature [image: Tc(L)]
 ([image: βc(L) > βc] [image: ⇒ c < 0] in (14.50))

 	Frozen (fixed) spins on the boundary lead to increased order in
 the system. This increases the pseudocritical temperature [image: Tc(L)]
 ([image: βc(L) < βc] [image: ⇒ c > 0] in (14.50)).

We conclude that [image: Fχ(L1∕νt)] depends on the boundary conditions and the geometry
of the lattice.

 Similarly, we obtain

 	

[image: ∂kf (ξ)
⟨mk⟩ ∼ L −d---k ∼ L −dtd∕yt−kyh∕ytϕk(L −1t−ν) ∼ L− dtνd−kνyhϕk -- ,
 ∂h L
]
	(14.117)

and by following similar arguments leading to (14.113) , we obtain

 	

[image: β+γ-
⟨mk ⟩ ∼ L −dL −d+kyhFk(L1∕νt) ∼ Lk ν Fk(L1∕νt).
]
	(14.118)

 For the Binder cumulant we obtain

 	

[image: -⟨m4-⟩- --L4yhF4-(L1-∕νt)-- 1∕ν 1∕ν 2
U = 1− 3⟨m2 ⟩2 ∼ 1− 3(L2yhF (L1 ∕νt))2 ∼ U ∗+U1 ⋅(L t)+U2 ⋅(L t) +...,
 2
]
	(14.119)

where in the last equality we expanded the analytic functions [image: F2,4(L1∕νt)] for
small [image: L1∕νt]. Then, we see that

 	

[image: ∂U--∼ ∂tU ∼ L1 ∕ν.
∂ β

]
	(14.120)

 By differentiating (14.110) with respect to the temperature we obtain

[image: ∂f d∕yt− 1 y ∕yt −1 −1∕yt
--- ∼ t Ψ(ht h ,L t)
∂t d∕yt yh∕yt−1 (1,0) yh∕yt −1 −1∕yt
 +t (ht)Ψ (ht ,L t)
 +td∕ytL −1t−1∕yt−1Ψ (0,1)(htyh∕yt,L −1t−1∕yt)
 νd−1 νyh −1 −ν
 ∼ t Ψ (ht ,L t)
 +htνd+νyh−1Ψ (1,0)(htνyh,L −1t− ν)
 −1 νd− 1−ν (0,1) νyh −1 −ν
 +L t Ψ (ht ,L t), (14.121)
]

where we used the notation [image: Ψ (n,m)(x,z) = ∂n+m Ψ (x,z)∕∂xn ∂zm]. The term
proportional to [image: h] vanishes when we set [image: h = 0]. In the pseudocritical region,
where [image: −1∕ν
tX ∼ L], the first and third term are of the same order in [image: L] and we
obtain
 	

[image: |
∂f-|| = L− d+ 1νF 1(L1∕νt),
∂t |h=0
]
	(14.122)

and by successive differentiation

 	

[image: |
∂kf | −d+ k k 1∕ν
--k-|| = L νF (L t).
∂t h=0
]
	(14.123)

The derivatives

 	

[image: |
-∂2f-|| − d+yh+ 1 1 1∕ν 1−β 1 1∕ν
∂t∂h | = L νF1 (L t) = L ν F 1(L t),
 h=0
]
	(14.124)

 	

[image: ∂1+kf || 1
------| = L−d+kyh+ νF1k(L1 ∕νt).
∂t∂hk |h=0
]
	(14.125)

In particular

 	

[image: |
 ∂1+kf| 1
⟨Emk--⟩ -∂t∂hk||h=0- L−d+kyh+-ν- 1∕ν
 ⟨mk ⟩ = ∂kf| ∼ L− d+kyh ∼ L
 ∂hk|h=0
]
	(14.126)

 	

[image: |
 − d ∂4f| 4
⟨e4⟩- --L----∂t4|h=0-- -L−-ν--
⟨e2⟩2 = (∂2f||)2 ∼ (L − 2ν)2 ∼ const.
 L −d ∂t2|
 h=0
]
	(14.127)

 14.13 Appendix: Critical Exponents

 14.13.1 Definitions

 	

[image: −α α∕ν α∕ν 2 1∕ν
α : c ∼ t β, cmax ∼ −Lβ∕ν , c(t,L) = L − Fβ∕ν (L 1t∕)ν
β : m ∼ t , m ∼ L , m (t,L) = L F1 (L t)
γ : χ ∼ tγ, χmax ∼ Lγ∕ν, χ(t,L) = L γ∕νF2 (L1∕νt)
ν : ξ ∼ t−ν, ξ ∼ L,
δ : M ∼ h1∕δ
 z
z : τ ∼ ξ
]
	(14.128)

The scaling relation

 	

[image: f(t,h) = td∕ytΨ (htyh∕yt),
]
	(14.129)

defines the exponents [image: yt], [image: yh]. The relation

 	

[image: G (r,t = 0) ∼ ---1---,
 rd−2+η
]
	(14.130)

defines the exponent [image: η] coming from the two point correlation function
[image: G (r,t) = ⟨s(r) ⋅ s(0)⟩].

 14.13.2 Hyperscaling Relations

From the definitions and the hyperscaling relations we have that

[image: α + 2β + γ = 2
 γ + 2β = νd

 2 − νd = α
α + β(1 + δ) = 2

 ν(2 − η) = γ (14.131)
]

 	

[image: 1- --d--- β-+-γ- 1(γ) β-
yt = ν = 2 − α yh = ν = 2 d + ν = d − ν
]
	(14.132)

 	

[image: d d − yh 2yh − d yh
α = 2 − -- β = ------- γ = -------- δ = -------
 yt yt yt d − yh
]
	(14.133)

 	

[image: η = d + 2 − 2yh ⇔ d − 2 + η = 2(d − yh)
]
	(14.134)

 	
	
	
	
	
	
	
	
	

	 Model 	 [image: ν] 	 [image: α] 	 [image: β] 	 [image: γ] 	 [image: δ] 	 [image: η] 	[image: yt]	[image: yh]

	
	
	
	
	
	
	
	
	

	 q=0 Potts (2d) [66] 	 [image: ∞] 	 [image: − ∞] 	 [image: 16] 	 [image: ∞] 	 [image: ∞] 	 [image: 0] 	[image: 0]	[image: 2]

	
	
	
	
	
	
	
	
	

	 q=1 Potts (2d) [66] 	 [image: 4
3] 	 [image: − 2
 3] 	 [image: -5
36] 	 [image: 2 7-
 18] 	 [image: 181
 5] 	 [image: -5
24] 	[image: 3
4]	[image: 91
48]

	
	
	
	
	
	
	
	
	

	 Ising (2d) [66] 	 [image: 1] 	 [image: 0] 	 [image: 1
8] 	 [image: 7
4] 	 [image: 15] 	 [image: 1
4] 	[image: 1]	[image: 15
 8]

	
	
	
	
	
	
	
	
	

	 q=3 Potts (2d) [66] 	 [image: 5
6] 	 [image: 1
3] 	 [image: 1
9] 	 [image: 13
 9] 	 [image: 14] 	 [image: -4
15] 	[image: 6
5]	[image: 28
15]

	
	
	
	
	
	
	
	
	

	q=4 Potts (2d) [66, 78]	 [image: 2
3] 	 [image: 2
3] 	 [image: -1
12] 	 [image: 7
6] 	 [image: 15] 	 [image: 1
4] 	[image: 3
2]	[image: 15
 8]

	
	
	
	
	
	
	
	
	

	 classical (4d) [77] 	 [image: 1
2] 	 [image: 0] 	 [image: 1
2] 	 [image: 1] 	 [image: 3] 	 [image: 0] 	[image: 2]	[image: 3]

	
	
	
	
	
	
	
	
	

	 Spherical (3d) [77] 	 [image: 1] 	 [image: − 1] 	 [image: 12] 	 [image: 2] 	 [image: 5] 	 [image: 0] 	[image: 1]	[image: 52]

	
	
	
	
	
	
	
	
	

	 Ising (3d) [77] 	 [image: −] 	 [image: 1
8] 	 [image: -5
16] 	 [image: 5
4] 	 [image: 5] 	 [image: −] 	[image: −]	[image: −]

	 Ising (3d) [81] 	[image: 0.631]	[image: 0.108 (5)]	[image: 0.327(4)]	[image: 1.237(4)]	[image: 4.77(5)]	[image: 0.039]	[image: −]	[image: −]

	
	
	
	
	
	
	
	
	

	 Heisenberg (3d) [79] 	[image: 0.70] 	 [image: − 0.1] 	 [image: 0.36] 	 [image: 1.4] 	 [image: 5] 	[image: 0.03] 	[image: −]	[image: −]

	
	
	
	
	
	
	
	
	

	 XY (3d) [80] 	[image: 0.663]	 [image: −] 	 [image: −] 	[image: 1.327(8)]	 [image: −] 	 [image: −] 	[image: −]	[image: −]

	 AF q=3 Potts (3d) [82] 	[image: 0.66] 	[image: − 0.011]	 [image: 0.351] 	 [image: 1.309] 	 [image: 4.73] 	 [image: −] 	[image: −]	[image: −]

	
	
	
	
	
	
	
	
	

	

 Table 14.7: Critical exponents of the models referred to in the first column. Whenever
the value is shown as a floating point number, the exponents are approximate. For the
approximate values we don’t apply the hyperscaling relations, but we simply mention
the values reported in the bibliography. The values for the 3d Ising model in [77] are
a conjecture. For the 3d Ising see also [43] p. 244. 3d XY and 3d AF q=3 Potts are
conjectured to belong to the same universality class.

 14.14 Problems

The files all and allem in the accompanying software contain measurements
that you can use for your data analysis or compare them with your own
measurements.

 	Compute the average acceptance ratio [image: A¯] for the Metropolis algorithm
 as a function of the temperature for [image: L = 10], [image: 40], [image: 100]. Compute
 the average size [image: ⟨n ⟩] of the Wolff clusters at the same values of the
 temperatures. Then calculate the number of Wolff clusters that are
 equivalent to a Metropolis sweep. Make the plots of all of your results
 and connect the points corresponding to the same [image: L].

 	Make the plots in figures 14.6–14.10 and add data for [image: L = 50], [image: 120],
 [image: 140], [image: 160], [image: 180], [image: 200].

 	Make the plots in figures 14.11–14.12 and add data for [image: L = 50], [image: 90],
 [image: 130], [image: 150], [image: 190], [image: 250]. Recalculate the dynamic exponent [image: z] using
 your data.

 	Make the plot in figure 14.13 and add data for [image: L = 30], [image: 50], [image: 70], [image: 90].
 Recalculate the dynamic exponent [image: z] using your data.

 	Reproduce the results shown in table 14.1. Add a 6th column computing
 [image: A
τm,Metropolis][image: ¯
= τm,MetropolisA], where [image: ¯
A] is the average acceptance
 ratio of the Metropolis algorithm. This changes the unit of time to [image: N]
 accepted spin flips. These are the numbers that are directly comparable
 with [image: τm].

 	Simulate the 2d Ising model on the square lattice for [image: L = 10], [image: 20],
 [image: 40], [image: 80], [image: 100]. Choose appropriate values of [image: β], so that you will be
 able to determine the magnetic susceptibility and the specific heat with

 an accuracy comparable to the one shown in table 14.5. In each case,
 check for the thermalization of the system and calculate the errors.

 	Make the fits that lead to the results (14.38) , (14.39) , (14.41) and
 (14.43)

 	Study the scaling of the specific heat as a function of the temperature.
 Compare the quality of the fits to the functions [image: a log |t|] and [image: α
a |t|] by
 computing the [image: χ2∕dof] according to the discussion in appendix 13.7
 after page 1429.

 	 Consider the table 14.8 showing the measurements of [image: χ(β ,L)
 c],
[image: ⟨m ⟩(βc, L)] and [image: c(βc,L)]. Use the values in this table in order to make the
 fits which give the exponents [image: γ∕ν], [image: β∕ν] and [image: α] as described in the
 text. For the exponent [image: α], try fitting to a power and a logarithm
 and compare the results according to the discussion in the text.

 	
	
	
	
	
	
	

	 [image: L]	 [image: χ(βc,L)]
 	 [image: ⟨m ⟩(βc,L)]
 	 [image: c(βc,L)]

	
	
	
	
	
	
	

	 40	20.50 	0.02	0.6364	0.0001	0.4883	0.0007
	 60	41.78 	0.08	0.6049	0.0002	0.5390	0.0008

	 80	69.15 	0.09	0.5835	0.0001	0.5743	0.0012
	 100	102.21	0.25	0.5673	0.0002	0.6026	0.0014

	 120	140.18	0.11	0.5548	0.0001	0.6235	0.0010

	 140	183.95	0.33	0.5442	0.0002	0.6434	0.0006

	 160	232.93	0.55	0.5351	0.0001	0.6584	0.0020

	 200	342.13	0.72	0.5206	0.0001	0.6858	0.0014

	 500	1687.2	4.4 	0.4647	0.0002	0.7794	0.0018

	1000	6245 	664 	0.4228	0.0040	– 	–

	
	
	
	
	
	
	

	

 Table 14.8: [image: χ (βc,L)], [image: ⟨m ⟩(βc,L)] and [image: c(βc,L)] at the critical temperature for
 different [image: L] used in problem 9.

 	Consider the table 14.5 which gives the results of the measurements of [image: L],
 [image: βc(L)], [image: χmax], [image: β ′c(L)] and [image: cmax]. Make the appropriate fits in order to

 calculate the exponents [image: 1 ∕ν], [image: γ∕ν], [image: α ∕ν] and the critical temperature [image: βc]
 as described in the text. For the exponent [image: α], try fitting to a power and a
 logarithm and compare the results according to the discussion in the
 text.

 	Reproduce the collapse of the curves shown in figures 14.27-14.29. Use
 the data in the file all from the accompanying software. Set the
 appropriate values to the parameters and calculate the scaling functions
 [image: Fχ,m,c]. Vary each parameter separately, so that the collapse becomes
 not satisfactory and use its variation as an estimate of its error.
 Determine the range in [image: 1∕ν
x = L t] that gives satisfactory collapse of the
 curves. Repeat your calculation by performing measurements for
 [image: L = 10, 20], and using the data for [image: L = 10,20,40,80, 120]. Compare the
 new results with the previous ones and comment on the finite size
 effects.

 	Prove that for every observable [image: 𝒪] we have that [image: ∂ ⟨𝒪 ⟩∕∂ β =]
 [image: − ⟨E𝒪 ⟩ + ⟨𝒪 ⟩⟨E ⟩ =] [image: − ⟨(E − ⟨E ⟩)(𝒪 − ⟨𝒪 ⟩)⟩]. Using this relation
 calculate the derivative of the Binder cumulant [image: DU] and prove equation
 (14.67) .

 	Use the maximum of the derivative of the Binder cumulant [image: DU] in order to
 calculate the critical exponent [image: 1∕ν] according to the analysis shown in
 figures 14.23 and 14.25 for the magnetic susceptibility.

 	 Show that for a Gaussian distribution [image: −x2∕2σ2
f (x) = ae] we have that
 [image: ⟨x2⟩ = σ2] and [image: ⟨x4⟩ = 3σ4]. Conclude that [image: 1 − ⟨x2 ⟩∕ (3 ⟨x4 ⟩) = 0].

 	 Consider the distribution given by the probability density distribution

 [image: ((x−m-)2- (x+m)2)
f(x) = a e− 2σ2 + e− 2σ2 .
]
 Plot this function and comment on the fact that it looks, qualitatively, like
 the distribution of the magnetization in the low temperature phase
 [image: β ≫ βc]. Show that [image: 4 4 2 2 2
⟨x ⟩ = m + 6m σ + 3σ] and [image: 2 2 2
⟨x ⟩ = m + σ].
 Interpret your results, i.e. the meaning of each expectation value. Show
 that for [image: σ ≪ m] we obtain [image: U ≈ 2 ∕3]. Convince yourself that the
 approximation used concerns the system in the low temperature
 phase.

 	Calculate the derivative [image: ∂U ∕∂β] as a function of [image: ⟨em4⟩], [image: ⟨em2 ⟩], [image: ⟨m4⟩]
 and [image: ⟨m2 ⟩]. Apply finite size scaling arguments and prove equation (14.120)
 .

 	Use equations (14.131) and [image: yt = 1∕ ν], [image: γ = (2yh − d)∕yt] in order to prove
 the other relations in (14.132) and (14.133) .

Bibliography

 [Textbooks]

 [1] www.physics.ntua.gr/~konstant/ComputationalPhysics/. The
 site of this book. The accompanying software and additional material
 can be found there. You may also find contact information about the
 author for sending corrections and/or suggestions. Fan mail accepted
 too!

 [2] H. Gould, J. Tobochnik and H. Christian, “Computer Simulation
 Methods, Application to Physical Systems”, Third Edition, Addison
 Wesley (2007). A great introductory book in computational physics.
 Java is the programming language of choice and a complete computing
 environment is provided for using and creating interacting and visual
 physics applications. The software is open source and can be downloaded
 from opensourcephysics.org. The book has open access and can be
 downloaded freely.

 [3] R. Landau, M. J. Pez and C. C. Bordeianu, “Computational Physics:
 Problem Solving with Computers”, Wiley-VCH, 2 ed. (2007).

 [4] M. E. J. Newman and G. T. Barkema, “Monte Carlo Methods in

 Statistical Physics”, Clarendon Press, Oxford (2002). Excellent book for
 an introductory and intermediate level course in Monte Carlo methods
 in physics.

 [5] B. A. Berg, “Markov Chain Monte Carlo Simulations and Their
 Statistical Analysis. With Web-Based Fortran Code”, World Scientific,
 2004. Graduate level Monte Carlo from a great expert in the field. Covers
 many advanced Monte Carlo methods.

 [6] D. P. Landau and K. Binder, “A Guide to Monte Carlo Simulations
 in Statistical Physics”, Cambridge University Press, 3rd Edition, 2009.

 [7] K. Binder and D. W. Heermann, “Monte Carlo Simulation in
 Statistical Physics”, Fifth Edition, Springer (2010).

 [8] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flanney,
 “Numerical Recipes, The Art of Scientific Computing”, Third Edition,
 Cambridge University Press (2007), www.nr.com. Well, this is the
 handbook of every physicist in numerical methods.

 [Chapter 1]

 [9] M. Metcalf, J. Reid , M. Cohen, Modern Fortran Explained, 4th
 Edition, OUP Oxford (2011).

 [10] J. C. Adams, W. S. Brainerd, R. A. Hendrickson, R. E. Maine, J. T.

 Martin and B. T. Smith, “The Fortran 2003 Handbook: The Complete
 Syntax, Features and Procedures”, Springer (2009).

 [11] T. M. R. Ellis, I. R. Philips and T. M. Lahey, “Fortran 90
 Programming”, Addison-Wesley (1994).

 [12] C. G. Page, Professional Programmer’s Guide to Fortran77,
 http://www.star.le.ac.uk/~cgp/prof77.html.

 [13] Gnuplot official site http://gnuplot.info/

 [14] P. K. Janert, “Gnuplot in Action: Understanding Data with Graphs”,
 2nd Edition, Manning Publications (2012).

 [15] L. Phillips, “gnuplot Cookbook”, Packt Publishing, 2012.

 [16] tcsh homepage: http://www.tcsh.org/Home

 [17] P. DuBois, “Using csh & tcsh”, O’Reilly and Associates (1995),
 www.kitebird.com/csh-tcsh-book/.

 [18] M. J. Currie, “C-shell Cookbook”,
http://www.astro.soton.ac.uk/unixtut/sc4.pdf.

 [19] Wiki book: “C Shell Scripting”,
http://en.wikibooks.org/wiki/C_Shell_Scripting.

 [20] G. Anderson and P. Anderson, “The Unix C Shell Field Guide”,
 Prentice Hall (1986).

 [Chapter 3]

 [21] R. M. May, “Simple Mathematical Models with Very Complicated
 Dynamics”, Nature 261 (1976) 459. The first pedagogical and relatively
 brief introduction to the logistic map and its basic properties.

 [22] C. Efthimiou, “Introduction to Functional Equations: Theory and
 Problem-Solving Strategies for Mathematical Competitions and Beyond”,
 MSRI Mathematical Circles Library (2010). Section 16.7 presents a brief
 and simple presentation of the mathematical properties of the logistic
 map.

 [23] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner and G. Vattay,
 “Chaos: Classical and Quantum”, ChaosBook.org, Niels Bohr Institute
 (2012). An excellent book on the subject. Can be freely downloaded
 from the site of the book.

 [24] L. Smith, “Chaos: A Very Short Introduction”, Oxford University
 Press (2007).

 [25] M. Schroeder, “Fractals, Chaos, Power Laws: Minutes from an
 Infinite Paradise”, W.H. Freeman (1991).

 [26] S. H. Strogatz, “Non Linear Dynamics and Chaos”, Addison-Wesley
 (1994).

 [27] Wikipedia: “Chaos Theory”, “Logistic Map”, “Bifurcation
 Diagram”, “Liapunov Exponents”, “Fractal Dimension”, “Feigenbaum
 constants”.

 [28] Wikipedia: “List of chaotic maps”.

 [29] Wikipedia: “Newton’s method”.

 [30] M. Jakobson, “Absolutely continuous invariant measures for
 one-parameter families of one-dimensional maps”, Commun. Math.
 Phys. 81 (1981) 39.

 [Chapter 4]

 [31] “Numerical Recipes” [8]. See chapters on the Runge–Kutta
 methods.

 [32] E. W. Weisstein, “Runge-Kutta Method”, from MathWorld–A
 Wolfram Web Resource.
http://mathworld.wolfram.com/Runge-KuttaMethod.html.

 [33] J. H. E. Cartwright and O. Piro, “The dynamics of Runge-Kutta
 methods”, Int. J. Bifurcation and Chaos 2, (1992) 427-449.

 [34] J. H. Mathews, K. Fink, “Numerical Methods Using Matlab”,
 Prentice Hall (2003), Chapter 9.

 [35] J. H. Mathews, “Numerical Analysis - Numerical Methods Project”,
 http://math.fullerton.edu/mathews/numerical.html.

 [36] I. Percival and D. Richards, “Introduction to Dynamics”, Cambridge
 University Press (1982). See also [38].

 [37] J. B. McLaughlin, “Period Doubling bifurcations and chaotic motion
 for a parametrically forced pendulum”, J. Stat. Phys. 24 (1981) 375–388.

 [Chapter 5]

 [38] J. V. José and E. J. Saletan, “Classical Dynamics, a Contemporary
 Approach”, Cambridge University Press, 1998. A great book on Classical
 Mechanics. You will find a lot of information on non linear dynamical
 systems exhibiting chaotic behavior. See also the chapters on scattering
 and planetary motion.

 [Chapter 6]

 [39] R. W. Brankin, I. Gladwell, and L. F. Shampine, “RKSUITE:
 a suite of Runge-Kutta codes for the initial value problem for
 ODEs”, Softreport 92-S1, Department of Mathematics, Southern
 Methodist University, Dallas, Texas, U.S.A (1992). Available at
 www.netlib.org/ode/rksuite and in the accompanying software of the
 book.

 [Chapter 9]

 [40] See the Mathematica Notebooks of Peter West
 http://young.physics.ucsc.edu/115/.

 [41] U. Wolff, B. Bunk, F. Knechtli, “Computational Physics I”,
http://www.physik.hu-berlin.de/com/
 teachingandseminars/previous_CPI_CPII.

 [42] F. T. Hioe and E. W.
 Montroll, “Quantum theory of anharmonic oscillators. I. Energy levels
 of oscillators with positive quartic anharmonicity”, J. Math. Phys. 16
 (1975) 1945, http://dx.doi.org/10.1063/1.522747

 [Chapter 11]

 [43] L. Kadanoff, “Statistical Physics – Statics, Dynamics and
 Renormalization”, World Scientific (2000). A great book in advanced
 statistical physics by one of the greatest in the field!

 [44] J. Ambjørn, B. Durhuus and T. Jonsson, “Quantum Geometry”,
 Cambridge Monographs on Mathematical
 Physics, Cambridge University Press (1997). More in depth discussion
 of random walks in field theory and statistical mechanics.

 [45] C. Itzykson and J. M. Drouffe, “Statistical Field Theory”, Volume
 1, Cambridge Monographs on Mathematical Physics, Cambridge
 University Press (1989). Random walks and Euclidean quantum field
 theory.

 [46] D. E. Knuth, “Seminumerical Algorithms”, Vol. 2 of “The Art of
 Computer Programming”, Addison-Wesley (1981).

 [47] M. Lüscher, Comput.
 Phys. Commun. 79 (1994) 100; F. James, Comput. Phys. Commun. 79
 (1994) 111; Erratum 97 (1996) 357. The code is available at the journal’s
 site http://cpc.cs.qub.ac.uk/summaries/ACPR_v1_0.html as well as
 from CERN at
http://wwwasd.web.cern.ch/wwwasd/cernlib/
 download/2001_wnt/src/mathlib/gen/v/ranlux.F.

 [48] L. Schrage, “A More Portable Fortran Random Number Generator”,
 ACM Transactions on Mathematical Software, 5 (1979) 132-138;
 P. Bratley, B. L. Fox and L. Schrage, “A Guide to Simulation”,
 Springer-Verlag, 1983.

 [49] G. Marsaglia and A. Zaman, Ann. Appl. Prob. 1 (1991) 462.

 [50] B. Li, N. Madras and A. D. Sokal, “Critical Exponents, Hyperscaling
 and Universal Amplitude Ratios for Two-
 and Three-Dimensional Self-Avoiding Walks”, J.Statist.Phys. 80 (1995)
 661-754 [arXiv:hep-lat/9409003]; G. Slade, “The self-avoiding walk: A
 brief survey”, Surveys in Stochastic Processes, pp. 181-199, eds. J. Blath,
 P. Imkeller and S. Roelly, European Mathematical Society, Zurich,
 (2011), http://www.math.ubc.ca/~slade/spa_proceedings.pdf.

 [Chapter 12]

 [51] J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman,
 “The Theory of Critical Phenomena”, Clarenton Press (1992). A simple
 introduction to critical phenomena and the renormalization group.

 [52] R. K. Pathria and P. D. Beale, “Statistical Mechanics”, Third
 Edition, Elsevier (2011). A classic in statistical physics.

 [53] F. Mandl, “Statistical Physics”, Second Edition, Wiley (1988).

 [54] R. J. Baxter, “Exactly Solved Models in Statistical Mechanics”,
 Dover Publications (2008).

 [Chapter 13]

 [55] E. Ising, “Beitrag zur Theorie des Ferromagnetizmus”, Z. Phys. 31
 (1925) 253–258.

 [56] L. Onsager, “Crystal Statistics. I. A Two–Dimensional Model with
 an Order–Disorder Transition”, Phys. Rev. 65 (1944) 117–119.

 [57] K. Huang, “Statistical Mechanics”, John Wiley & Sons, New York,
 (1987). A detailed presentation of the Onsager solution.

 [58] C. N. Yang, Phys. Rev. 85 (1952) 809.

 [59] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller
 and E. J. Teller, Chem. Phys. 21 (1953) 1087.

 [60] M. P. Nightingale and H. W. J. Blöte, Phys. Rev. Lett. 76 (1996)
 4548.

 [61] H. Müller-Krumbhaar and K. Binder, J. Stat. Phys. 8 (1973) 1.

 [62] B. Efron SIAM Review 21 (1979) 460; Ann. Statist. 7 (1979) 1;B.
 Efron and R. Tibshirani, Statistical Science 1 (1986) 54. Freely available
 from projecteuclid.org.

 [Chapter 14]

 [63] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58 (1987) 86.

 [64] U. Wolff, Phys. Rev. Lett. 62 (1989) 361.

 [65] A. Pelisseto and E. Vicari, “Critical Phenomena and
 Renormalization–Group Theory”, Phys. Reports 368 (2002) 549.

 [66] F. Y. Wu, “The Potts Model”, Rev. Mod. Phys. 54 (1982) 235.

 [67] P. D. Coddington and C. F. Baillie, Phys. Rev. Lett. 68 (1992) 962.

 [68] H. Rieger, Phys. Rev. B 52 (1995) 6659.

 [69] E. J. Newman and G. T. Barkema, Phys. Rev. E 53 (1996) 393.

 [70] A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185 (1969) 832; N.
 Sh. Izmailian and C. -K. Hu, Phys. Rev. E 65 (2002) 036103; J. Salas,
 J. Phys. A 34 (2001) 1311; W. Janke and R. Kenna, Nucl. Phys. (Proc.
 Suppl.) 106 (2002) 929.

 [71] J. Ambjørn and K. N. Anagnostopoulos, Nucl. Phys. B 497 (1997)
 445.

 [72] K. Binder, Phys. Rev. Lett. 47 (1981) 693.

 [73] K. Binder, Z. Phys. B 43 (1981) 119; G. Kamieniarz and H. W. J.
 Blöte, J. Phys. A 26 (1993) 201.

 [74] J. Cardy, “Scaling and Renormalization in Statistical Physics”, 1st
 Edition, Cambridge University Press (1996).

 [75] A. M. Ferrenberg and D. P. Landau, Phys. Rev. B44 (1991) 5081.

 [76] M. S. S. Challa, D. P. Landau and K. Binder, Phys. Rev. B34 (1986)
 1841.

 [77] H. E. Stanley, “Introduction to Phase Transitions and Critical
 Phenomena”, Oxford (1971).

 [78] R. Creswick and S.-Y. Kim, J. Phys. A: Math.Gen. 30 (1997) 8785.

 [79] C. Holm and W. Janke, Phys. Rev. B 48 (1993) 936
 [arXiv:hep-lat/9301002].

 [80] M. Hasenbusch and S. Meyer, Phys. Lett. B 241 (1990) 238.

 [81] M. Kolesik and M. Suzuki, Physica A 215 (1995) 138
 [arXiv:cond-mat/9411109].

 [82] M. Kolesik and M. Suzuki, Physica A 216 (1995) 469.

Index

 [image: βc], 1, 2

[image: χ2 ∕]dof, 3

. (current directory), 4

.. (parent directory), 5

; (separate commands), 6

$PATH, 7

- (switch, options), 8

/dev/random, 9, 10, 11

/dev/urandom, 12, 13, 14

/, 15

< (redirection), 16

>> (redirection), 17

>& (redirection), 18

> (redirection), 19

NF, 20

#!, 21

$path, 22

& (background a process), 23

a.out, 24

ar, 25

awk, 26, 27

 BEGIN, 28, 29

 END, 30, 31

 NR, 32, 33

 $1, $2, ..., 34

 script, 35

cat, 36, 37

cd, 38

chmod, 39

cp, 40

date, 41

echo, 42, 43

emacs, 44

gfortran, 45, 46

 link library, 47

grep, 48

head, 49

info, 50

less, 51

ls, 52

make, 53

man, 54

mkdir, 55

mv, 56

pwd, 57

rk2.csh, 58

rmdir, 59, 60

rm, 61

setenv, 62

set, 63

sort, 64

stderr, 65

stdin, 66

stdout, 67

tail, 68

time, 69

whatis, 70

where, 71

which, 72, 73

| (piping), 74, 75

absolute path, 76

acceptance ratio, 77, 78

 average, 79, 80

anharmonic oscillator, 81, 82

annihilation operator, 83

attractor, 84, 85

autocorrelation

 critical slowing down, 86

 dynamical exponent [image: z], 87

 function, 88, 89

 independent measurement, 90, 91

 time, 92, 93

 subdominant, 94

 time, integrated, 95

basin of attraction, 96, 97, 98

bifurcation, 99, 100, 101

Binder cumulant, 102

Boltzmann constant, 103

Boltzmann distribution, 104

bootstrap, 105, 106, 107

boundary conditions

 fixed, 108

 free, 109

 helical, 110, 111

 periodic, 112, 113

 toroidal, 114, 115

boundary value problem, 116

canonical ensemble, 117, 118

chaos, 119, 120, 121

 period doubling, 122

 pseudorandom numbers, 123

circle map, 124

cluster, 125, 126

cluster algorithms, 127

cluster seed, 128

cobweb plot, 129

cold state, 130, 131

collapse, 132

command completion, 133

command substitution, 134

completion

 command, 135

 filename, 136

conformable arrays, 137, 138

conjugate thermodynamic quantities, 139

continuum limit, 140

correlation function, 141, 142

correlation length, 143, 144, 145, 146

Coulomb’s law, 147

Courant parameter, 148

CPU time, 149

creation operator, 150

critical exponents, 151, 152, 153, 154

 [image: α], 155, 156, 157, 158, 159

 [image: β], 160, 161

 [image: β] , 162, 163

 [image: δ], 164, 165

 [image: η], 166, 167, 168

 [image: γ], 169, 170, 171, 172

 [image: ν], 173, 174, 175

 [image: yh], 176, 177

 [image: y
 t], 178, 179

 [image: z], 180, 181, 182

critical slowing down, 183, 184

cross section, 185

 differential, 186, 187

 total, 188

cumulant, 189

cumulative distribution function, 190

Curie temperature, 191

current directory, 192

density of states, 193

dependencies, 194

derivative

 numerical, 195, 196

derivative, numerical, 197

detailed balance, 198

detailed balance condition, 199

diagonalization, 200

diffusion, 201

 equation, 202

 kernel, 203

Dirac delta function, 204

directory, 205

 home, 206, 207

 parent, 208

Dirichlet boundary condition, 209

disordered phase, 210

double well, 211, 212

DSYEV, 213

Duffing map, 214

dynamic exponent [image: z], 215, 216

dynamic memory allocation, 217

eccentricity, 218

eigenstate, 219, 220

eigenvalues, 221

eigenvectors, 222

electric equipotential surfaces, 223

electric field, 224, 225

electric field lines, 226

electric potential, 227, 228

Emacs, 229

 abort command, 230, 231

 auto completion, 232

 commands, 233

 Ctrl key, C-, 234

 cut/paste, 235, 236

 edit a buffer, 237

 frames, 238

 help, 239, 240

 info, 241, 242

 kill a buffer, 243

 mark, 244

 Meta key, M-, 245

 minibuffer, 246

 minibuffer, M-x, 247

 modes, 248

 auto fill, 249

 C, 250

 font lock (coloring), 251

 Fortran, 252

 overwrite, 253

 point, 254

 read a file, 255, 256, 257

 recover a buffer, 258

 recover file, 259

 region, 260

 replace, 261

 save a buffer, 262, 263, 264

 search, 265

 spelling, 266

 undo, 267, 268

 window, split, 269, 270

 windows, 271, 272

energy spectrum, 273

entropy, 274, 275

ergodicity, 276, 277

error

 binning, 278

 blocking, 279

 bootstrap, 280, 281, 282

 binning, 283

 error of the mean, 284

 integration, 285

 jackknife, 286, 287

 statistical, 288, 289

 systematic, 290

estimator, 291, 292

Euler method, 293

Euler-Verlet method, 294, 295

expectation value, 296, 297, 298, 299

Feigenbaum constant, 300

FIFO, 301

file

 owner, 302

 permissions, 303

filename completion, 304

filesystem, 305

finite size effects, 306

finite size scaling, 307

first order phase transition, 308

fit, 309, 310

 [image: 2
χ ∕]dof, 311

 variance of residuals, 312

fluctuations, 313

focus,foci, 314

foreach, 315, 316

Fortran

 RANDOM_SEED, 317

 RANLUX, 318, 319

 allocatable, 320, 321

 ALLOCATE, 322, 323, 324

 ALLOCATED, 325

 arrays, 326

 bound upper/lower, 327

 conformable, 328, 329

 constructor, 330

 dimension, 331, 332

 DOT_PRODUCT, 333

 extent, 334

 LBOUND, 335

 MATMUL, 336

 MAXVAL, 337

 MINVAL, 338

 PRODUCT, 339

 range, 340

 rank, 341

 RESHAPE, 342

 scalar, 343

 section, 344

 shape, 345, 346

 size, 347

 SUM, 348

 TRANSPOSE, 349

 UBOUND, 350

 vector operations, 351

 call, 352

 CMPLX, 353

 column limits, 354

 comments, 355

 common blocks, 356, 357

 comparison operators, 358

 compile, 359

 complex, 360

 CONJG, 361

 CONTAINS, 362

 continuation of lines, 363

 DATE_AND_TIME, 364

 DBLE, 365

 DEALLOCATE, 366

 dimension, 367

 do, 368

 do while, 369, 370

 DOT_PRODUCT, 371

 DSYEV, 372

 elemental, 373

 EPSILON, 374, 375

 FDATE, 376

 FILE, 377

 FORALL, 378

 format, 379, 380

 function, 381

 GETARG, 382, 383

 GETENV, 384

 GETLOG, 385

 GETOPT, 386, 387, 388

 Hello World!, 389

 HUGE, 390, 391

 IARGC, 392

 IF, 393, 394, 395

 implicit, 396, 397

 implied do loops, 398

 INT, 399

 INTERFACE, 400

 intrinsic functions, 401

 labeled statement, 402, 403

 main program, 404

 MATMUL, 405

 MAXVAL, 406

 MINVAL, 407

 MOD, 408

 module, 409, 410, 411

 OPEN, 412, 413

 options, 414

 PACK, 415

 parameter, 416

 PRECISION, 417

 PRODUCT, 418

 RANDOM_NUMBER, 419, 420

 RANDOM_SEED, 421

 RANGE, 422

 READ, 423

 END (end of file), 424

 real, 425

 real, accuracy, 426

 RENAME, 427

 RESHAPE, 428

 rksuite, 429

 SAVE, 430, 431, 432

 scalar, 433

 SELECT, 434, 435, 436

 SHAPE, 437

 SIZE, 438

 SLEEP, 439

 STOP, 440, 441

 string comparison, 442

 subroutine, 443

 SUM, 444, 445, 446

 TINY, 447, 448

 TRANSPOSE, 449

 TRIM, 450, 451, 452

 UBOUND, 453

 unit, 454, 455

 WHERE, 456

 WRITE, 457

free energy, 458

Gauss map, 459

Gauss’s law, 460

Gauss-Seidel overrelaxation, 461

Gaussian distribution, 462

Gibbs, 463

Gnuplot, 464

 ¡, 465, 466, 467, 468

 1/0 (undefined number), 469

 animation, 470, 471

 atan2, 472

 comment, 473

 fit, 474, 475, 476

 functions, 477

 hidden3d, 478

 load, 479, 480

 log plots, 481

 parametric plot, 482

 plot, 483

 plot 3d, 484, 485, 486, 487

 plot command output, 488, 489, 490, 491

 plot expressions, 492, 493, 494

 pm3d, 495

 replot, 496, 497

 reread, 498

 save plots, 499

 splot, 500, 501, 502, 503

 using, 504, 505, 506

 variables, 507, 508

 with, 509

ground state, 510, 511, 512

ground state energy, 513

Hénon map, 514

hard sphere, 515

harmonic oscillator, 516, 517

heat conduction, 518

heat reservoir, 519, 520

Heisenberg’s uncertainty principle, 521

Heisenberg’s uncertainty relation, 522, 523

helical boundary conditions, 524, 525

high temperature phase, 526

histogram, 527

home directory, 528, 529

hot state, 530, 531

hyperscaling, 532

hyperscaling relations, 533, 534, 535

impact parameter, 536, 537

importance sampling, 538

independent measurement, 539, 540

initial state, 541

internal energy, 542

Ising model

 [image: Z2] symmetry, 543, 544

 [image: βc], 545

 energy, 546

 ferromagnetic, 547

 Hamiltonian, 548, 549

 magnetization, 550

 partition function, 551, 552

jackknife, 553, 554

Jacobi overrelaxation, 555

Kepler’s law, 556

Lapack, 557

Laplace equation, 558

lattice

 constant, 559, 560

 triangular, 561

leapfrog method, 562

Lennard-Jones potential, 563

Liapunov exponent, 564

libblas, 565

liblapack, 566

LIFO, 567

linear coupling, 568

logistic map, 569

 [image: n
2] cycles, 570

 attractor, 571

 bifurcation, 572, 573, 574

 cobweb plot, 575

 entropy, 576

 fixed points, 577

 stability, 578

 onset of chaos, 579, 580

 special solutions, 581

 strong chaos, 582

 transient behavior, 583

 weak chaos, 584

low temperature phase, 585

magnetic susceptibility, 586, 587

 scaling, 588, 589

magnetization, 590, 591

 scaling, 592, 593

 staggered, 594

magnetized, 595

Makefile, 596

man pages, 597

Markov chain, 598

Markov process, 599

Marsaglia and Zaman, 600

master equation, 601

memory

 allocation, dynamic, 602

 allocation, static, 603

 leak, 604

Metropolis algorithm, 605

minibuffer, 606

Monte Carlo

 cold state, 607, 608

 hot state, 609, 610

 initial state, 611, 612

 simulation, 613, 614

 sweep, 615, 616, 617, 618

mouse map, 619

Netlib, 620, 621

 Blas, 622

 Lapack, 623

 DSYEV, 624

 liblapack, 625

 rksuite, 626

Newton’s law of gravity, 627

Newton-Raphson method, 628, 629

NRRW (non reversal random walker), 630

numerical

 derivative, 631, 632, 633

 integration, 634

observable, 635

Onsager, 636

 exponents, 637

Onsager critical exponents, 638

options, 639, 640

order parameter, 641

ordered phase, 642

overflow, 643

overlap, 644

overrelaxation, 645, 646

parent directory, 647

parity, 648

partition function, 649

 Ising model, 650

path

 absolute, 651

 command, 652

 file, 653

 relative, 654

period, 655, 656

period doubling, 657

periodic boundary conditions, 658, 659

phase transition

 1st order, 660, 661

 2nd order, 662

 continuous, 663

piping, 664

Poincaré diagram, 665

Poisson equation, 666

pseudocritical region, 667, 668

pseudocritical temperature, 669

pseudorandom, 670

queue, 671

random

 RANLUX, 672, 673

 RLUXGO, 674

 RLUXIN, 675

 RLUXUT, 676

 drandom(), 677

 gaussran(), 678

 naiveran(), 679

 Cauchy distribution, 680

 chaos, 681

 correlations, 682

 Gaussian distribution, 683

 generator, 684

 Marsaglia and Zaman, 685

 modulo generator, 686

 multiply-with-carry, 687

 non uniform, 688

 period, 689, 690, 691

 pseudorandom, 692

 Ranlux, 693

 save state, 694, 695

 Schrage, 696

 seed, 697, 698

 uniform, 699

 urandom, 700, 701, 702

random walk, 703, 704

 NRRW, 705

 SAW, 706

Ranlux, 707

 RANLUX, 708, 709

 RLUXGO, 710, 711

 RLUXIN, 712, 713

 RLUXUT, 714, 715

 ranlux_level, 716, 717

 save state, 718

redirection, 719

relative path, 720

relativity

 special, 721

reservoir, heat, 722

return probability, 723

rksuite, 724

root, 725

Runge-Kutta method, 726, 727, 728, 729, 730

 adaptive stepsize, 731

Rutherford scattering, 732

RW (random walker), 733

sample, 734

sampling, 735

 importance, 736

 simple, 737

SAW (self avoiding walk), 738

scale invariance, 739

scaling, 740

 collapse, 741

 exponents, 742

 factor, 743

 hypothesis, 744, 745

scattering, 746, 747

 rate, 748

 Rutherford, 749

Schrödinger equation, 750

Schrage, 751

second order phase transition, 752

seed, 753, 754

seed of cluster, 755

selection probability, 756, 757

shell

 argv, 758

 array variable, 759

 arrays, 760

 command substitution, 761

 foreach, 762

 here document, 763, 764

 if, 765

 input $¡, 766

 script, 767, 768

 set, 769

 tcsh, 770

 variable, 771

shell script, 772

Simpson’s rule, 773

sine map, 774

SOR, successive overrelaxation, 775, 776

specific heat, 777, 778

 scaling, 779, 780

spectral dimension, 781

spin

 configuration, 782

spin cluster, 783, 784

splinter, 785

stack, 786

staggered, 787

standard deviation, 788

standard error, 789

standard input, 790

standard output, 791

statistical physics, 792

subdirectory, 793

successive overrelaxation, 794

susceptibility, magnetic, 795

sweep, 796, 797, 798, 799

symmetry breaking, 800

tcsh, 801

temperature, 802

tent map, 803

thermal conductivity, 804

thermal diffusivity, 805

thermalization, 806

 discard, 807

 time, 808

thermodynamic limit, 809

third law of thermodynamics, 810

timing jobs, 811

Tinkerbell map, 812

toroidal boundary conditions, 813, 814

transient behavior, 815, 816

transition probability, 817, 818, 819

transition rates, 820

tunneling, 821, 822

turning point, 823

universality, 824, 825, 826

 class, 827

universality class, 828

user interface, 829

variables

 environment, 830

 shell, 831

variance, 832

wave function, 833

weights, statistical, 834

Wolff cluster algorithm, 835, 836

working directory, 837

 1The first number is the major version, corresponding to an “edition” of a conventional
 book. Versions differing by major numbers have been altered substantially. Chapter numbers and
 page references are not guaranteed to match between different versions. The second number is the
 minor version. Versions differing by a minor version may have serious errors/typos corrected and/or
 substantial text modifications. Versions differing by only the last number may have minor typos corrected,
 added references etc. When reporting errors, please mention the version number you are referring
 to.

 2http://www.gnu.org/software/emacs/

 3http://www.gnuplot.info

 4http://www.tcsh.org

 5http://www.gnu.org/software/gawk

 6http://www.ubuntu.com

 7http://www.cygwin.com

 8A Perl moto!

 9Free Software Foundation, www.fsf.org.

 10Java and C++ have been popular choices in computational physics courses. But object
 oriented programming is usually avoided in the high performance part of a computation. So, one
 usually uses those languages in a procedural style of programming, cheating herself that she is
 actually learning the advantages of object oriented programming.

 11www.physics.ntua.gr/~konstant/ComputationalPhysics/

 1www.stallman.org

 2It is more popular to be called “the command line”, or the “terminal”, or the “console”,
 but in fact the user interaction is through a shell.

 3See www.tcsh.org. On Debian like systems, like Ubuntu, installation is very simple
 through the software center or by the command sudo apt-get install tcsh.

 4Some times two or more paths refer to the same file, or as we say, a file has two or more
 “links” in the same filesystem, but let’s keep it simple for the moment.

 5Of course, the capacity of the filesystem is finite, issue the command “df -i .” in order
 to see the number of inodes available in your filesystem. Every file corresponds to one and only
 one inode of the filesystem. Every path is mapped to a unique inode, but an inode maybe
 pointed to by more than one paths.

 6This gives a great sense of freedom, but historically this was a important factor that led
 the Unix operating systems, although superior in quality, not to win a fair share of the market!
 The Linux family tries to keep things simple and universal to a large extent, but one should be
 aware that because of this freedom files in different version of Linuxes or Unices can be in
 different places.

 7Remember that lines that begin with the > character are commands. All other lines refer
 to the output of the commands.

 8For a directory it means the number of its subdirectories plus 2 (the parent directory
 and itself). For a regular file, it shows how many paths in the filesystem point to this
 file.

 9See the “File system permissions” entry in en.wikipedia.org.

 10Of course it is the user’s responsibility to make sure the file with execute permission
 is actually a program that is possible to execute. An error results if this is not the
 case.

 11Actually it removes “links” from files. A file may have more than one links in the same
 partition of a filesystem. A file is deleted when its last link is removed.

 12This does not mean that its contents have been deleted from the disk. Deletion means
 marking for overwriting. Until the data is overwritten it can be recovered by the use of special
 tools. Shredding sensitive data can be tricky business...

 13A small mistake, like rm -rf * and your data is ... history!

 14The command setenv is special to the tcsh shell. For example the bash
 shell uses the syntax MYVAR=test-env in order to set the value of an environment
 variable.

 15This syntax is particular to the tcsh shell. For other shells (bash, sh, ...) read their
 documentation.

 16If you use the bash shell press [Tab] once or twice.

 17Use the same procedure to auto-complete the names of files in the arguments of
 commands.

 18The particular file, as well as most of the files in this section, can be found in the
 accompanying software of the chapter. It is highly recommended that you try all the commands
 in this section by using all the provided files.

 19http://www.gnu.org/software/emacs/ (main site), http://www.emacswiki.org/
 (expert tips), http://en.wikipedia.org/wiki/Emacs (general info)

 20Emacs is written in a dialect of the programming language Lisp, called Elisp. There is
 no need of an in-depth knowledge of the language in order to program simple functions, just see
 how others are doing it...

 21Quite handy when we edit files in a remote computer.

 22Actually, M- is the so called Meta key, usually bound to the Alt key. It is also
 bound to the Esc and C-[keys. The latter can be our only choices available in dumb
 terminals.

 23The user can change the name of the buffer without affecting the name of the file it
 edits. Also, if we open more than one files with the same name, emacs gives each
 buffer a unique name. E.g. if we edit more than one files named index.html then the
 corresponding buffers are named index.html, index.html<2>, index.html<3>, ...
 .

 24Strictly speaking, the point lies between two characters and not on top of a character.
 The cursor lies on the character immediately to the right of the point. A point is assigned to
 every window, therefore a buffer can have multiple points, one for each window that displays its
 contents.

 25Press the Ctrl and spacebar keys simultanesouly.

 26If it is a two button mouse, try clicking the left and right buttons simultaneously.

 27Be careful not to start a new Emacs session each time that all you need is a new frame.
 A new Emacs process takes time to start, binds computer resources and does not communicate
 with a different Emacs process.

 28If you prefer books in the form of PDF visit the page www.gnu.org/software/emacs and
 click on Documentation. You will find a 600 page book that has almost everything!

 29It is possible to break long lines by putting a & at the end of each broken line and
 continue the same command in the next one. More on that later.

 30http://gcc.gnu.org/fortran/

 31Don’t confuse REAL variables with the real numbers. REAL variables take values that are
 finite approximations to real numbers and take values that are a subset of the rational numbers.
 This approximation becomes better with increasing the amount of memory allocated to REALs.
 In most computing environments, REALs are allocated 4 or 8 bytes of memory, in which
 case they approximate real numbers with, more or less, 7 or 17 significant digits,
 respectively.

 32Try adding the command print *,2/4, 2.0/4.0 and check the results.

 33The step can change by adding one more entry to the do line: do i=0,12,4 runs the
 loop for i=0,4,8,12, whereas do i=10,6,-2 for i=10,8,6.

 34That means that different compilers and/or runs can give different results.

 35Can you see the difference between the names pl1 and p11?

 36E.g., 5 is the stdin, 6 is the stdout and 0 is the stderr.

 37Try to see what happens when you write to a unit what has not been connected to a file
 via an open command!

 38We say that variables in Fortran are passed to subroutines by reference and not by value
 as in C.

 39Other operators are .lt., .ge. .le. (strictly less, greater or equal, less or equal),
 .ne. (not equal) and .or., .and., .not. (logical or, and and negation).

 40Common blocks are supposed to be obsolescent in Fortran and programmers are
 encouraged to avoid them and use modules instead. Due to their simplicity and popularity we
 will show their usage and also use them in this book.

 41Fortran allows up to seven indices in an array.

 42If we want to force a long output to be written in one line, then we must replace
 the * by an explicit format directive, e.g. print ’(100I6)’,((c(i,j), i=1,10),
 j=1,10)

 43A the time of the writing of this book, there was a very nice site www.gnuplotting.org
 which shows how to create many beautiful and complicated plots.

 44You can change the symbol of the independent variable. For example, the command set
 dummy t sets the independent variable to be t.

 45By default, the [image: x] and [image: y] ranges are determined automatically. In order to force them
 to be automatic, you can insert a * in the brackets at the corresponding position(s). For example
 plot [1:*][*:5] sets the upper and lower limits of [image: x] and [image: y] to be determined
 automatically.

 46Use #!/bin/bash if you prefer the bash shell.

 47Their great advantage is that we can use variable and command substitution in them,
 therefore sending this information to the program that we want to run.

 48You will find it also in the accompanying software

 1The reader is reminded that REAL variables are stored in 4 bytes and have an accuracy
 of about 7 decimal digits.

 2This is done so that the used can check for typos and see the actual value read by the
 program. By redirecting the stdout of a file on the hard disk, the parameters can be saved for
 future reference and used in data analysis.

 3Note that there are more assumptions that need to be checked by the program. We leave
 this as an exercise for the reader.

 4Some numbers can be reserved for special files, like 5 for stdin, 6 for stdout and 0 for
 stderr. Using numbers larger than 99 can lead to portability problems.

 5If omitted, the executable file has the default name a.out.

 6The command help functions will show you all the available functions in
 gnuplot.

 7This can be done on the gnuplot command line as well.

 8Use the command show variables in order to see the current/default values of
 gnuplot variables.

 9You are most welcome to study the commands in the script and guess how it works of
 course!

 10It can be any file that has [image: (t,x,y)] in the 1st, 2nd and 3rd columns respectively.

 11Notice that we replaced the command “using 1:2 with lines title” with “u 1:2 w
 lines t”. These abbreviations can be done with every gnuplot command if an abbreviation
 uniquely determines a command.

 12I.e. [image: ⃗g =] const. and the Coriolis force can be ignored.

 13The proof of equations (2.10) is left as an exercise for the reader.

 14One has to choose appropriate initial conditions. Exercise: find them!

 15In the previous sections, our calculations had a small systematic error due to the
 approximate nature of numerical floating point operations which approximate exact real number
 calculations. But the algorithms used were not introducing systematic errors like in the cases
 discussed in this section.

 16We still have this problem in the t=t+dt operation. See discussion in the next
 section.

 17See the file box1D_3.dat.

 18Note the [image: ≈]!

 19Of course we know the answer: [image: x(95) = 5].

 20Try the command sed ’s/0.05/0.025/’ box1D_anal.in | ./box by changing 0.025
 with the desired value of [image: δt].

 21See the shell script box1D_anal.csh as a suggestion on how to automate this boring
 process.

 22Of course one expects [image: 2 2 2
R = (x − xc) + (y − yc)], but because of systematic errors, we
 require [image: R] to be given.

 23Note that upon exit, the particle is also placed exactly on the circle.

 24See K.S. Thorne “Black Holes and Time Wraps: Einstein’s Outrageous Legacy”, W.W.
 Norton, New York for a popular review of these concepts.

 25This idea can be found as an exercise in the excellent introductory general relativity
 textbook J. B. Hartle, “Gravity: An Introduction to Einstein’s General Relativity”, Addison
 Wesley 2003, Ch. 7, Ex. 25.

 1Note that if [image: xn > 1] then [image: xn+1 < 0], so that if we want [image: xn ≥ 0] for each [image: n], then we
 should have [image: xn ≤ 1] for each [image: n].

 2In the bibliography, the term “splinter of [image: x
 0]” is frequently used.

 3E. Schrder, “ber iterierte Funktionen”, Math. Ann. 3 (1870) 296; E. Lorenz, “The
 problem of deducing the climate from the governing equations”, Tellus 16 (1964)
 1

 4Because, if [image: ∗ ∗ (2) ∗ ∗ ∗ ∗
x = f (x) ⇒ f (x) = f(f(x)) = f(x) = x] etc, the point [image: ∗
x] is also a
 solution of [image: ∗ (n) ∗
x = f (x)].

 5The chain rule [image: dh(g(x))∕dx = h′(g(x))g′(x)] gives that [image: f(2)′(x∗3) =] [image: df(f(x∗3))∕dx =]
 [image: f ′(f(x∗3))f′(x∗3) =] [image: f′(x∗4)f′(x∗3)] and similarly for [image: f(2)′(x∗4)]. We can prove by induction that
 for the [image: n] solutions [image: x∗n+1,x∗n+2,...,x∗2n] that belong to the [image: n]-cycle of the equation
 [image: x = f(n)(x)] we have that [image: f(n)′(xn+i) = f′(xn+1)] [image: f′(xn+2)...f′(x2n)] for every
 [image: i = 1,...,n].

 6The points [image: x∗
 α], [image: α = 1,...,4] are unstable fixed points and 2-cycle.

 7Generally, for [image: r(nc) < r < r(nc+1) < rc ≈ 3.56994567] we have [image: 2n] fixed points of the
 equation [image: x = f(2n−1)(x)] and stable [image: 2n−1]-cycles, which are attractors of almost all
 trajectories.

 8If we want to be more precise, the bifurcation diagram contains also the unstable
 points. What we really construct is the orbit diagram which contains only the stable
 points.

 9T.Y. Li, J.A. Yorke, “Period Three Implies Chaos”, American Mathematical Monthly 82
 (1975) 985.

 10The function [image: x exp(r(1− x))] has been used as a model for populations whose large
 density is restricted by epidemics. The populations are always positive independently of the
 (positive) initial conditions and the value of [image: r].

 11Sensitivity to the initial condition alone does not necessarily imply chaos. It is necessary
 to have topological mixing and dense periodic orbits. Topological mixing means that every open
 set in phase space will evolve to a set that for large enough time will have non zero intersection
 with any open set. Dense periodic orbits means that every point in phase space lies
 infinitesimally close to a periodic orbit.

 12D.A. Russel, J.D. Hanson, and E. Ott, “Dimension of strange attractors”, Phys. Rev. Lett.
 45 (1980) 1175. See “Hausdorff dimension” in Wikipedia.

 1We have [image: N] discrete time points [image: t ≡ t,...,t ,t ≡ t
i 1 N− 1 N f]

 2See appendix 4.7 for retails.

 3See appendix 4.7 for details.

 4Numbers of type real have approximately seven significant digits. The accuracy of the
 operations described above is determined by the number [image: 𝜖], which is the smallest positive
 number such that [image: 1+ 𝜖 > 1]. For a variable x of some type, this number is given by a call to the
 Fortran intrinsic function epsilon(x). For variables of type real, [image: 𝜖 ≈ 1.2× 10−7] and for
 variables of type real(8) [image: 𝜖 ≈ 2.2× 10−16].

 5The command set dummy t sets the independent variable for functions to be t instead
 of x which is the default.

 6A small modification is necessary in order to plot the absolute value of the
 differences.

 7Not always though! Higher order does not necessarily mean higher accuracy, although
 this is true in the simple cases considered here.

 8The reader should confirm these claims, initially by looking at the figures 4.11-4.14 and
 then by reproducing these results. A particular time [image: t] can be chosen and the errors can be
 plotted against [image: Δt], [image: Δt2] and [image: Δt4] respectively.

 9These are easily obtained by substituting the ansatz [image: −Ωt
x(t) = Ae] and solving for
 [image: Ω].

 10To be precise, phase space is the space of positions-momenta, but in our case the
 difference is trivial.

 11The command can be written in one line without the final [image: ∖] of the first and second
 lines.

 12The accuracy of this condition is limited by dt, which makes the points in the Poincaré
 diagram slightly fuzzy.

 13Remember that the acceleration [image: α(t)] is given, therefore [image: δα(t) = 0].

 1We refer the reader to [38], chapter 4.

 2The so called hard core potential.

 3The number of particles crossing a surface perpendicular to the beam per unit time and
 unit area.

 4We assume that Nt, NEQ are positive and small enough so that the requested memory is
 available. It is better to use the call allocate(T(Nt),STAT=IERR). The non zero
 value of IERR after the call indicates a successful allocation and the following test
 stops the program otherwise: IF(IERR .eq. 0) STOP ’Memory allocation for T
 failed’

 5In the accompanying software you will find the files rkN.f90 and rkN_XXX.f90 which
 show you how to write the same program using static memory allocation.

 6The same program can be used for three equal charges exerting an electrostatic force on
 each other, which can be either attractive or repulsive.

 1R.W. Brankin, I. Gladwell, and L.F. Shampine, RKSUITE: a suite of Runge-Kutta
 codes for the initial value problem for ODEs, Softreport 92-S1, Department of Mathematics,
 Southern Methodist University, Dallas, Texas, U.S.A, 1992.

 2www.netlib.org

 3This is a simple text file which you can read with the command less rksuite.doc or
 with emacs.

 4These are lines that begin with a C as this is old fixed format Fortran code.

 5When UGLAG [image: ≤ 2], tstep=t and we will not worry about them being different with our
 program.

 6Note the declaration of the arrays Y, YP: real(8) :: Y(*),YP(*). These arrays are
 “assumed-size” arrays for the functions F, energy, i.e. arrays whose size is unknown to the
 procedure. For arrays of more than one dimension, only the last index is allowed to be *. In
 general it is recommended that assumed-size arrays be avoided and declare them as
 assumed-shape like in the program rkA.f90 of page 738. The declaration in this case is real(8)
 :: Y(:),YP(:)

 7Of course for lower speeds, the special relativity equations of motion are a better
 approximation to the particle’s motion, but the corrections to the non relativistic equations of
 motion are negligible.

 8Since [image: c = 1], the unit of time is the time that the light needs to travel distance equal to
 [image: RE] in the vacuum.

 1Since for every small displacement [image: d⃗r] along an equipotential surface the potential stays
 constant ([image: dV = 0]), we have that [image: 0 = dV = ⃗∇V ⋅d⃗r =] [image: − ⃗E ⋅d⃗r], which implies
 [image: E⃗⊥ d⃗r].

 2Remember that field lines start at sources, end at sinks or extend to infinity.

 3Remember that the equipotential lines are closed.

 4See the file ELines_version0.f90.

 5The choice is not unique of course, you may also try e.g. rmin .lt. max_dist.

 6You may improve the program by checking whether [image: ri = 0].

 7Equivalent to the equation [image: ⃗ ⃗
∇ × E = 0].

 8A different choice would have been to store the value Vav in a temporary array Vnew(i,j).
 After the sweep, the potential V(i,j)=Vnew(i,j) is changed to the new values. Which method
 do you expect to have better convergence properties? Try...

 9Since [image: ∫
Q = ρdA ≈][image: ∑ 2
 i,jρa =] [image: ∑
(1∕4π) i,j ˜ρ]. Therefore [image: ∑
 i,jρ˜≈ 4πQ].

 1For a spherical particle of radius [image: R] in a Newtonian liquid with viscosity [image: η] we have
 that [image: γ = 6πηR].

 2[image: δ(x − x0)] is the Dirac delta “function”. It can be defined from the requirement that for
 every function [image: f(x)] we have that [image: ∫
 −+∞∞ f(x)δ(x − x0)dx = f(x0)]. Obviously we also have that
 [image: ∫+ ∞ δ(x − x0)dx = 1
 −∞]. Intuitively one can think of it as a function that is almost zero
 everywhere except in an infinitesimal neighborhood of [image: x0].

 3Alternatively, if [image: K (x,x0;t)] is interpreted as e.g. the mass density of a drop of ink of
 mass [image: mink] inside a transparent liquid, we will have that [image: ∫ +∞ K(x,x0;t)dx = mink
 −∞] and
 [image: K (x,x0;0) = minkδ(x− x0)].

 4Remember the analogy of an ink drop diffusing in a transparent liquid. After long
 enough time, the ink is homogeneously dissolved in the liquid.

 5[image: ∫ 2 n+1
 ∞0 drrne−r ∕4Dt = 2nΓ (n+21)(Dt)-2].

 6According to equation (8.2) this amounts to taking [image: t → Dt].

 7If the derivative [image: ∂u∕∂x] was given as a boundary condition instead, then we would have
 Neumann boundary conditions.

 1The library can be easily installed in many Linux distributions. For example in Ubuntu
 or other Debian like systems you may use the command apt-get install liblapack3
 liblapack-doc liblapack-dev.

 2A Google search “dsyev” will easily take you to the same page.

 3The number LDA is necessary because the matrix element A(i,j) is found after
 i+(LDA-1)*j memory positions from A(1,1).

 4The library BLAS contains the basic linear algebra subroutines used by Lapack. In some
 versions of the library, one has to only link to Lapack ignoring the link BLAS but in some other
 version, linking to BLAS is necessary.

 5If the .so files don’t exist in your system, try ar -t /usr/lib/libblas.a
 etc.

 6This is not necessary in our case, since /usr/lib is in the path that ld searches anyway.
 This option is useful for libraries located in non conventional paths.

 7The foreach loop construct is special to the tcsh shell. This is why an explicit tcsh
 command is shown. For other shells use their corresponding syntax.

 8For [image: x → λ−1∕6x], [image: H → λ1∕3(p2∕2+ λ−2∕3x2∕2+ x4)], therefore in the limit [image: λ → ∞]
 the second term vanishes and we obtain equation (9.29) .

 9You may convince yourselves by looking at the wave functions in figures 10.4 of chapter
 10 and by computing the relevant integrals.

 1The fact that the energy spectrum of the particle is bounded from below depends on the
 form of the potential. We assume that [image: V (x)] is such that [image: E0] is finite. Also, in one dimension,
 the energy spectrum of a particle for reasonable potentials is non degenerate (see, however, S.
 Kar, R. Parwani, arXiv:0706.1135.)

 2There are [image: m], [image: ℏ] and the coupling constants in the function [image: V (x)]. The range of the
 potential will determine [image: L] in some problems and it is given explicitly in potential wells. In
 potentials of real physical systems, however, this is also determined by the coupling
 constants.

 3If we normalize the solutions [image: ˜ψ(˜x)] of equation (10.12) according to the relation
 [image: ∫+∞
 −∞ ψ˜∗(˜x)ψ˜(˜x)d˜x = 1], we should also take [image: √--
ψ(x) = (1∕ L)ψ˜(x ∕L)] in order to be properly
 normalized [image: ∫+−∞∞ ψ∗(x)ψ(x)dx = 1].

 4According to the dictionary mentioned in the previous section, for a potential well
 where [image: x ∈ [− L ∕2,L ∕2]] the dimensionless position variable has been chosen to be
 [image: x∕(L∕2) ∈ [− 1,1]]. Then [image: ℏ2
En = 2m(L∕2)2𝜖n] [image: ℏ2π2 2
= 2mL2-n] and [image: (+) ∘ ----
ψ n (x) = 2∕L cos(nπx ∕L)],
 [image: ∘ ----
ψ (−n)(x) = 2∕L sin(nπx∕L)]. Note that [image: 𝜖n = p2n] according to equations (10.13) and (10.14)
 .

 5The function in [image: [− 1,0)] is determined by the parity of the solution.

 6Careful: if the energy levels are too close, we should keep the initial energy constant and
 change the sign of parity.

 7If we are unlucky enough to pick a point where [image: ′
ψ (xm) = 0], this criterion will
 fail.

 8Note that this point changes when we vary [image: 𝜖]

 9The number of points [image: x] for which [image: ψ(x) = 0] and xmin [image: < x <] xmax. The relation
 [image: n = n0 + 1] sets [image: 𝜖1] to be the ground state for which [image: n0 = 0].

 10We do not consider ordering problems of operators formed by products of non
 commuting operators, e.g. [image: xp2].

 11See the files observables.f90, Derivatives.nb of the accompanying software. There
 you can find formulas that have errors of [image: 2
𝒪 (h)]. In the examples discussed below, the
 influence of the [image: 𝒪(h)] error on the results is approximately at the fourth significant
 digit.

 12The one read from the file. It is not calculated from the data.

 13In fact [image: ψn (x) ∼ xne−x2∕2] which we neglect. This does not influence the results
 for the values of [image: n] studied here. Examine if this is necessary for larger values of
 [image: n].

 14For [image: ψ(+ ∞) = ψ(0) = 0] and [image: ψ∗(x) = ψ(x)] we have that [image: ∫ +∞
i⟨p⟩∕ℏ = 0 ψ(x)(d∕dx)ψ(x)dx]
 = [image: ∫
− 0+∞(d∕dx)ψ(x)ψ(x)dx = 0].

 1More precisely, the Hausdorff dimension of the simple random walk is [image: dH = 2].

 2We can’t define what a random process is, only what it isn’t. Outcomes which
 lack discernable patterns are assumed to be random. If there is no way to predict
 an event, we say it is random...Thus, there is no definition of what randomness is,
 only definitions of what it isn’t. See Chris Wetzel, “Can you behave randomly?”,
 http://faculty.rhodes.edu/wetzel/random/level23intro.html.

 3There are online services which provide such sequences like www.random.org,
 www.fourmilab.ch/hotbits/ and others.

 4See Knuth [46].

 5See the accompanying software in the Tools directory. Give the command histogram
 -- -h which prints short usage instructions. I hope you remember how to make the file
 histogram executable and put it in your path...

 6It can be shown that [image: xi], [image: xi+1] are statistically independent.

 7Read carefully the documentation of your compiler. For this reason, the number NSEEDS
 can be different among different implementations of Fortran.

 8The line before sets seeds(1)=seed, seeds(2)=seed+37, seeds(3)=seed+37*2, ...

 9The access=’stream’ argument in open is a Fortran 2003 and above feature. Make
 sure that your compiler accepts it.

 10You can also use the operating system in order to pass random seeds to your program.
 Try the commands set x = ‘< /dev/urandom tr -dc "[:digit:]" | head -c9
 | awk ’printf "%d",$1’‘ ; echo $x and set x = ‘perl -e ’srand();print
 int(100000000*rand());’‘ ; echo $x. Use the value of the variable x for a seed.

 11It could be e.g. thermally stimulated sound waves, the quantum tunneling effect
 etc.

 12I.e. after time [image: t = N τ], not the physical length of the path formed by the links that the
 particle has crossed. We also count the jumps to sites that the particle has already
 visited.

 13The command av+=$1 is equivalent to av=av+$1.

 14If there exist statistical correlations between measurements, they should be taken into
 consideration. This will be discussed in detail in the following chapters.

 15You can also execute a set of commands before the file is read by putting them between
 BEGIN{ ... }

 1For example, for the [image: d = 2], [image: L = 100] Ising model, we have [image: 2100×100 = 210000 ≈ 103010]
 states. A typical sample yielding a very accurate measurement consists of [image: ≈ 107] states, i.e. a
 fraction of [image: ≈ 10− 3003]! This fraction becomes many orders of magnitude smaller for realistic
 complex systems studied in today’s supercomputers.

 2For a gas formed by [image: 1022] molecules which has volume equal to 1 lt in room
 temperature and atmospheric pressure, the average velocity of its molecules is [image: ≈ 100ms−1].
 This means that the typical de Broglie wavelength of the molecules is [image: λ ≈ 10−10m]. If we
 estimate that the volume occupied by each molecule is of order [image: λ3], then the number of states
 that each molecule can be is [image: ≈ 1027]. Therefore the system can be in [image: ≈ (1027)1022]
 different states. If we assume that on the average the molecules collide [image: 109] times per
 second, then we have [image: ≈ 1031] changes of states per second. In order that the system
 visits all possible states, the time needed is [image: 101023] times the age of the universe
 [4].

 3[image: E0] is the ground state energy of the system.

 4An isolated system always has constant energy. Such a system is studied in the
 microcanonical ensemble.

 5Note that equation (12.2) can be written in the form [image: dwμ(t)= ∑ ℛ w (t)
 dt ν μν ν], where
 the matrix [image: ℛ
 μν] has real, constant elements.

 6It is not a fundamental constant of nature like [image: c], [image: ℏ], [image: G], [image: ...]. Temperature is an
 energy scale and the fact that it is customary to measure it in degrees Kelvin or other, is a
 historical accident due to the ignorance of the microscopic origin of heat exchange at the times
 of the original formulation of thermodynamics.

 7E.g. for [image: N ∼ 1023] we have that [image: Δ𝒪 ∕𝒪 ∼ 10−11] and the measurements of [image: 𝒪]
 fluctuate at the 11th significant digit of their value. This is usually much smaller than other
 experimental errors.

 8In thermodynamics, [image: ⟨E⟩] corresponds to the internal energy [image: U] of the system.

 9For strict equality it is necessary that the ground state is not degenerate as it happens
 in the case of spontaneous symmetry breaking.

 10E.g. the random walker, two dimensional quantum gravity without matter.

 11The notation [image: Ω (E)] is also frequently used and it is referred to as the density of
 states.

 12[image: ˜p(E)] is proportional to [image: p(E)] for fixed [image: β]. It is only defined for convenience.

 13When there are many local maxima, the absolute maximum dominates in the
 thermodynamic limit [image: N → ∞].

 14Actually the two quantities are proportional to each other, but for simplicity we set the
 proportionality constant equal to 1.

 15There is also the possibility (not occurring in our discussion) that [image: si] and [image: sj] are
 strongly anti-correlated in which case [image: G (2c)(i,j)] is negative.

 16I.e. not of first order.

 17If we tune many parameters, this is a critical surface in the parameter space.

 18E.g. defined on square or triangular lattices, with nearest neighbor or next to nearest
 neighbor interactions.

 19For these statements to be well defined, we assume that the energy of all states is
 bounded and that the system has a finite number of degrees of freedom. Otherwise consider the
 overlap for two temperatures [image: β1 ≫ β2].

 20We can use the same sample for a range of temperatures by using the histogram method,
 see [4].

 21There exist algorithms which are non-ergodic but the non reachable states are of
 “measure zero” in the space of states. These algorithms are formally non ergodic, but they are
 ergodic from a practical point of view. On the contrary, there exist algorithms that are formally
 ergodic but there are large regions of phase space where the probability of getting there is
 very small. This puts “ergodic barriers” in the sampling which will lead to wrong
 results. A common example is sampling a system in the neighborhood of a first order
 phase transition where, for large systems, it is very hard to sample states in both
 phases.

 1For a very nice proof of Onsager’s solution look at the book by T. Huang [57] and the
 paper by C.N. Yang [58].

 2This is only a convention. We could have picked 0 and 1 or any other pair of
 labels. The choice of labels affects only the expression of the Hamiltonian and related
 observables.

 3The opposite is true for the antiferromagnetic model.

 4It is easy to see that each vertex is in a one to one correspondence with a pair of links,
 say the east and north bound ones.

 5When [image: B = 0] the system has an “up–down” [image: Z2] symmetry. This means that states
 connected by the transformation [image: si → − si] for all [image: i] result in the same Hamiltonian. In this
 case we have two ground states and the system chooses one of them by spontaneously breaking
 the [image: Z2] symmetry.

 6The vacuum structure of the antiferromagnetic system [image: J < 0] for [image: B = 0] is much
 richer.

 7In contrast, a first order phase transition is a transition where the order parameter itself
 is discontinuous.

 8We mean the correlation length in the thermodynamic limit, i.e. we take the large [image: N]
 limit first.

 9i.e. at distances larger than the (diverging) correlation length.

 10An analytic function which is zero in an arbitrarily small interval, it is - by Taylor
 expanding around a point in this interval - everywhere zero.

 11The constant [image: J = 1] by choosing appropriate units for the [image: si].

 12The state [image: μ] is determined by a spin configuration [image: {si}i=1...N].

 13An example is the Hybrid Monte Carlo used in lattice QCD simulations.

 14On the bad side, helical boundary conditions introduce a small finite size effect due to
 the shift of lattice positions in neighboring copies of the lattice. If one has to study small
 lattices, especially in higher dimensions, the best choice is to use periodic boundary
 conditions. We are going to study large enough lattices that this finite size effect is
 negligible.

 15Different sequence of random numbers.

 16An important fact is that it does not increase with the system size.

 17For the uniform distribution [image: P (x < a) = a].

 18This does not show for very small temperatures in the simulation with the Metropolis
 algorithm. As we decrease the temperature [image: β ≫ βc], it takes many improbable steps to move
 from a state with [image: ∑
 isi = M1] to a state with [image: ∑
 isi = − M1]. The Monte Carlo simulation
 consists of a finite number of steps, therefore we may obtain a non zero [image: ∑
⟨ isi⟩], an incorrect
 result.

 19This is given by the autocorrelation time, which will be discussed in detail
 later.

 20The basic ideas in the program are taken from the book by Newmann and Barkema
 [4].

 21Remember that for the uniform distribution, [image: P(x < a) = a]

 22Found in the file options.f90.

 23Assuming that the configuration in conf is thermalized, the simulations become
 statistically independent after time [image: 2τ], where [image: τ] is the autocorrelation time.

 24Note that we use the equivalent comparison operators ’>’[image: ⇔]’.GT.’, ’>=’[image: ⇔]’.GE.’,
 ’/=’[image: ⇔]’.NE.’, ’==’[image: ⇔]’.EQ.’ etc.

 25Remember how the option -l changes the results of the command ls if executed as ls
 -l

 26Read the comments in the file getopt.f90 for more information.

 27Use the command info make or visit the www address
 www.gnu.org/software/make/manual/make.html

 28Beware: one of the quirks of the program make is that all executable commands in
 Makefile must be in a line that starts exactly with a TAB. In the example Makefile shown
 above, the empty space before such lines is one TAB and not 8 empty spaces.

 29Try the command make -p

 30At the time of the writing of this section, make had some problems with complicated
 Fortran compilations, which I hope they will be resolved in the future. You may also check out
 the program foray at code.google.com/p/foraytool or search the current “state of the
 art”.

 31The Metropolis algorithm changes the clusters mostly by modifying their boundaries,
 since it is less probable to change the value of a spin in the cluster where all its nearest
 neighbors have the same spin.

 32Autocorrelation times can be quite different for different [image: 𝒪].

 33In our calculations, we will see differences of the order of 10%. The actual values can be
 different but their scaling properties are same.

 34The actual value of [image: τ𝒪] is used in computing the number of independent configurations
 from (13.33) and the correction of the statistical error in (13.47) . In both cases, the difference
 in the values of [image: τ𝒪] is not significant. For (13.47) , this is because the concept of the error of
 the error is slightly fuzzy.

 35As we will see later, there are other, smaller autocorrelation times present as well. These
 are not taken into account in the definition of the integrated autocorrelation time and
 the detailed study of the autocorrelation function is necessary if more accuracy is
 desired.

 36See also chapter 4.1 in [5]

 37Notice that the right hand side of equation (13.46) is not divided by [image: 1∕(ns − 1)].

 38Alternatively one can take [image: ⟨𝒪⟩ = ⟨𝒪 ⟩ = (1∕n)∑n 𝒪(t′)
 0 t t′=0] without noticeable difference
 for [image: t ≪ n]. The choice in (13.48) results in a more accurate calculation and smaller finite sample
 effects. The choice (13.48) , instead of [image: ∑n −1−t ′ ′
ρ𝒪 (t) ∝ (1∕(n− t)) t′=0 𝒪(t)𝒪 (t + t)− ⟨𝒪 ⟩0⟨𝒪 ⟩t],
 has smaller roundoff errors.

 39The explicit interface of the function or the subroutine is known to all program
 units that use the module.

 40For the data [image: {(xi,yi)}], [image: i = 1,...,n] with error [image: δyi] which are fitted to
 [image: −x∕t
f (x;c,t) = ce], the [image: 2 ∑n 2 2
χ (c,t) = i=1(yi − f (xi;c,t)) ∕δyi]. The [image: 2
χ ∕dof] is normalized to
 the number of degrees of freedom (dof = degrees of freedom= [image: n − 2]) which is the number of
 data points [image: n] used in the fit minus the number of fitting parameters (here [image: c], [image: t] which makes
 2 parameters).

 41The acceptable [image: χ2∕dof ∼ 1]. Since we don’t calculate the errors of the autocorrelation
 functions, the [image: χ2∕dof] is not properly normalized. The program sets [image: δyi = 1] [image: ∀i].

 42In the parentheses we see the confidence level. This is defined as the probability that the
 parameters are within the range defined by the error. For a correct calculation of the confidence
 level, every point should be weighted by its error - in our example this is not happening and this
 is the reason why the confidence level is so low. A value below 5% is too low and it
 indicates that the model needs corrections. It is also assumed that the distribution of
 the measurements is Gaussian and if not, the computed numerical values are only
 indicative.

 43For a careful calculation, one should also try more functions that include corrections to
 the asymptotic behavior.

 1You may also find the definition [image: t = (T − Tc)∕Tc] but as [image: t ≪ 1] the two definitions are
 almost equivalent (they differ by a term of order [image: ∼ t2]).

 2Beware: We first take [image: L → ∞] and then [image: t → 0].

 3It is a finite sum of analytic functions, therefore an analytic function.

 4Each observable may have a slightly different pseudocritical temperature, so we may
 write [image: βχc(L)], [image: βcc(L)] etc.

 5In the limit [image: L → ∞] the difference is not important, it comes from analytic terms which
 don’t contribute to the non analytic behavior. In practice, the speed of convergence to the
 asymptotic behavior may differ.

 6Of course the amount of available memory can be another inhibiting factor.

 7Each site contributes one measurement!

 8A spin cluster is a subset of the lattice composed of connected lattice sites of same
 spins.

 9A link with same spins on both sides.

 10These are true Wolff clusters since the bonds have been activated with the correct
 probability. There are of course isolated sites with no activated bonds around them which are
 Wolff clusters of size 1.

 11The result is equivalent to performing one step of the Wolff algorithm, not a very
 efficient one of course...

 12This is exactly true only in the thermodynamics limit. For a finite lattice of size [image: N], the
 two quantities differ by a factor of [image: βN ⟨m ⟩2 > 0], which vanishes in the large [image: N]
 limit.

 13stack(0:N-1) defines an array with elements stack(0), stack(1), ..., stack(N-1)

 14If we choose to store at most N-1 elements in queue(N) then the algorithm becomes
 slightly simpler (exercise).

 15Except if m=n in which case the number of stored elements is 0 or N according to the
 value of flag.

 16It is essentially the program in the book by Newman and Barkema [4].

 17Beware: A Metropolis sweep is not the same as a cluster update. The average size
 of the cluster changes with [image: β] and it is quite small for large temperatures (small
 [image: β]).

 18Make the appropriate changes so that wolff() is called until the clusters constructed
 will have total size at least equal to N.

 19The syntax is very strict and the line has to start exactly with the characters #! The
 string following #! can be the name of any program in the filesystem, which will be used to
 interpret the script.

 20Try the command: echo $betas[3] $#betas $betas

 21The plot command accepts, in place of the name of a data file, the stdout of a
 command command using the syntax plot "<command".

 22NR is the number of lines (number of records) read by awk so far.

 23These are gnuplot commands, even though we do not follow the usual convention to
 show the prompt gnuplot> explicitly

 24The two definitions of a sweep in the Metropolis algorithm differ by a factor equal to the
 average acceptance rate. Both definitions are used in the bibliography, and the reader (as well as
 the author) of a scientific article should be aware of that.

 25Notice the difference between the results of the Metropolis algorithm and the ones
 shown in appendix 13.7. The difference is due to a fivefold increase in the statistics and shows
 that the real error in the calculation of [image: τ] includes systematic errors that have been neglected.

 26Note that for the Ising model on the square lattice, the critical temperature is exactly
 known. In a model where it is not known we have larger systematic errors than the ones
 discussed here. The numerical calculation of the critical temperature we will discussed in a
 following section.

 27In [4] it is mentioned that the random field Ising model exhibits pseudoscaling for a
 range of [image: t] and for even smaller [image: t] there is a crossover to a different scaling that gives the
 correct critical exponent. See also [68], [69].

 28The fit can also be done by linearly fitting the points [image: (log|ti|,logχ (ti))] to a straight
 line.

 29This does not exclude more exotic behaviors of logarithmic powers or logarithms of
 logarithms etc. This needs to be studied carefully when the analytic result is not
 known.

 30Remember that the instability of the results with respect to the choice of the
 fitting range is large for the temperature scaling method. When the exact value of
 the critical temperature is not known, the superiority of finite size scaling is even
 higher.

 31Our ansatz is justified by the analytic calculations in [70], which compute the
 corrections to the [image: logL] behavior. These corrections are shown to be given by integer powers of
 [image: 1∕L]: [image: c = alogL + ∑ ∞ ck∕Lk
 k=0].

 32Careful: [image: ξ = ξ(t)] is the correlation length of the infinite system at temperature [image: t] and
 not the correlation length at finite [image: L].

 33For more details see appendix 14.12. The [image: β] dependence in [image: χ(β,L)] enters through the
 dependence [image: ξ(β)] of the correlation length of the infinite system in [image: β].

 34The absolute value is dropped in the definition of [image: x] so that we have a convenient
 notation for temperatures above and below the critical temperature.

 35In this relation [image: β] on the left hand side is the temperature, whereas on the right hand
 side the critical exponent in (14.5) .

 36This file can be found in the accompanying software, also named all.

 37In order to look for help from gnuplot’s online help system, use the commands help
 word, help words, help macros, help sprintf, help plot iteration

 38This can be a polynomial interpolation, a cspline interpolation or one of its
 generalizations or multihistogramming. The last one is slightly more involved but carries smaller
 systematic errors.

 39You can see the necessity of the interpolation, since the value [image: xi,k] most likely doesn’t
 exist in the data set [image: j].

 40http://en.wikipedia.org/wiki/Cumulant,
 http://mathworld.wolfram.com/Cumulant-GeneratingFunction.html

 41In statistics, the 4th order cumulant of a random variable [image: x] is equal to
 [image: κ4 = ⟨(x − ⟨x⟩)4⟩− 3⟨(x − ⟨x⟩)2⟩] and [image: κ2 = ⟨(x − ⟨x ⟩)2⟩], so that [image: U = − κ4∕3κ2] for [image: x = m]
 and [image: ⟨m ⟩ = 0].

 42These have been particularly successful in the study of the 3d Ising model
 [75].

 43i.e. both sides should scale w.r.t to the correlation length as [image: ∼ ξγ∕ν].

 44See e.g. [74], equations 3.35, 3.36, 3.53.

 45At [image: t = 0] we have [image: ξ(0) = + ∞], therefore for finite [image: L] we have that [image: L ∕ξ = 0].

 46More precisely the singular part of the free energy.

 47See e.g. chapter 3 in [74].

 48We stress again that [image: ξ ∼ t− ν] in (14.111) is the correlation length in the
 thermodynamic limit and not at finite [image: L].

 49This is because the partition function is an analytic function of the temperature.
 Therefore it is [image: x = L1∕νt] which is the scaling variable and not a power of it, such as [image: ˜x] used in
 (14.53) and (14.54) .

main_latex2179x.png

main_latex2180x.png

main_latex3495x.png

main_latex2175x.png

main_latex3492x.png

main_latex2176x.png

main_latex3491x.png

main_latex2177x.png

main_latex3494x.png

main_latex2178x.png

main_latex3493x.png

main_latex2182x.png

main_latex3499x.png

main_latex2183x.png

main_latex3498x.png

main_latex2184x.png

main_latex3501x.png

main_latex2185x.png

main_latex3500x.png

main_latex3497x.png

main_latex2181x.png

main_latex3496x.png

main_latex2190x.png

main_latex2186x.png

main_latex3503x.png

main_latex2187x.png

main_latex3502x.png

main_latex2188x.png

main_latex3505x.png

main_latex2189x.png

main_latex3504x.png

main_latex2193x.png

main_latex3510x.png

main_latex2194x.png

main_latex3509x.png

main_latex2195x.png

main_latex3512x.png

main_latex2196x.png

main_latex3511x.png

main_latex3506x.png

main_latex2191x.png

main_latex3508x.png

main_latex2192x.png

main_latex3507x.png

main_latex2158x.png

main_latex3474x.png

main_latex4844x.png

main_latex2159x.png

main_latex3473x.png

main_latex4843x.png

main_latex2160x.png

main_latex2161x.png

main_latex3475x.png

main_latex2154x.png

main_latex3470x.png

main_latex4840x.png

main_latex2155x.png

main_latex3469x.png

main_latex4839x.png

main_latex2156x.png

main_latex3472x.png

main_latex4842x.png

main_latex2157x.png

main_latex3471x.png

main_latex4841x.png

main_latex3477x.png

main_latex4847x.png

main_latex3476x.png

main_latex4846x.png

scatter_traj.png

main_latex2162x.png

main_latex3479x.png

main_latex4849x.png

main_latex2163x.png

main_latex3478x.png

main_latex4848x.png

main_latex4845x.png

main_latex2168x.png

main_latex3485x.png

main_latex2169x.png

main_latex3484x.png

main_latex4854x.png

main_latex2170x.png

main_latex2164x.png

main_latex3481x.png

main_latex4851x.png

main_latex2165x.png

main_latex3480x.png

main_latex4850x.png

main_latex2166x.png

main_latex3483x.png

main_latex4853x.png

main_latex2167x.png

main_latex3482x.png

main_latex4852x.png

main_latex2171x.png

main_latex3488x.png

main_latex2172x.png

main_latex3487x.png

main_latex2173x.png

main_latex3490x.png

main_latex2174x.png

main_latex3489x.png

main_latex3486x.png

main_latex2136x.png

main_latex3453x.png

main_latex4818x.png

main_latex2137x.png

main_latex3452x.png

main_latex4817x.png

main_latex2138x.png

main_latex3455x.png

main_latex4820x.png

main_latex2139x.png

main_latex3454x.png

main_latex4819x.png

main_latex2132x.png

main_latex3449x.png

main_latex4814x.png

main_latex2133x.png

main_latex3448x.png

main_latex4813x.png

main_latex2134x.png

main_latex3451x.png

main_latex4816x.png

main_latex2135x.png

main_latex3450x.png

main_latex4815x.png

main_latex2140x.png

main_latex2141x.png

main_latex3456x.png

main_latex4821x.png

main_latex3458x.png

main_latex4823x.png

main_latex2142x.png

main_latex3457x.png

main_latex4822x.png

main_latex2147x.png

main_latex3464x.png

main_latex4833x.png

main_latex2148x.png

main_latex3463x.png

main_latex4832x.png

main_latex2149x.png

main_latex3466x.png

main_latex2150x.png

main_latex3465x.png

main_latex4834x.png

main_latex2143x.png

main_latex3460x.png

main_latex4829x.png

main_latex2144x.png

main_latex3459x.png

main_latex4828x.png

main_latex2145x.png

main_latex3462x.png

main_latex4831x.png

main_latex2146x.png

main_latex3461x.png

main_latex4830x.png

main_latex2151x.png

delta_nN950.png

main_latex4836x.png

main_latex4835x.png

main_latex2152x.png

main_latex3468x.png

main_latex4838x.png

main_latex2153x.png

main_latex3467x.png

main_latex4837x.png

main_latex3432x.png

main_latex4795x.png

main_latex3431x.png

main_latex4794x.png

main_latex3434x.png

main_latex4797x.png

main_latex3433x.png

main_latex4796x.png

main_latex3428x.png

main_latex4791x.png

main_latex4790x.png

main_latex3430x.png

main_latex4793x.png

main_latex3429x.png

main_latex4792x.png

main_latex3436x.png

main_latex4799x.png

main_latex3435x.png

main_latex4798x.png

v2.png

main_latex4800x.png

main_latex3442x.png

main_latex4806x.png

main_latex3441x.png

main_latex4805x.png

main_latex3444x.png

main_latex4809x.png

main_latex3443x.png

main_latex4807x.png

main_latex3438x.png

main_latex4802x.png

main_latex3437x.png

main_latex4801x.png

main_latex3440x.png

main_latex4804x.png

main_latex3439x.png

main_latex4803x.png

main_latex3446x.png

main_latex3445x.png

main_latex4810x.png

main_latex3447x.png

main_latex4812x.png

main_latex4811x.png

main_latex4774x.png

lat-periodic.png

main_latex4775x.png

lat-hel.png

main_latex4773x.png

main_latex4772x.png

main_latex4777x.png

main_latex4776x.png

main_latex4779x.png

main_latex4778x.png

main_latex3421x.png

main_latex4784x.png

main_latex3420x.png

main_latex4783x.png

main_latex3423x.png

main_latex4786x.png

main_latex3422x.png

main_latex4785x.png

main_latex4780x.png

main_latex3419x.png

main_latex4782x.png

EnLargeLambda.png

main_latex4781x.png

main_latex3425x.png

main_latex4788x.png

main_latex3424x.png

main_latex4787x.png

main_latex3427x.png

main_latex3426x.png

main_latex4789x.png

main_latex4755x.png

main_latex4754x.png

main_latex4757x.png

main_latex4756x.png

main_latex4763x.png

main_latex4762x.png

main_latex4759x.png

main_latex4758x.png

main_latex4761x.png

main_latex4760x.png

main_latex4766x.png

main_latex4765x.png

acc01.png

acc00.png

main_latex4764x.png

main_latex4771x.png

main_latex4768x.png

main_latex4767x.png

main_latex4770x.png

main_latex4769x.png

main_latex2219x.png

main_latex2220x.png

main_latex2221x.png

main_latex2226x.png

main_latex2227x.png

main_latex2228x.png

main_latex2229x.png

main_latex2222x.png

main_latex2223x.png

main_latex2224x.png

main_latex2225x.png

main_latex2230x.png

main_latex2197x.png

main_latex3514x.png

main_latex2198x.png

main_latex3513x.png

main_latex2199x.png

main_latex2200x.png

main_latex3515x.png

main_latex2204x.png

main_latex2205x.png

main_latex2206x.png

main_latex2207x.png

main_latex2201x.png

main_latex2202x.png

main_latex2203x.png

main_latex2208x.png

main_latex2209x.png

main_latex2210x.png

main_latex2215x.png

main_latex2216x.png

main_latex2217x.png

main_latex2218x.png

main_latex2211x.png

main_latex2212x.png

main_latex2213x.png

main_latex2214x.png

main_latex2064x.png

main_latex3375x.png

main_latex2065x.png

main_latex3374x.png

main_latex4743x.png

main_latex2066x.png

main_latex2060x.png

main_latex3371x.png

main_latex4740x.png

main_latex2061x.png

main_latex3370x.png

main_latex4739x.png

main_latex2062x.png

main_latex3373x.png

main_latex4742x.png

main_latex2063x.png

main_latex3372x.png

main_latex4741x.png

main_latex2067x.png

main_latex3378x.png

main_latex4747x.png

main_latex2068x.png

main_latex3377x.png

main_latex4746x.png

main_latex2069x.png

main_latex3380x.png

main_latex4749x.png

main_latex2070x.png

main_latex3379x.png

main_latex4748x.png

main_latex3376x.png

main_latex4745x.png

main_latex4744x.png

main_latex2075x.png

main_latex2076x.png

main_latex3385x.png

main_latex2071x.png

main_latex3382x.png

main_latex4751x.png

main_latex2072x.png

main_latex3381x.png

main_latex4750x.png

main_latex2073x.png

main_latex3384x.png

main_latex4753x.png

main_latex2074x.png

main_latex3383x.png

main_latex4752x.png

main_latex2078x.png

main_latex3389x.png

main_latex2079x.png

main_latex3388x.png

main_latex2080x.png

main_latex3391x.png

main_latex2081x.png

main_latex3390x.png

main_latex3387x.png

main_latex2077x.png

main_latex3386x.png

main_latex2042x.png

main_latex3355x.png

main_latex4718x.png

main_latex2043x.png

main_latex3354x.png

main_latex4717x.png

main_latex2044x.png

main_latex3357x.png

main_latex2045x.png

main_latex3356x.png

main_latex4719x.png

main_latex2038x.png

main_latex3351x.png

main_latex4714x.png

main_latex2039x.png

main_latex3350x.png

main_latex4713x.png

main_latex2040x.png

main_latex3353x.png

main_latex4716x.png

main_latex2041x.png

main_latex3352x.png

main_latex4715x.png

main_latex2046x.png

main_latex3358x.png

main_latex4721x.png

main_latex4720x.png

main_latex2047x.png

main_latex3360x.png

main_latex4723x.png

main_latex2048x.png

main_latex3359x.png

main_latex4722x.png

main_latex2053x.png

main_latex3365x.png

main_latex4731x.png

main_latex2054x.png

main_latex3364x.png

main_latex4730x.png

main_latex2055x.png

main_latex2056x.png

main_latex3366x.png

main_latex2049x.png

main_latex3361x.png

main_latex4725x.png

main_latex2050x.png

main_latex4724x.png

obs_n9Lambda0_5.png

main_latex2051x.png

main_latex3363x.png

main_latex4729x.png

main_latex2052x.png

main_latex3362x.png

main_latex4728x.png

main_latex3368x.png

main_latex4736x.png

main_latex2057x.png

main_latex3367x.png

main_latex4733x.png

main_latex2058x.png

main_latex3369x.png

main_latex4738x.png

main_latex2059x.png

main_latex4737x.png

obs_n9N900_2.png

main_latex4732x.png

main_latex3333x.png

main_latex4695x.png

main_latex3332x.png

main_latex4694x.png

main_latex3335x.png

main_latex4698x.png

main_latex3334x.png

main_latex4696x.png

fig061.png

main_latex3329x.png

main_latex3328x.png

main_latex4692x.png

main_latex3331x.png

main_latex4693x.png

fig071.png

main_latex3330x.png

main_latex3337x.png

main_latex3336x.png

main_latex4699x.png

main_latex3338x.png

main_latex4701x.png

main_latex4700x.png

main_latex3344x.png

main_latex4707x.png

main_latex3343x.png

main_latex4706x.png

main_latex3346x.png

main_latex4709x.png

main_latex3345x.png

main_latex4708x.png

main_latex3340x.png

main_latex4703x.png

main_latex3339x.png

main_latex4702x.png

main_latex3342x.png

main_latex4705x.png

main_latex3341x.png

main_latex4704x.png

main_latex3347x.png

main_latex4710x.png

main_latex3349x.png

main_latex4712x.png

main_latex2037x.png

main_latex3348x.png

main_latex4711x.png

main_latex4668x.png

main_latex4667x.png

main_latex4677x.png

main_latex4676x.png

main_latex4664x.png

main_latex4666x.png

main_latex4665x.png

main_latex4679x.png

main_latex4678x.png

main_latex4680x.png

main_latex3322x.png

main_latex4686x.png

main_latex3321x.png

main_latex4685x.png

main_latex3324x.png

main_latex4688x.png

main_latex3323x.png

main_latex4687x.png

main_latex3318x.png

main_latex4682x.png

main_latex4681x.png

main_latex3320x.png

main_latex4684x.png

main_latex3319x.png

main_latex4683x.png

main_latex3326x.png

main_latex4690x.png

main_latex3325x.png

main_latex4689x.png

main_latex3327x.png

main_latex4691x.png

main_latex4646x.png

fig051.png

main_latex4648x.png

main_latex4647x.png

main_latex4645x.png

main_latex4653x.png

main_latex4650x.png

main_latex4649x.png

main_latex4652x.png

main_latex4651x.png

main_latex4657x.png

main_latex4656x.png

main_latex4659x.png

main_latex4658x.png

main_latex4655x.png

main_latex4654x.png

main_latex4661x.png

main_latex4660x.png

main_latex4663x.png

main_latex4662x.png

main_latex2122x.png

main_latex2123x.png

main_latex2124x.png

main_latex2128x.png

main_latex2129x.png

main_latex2130x.png

main_latex2131x.png

main_latex2125x.png

main_latex2126x.png

main_latex2127x.png

cross_section.png

main_latex2102x.png

main_latex3418x.png

main_latex2103x.png

main_latex3417x.png

rk2_r3_spiral.png

main_latex2108x.png

main_latex2109x.png

main_latex2110x.png

main_latex2111x.png

main_latex2104x.png

main_latex2105x.png

main_latex2106x.png

main_latex2107x.png

hard_sphere.png

main_latex2112x.png

main_latex2113x.png

main_latex2118x.png

main_latex2119x.png

main_latex2120x.png

main_latex2121x.png

main_latex2114x.png

main_latex2115x.png

main_latex2116x.png

main_latex2117x.png

main_latex2086x.png

main_latex2082x.png

main_latex3393x.png

main_latex2083x.png

main_latex3392x.png

main_latex2084x.png

main_latex3395x.png

main_latex2085x.png

main_latex3394x.png

main_latex2088x.png

main_latex3400x.png

main_latex2089x.png

main_latex3399x.png

main_latex2090x.png

main_latex3402x.png

main_latex2091x.png

main_latex3401x.png

main_latex3396x.png

main_latex3398x.png

rk2_planet1.png

main_latex2087x.png

main_latex3397x.png

main_latex3407x.png

rk2_planetT.png

main_latex2092x.png

main_latex3406x.png

main_latex2093x.png

main_latex2094x.png

main_latex3408x.png

main_latex2098x.png

main_latex3414x.png

main_latex2099x.png

main_latex3413x.png

main_latex2100x.png

main_latex3416x.png

main_latex2101x.png

main_latex3415x.png

main_latex3410x.png

main_latex2095x.png

main_latex3409x.png

main_latex2096x.png

main_latex3412x.png

main_latex2097x.png

main_latex3411x.png

main_latex1953x.png

main_latex3259x.png

main_latex4615x.png

main_latex1954x.png

main_latex3258x.png

main_latex4614x.png

main_latex1955x.png

main_latex5953x.png

main_latex1956x.png

main_latex3260x.png

main_latex1949x.png

main_latex3255x.png

main_latex4611x.png

main_latex5951x.png

main_latex1950x.png

main_latex3254x.png

main_latex4610x.png

main_latex5952x.png

main_latex1951x.png

main_latex3257x.png

main_latex4613x.png

main_latex5949x.png

main_latex1952x.png

main_latex3256x.png

main_latex4612x.png

main_latex5950x.png

main_latex3262x.png

main_latex4618x.png

main_latex1957x.png

main_latex3261x.png

main_latex4617x.png

main_latex1958x.png

main_latex3264x.png

main_latex4620x.png

main_latex1959x.png

main_latex3263x.png

main_latex4619x.png

main_latex4616x.png

main_latex1964x.png

main_latex3270x.png

main_latex1965x.png

main_latex3269x.png

main_latex4625x.png

main_latex1966x.png

main_latex1960x.png

main_latex3266x.png

main_latex4622x.png

main_latex1961x.png

main_latex3265x.png

main_latex4621x.png

main_latex1962x.png

main_latex3268x.png

main_latex4624x.png

main_latex1963x.png

main_latex3267x.png

main_latex4623x.png

main_latex1967x.png

main_latex3273x.png

main_latex4629x.png

main_latex1968x.png

main_latex3272x.png

main_latex4628x.png

main_latex1969x.png

main_latex3275x.png

main_latex4631x.png

main_latex1970x.png

main_latex3274x.png

main_latex4630x.png

main_latex3271x.png

main_latex4627x.png

main_latex4626x.png

main_latex3237x.png

main_latex4593x.png

main_latex5931x.png

main_latex3236x.png

main_latex4592x.png

main_latex3239x.png

main_latex4595x.png

main_latex5929x.png

main_latex3238x.png

main_latex4594x.png

main_latex5930x.png

main_latex3233x.png

main_latex4589x.png

main_latex5927x.png

main_latex3232x.png

main_latex4588x.png

main_latex5928x.png

main_latex3235x.png

main_latex4591x.png

main_latex5925x.png

main_latex3234x.png

main_latex4590x.png

main_latex5926x.png

main_latex3240x.png

main_latex4596x.png

main_latex5934x.png

main_latex5935x.png

main_latex3242x.png

main_latex4598x.png

main_latex5932x.png

main_latex3241x.png

main_latex4597x.png

main_latex5933x.png

main_latex3248x.png

main_latex4604x.png

main_latex3247x.png

main_latex4603x.png

main_latex3250x.png

main_latex5940x.png

main_latex3249x.png

main_latex4605x.png

main_latex5941x.png

main_latex3244x.png

main_latex4600x.png

main_latex5938x.png

main_latex3243x.png

main_latex4599x.png

main_latex5939x.png

main_latex3246x.png

main_latex4602x.png

main_latex5936x.png

main_latex3245x.png

main_latex4601x.png

main_latex5937x.png

main_latex3251x.png

main_latex4607x.png

main_latex5945x.png

main_latex4606x.png

main_latex5946x.png

main_latex1947x.png

main_latex3253x.png

main_latex4609x.png

main_latex5943x.png

main_latex1948x.png

main_latex3252x.png

main_latex4608x.png

main_latex5944x.png

main_latex5942x.png

main_latex4571x.png

main_latex5909x.png

main_latex4570x.png

main_latex5910x.png

main_latex4573x.png

main_latex5906x.png

main_latex4572x.png

main_latex5907x.png

main_latex4567x.png

main_latex5904x.png

main_latex4566x.png

main_latex5905x.png

main_latex4569x.png

main_latex5902x.png

main_latex4568x.png

main_latex5903x.png

main_latex4575x.png

main_latex4574x.png

main_latex5911x.png

main_latex5912x.png

main_latex5913x.png

main_latex4576x.png

main_latex3226x.png

main_latex4582x.png

main_latex5920x.png

main_latex3225x.png

main_latex4581x.png

main_latex5921x.png

main_latex3228x.png

main_latex4584x.png

main_latex5918x.png

main_latex3227x.png

main_latex4583x.png

main_latex5919x.png

main_latex3222x.png

main_latex4578x.png

main_latex5916x.png

main_latex3221x.png

main_latex4577x.png

main_latex5917x.png

main_latex3224x.png

main_latex4580x.png

main_latex5914x.png

main_latex3223x.png

main_latex4579x.png

main_latex5915x.png

main_latex182x.png

main_latex181x.png

main_latex180x.png

main_latex179x.png

main_latex186x.png

main_latex3230x.png

main_latex185x.png

main_latex3229x.png

main_latex4585x.png

main_latex184x.png

main_latex183x.png

main_latex188x.png

main_latex187x.png

main_latex5923x.png

main_latex5924x.png

main_latex3231x.png

main_latex4587x.png

main_latex4586x.png

main_latex5922x.png

main_latex4549x.png

main_latex5886x.png

main_latex4548x.png

main_latex5887x.png

fig011.png

main_latex5884x.png

main_latex4550x.png

main_latex5885x.png

main_latex5882x.png

main_latex5883x.png

main_latex4547x.png

main_latex4546x.png

main_latex5881x.png

main_latex4552x.png

main_latex5890x.png

main_latex4551x.png

main_latex4554x.png

main_latex5888x.png

main_latex4553x.png

main_latex5889x.png

main_latex4560x.png

main_latex5897x.png

main_latex4559x.png

main_latex5898x.png

main_latex4562x.png

main_latex5895x.png

main_latex4561x.png

main_latex5896x.png

main_latex4555x.png

main_latex5893x.png

main_latex5894x.png

main_latex4558x.png

main_latex5891x.png

main_latex4556x.png

main_latex5892x.png

main_latex4564x.png

main_latex4563x.png

main_latex5899x.png

main_latex4565x.png

main_latex5900x.png

main_latex5901x.png

main_latex5864x.png

main_latex5865x.png

main_latex5862x.png

main_latex5863x.png

main_latex5861x.png

main_latex5870x.png

main_latex5868x.png

main_latex5869x.png

main_latex5866x.png

main_latex5867x.png

main_latex5875x.png

main_latex5876x.png

main_latex5873x.png

main_latex5874x.png

main_latex5871x.png

main_latex5872x.png

main_latex5879x.png

main_latex5880x.png

main_latex5877x.png

main_latex5878x.png

main_latex5853x.png

main_latex5854x.png

main_latex5850x.png

main_latex5851x.png

main_latex5859x.png

main_latex5860x.png

main_latex5857x.png

main_latex5858x.png

main_latex5855x.png

main_latex5856x.png

main_latex97x.png

main_latex96x.png

main_latex95x.png

main_latex100x.png

main_latex99x.png

main_latex98x.png

fig01.png

main_latex103x.png

main_latex102x.png

main_latex101x.png

main_latex152x.png

main_latex156x.png

main_latex155x.png

main_latex154x.png

main_latex153x.png

theta.png

rk2_vg.png

xy.png

main_latex158x.png

rk2_vg_5.png

main_latex157x.png

main_latex2031x.png

main_latex159x.png

rk2_v2g.png

rk2_v2g_5.png

main_latex2036x.png

main_latex2032x.png

main_latex2033x.png

main_latex2034x.png

main_latex2035x.png

main_latex145x.png

main_latex144x.png

main_latex143x.png

main_latex142x.png

main_latex149x.png

main_latex148x.png

main_latex147x.png

main_latex146x.png

main_latex151x.png

main_latex150x.png

main_latex2011x.png

main_latex3317x.png

rk2_g_xy.png

main_latex172x.png

main_latex171x.png

main_latex170x.png

fig04.png

main_latex175x.png

circle_traj.png

main_latex173x.png

main_latex178x.png

main_latex177x.png

main_latex176x.png

rk2_g_E.png

main_latex2016x.png

main_latex2017x.png

main_latex2018x.png

main_latex2019x.png

main_latex2012x.png

main_latex2013x.png

main_latex2014x.png

main_latex2015x.png

main_latex2020x.png

main_latex161x.png

main_latex160x.png

main_latex165x.png

main_latex164x.png

main_latex163x.png

main_latex162x.png

main_latex169x.png

main_latex168x.png

main_latex167x.png

main_latex2021x.png

main_latex166x.png

main_latex2022x.png

main_latex2027x.png

main_latex2028x.png

main_latex2029x.png

main_latex2030x.png

main_latex2023x.png

main_latex2024x.png

main_latex2025x.png

main_latex2026x.png

main_latex1993x.png

main_latex3296x.png

main_latex1994x.png

main_latex3295x.png

main_latex1995x.png

main_latex1996x.png

main_latex3297x.png

main_latex113x.png

main_latex117x.png

main_latex116x.png

main_latex115x.png

main_latex114x.png

main_latex121x.png

main_latex120x.png

main_latex119x.png

main_latex118x.png

main_latex2000x.png

main_latex3303x.png

main_latex2001x.png

main_latex3302x.png

main_latex2002x.png

main_latex3305x.png

main_latex122x.png

main_latex2003x.png

main_latex3304x.png

main_latex3299x.png

main_latex1997x.png

main_latex3298x.png

main_latex1998x.png

main_latex3301x.png

main_latex1999x.png

main_latex3300x.png

main_latex2004x.png

main_latex3307x.png

main_latex2005x.png

main_latex3306x.png

rk2_g_x.png

main_latex107x.png

main_latex106x.png

main_latex105x.png

main_latex3308x.png

main_latex104x.png

main_latex110x.png

main_latex109x.png

main_latex108x.png

fig02.png

main_latex2007x.png

main_latex3314x.png

main_latex2008x.png

main_latex3313x.png

main_latex112x.png

main_latex2009x.png

main_latex3316x.png

main_latex111x.png

main_latex2010x.png

main_latex3315x.png

main_latex3310x.png

rk2_g_y.png

main_latex3309x.png

rk2_g_vx.png

main_latex3312x.png

rk2_g_vy.png

main_latex2006x.png

main_latex3311x.png

main_latex1975x.png

lambda0_2_0_9_n=0.png

main_latex1976x.png

main_latex1971x.png

main_latex3277x.png

main_latex4633x.png

main_latex1972x.png

main_latex3276x.png

main_latex4632x.png

main_latex1973x.png

main_latex3279x.png

main_latex4635x.png

main_latex1974x.png

main_latex3278x.png

main_latex4634x.png

main_latex134x.png

main_latex133x.png

main_latex132x.png

main_latex138x.png

main_latex137x.png

main_latex136x.png

main_latex135x.png

main_latex141x.png

main_latex140x.png

main_latex139x.png

main_latex1978x.png

main_latex3283x.png

main_latex4639x.png

main_latex1979x.png

main_latex3282x.png

main_latex4638x.png

main_latex1980x.png

main_latex3285x.png

main_latex4641x.png

main_latex1981x.png

main_latex3284x.png

main_latex4640x.png

fig041.png

main_latex3281x.png

main_latex4637x.png

main_latex1977x.png

main_latex3280x.png

main_latex4636x.png

main_latex1986x.png

lambda0_2_0_9_n=9.png

main_latex1982x.png

main_latex4643x.png

main_latex1983x.png

main_latex3286x.png

main_latex4642x.png

main_latex1984x.png

main_latex3288x.png

main_latex1985x.png

main_latex3287x.png

main_latex4644x.png

fig03.png

main_latex123x.png

main_latex127x.png

main_latex126x.png

main_latex125x.png

main_latex124x.png

main_latex131x.png

main_latex130x.png

main_latex129x.png

main_latex128x.png

main_latex1989x.png

main_latex3292x.png

main_latex1990x.png

main_latex3291x.png

main_latex1991x.png

main_latex3294x.png

main_latex1992x.png

main_latex3293x.png

main_latex3289x.png

lambda0_2_0_9_n=20.png

main_latex1987x.png

main_latex1988x.png

main_latex3290x.png

main_latex3138x.png

main_latex4492x.png

main_latex3137x.png

main_latex4491x.png

main_latex3140x.png

main_latex5824x.png

main_latex3139x.png

main_latex4493x.png

main_latex5825x.png

main_latex3134x.png

main_latex4488x.png

main_latex5822x.png

main_latex3133x.png

main_latex4487x.png

main_latex5823x.png

main_latex3136x.png

main_latex4490x.png

main_latex5817x.png

main_latex3135x.png

main_latex4489x.png

main_latex5818x.png

main_latex3141x.png

main_latex4495x.png

main_latex5829x.png

main_latex4494x.png

main_latex5830x.png

fig031.png

main_latex3143x.png

main_latex5827x.png

main_latex3142x.png

main_latex4496x.png

main_latex5828x.png

main_latex5826x.png

main_latex3149x.png

main_latex4505x.png

main_latex3148x.png

main_latex4504x.png

main_latex5839x.png

main_latex3150x.png

main_latex3145x.png

main_latex4501x.png

main_latex5833x.png

main_latex3144x.png

main_latex4500x.png

main_latex5834x.png

main_latex3147x.png

main_latex4503x.png

main_latex5831x.png

main_latex3146x.png

main_latex4502x.png

main_latex5832x.png

main_latex3152x.png

main_latex4508x.png

main_latex5844x.png

main_latex3151x.png

main_latex4507x.png

main_latex5845x.png

main_latex3154x.png

main_latex4510x.png

main_latex5842x.png

main_latex3153x.png

main_latex4509x.png

main_latex5843x.png

main_latex5840x.png

main_latex5841x.png

main_latex4506x.png

main_latex4470x.png

main_latex5804x.png

main_latex4469x.png

scale_gamma.png

main_latex4472x.png

main_latex5799x.png

main_latex4471x.png

main_latex5803x.png

main_latex4466x.png

main_latex5797x.png

main_latex4465x.png

main_latex5798x.png

main_latex4468x.png

main_latex5795x.png

main_latex4467x.png

main_latex5796x.png

main_latex4473x.png

main_latex5806x.png

main_latex5807x.png

main_latex3121x.png

main_latex4475x.png

main_latex4474x.png

main_latex5805x.png

main_latex3127x.png

main_latex4481x.png

main_latex5813x.png

main_latex3126x.png

main_latex4480x.png

main_latex3129x.png

main_latex4483x.png

main_latex5811x.png

main_latex3128x.png

main_latex4482x.png

main_latex5812x.png

main_latex3123x.png

main_latex4477x.png

scale_beta.png

main_latex3122x.png

main_latex4476x.png

main_latex5810x.png

main_latex3125x.png

main_latex4479x.png

main_latex5808x.png

main_latex3124x.png

main_latex4478x.png

main_latex5809x.png

main_latex3130x.png

main_latex4484x.png

main_latex5815x.png

main_latex5816x.png

main_latex3132x.png

main_latex4486x.png

main_latex5814x.png

main_latex3131x.png

main_latex4485x.png

scale_alpha.png

main_latex4448x.png

main_latex5779x.png

main_latex4447x.png

main_latex5780x.png

main_latex4450x.png

main_latex5777x.png

main_latex4449x.png

main_latex5778x.png

main_latex4444x.png

main_latex5775x.png

main_latex5776x.png

main_latex4446x.png

main_latex5773x.png

main_latex4445x.png

main_latex5774x.png

main_latex4452x.png

main_latex4451x.png

main_latex5781x.png

main_latex4453x.png

main_latex5782x.png

main_latex5783x.png

main_latex4459x.png

main_latex5790x.png

main_latex4458x.png

main_latex5791x.png

main_latex4461x.png

main_latex5788x.png

main_latex4460x.png

main_latex5789x.png

main_latex4455x.png

main_latex5786x.png

main_latex4454x.png

main_latex5787x.png

main_latex4457x.png

main_latex5784x.png

main_latex4456x.png

main_latex5785x.png

main_latex4463x.png

main_latex4462x.png

main_latex5792x.png

main_latex5793x.png

main_latex5794x.png

main_latex4464x.png

main_latex5757x.png

main_latex5758x.png

main_latex5755x.png

main_latex5756x.png

main_latex5753x.png

main_latex5754x.png

main_latex5761x.png

main_latex5762x.png

main_latex5759x.png

main_latex5760x.png

main_latex5768x.png

main_latex5769x.png

main_latex5766x.png

main_latex5767x.png

main_latex5764x.png

main_latex5765x.png

main_latex5763x.png

main_latex5772x.png

main_latex5770x.png

main_latex5771x.png

main_latex5746x.png

main_latex5747x.png

main_latex5744x.png

main_latex5745x.png

main_latex5743x.png

main_latex5752x.png

main_latex5750x.png

main_latex5751x.png

main_latex5748x.png

main_latex5749x.png

main_latex3200x.png

main_latex3199x.png

main_latex3201x.png

main_latex3207x.png

main_latex3206x.png

main_latex3209x.png

main_latex3208x.png

main_latex3203x.png

main_latex3202x.png

main_latex3205x.png

main_latex3204x.png

main_latex3210x.png

main_latex3212x.png

main_latex3211x.png

main_latex3218x.png

main_latex3217x.png

main_latex3220x.png

main_latex3219x.png

main_latex3214x.png

main_latex3213x.png

main_latex3216x.png

main_latex3215x.png

main_latex3178x.png

main_latex4534x.png

main_latex3177x.png

main_latex4533x.png

main_latex3180x.png

main_latex3179x.png

main_latex4535x.png

main_latex3185x.png

main_latex4541x.png

main_latex3184x.png

main_latex4540x.png

main_latex3187x.png

main_latex4543x.png

main_latex3186x.png

main_latex4542x.png

main_latex3181x.png

main_latex4537x.png

main_latex4536x.png

main_latex3183x.png

main_latex4539x.png

main_latex3182x.png

main_latex4538x.png

main_latex3189x.png

main_latex4545x.png

main_latex3188x.png

main_latex4544x.png

main_latex3190x.png

main_latex3196x.png

main_latex3195x.png

main_latex3198x.png

main_latex3197x.png

main_latex3192x.png

main_latex3191x.png

main_latex3194x.png

main_latex3193x.png

main_latex3160x.png

main_latex3159x.png

main_latex4515x.png

main_latex3156x.png

main_latex4512x.png

main_latex5848x.png

main_latex3155x.png

main_latex4511x.png

main_latex5849x.png

main_latex3158x.png

main_latex4514x.png

main_latex5846x.png

main_latex3157x.png

main_latex4513x.png

main_latex5847x.png

main_latex3163x.png

main_latex4519x.png

main_latex3162x.png

main_latex4518x.png

main_latex3165x.png

main_latex4521x.png

main_latex3164x.png

main_latex4520x.png

main_latex3161x.png

main_latex4517x.png

main_latex4516x.png

main_latex3170x.png

main_latex3167x.png

main_latex4523x.png

main_latex3166x.png

main_latex4522x.png

main_latex3169x.png

main_latex4525x.png

main_latex3168x.png

main_latex4524x.png

main_latex3174x.png

main_latex4530x.png

main_latex3173x.png

main_latex4529x.png

main_latex3176x.png

main_latex4532x.png

main_latex3175x.png

main_latex4531x.png

main_latex4526x.png

main_latex3172x.png

main_latex4528x.png

main_latex3171x.png

main_latex4527x.png

main_latex4363x.png

main_latex5705x.png

main_latex4362x.png

main_latex4368x.png

main_latex5703x.png

main_latex4367x.png

main_latex5704x.png

main_latex4359x.png

main_latex5701x.png

main_latex4358x.png

main_latex5702x.png

main_latex4361x.png

main_latex5700x.png

main_latex4360x.png

pseudo_betac_chi.png

main_latex4369x.png

main_latex5708x.png

main_latex5709x.png

main_latex4373x.png

main_latex5706x.png

ux.png

main_latex3027x.png

main_latex4370x.png

main_latex5707x.png

main_latex3033x.png

main_latex4379x.png

main_latex3032x.png

main_latex4378x.png

err.png

main_latex5713x.png

main_latex3034x.png

main_latex4380x.png

main_latex5714x.png

main_latex3029x.png

main_latex4375x.png

main_latex5711x.png

main_latex3028x.png

main_latex4374x.png

main_latex5712x.png

main_latex3031x.png

main_latex4377x.png

main_latex5710x.png

main_latex3030x.png

main_latex4376x.png

pseudo_betac_c.png

main_latex3035x.png

main_latex4382x.png

main_latex5718x.png

main_latex4381x.png

main_latex5719x.png

main_latex3037x.png

main_latex4384x.png

main_latex5716x.png

main_latex3036x.png

main_latex4383x.png

main_latex5717x.png

main_latex5715x.png

main_latex4335x.png

main_latex5684x.png

main_latex4334x.png

main_latex5685x.png

main_latex4339x.png

main_latex5682x.png

main_latex4336x.png

main_latex5683x.png

main_latex4331x.png

main_latex5680x.png

main_latex4330x.png

main_latex5681x.png

main_latex4333x.png

main_latex5678x.png

main_latex4332x.png

main_latex5679x.png

main_latex4341x.png

main_latex4340x.png

main_latex5686x.png

main_latex5687x.png

main_latex5688x.png

main_latex4342x.png

main_latex4348x.png

main_latex5695x.png

main_latex4347x.png

main_latex5696x.png

main_latex4354x.png

main_latex5693x.png

main_latex4353x.png

main_latex5694x.png

main_latex4344x.png

main_latex5691x.png

main_latex4343x.png

main_latex5692x.png

main_latex4346x.png

main_latex5689x.png

main_latex4345x.png

main_latex5690x.png

main_latex4355x.png

main_latex5698x.png

main_latex5699x.png

main_latex4357x.png

main_latex4356x.png

main_latex5697x.png

main_latex5662x.png

main_latex5663x.png

fss_scale_alpha.png

main_latex5661x.png

main_latex5659x.png

main_latex5660x.png

main_latex5658x.png

main_latex5666x.png

main_latex5664x.png

main_latex5665x.png

main_latex5673x.png

main_latex5674x.png

main_latex5671x.png

main_latex5672x.png

main_latex5669x.png

main_latex5670x.png

main_latex5667x.png

main_latex5668x.png

main_latex5675x.png

main_latex5676x.png

main_latex5677x.png

main_latex5653x.png

main_latex5654x.png

main_latex5651x.png

main_latex5652x.png

main_latex5650x.png

fss_scale_gamma.png

main_latex5656x.png

main_latex5657x.png

main_latex5655x.png

fss_scale_beta.png

main_latex3102x.png

main_latex3104x.png

main_latex3103x.png

main_latex3108x.png

main_latex3107x.png

main_latex3110x.png

main_latex3109x.png

u3S1.png

main_latex3105x.png

main_latex3106x.png

u3S1_s.png

main_latex3111x.png

main_latex3113x.png

main_latex3112x.png

main_latex3119x.png

main_latex3118x.png

main_latex3120x.png

main_latex3115x.png

main_latex3114x.png

main_latex3117x.png

main_latex3116x.png

main_latex3083x.png

main_latex4433x.png

fig02_new.png

main_latex3082x.png

main_latex3084x.png

main_latex4434x.png

main_latex3089x.png

main_latex4440x.png

main_latex3088x.png

main_latex4439x.png

main_latex3091x.png

main_latex4442x.png

main_latex3090x.png

main_latex4441x.png

main_latex3086x.png

main_latex4436x.png

main_latex3085x.png

main_latex4435x.png

main_latex4438x.png

uS1.png

main_latex3087x.png

main_latex4437x.png

main_latex3093x.png

main_latex3092x.png

main_latex4443x.png

main_latex3094x.png

main_latex3099x.png

main_latex3098x.png

main_latex3101x.png

main_latex3100x.png

main_latex3095x.png

x2.png

main_latex3097x.png

main_latex3096x.png

main_latex3064x.png

main_latex3061x.png

main_latex4408x.png

main_latex5742x.png

main_latex3060x.png

main_latex4407x.png

main_latex3063x.png

main_latex4410x.png

main_latex5740x.png

main_latex85x.png

main_latex3062x.png

main_latex4409x.png

main_latex5741x.png

main_latex87x.png

main_latex86x.png

main_latex89x.png

main_latex88x.png

main_latex91x.png

main_latex90x.png

main_latex93x.png

main_latex92x.png

main_latex84x.png

main_latex83x.png

main_latex3068x.png

main_latex4415x.png

main_latex3067x.png

main_latex4414x.png

main_latex3070x.png

main_latex4420x.png

main_latex3069x.png

main_latex4419x.png

main_latex4411x.png

main_latex3066x.png

main_latex4413x.png

main_latex3065x.png

main_latex4412x.png

main_latex3072x.png

main_latex4422x.png

main_latex3071x.png

main_latex4421x.png

main_latex3074x.png

main_latex3073x.png

main_latex4423x.png

main_latex94x.png

main_latex3079x.png

main_latex4429x.png

main_latex3078x.png

main_latex4428x.png

main_latex3081x.png

main_latex4431x.png

main_latex3080x.png

main_latex4430x.png

main_latex3075x.png

main_latex4425x.png

main_latex4424x.png

main_latex3077x.png

main_latex4427x.png

main_latex3076x.png

main_latex4426x.png

main_latex3043x.png

main_latex4390x.png

main_latex3042x.png

main_latex4389x.png

main_latex5723x.png

main_latex3044x.png

main_latex3039x.png

main_latex4386x.png

main_latex5721x.png

main_latex3038x.png

main_latex4385x.png

main_latex5722x.png

main_latex3041x.png

main_latex4388x.png

main_latex5720x.png

main_latex3040x.png

main_latex4387x.png

pseudo_gamma.png

main_latex3046x.png

main_latex4393x.png

main_latex5727x.png

main_latex3045x.png

main_latex4392x.png

main_latex5728x.png

main_latex3048x.png

main_latex4396x.png

main_latex5725x.png

main_latex3047x.png

main_latex4394x.png

main_latex5726x.png

main_latex5724x.png

pseudo_alpha.png

main_latex4391x.png

main_latex3054x.png

main_latex3053x.png

main_latex4401x.png

main_latex3050x.png

main_latex4398x.png

main_latex5731x.png

main_latex3049x.png

main_latex4397x.png

main_latex5732x.png

main_latex3052x.png

main_latex4400x.png

main_latex5729x.png

main_latex3051x.png

main_latex4399x.png

main_latex5730x.png

main_latex3057x.png

main_latex4405x.png

main_latex5738x.png

main_latex3056x.png

main_latex4404x.png

main_latex5739x.png

main_latex3059x.png

main_latex4406x.png

main_latex5736x.png

fig01_new.png

main_latex3058x.png

main_latex5737x.png

main_latex5734x.png

main_latex5735x.png

main_latex3055x.png

main_latex4403x.png

main_latex4402x.png

main_latex5733x.png

main_latex4223x.png

main_latex5585x.png

main_latex5x.png

dirtree.png

main_latex4222x.png

main_latex5586x.png

main_latex3x.png

main_latex4225x.png

main_latex5583x.png

main_latex4224x.png

main_latex4x.png

main_latex5584x.png

main_latex1x.png

main_latex4219x.png

main_latex5581x.png

main_latex2x.png

main_latex4217x.png

main_latex5582x.png

main_latex4221x.png

main_latex5579x.png

main_latex0x.png

main_latex4220x.png

main_latex5580x.png

main_latex4226x.png

main_latex6x.png

main_latex7x.png

main_latex5590x.png

main_latex5591x.png

main_latex4228x.png

main_latex4227x.png

main_latex5589x.png

main_latex4234x.png

main_latex5598x.png

main_latex4233x.png

main_latex4236x.png

main_latex5596x.png

main_latex4235x.png

main_latex5597x.png

main_latex4230x.png

main_latex5594x.png

main_latex4229x.png

main_latex5595x.png

main_latex4232x.png

main_latex5592x.png

main_latex4231x.png

main_latex5593x.png

main_latex4237x.png

main_latex5601x.png

main_latex5602x.png

main_latex4239x.png

main_latex5599x.png

main_latex4238x.png

main_latex5600x.png

main_latex5565x.png

beta_scale_alpha_all.png

main_latex5563x.png

main_latex5564x.png

beta_scale_beta_all_2.png

main_latex5562x.png

main_latex5560x.png

main_latex5561x.png

main_latex5566x.png

main_latex5567x.png

main_latex5568x.png

main_latex5574x.png

main_latex5575x.png

main_latex5572x.png

main_latex5573x.png

main_latex5570x.png

main_latex5571x.png

beta_scale_alpha_all_2.png

main_latex5569x.png

main_latex5576x.png

main_latex5577x.png

main_latex5578x.png

main_latex4216x.png

main_latex5556x.png

main_latex5557x.png

main_latex5554x.png

main_latex5555x.png

main_latex5552x.png

main_latex5553x.png

main_latex5551x.png

main_latex5559x.png

beta_scale_beta_all.png

main_latex5558x.png

cover.png

uxt.png

main_latex3009x.png

main_latex3008x.png

main_latex3015x.png

main_latex3014x.png

main_latex3016x.png

main_latex3011x.png

main_latex3010x.png

main_latex3013x.png

main_latex3012x.png

main_latex3018x.png

main_latex3017x.png

main_latex3020x.png

main_latex3019x.png

main_latex3026x.png

main_latex3025x.png

main_latex3022x.png

main_latex3021x.png

main_latex3024x.png

main_latex3023x.png

main_latex2987x.png

main_latex2986x.png

main_latex4319x.png

main_latex2988x.png

main_latex4321x.png

main_latex4320x.png

main_latex2994x.png

main_latex4327x.png

main_latex2993x.png

main_latex4326x.png

main_latex2996x.png

main_latex4329x.png

main_latex2995x.png

main_latex4328x.png

main_latex2990x.png

main_latex4323x.png

main_latex2989x.png

main_latex4322x.png

main_latex2992x.png

main_latex4325x.png

main_latex2991x.png

main_latex4324x.png

main_latex2997x.png

main_latex2999x.png

main_latex2998x.png

main_latex3005x.png

main_latex3004x.png

main_latex3007x.png

main_latex3006x.png

main_latex3001x.png

main_latex3000x.png

main_latex3003x.png

main_latex3002x.png

main_latex2964x.png

main_latex4283x.png

main_latex2963x.png

main_latex4282x.png

main_latex2966x.png

main_latex5648x.png

main_latex2965x.png

main_latex4284x.png

main_latex5649x.png

main_latex2972x.png

main_latex4290x.png

main_latex2971x.png

main_latex4289x.png

main_latex2974x.png

main_latex4292x.png

main_latex2973x.png

main_latex4291x.png

main_latex2968x.png

main_latex4286x.png

main_latex4285x.png

main_latex2970x.png

main_latex4288x.png

main_latex2969x.png

main_latex4287x.png

main_latex2976x.png

main_latex4294x.png

main_latex2975x.png

main_latex4293x.png

main_latex2977x.png

main_latex4295x.png

main_latex2983x.png

main_latex4315x.png

main_latex2982x.png

main_latex4314x.png

main_latex2985x.png

main_latex4317x.png

main_latex2984x.png

main_latex4316x.png

main_latex2979x.png

main_latex4297x.png

main_latex2978x.png

main_latex4296x.png

main_latex2981x.png

main_latex4299x.png

main_latex2980x.png

main_latex4298x.png

main_latex2944x.png

main_latex2943x.png

main_latex4264x.png

main_latex2940x.png

main_latex4261x.png

main_latex5628x.png

main_latex2939x.png

main_latex4260x.png

main_latex5629x.png

main_latex2942x.png

main_latex4263x.png

main_latex5626x.png

main_latex2941x.png

main_latex4262x.png

main_latex5627x.png

main_latex2948x.png

main_latex4268x.png

main_latex5635x.png

main_latex2947x.png

main_latex4267x.png

main_latex5636x.png

main_latex2951x.png

main_latex4270x.png

main_latex5633x.png

main_latex2949x.png

main_latex4269x.png

main_latex5634x.png

main_latex5631x.png

main_latex5632x.png

main_latex2946x.png

main_latex4266x.png

main_latex4265x.png

main_latex5630x.png

main_latex2956x.png

main_latex2953x.png

main_latex4272x.png

main_latex5639x.png

main_latex2952x.png

main_latex4271x.png

main_latex2955x.png

main_latex4274x.png

main_latex5637x.png

main_latex2954x.png

main_latex4273x.png

main_latex5638x.png

main_latex2960x.png

main_latex4279x.png

main_latex5646x.png

main_latex2959x.png

main_latex4278x.png

main_latex5647x.png

main_latex2962x.png

main_latex4281x.png

main_latex5644x.png

main_latex2961x.png

main_latex4280x.png

main_latex5645x.png

main_latex4275x.png

main_latex5642x.png

main_latex5643x.png

main_latex2958x.png

main_latex4277x.png

main_latex5640x.png

main_latex2957x.png

main_latex4276x.png

main_latex5641x.png

main_latex4245x.png

main_latex4244x.png

main_latex5607x.png

main_latex4246x.png

main_latex5608x.png

main_latex4241x.png

main_latex5605x.png

main_latex4240x.png

main_latex5606x.png

main_latex4243x.png

main_latex5603x.png

main_latex4242x.png

main_latex5604x.png

main_latex2921x.png

main_latex4248x.png

main_latex5613x.png

main_latex4247x.png

main_latex5614x.png

main_latex2927x.png

main_latex4250x.png

main_latex5611x.png

main_latex2922x.png

main_latex4249x.png

main_latex5612x.png

main_latex5610x.png

main_latex2933x.png

main_latex4255x.png

main_latex2932x.png

rws.png

main_latex5619x.png

main_latex2934x.png

main_latex2929x.png

main_latex4252x.png

main_latex5617x.png

main_latex2928x.png

main_latex4251x.png

main_latex5618x.png

main_latex2931x.png

main_latex4254x.png

main_latex5615x.png

main_latex2930x.png

main_latex4253x.png

main_latex5616x.png

main_latex2936x.png

main_latex4258x.png

main_latex5624x.png

main_latex2935x.png

main_latex4257x.png

main_latex5625x.png

main_latex2938x.png

main_latex4259x.png

main_latex5622x.png

main_latex2937x.png

main_latex5623x.png

rwr2.png

main_latex5620x.png

main_latex5621x.png

main_latex4256x.png

main_latex5472x.png

main_latex5473x.png

main_latex5470x.png

main_latex5471x.png

main_latex5469x.png

n.png

c.png

main_latex5468x.png

main_latex5474x.png

main_latex5475x.png

main_latex5476x.png

main_latex5483x.png

main_latex5484x.png

main_latex5481x.png

main_latex5482x.png

main_latex5479x.png

main_latex5480x.png

main_latex5477x.png

main_latex5478x.png

main_latex5486x.png

main_latex5487x.png

main_latex4122x.png

main_latex4121x.png

main_latex5485x.png

chi.png

main_latex5465x.png

main_latex5463x.png

main_latex5464x.png

m.png

main_latex5462x.png

main_latex5460x.png

main_latex5461x.png

main_latex5466x.png

e.png

main_latex5467x.png

main_latex1942x.png

main_latex1943x.png

main_latex1944x.png

main_latex1945x.png

main_latex1938x.png

main_latex1939x.png

main_latex1940x.png

main_latex1941x.png

main_latex1946x.png

main_latex1920x.png

main_latex1921x.png

main_latex1922x.png

main_latex1923x.png

main_latex1917x.png

main_latex1918x.png

main_latex1919x.png

main_latex1924x.png

main_latex1925x.png

main_latex1926x.png

main_latex1931x.png

main_latex1932x.png

main_latex1933x.png

main_latex1934x.png

main_latex1927x.png

main_latex1928x.png

main_latex1929x.png

main_latex1930x.png

main_latex1935x.png

main_latex1936x.png

main_latex1937x.png

main_latex4206x.png

main_latex4208x.png

main_latex4207x.png

main_latex4214x.png

main_latex4213x.png

main_latex4215x.png

main_latex4210x.png

main_latex4209x.png

main_latex4212x.png

main_latex4211x.png

main_latex4184x.png

main_latex4183x.png

main_latex5550x.png

main_latex4185x.png

main_latex4192x.png

main_latex4191x.png

main_latex4194x.png

main_latex4193x.png

gausran.png

main_latex4188x.png

main_latex4190x.png

main_latex4189x.png

main_latex4195x.png

main_latex4197x.png

main_latex4196x.png

main_latex4203x.png

main_latex4202x.png

main_latex4205x.png

main_latex4204x.png

main_latex4199x.png

main_latex4198x.png

main_latex4201x.png

main_latex4200x.png

main_latex4162x.png

main_latex5532x.png

main_latex4161x.png

main_latex4164x.png

main_latex5530x.png

main_latex4163x.png

main_latex5531x.png

main_latex4169x.png

main_latex5539x.png

main_latex4168x.png

main_latex5540x.png

main_latex4171x.png

main_latex5537x.png

main_latex4170x.png

main_latex5538x.png

main_latex4165x.png

main_latex5535x.png

main_latex5536x.png

main_latex4167x.png

main_latex5533x.png

main_latex4166x.png

main_latex5534x.png

main_latex4173x.png

main_latex4172x.png

beta_scale_gamma_all.png

main_latex4174x.png

main_latex5541x.png

main_latex5542x.png

main_latex4180x.png

main_latex5548x.png

main_latex4179x.png

main_latex5549x.png

main_latex4182x.png

main_latex5546x.png

main_latex4181x.png

main_latex5547x.png

beta_scale_gamma_all_2.png

main_latex4176x.png

main_latex4175x.png

main_latex5545x.png

main_latex4178x.png

main_latex5543x.png

main_latex4177x.png

main_latex5544x.png

main_latex4145x.png

drandom_fluct_hst.png

tau_m_met.png

drandom_hst_01.png

main_latex5511x.png

main_latex4143x.png

main_latex5512x.png

drandom_hst_02.png

main_latex5509x.png

main_latex4144x.png

main_latex5510x.png

main_latex4147x.png

main_latex5517x.png

drandom_fluct.png

main_latex5518x.png

main_latex4149x.png

main_latex5515x.png

main_latex4148x.png

main_latex5516x.png

main_latex5513x.png

main_latex5514x.png

main_latex4146x.png

main_latex4154x.png

main_latex4151x.png

main_latex5521x.png

main_latex4150x.png

main_latex5522x.png

main_latex4153x.png

main_latex5519x.png

main_latex4152x.png

main_latex5520x.png

main_latex4158x.png

main_latex5528x.png

main_latex4157x.png

main_latex5529x.png

main_latex4160x.png

main_latex5526x.png

main_latex4159x.png

main_latex5527x.png

main_latex5524x.png

main_latex5525x.png

main_latex4156x.png

main_latex4155x.png

main_latex5523x.png

main_latex4128x.png

main_latex5495x.png

main_latex4127x.png

main_latex4130x.png

main_latex5493x.png

main_latex4129x.png

main_latex5494x.png

main_latex4124x.png

main_latex5491x.png

main_latex4123x.png

main_latex5492x.png

main_latex4126x.png

main_latex5489x.png

main_latex4125x.png

main_latex5490x.png

main_latex4131x.png

main_latex5498x.png

main_latex5499x.png

main_latex4133x.png

main_latex5496x.png

main_latex4132x.png

main_latex5497x.png

main_latex4139x.png

main_latex4138x.png

main_latex5504x.png

main_latex4140x.png

tau_W_m.png

main_latex4135x.png

main_latex5502x.png

main_latex4134x.png

main_latex5503x.png

main_latex4137x.png

main_latex5500x.png

main_latex4136x.png

main_latex5501x.png

main_latex4142x.png

main_latex5508x.png

main_latex4141x.png

tau_m.png

drandom.png

main_latex5506x.png

main_latex5507x.png

naiveran.png

main_latex5505x.png

main_latex5278x.png

main_latex5279x.png

main_latex5078x.png

main_latex5277x.png

main_latex5076x.png

main_latex5077x.png

main_latex5073x.png

main_latex5075x.png

main_latex41x.png

main_latex43x.png

main_latex42x.png

main_latex45x.png

main_latex5284x.png

main_latex44x.png

main_latex36x.png

main_latex35x.png

main_latex38x.png

main_latex37x.png

main_latex40x.png

main_latex39x.png

main_latex5285x.png

main_latex5300x.png

main_latex5361x.png

main_latex5368x.png

main_latex5430x.png

main_latex5369x.png

main_latex5488x.png

main_latex5366x.png

main_latex5420x.png

main_latex5367x.png

main_latex5429x.png

main_latex5364x.png

main_latex5418x.png

main_latex5365x.png

main_latex5419x.png

main_latex5301x.png

main_latex5362x.png

main_latex5314x.png

main_latex5363x.png

main_latex52x.png

main_latex51x.png

main_latex54x.png

main_latex53x.png

main_latex5370x.png

main_latex60x.png

main_latex55x.png

main_latex47x.png

main_latex46x.png

main_latex49x.png

main_latex48x.png

main_latex50x.png

main_latex5371x.png

main_latex5588x.png

main_latex5372x.png

main_latex5609x.png

main_latex5587x.png

main_latex4918x.png

main_latex4961x.png

main_latex4875x.png

main_latex4876x.png

main_latex4873x.png

main_latex4874x.png

main_latex4871x.png

main_latex65x.png

main_latex67x.png

main_latex66x.png

main_latex5052x.png

main_latex69x.png

main_latex68x.png

main_latex4962x.png

main_latex71x.png

main_latex5044x.png

main_latex70x.png

main_latex62x.png

main_latex61x.png

main_latex64x.png

main_latex63x.png

main_latex5068x.png

main_latex5069x.png

main_latex5066x.png

main_latex5067x.png

main_latex5064x.png

main_latex5065x.png

main_latex5053x.png

main_latex5054x.png

main_latex76x.png

main_latex75x.png

main_latex78x.png

main_latex77x.png

main_latex80x.png

main_latex79x.png

main_latex5070x.png

main_latex82x.png

main_latex5071x.png

main_latex81x.png

main_latex73x.png

main_latex72x.png

main_latex74x.png

main_latex5072x.png

main_latex8x.png

main_latex13x.png

main_latex12x.png

main_latex10x.png

main_latex9x.png

emacs-nw.png

emacs01.png

emacsEdit.png

emacsFile.png

emacsHelp.png

emacsBuffers.png

main_latex11x.png

main_latex21x.png

main_latex23x.png

main_latex22x.png

main_latex15x.png

main_latex14x.png

main_latex17x.png

main_latex16x.png

main_latex19x.png

main_latex18x.png

main_latex20x.png

emacs_wins.png

main_latex32x.png

main_latex31x.png

main_latex34x.png

main_latex33x.png

main_latex25x.png

main_latex24x.png

main_latex27x.png

main_latex26x.png

main_latex29x.png

main_latex28x.png

main_latex30x.png

fdp_basinG0_85.png

fdp_basinG1_4.png

main_latex1843x.png

main_latex1844x.png

main_latex1838x.png

main_latex1840x.png

main_latex1841x.png

main_latex1842x.png

main_latex1826x.png

main_latex1827x.png

main_latex1828x.png

fdp_phaseG1_568.png

fdp_phaseG1_033.png

fdp_phaseG1_04.png

fdp_phaseG1_4.png

main_latex1825x.png

fdp_phaseG3_8.png

fdp_phaseG4_44.png

fdp_phaseG4_5.png

fdp_poincareG1_4.png

fdp_poincareG4_5.png

main_latex1833x.png

main_latex1834x.png

main_latex1829x.png

main_latex1830x.png

main_latex1831x.png

main_latex1832x.png

main_latex1835x.png

main_latex1836x.png

main_latex1837x.png

main_latex1812x.png

main_latex1813x.png

main_latex1814x.png

main_latex1815x.png

main_latex1810x.png

main_latex1811x.png

main_latex1816x.png

main_latex1817x.png

main_latex1818x.png

main_latex1819x.png

fdp_phaseG0_85.png

fdp_phaseG1_02.png

main_latex1821x.png

main_latex1822x.png

main_latex1820x.png

fdp_phaseG0_60.png

fdp_phaseG0_72.png

main_latex1823x.png

main_latex1824x.png

fdp_phaseG1_031.png

main_latex1898x.png

main_latex1899x.png

main_latex1900x.png

main_latex1901x.png

main_latex1897x.png

main_latex1906x.png

main_latex1902x.png

main_latex1903x.png

main_latex1904x.png

main_latex1905x.png

main_latex1909x.png

main_latex1910x.png

main_latex1911x.png

main_latex1912x.png

main_latex1907x.png

main_latex1908x.png

main_latex1913x.png

main_latex1914x.png

main_latex1915x.png

main_latex1916x.png

main_latex1877x.png

main_latex1878x.png

main_latex1879x.png

main_latex1884x.png

main_latex1885x.png

main_latex1886x.png

main_latex1880x.png

main_latex1881x.png

main_latex1882x.png

main_latex1883x.png

main_latex1887x.png

main_latex1888x.png

main_latex1889x.png

main_latex1890x.png

main_latex1895x.png

main_latex1896x.png

main_latex1891x.png

main_latex1892x.png

main_latex1893x.png

main_latex1894x.png

main_latex1855x.png

main_latex1862x.png

main_latex1863x.png

main_latex1864x.png

main_latex1865x.png

main_latex1856x.png

main_latex1857x.png

main_latex1860x.png

main_latex1861x.png

main_latex4112x.png

main_latex4111x.png

main_latex4114x.png

main_latex4113x.png

main_latex1866x.png

main_latex4120x.png

main_latex4119x.png

main_latex4116x.png

main_latex4115x.png

main_latex4118x.png

main_latex4117x.png

main_latex1867x.png

main_latex1868x.png

main_latex1873x.png

main_latex1874x.png

main_latex1875x.png

main_latex1876x.png

main_latex1869x.png

main_latex1870x.png

main_latex1871x.png

main_latex1872x.png

main_latex4090x.png

main_latex4092x.png

main_latex4091x.png

main_latex4098x.png

main_latex4097x.png

main_latex4100x.png

main_latex4099x.png

main_latex4094x.png

main_latex4093x.png

main_latex4096x.png

main_latex4095x.png

main_latex1849x.png

main_latex1850x.png

main_latex1851x.png

main_latex1852x.png

main_latex1845x.png

main_latex1846x.png

main_latex1847x.png

main_latex1848x.png

main_latex4101x.png

main_latex4103x.png

main_latex4102x.png

main_latex1853x.png

main_latex1854x.png

main_latex4109x.png

main_latex4108x.png

main_latex4110x.png

main_latex4105x.png

main_latex4104x.png

main_latex4107x.png

main_latex4106x.png

main_latex4068x.png

main_latex4067x.png

main_latex5438x.png

main_latex4069x.png

main_latex5439x.png

main_latex5440x.png

main_latex4075x.png

main_latex5447x.png

main_latex4074x.png

main_latex5448x.png

main_latex4077x.png

main_latex5445x.png

main_latex4076x.png

main_latex5446x.png

main_latex4071x.png

main_latex5443x.png

main_latex4070x.png

main_latex5444x.png

main_latex4073x.png

main_latex5441x.png

main_latex4072x.png

main_latex5442x.png

main_latex4079x.png

main_latex4078x.png

main_latex5449x.png

main_latex5450x.png

main_latex5451x.png

main_latex4080x.png

main_latex4086x.png

main_latex5458x.png

main_latex4085x.png

main_latex5459x.png

main_latex4089x.png

main_latex5456x.png

main_latex4087x.png

main_latex5457x.png

main_latex4082x.png

main_latex5454x.png

main_latex4081x.png

main_latex5455x.png

main_latex4084x.png

main_latex5452x.png

main_latex4083x.png

main_latex5453x.png

main_latex4049x.png

main_latex4046x.png

main_latex5414x.png

main_latex4045x.png

main_latex5415x.png

main_latex4048x.png

main_latex5412x.png

main_latex4047x.png

main_latex5413x.png

main_latex4053x.png

main_latex5423x.png

main_latex4052x.png

main_latex5424x.png

fig021.png

main_latex4055x.png

main_latex4054x.png

main_latex5422x.png

main_latex5417x.png

main_latex5421x.png

main_latex4051x.png

main_latex4050x.png

main_latex5416x.png

main_latex4057x.png

main_latex5427x.png

main_latex4056x.png

main_latex4059x.png

main_latex5425x.png

main_latex4058x.png

main_latex5426x.png

main_latex4064x.png

main_latex5436x.png

main_latex4063x.png

main_latex5437x.png

main_latex4066x.png

main_latex5434x.png

main_latex4065x.png

main_latex5435x.png

main_latex4060x.png

main_latex5432x.png

main_latex5433x.png

main_latex4062x.png

main_latex5428x.png

main_latex4061x.png

main_latex5431x.png

main_latex4028x.png

main_latex4027x.png

main_latex5396x.png

main_latex6195x.png

main_latex4029x.png

main_latex5397x.png

main_latex4024x.png

main_latex5394x.png

main_latex6129x.png

main_latex4023x.png

main_latex5395x.png

main_latex6194x.png

IsingL100b0_25.png

main_latex4026x.png

main_latex6127x.png

IsingL100b0_555555.png

main_latex4025x.png

main_latex6128x.png

main_latex4031x.png

main_latex5399x.png

main_latex4030x.png

main_latex5400x.png

IsingL100b0_4348_01.png

main_latex4033x.png

IsingL100b0_4348_02.png

main_latex4032x.png

main_latex6213x.png

main_latex5398x.png

main_latex6214x.png

main_latex4039x.png

main_latex4038x.png

main_latex5405x.png

main_latex4035x.png

main_latex5403x.png

main_latex4034x.png

main_latex5404x.png

main_latex4037x.png

main_latex5401x.png

main_latex4036x.png

main_latex5402x.png

main_latex4042x.png

main_latex5410x.png

main_latex4041x.png

main_latex5411x.png

main_latex4044x.png

main_latex5408x.png

main_latex4043x.png

main_latex5409x.png

main_latex5406x.png

main_latex5407x.png

main_latex4040x.png

main_latex5378x.png

main_latex5835x.png

main_latex5379x.png

main_latex5377x.png

main_latex5820x.png

cluL40.png

main_latex5821x.png

main_latex5375x.png

main_latex5802x.png

main_latex5376x.png

main_latex5819x.png

main_latex5373x.png

main_latex5800x.png

main_latex5374x.png

main_latex5801x.png

main_latex5381x.png

main_latex5838x.png

main_latex5382x.png

main_latex5852x.png

main_latex5836x.png

main_latex5380x.png

main_latex5837x.png

main_latex5389x.png

main_latex5387x.png

main_latex5974x.png

main_latex5388x.png

main_latex5975x.png

main_latex5385x.png

main_latex5948x.png

main_latex5386x.png

main_latex5973x.png

main_latex5383x.png

main_latex5908x.png

main_latex5384x.png

main_latex5947x.png

main_latex4020x.png

main_latex5392x.png

main_latex6110x.png

main_latex5393x.png

main_latex6126x.png

main_latex4022x.png

main_latex5390x.png

main_latex5977x.png

main_latex4021x.png

main_latex5391x.png

main_latex5978x.png

main_latex5976x.png

main_latex3559x.png

main_latex3560x.png

main_latex3404x.png

main_latex3405x.png

main_latex2967x.png

main_latex3403x.png

main_latex2945x.png

main_latex2950x.png

main_latex3591x.png

main_latex3592x.png

main_latex3593x.png

main_latex3638x.png

main_latex3639x.png

main_latex3608x.png

main_latex3637x.png

main_latex3606x.png

main_latex3607x.png

main_latex3594x.png

main_latex3605x.png

main_latex3640x.png

main_latex3641x.png

main_latex3642x.png

main_latex1761x.png

main_latex1762x.png

main_latex1763x.png

main_latex1757x.png

main_latex1758x.png

main_latex1759x.png

main_latex1760x.png

main_latex827x.png

main_latex826x.png

main_latex825x.png

main_latex824x.png

main_latex831x.png

main_latex830x.png

main_latex829x.png

main_latex828x.png

main_latex833x.png

main_latex832x.png

main_latex816x.png

main_latex815x.png

main_latex814x.png

main_latex820x.png

main_latex819x.png

main_latex818x.png

main_latex817x.png

main_latex823x.png

main_latex822x.png

main_latex821x.png

main_latex1743x.png

main_latex1744x.png

main_latex1745x.png

dlo_x.png

main_latex1739x.png

main_latex1740x.png

main_latex1741x.png

main_latex1742x.png

main_latex1746x.png

main_latex851x.png

main_latex850x.png

log02.png

log01.png

main_latex853x.png

main_latex852x.png

main_latex857x.png

main_latex856x.png

main_latex1747x.png

main_latex855x.png

dlo_xv.png

main_latex854x.png

dlo_ampl.png

main_latex1752x.png

main_latex1753x.png

dlo_omega.png

main_latex1748x.png

main_latex1749x.png

main_latex1750x.png

main_latex1751x.png

main_latex834x.png

main_latex838x.png

main_latex837x.png

main_latex836x.png

main_latex835x.png

main_latex844x.png

main_latex1754x.png

main_latex843x.png

main_latex1755x.png

main_latex840x.png

main_latex1756x.png

main_latex839x.png

main_latex845x.png

main_latex1719x.png

main_latex1720x.png

main_latex1721x.png

main_latex1724x.png

main_latex1716x.png

main_latex1717x.png

main_latex1718x.png

main_latex1725x.png

main_latex1726x.png

main_latex1727x.png

main_latex771x.png

main_latex770x.png

main_latex769x.png

main_latex768x.png

main_latex775x.png

main_latex774x.png

main_latex773x.png

main_latex772x.png

main_latex1732x.png

main_latex1733x.png

main_latex1734x.png

main_latex1735x.png

main_latex1728x.png

main_latex1729x.png

main_latex1730x.png

main_latex1731x.png

main_latex1736x.png

main_latex1737x.png

main_latex1738x.png

hoc_euler_verlet_STEPS_X00_2V00_0_e.png

hoc_rk_STEPS_X00_2V00_0_e.png

main_latex1695x.png

main_latex1696x.png

main_latex790x.png

hoc_euler_cromer_STEPS_X00_2V00_0_e.png

main_latex1701x.png

main_latex1697x.png

main_latex1698x.png

main_latex1699x.png

main_latex1700x.png

main_latex792x.png

main_latex791x.png

main_latex796x.png

main_latex795x.png

main_latex794x.png

main_latex793x.png

main_latex813x.png

main_latex812x.png

main_latex798x.png

main_latex797x.png

main_latex1704x.png

main_latex1705x.png

main_latex1706x.png

main_latex777x.png

main_latex1707x.png

main_latex776x.png

main_latex1702x.png

main_latex1703x.png

main_latex1708x.png

main_latex1709x.png

main_latex1710x.png

main_latex1715x.png

main_latex778x.png

main_latex782x.png

main_latex781x.png

main_latex780x.png

main_latex779x.png

main_latex789x.png

main_latex788x.png

main_latex787x.png

main_latex786x.png

main_latex1790x.png

main_latex1791x.png

main_latex1792x.png

main_latex1793x.png

main_latex1798x.png

main_latex1799x.png

main_latex1794x.png

main_latex1795x.png

main_latex1796x.png

main_latex1797x.png

main_latex1801x.png

main_latex1802x.png

main_latex1803x.png

main_latex1804x.png

main_latex1800x.png

main_latex1809x.png

main_latex1805x.png

main_latex759x.png

main_latex1806x.png

main_latex758x.png

main_latex1807x.png

main_latex1808x.png

main_latex763x.png

main_latex762x.png

main_latex761x.png

main_latex760x.png

main_latex767x.png

main_latex766x.png

main_latex765x.png

main_latex764x.png

main_latex1773x.png

dlo_ampl_omega.png

main_latex1778x.png

main_latex1779x.png

dlo_poincare_1.png

main_latex1780x.png

main_latex1774x.png

main_latex1775x.png

main_latex1776x.png

main_latex1777x.png

main_latex4012x.png

main_latex4011x.png

main_latex4014x.png

main_latex4013x.png

main_latex4010x.png

main_latex4019x.png

main_latex4016x.png

main_latex4015x.png

main_latex4018x.png

main_latex4017x.png

main_latex1781x.png

main_latex1782x.png

main_latex1783x.png

main_latex1787x.png

main_latex1788x.png

main_latex1789x.png

dlo_poincare_2.png

main_latex1784x.png

main_latex1785x.png

main_latex1786x.png

main_latex3990x.png

main_latex730x.png

main_latex729x.png

main_latex3992x.png

main_latex728x.png

main_latex3991x.png

main_latex734x.png

main_latex733x.png

main_latex732x.png

main_latex731x.png

main_latex3998x.png

main_latex3997x.png

main_latex737x.png

main_latex736x.png

main_latex3999x.png

main_latex735x.png

main_latex3994x.png

main_latex3993x.png

main_latex3996x.png

main_latex3995x.png

main_latex1764x.png

dlo_transient.png

main_latex1769x.png

main_latex1770x.png

main_latex1771x.png

main_latex1765x.png

main_latex1766x.png

main_latex1767x.png

main_latex1768x.png

main_latex4001x.png

main_latex719x.png

main_latex4000x.png

main_latex718x.png

main_latex4003x.png

main_latex4002x.png

main_latex1772x.png

main_latex723x.png

main_latex722x.png

main_latex721x.png

main_latex720x.png

main_latex4009x.png

main_latex727x.png

main_latex4008x.png

main_latex726x.png

main_latex725x.png

main_latex724x.png

main_latex4005x.png

main_latex4004x.png

main_latex4007x.png

main_latex4006x.png

main_latex3965x.png

main_latex3964x.png

main_latex5340x.png

main_latex748x.png

main_latex5341x.png

main_latex752x.png

main_latex5342x.png

main_latex751x.png

main_latex3966x.png

main_latex750x.png

main_latex749x.png

main_latex756x.png

main_latex755x.png

main_latex754x.png

main_latex753x.png

main_latex3972x.png

main_latex5349x.png

main_latex3971x.png

main_latex5350x.png

main_latex3974x.png

main_latex5347x.png

main_latex3973x.png

main_latex5348x.png

main_latex757x.png

main_latex3968x.png

main_latex5345x.png

main_latex3967x.png

main_latex5346x.png

main_latex3970x.png

main_latex5343x.png

main_latex3969x.png

main_latex5344x.png

main_latex3975x.png

main_latex5352x.png

main_latex741x.png

main_latex5353x.png

main_latex740x.png

main_latex3977x.png

main_latex739x.png

main_latex3976x.png

main_latex5351x.png

main_latex738x.png

main_latex745x.png

main_latex744x.png

main_latex743x.png

main_latex742x.png

main_latex3987x.png

main_latex5360x.png

main_latex3986x.png

main_latex3989x.png

main_latex5358x.png

main_latex747x.png

main_latex3988x.png

main_latex5359x.png

main_latex746x.png

main_latex3979x.png

main_latex5356x.png

main_latex3978x.png

main_latex5357x.png

main_latex3985x.png

main_latex5354x.png

main_latex3984x.png

main_latex5355x.png

main_latex3948x.png

main_latex5321x.png

main_latex3947x.png

main_latex3950x.png

main_latex4697x.png

main_latex5319x.png

main_latex3949x.png

main_latex4726x.png

main_latex5320x.png

main_latex4727x.png

main_latex3955x.png

main_latex4827x.png

main_latex5328x.png

main_latex3954x.png

main_latex4865x.png

main_latex5329x.png

main_latex3957x.png

main_latex4825x.png

main_latex5326x.png

main_latex3956x.png

main_latex4826x.png

main_latex5327x.png

main_latex3951x.png

main_latex4808x.png

main_latex5324x.png

main_latex4824x.png

main_latex5325x.png

main_latex3953x.png

main_latex4734x.png

main_latex5322x.png

main_latex3952x.png

main_latex4735x.png

main_latex5323x.png

main_latex3959x.png

main_latex3958x.png

main_latex4870x.png

main_latex5330x.png

main_latex3960x.png

main_latex5331x.png

main_latex5332x.png

main_latex5338x.png

uocXE-02.png

main_latex5339x.png

uocXE-01.png

main_latex5336x.png

uocXE-04.png

main_latex5337x.png

uocXE-03.png

main_latex3961x.png

main_latex5334x.png

LJ-01.png

main_latex5335x.png

fig012.png

main_latex3963x.png

main_latex3962x.png

main_latex5333x.png

main_latex3930x.png

main_latex3929x.png

main_latex5298x.png

main_latex3926x.png

main_latex4365x.png

main_latex5296x.png

main_latex3925x.png

main_latex4366x.png

main_latex5297x.png

main_latex3928x.png

main_latex4352x.png

main_latex5294x.png

main_latex3927x.png

main_latex4364x.png

main_latex5295x.png

main_latex3933x.png

main_latex4418x.png

main_latex5305x.png

main_latex3932x.png

main_latex4432x.png

main_latex5306x.png

main_latex3935x.png

main_latex4416x.png

main_latex5303x.png

main_latex3934x.png

main_latex4417x.png

main_latex5304x.png

main_latex4372x.png

main_latex5299x.png

main_latex4395x.png

main_latex5302x.png

main_latex3931x.png

main_latex4371x.png

main_latex3940x.png

main_latex3937x.png

main_latex4499x.png

main_latex5309x.png

main_latex3936x.png

main_latex5310x.png

main_latex3939x.png

main_latex4497x.png

main_latex5307x.png

main_latex3938x.png

main_latex4498x.png

main_latex5308x.png

main_latex3944x.png

main_latex4674x.png

main_latex5317x.png

main_latex3943x.png

main_latex4675x.png

main_latex5318x.png

main_latex3946x.png

main_latex4672x.png

main_latex5315x.png

main_latex3945x.png

main_latex4673x.png

main_latex5316x.png

main_latex4670x.png

main_latex5312x.png

main_latex4671x.png

main_latex5313x.png

main_latex3942x.png

main_latex4557x.png

main_latex3941x.png

main_latex4669x.png

main_latex5311x.png

IsConL400T2_33_45000.png

IsConL400T2_33_9000.png

main_latex4302x.png

IsConL400T2_33_12000.png

main_latex4303x.png

main_latex4300x.png

main_latex5273x.png

IsConL400T2_33_4000.png

main_latex4301x.png

main_latex4187x.png

main_latex5272x.png

lat-hel-move.png

main_latex4218x.png

main_latex4307x.png

main_latex5276x.png

main_latex4308x.png

main_latex5280x.png

main_latex4305x.png

main_latex5274x.png

main_latex4306x.png

main_latex5275x.png

main_latex4304x.png

main_latex4313x.png

main_latex5287x.png

main_latex5288x.png

main_latex4311x.png

main_latex5283x.png

main_latex4312x.png

main_latex5286x.png

main_latex4309x.png

main_latex5281x.png

main_latex4310x.png

main_latex5282x.png

main_latex3922x.png

main_latex4350x.png

main_latex5292x.png

main_latex3921x.png

main_latex4351x.png

main_latex5293x.png

main_latex3924x.png

main_latex4338x.png

main_latex5290x.png

main_latex3923x.png

main_latex4349x.png

main_latex5291x.png

main_latex4318x.png

main_latex4337x.png

main_latex5289x.png

main_latex3785x.png

main_latex3786x.png

main_latex3783x.png

main_latex3784x.png

main_latex3749x.png

main_latex3768x.png

main_latex3643x.png

main_latex3660x.png

main_latex3788x.png

main_latex5260x.png

main_latex3806x.png

main_latex5261x.png

main_latex3787x.png

main_latex3981x.png

main_latex5268x.png

main_latex5269x.png

main_latex3862x.png

main_latex5266x.png

main_latex3980x.png

main_latex5267x.png

main_latex3860x.png

main_latex5264x.png

main_latex3861x.png

main_latex5265x.png

main_latex3832x.png

main_latex5262x.png

main_latex3833x.png

main_latex5263x.png

main_latex4088x.png

main_latex5271x.png

lat-periodic-move.png

main_latex4186x.png

main_latex3982x.png

main_latex3983x.png

main_latex5270x.png

main_latex6463x.png

main_latex1668x.png

main_latex1669x.png

main_latex1664x.png

main_latex1665x.png

main_latex1666x.png

main_latex1667x.png

main_latex1646x.png

main_latex1647x.png

main_latex1648x.png

main_latex1649x.png

main_latex1642x.png

main_latex1643x.png

main_latex1644x.png

main_latex1645x.png

main_latex690x.png

main_latex689x.png

main_latex688x.png

main_latex694x.png

main_latex1650x.png

main_latex693x.png

main_latex1651x.png

main_latex692x.png

main_latex1652x.png

main_latex691x.png

main_latex697x.png

main_latex696x.png

main_latex695x.png

main_latex1657x.png

main_latex1658x.png

main_latex1659x.png

main_latex676x.png

main_latex1653x.png

main_latex1654x.png

main_latex1655x.png

main_latex1656x.png

main_latex679x.png

main_latex678x.png

main_latex1660x.png

main_latex683x.png

main_latex1661x.png

main_latex682x.png

main_latex1662x.png

main_latex681x.png

main_latex1663x.png

main_latex680x.png

main_latex687x.png

main_latex686x.png

main_latex685x.png

main_latex684x.png

main_latex1626x.png

main_latex2898x.png

main_latex1627x.png

main_latex2899x.png

main_latex1628x.png

main_latex2900x.png

main_latex1629x.png

main_latex2901x.png

main_latex2894x.png

order1.png

main_latex1623x.png

main_latex2895x.png

main_latex1624x.png

main_latex2896x.png

main_latex1625x.png

main_latex2897x.png

main_latex1630x.png

main_latex2902x.png

order2.png

main_latex708x.png

main_latex712x.png

main_latex711x.png

main_latex710x.png

main_latex709x.png

main_latex716x.png

main_latex715x.png

main_latex2903x.png

main_latex714x.png

main_latex1631x.png

main_latex2904x.png

main_latex713x.png

main_latex717x.png

main_latex1636x.png

main_latex2912x.png

main_latex1637x.png

main_latex2913x.png

main_latex1638x.png

main_latex2914x.png

main_latex1639x.png

main_latex2920x.png

main_latex1632x.png

main_latex2905x.png

main_latex1633x.png

main_latex2906x.png

main_latex1634x.png

main_latex2907x.png

main_latex1635x.png

main_latex2908x.png

main_latex1640x.png

main_latex701x.png

main_latex700x.png

main_latex699x.png

main_latex698x.png

main_latex705x.png

main_latex704x.png

main_latex1641x.png

main_latex703x.png

main_latex702x.png

order4.png

main_latex707x.png

main_latex706x.png

main_latex1605x.png

main_latex2876x.png

main_latex1606x.png

main_latex2877x.png

main_latex1607x.png

main_latex2878x.png

main_latex1608x.png

main_latex2879x.png

main_latex2873x.png

main_latex1603x.png

main_latex2874x.png

main_latex1604x.png

main_latex2875x.png

main_latex1609x.png

main_latex2880x.png

main_latex1610x.png

main_latex2881x.png

main_latex1611x.png

main_latex2882x.png

main_latex1612x.png

main_latex1616x.png

main_latex2887x.png

main_latex1617x.png

main_latex2888x.png

main_latex1618x.png

main_latex2889x.png

main_latex1619x.png

main_latex2890x.png

main_latex2883x.png

main_latex1613x.png

main_latex2884x.png

main_latex1614x.png

main_latex2885x.png

main_latex1615x.png

main_latex2886x.png

main_latex1620x.png

main_latex2891x.png

main_latex1621x.png

main_latex2892x.png

main_latex1622x.png

main_latex2893x.png

main_latex1579x.png

main_latex2855x.png

main_latex1580x.png

main_latex2856x.png

main_latex1581x.png

main_latex2857x.png

main_latex1582x.png

main_latex2858x.png

main_latex2854x.png

main_latex1587x.png

main_latex2862x.png

main_latex1592x.png

main_latex1583x.png

main_latex2859x.png

lattice02.png

main_latex1584x.png

main_latex1585x.png

main_latex2860x.png

main_latex1586x.png

main_latex2861x.png

main_latex667x.png

main_latex671x.png

main_latex670x.png

main_latex669x.png

main_latex668x.png

main_latex675x.png

main_latex674x.png

main_latex673x.png

main_latex672x.png

main_latex1594x.png

main_latex2865x.png

main_latex1595x.png

main_latex2866x.png

main_latex1596x.png

main_latex2867x.png

main_latex1597x.png

main_latex2868x.png

main_latex2863x.png

main_latex1593x.png

main_latex2864x.png

main_latex1602x.png

main_latex1598x.png

main_latex2869x.png

main_latex1599x.png

main_latex2870x.png

main_latex1600x.png

main_latex2871x.png

main_latex1601x.png

main_latex2872x.png

main_latex1680x.png

main_latex1681x.png

main_latex1682x.png

main_latex1686x.png

main_latex1687x.png

main_latex1688x.png

hoc_euler_STEPS_X00_2V00_0_x.png

main_latex642x.png

main_latex1683x.png

main_latex641x.png

main_latex1684x.png

main_latex1685x.png

main_latex646x.png

main_latex645x.png

main_latex644x.png

main_latex643x.png

main_latex650x.png

main_latex649x.png

main_latex648x.png

main_latex647x.png

main_latex1689x.png

hoc_euler_cromer_STEPS_X00_2V00_0_x.png

main_latex1690x.png

hoc_euler_verlet_STEPS_X00_2V00_0_x.png

main_latex1694x.png

hoc_euler_STEPS_X00_2V00_0_e.png

main_latex1691x.png

main_latex631x.png

hoc_rk_STEPS_X00_2V00_0_x.png

main_latex1692x.png

main_latex1693x.png

main_latex635x.png

main_latex634x.png

main_latex633x.png

main_latex632x.png

main_latex639x.png

main_latex638x.png

main_latex637x.png

main_latex636x.png

main_latex640x.png

main_latex1670x.png

main_latex1671x.png

main_latex1676x.png

main_latex1677x.png

main_latex1678x.png

main_latex1679x.png

main_latex1672x.png

main_latex659x.png

main_latex1673x.png

main_latex652x.png

main_latex1674x.png

main_latex651x.png

main_latex1675x.png

main_latex663x.png

main_latex662x.png

main_latex661x.png

main_latex660x.png

main_latex666x.png

main_latex665x.png

main_latex664x.png

main_latex5241x.png

main_latex607x.png

main_latex5242x.png

main_latex606x.png

main_latex5240x.png

main_latex611x.png

main_latex610x.png

main_latex609x.png

main_latex608x.png

main_latex5249x.png

main_latex615x.png

main_latex614x.png

main_latex5247x.png

main_latex613x.png

main_latex5248x.png

main_latex612x.png

main_latex5245x.png

main_latex5246x.png

main_latex5243x.png

main_latex5244x.png

main_latex5252x.png

main_latex596x.png

main_latex5253x.png

main_latex5250x.png

main_latex5251x.png

main_latex600x.png

main_latex599x.png

main_latex598x.png

main_latex597x.png

main_latex604x.png

main_latex603x.png

main_latex5258x.png

main_latex602x.png

main_latex5259x.png

main_latex601x.png

main_latex5256x.png

main_latex5257x.png

main_latex5254x.png

main_latex5255x.png

main_latex605x.png

main_latex2910x.png

main_latex5218x.png

main_latex5219x.png

main_latex2911x.png

main_latex624x.png

main_latex2915x.png

main_latex5220x.png

main_latex623x.png

main_latex622x.png

main_latex621x.png

main_latex628x.png

main_latex627x.png

main_latex626x.png

main_latex625x.png

main_latex2925x.png

main_latex5227x.png

main_latex2926x.png

main_latex5228x.png

main_latex2923x.png

main_latex5225x.png

main_latex630x.png

main_latex2924x.png

main_latex5226x.png

main_latex629x.png

main_latex2918x.png

main_latex5223x.png

main_latex2919x.png

main_latex5224x.png

main_latex2916x.png

main_latex5221x.png

main_latex2917x.png

main_latex5222x.png

main_latex5229x.png

main_latex5230x.png

main_latex618x.png

main_latex5231x.png

main_latex617x.png

main_latex616x.png

fig09.png

fig11.png

fig12.png

main_latex619x.png

main_latex5238x.png

main_latex5239x.png

main_latex620x.png

fig13.png

main_latex5236x.png

fig10.png

main_latex5237x.png

main_latex5234x.png

main_latex5235x.png

main_latex5232x.png

main_latex5233x.png

main_latex1722x.png

main_latex5198x.png

main_latex5199x.png

main_latex1713x.png

main_latex5196x.png

main_latex1714x.png

main_latex5197x.png

main_latex2659x.png

main_latex5205x.png

main_latex2713x.png

main_latex5206x.png

main_latex2535x.png

main_latex5203x.png

main_latex2658x.png

main_latex5204x.png

main_latex1858x.png

main_latex5201x.png

main_latex1859x.png

main_latex5202x.png

main_latex1723x.png

main_latex1839x.png

main_latex5200x.png

main_latex5209x.png

main_latex2714x.png

main_latex5207x.png

main_latex2715x.png

main_latex5208x.png

main_latex2716x.png

main_latex2824x.png

main_latex5216x.png

main_latex2909x.png

main_latex5217x.png

main_latex2822x.png

main_latex5214x.png

main_latex2823x.png

main_latex5215x.png

main_latex2758x.png

main_latex5212x.png

main_latex2821x.png

main_latex5213x.png

main_latex2717x.png

main_latex5210x.png

main_latex2756x.png

main_latex5211x.png

main_latex5178x.png

main_latex810x.png

main_latex5179x.png

main_latex5176x.png

main_latex808x.png

main_latex5177x.png

main_latex809x.png

main_latex5174x.png

main_latex806x.png

main_latex5175x.png

main_latex807x.png

main_latex5183x.png

main_latex847x.png

main_latex5184x.png

main_latex848x.png

main_latex5181x.png

main_latex842x.png

main_latex5182x.png

main_latex846x.png

main_latex811x.png

main_latex5180x.png

main_latex841x.png

main_latex5189x.png

main_latex5187x.png

main_latex950x.png

main_latex1551x.png

main_latex5188x.png

main_latex5185x.png

main_latex849x.png

main_latex5186x.png

main_latex949x.png

main_latex1711x.png

main_latex5194x.png

main_latex1712x.png

main_latex5195x.png

main_latex1590x.png

main_latex5192x.png

main_latex1591x.png

main_latex5193x.png

main_latex1588x.png

main_latex5190x.png

main_latex1589x.png

main_latex5191x.png

main_latex1552x.png

main_latex654x.png

main_latex470x.png

main_latex653x.png

main_latex384x.png

main_latex469x.png

main_latex374x.png

main_latex376x.png

jack_chi_02.png

main_latex657x.png

main_latex5162x.png

main_latex658x.png

main_latex655x.png

main_latex5161x.png

main_latex656x.png

main_latex5169x.png

main_latex5167x.png

main_latex799x.png

main_latex5168x.png

main_latex800x.png

main_latex5165x.png

main_latex784x.png

main_latex5166x.png

main_latex785x.png

main_latex5163x.png

main_latex677x.png

main_latex5164x.png

main_latex783x.png

main_latex5172x.png

main_latex804x.png

main_latex5173x.png

main_latex805x.png

main_latex5170x.png

main_latex802x.png

main_latex5171x.png

main_latex803x.png

main_latex801x.png

main_latex6470x.png

main_latex6471x.png

main_latex6468x.png

main_latex6469x.png

main_latex6466x.png

main_latex6467x.png

main_latex6464x.png

main_latex6465x.png

main_latex6472x.png

main_latex6473x.png

main_latex6474x.png

main_latex57x.png

main_latex58x.png

main_latex6479x.png

main_latex56x.png

main_latex6477x.png

main_latex6478x.png

main_latex6475x.png

main_latex6476x.png

main_latex174x.png

main_latex189x.png

main_latex59x.png

main_latex1568x.png

main_latex1564x.png

main_latex1565x.png

main_latex1566x.png

main_latex1567x.png

euler_cromer_STEPS_X03_00V00_0_v.png

euler_verlet_STEPS_X03_00V00_0_v.png

main_latex1546x.png

euler_STEPS_X03_00V00_0_v.png

main_latex1543x.png

main_latex1544x.png

main_latex1545x.png

main_latex1547x.png

main_latex1548x.png

main_latex1549x.png

main_latex1550x.png

main_latex1557x.png

main_latex1558x.png

main_latex1553x.png

main_latex1554x.png

main_latex1555x.png

main_latex1556x.png

main_latex1560x.png

main_latex1561x.png

main_latex1562x.png

main_latex1563x.png

main_latex1559x.png

main_latex1529x.png

main_latex2800x.png

main_latex1530x.png

main_latex2801x.png

main_latex1531x.png

main_latex2802x.png

main_latex1532x.png

main_latex2803x.png

main_latex1525x.png

main_latex2796x.png

main_latex1526x.png

main_latex2797x.png

main_latex1527x.png

main_latex2798x.png

main_latex1528x.png

main_latex2799x.png

pendulum.png

main_latex2804x.png

main_latex1533x.png

main_latex2805x.png

main_latex1534x.png

main_latex2806x.png

main_latex1538x.png

main_latex2811x.png

main_latex1539x.png

main_latex2812x.png

main_latex1540x.png

main_latex2813x.png

euler_cromer_STEPS_X00_02V00_0_x.png

euler_STEPS_X00_02V00_0_x.png

main_latex2807x.png

main_latex1535x.png

main_latex2808x.png

main_latex1536x.png

main_latex2809x.png

main_latex1537x.png

main_latex2810x.png

euler_verlet_STEPS_X00_02V00_0_x.png

main_latex1541x.png

main_latex1542x.png

main_latex1507x.png

main_latex2779x.png

main_latex1508x.png

main_latex2780x.png

main_latex1509x.png

main_latex2781x.png

main_latex1510x.png

main_latex2782x.png

main_latex2775x.png

main_latex1504x.png

main_latex2776x.png

main_latex1505x.png

main_latex2777x.png

main_latex1506x.png

main_latex2778x.png

main_latex1511x.png

main_latex2783x.png

lattice01.png

main_latex1512x.png

main_latex1513x.png

main_latex2784x.png

main_latex1518x.png

main_latex2789x.png

main_latex1519x.png

main_latex2790x.png

main_latex1520x.png

main_latex2791x.png

main_latex1521x.png

main_latex2792x.png

main_latex1514x.png

main_latex2785x.png

main_latex1515x.png

main_latex2786x.png

main_latex1516x.png

main_latex2787x.png

main_latex1517x.png

main_latex2788x.png

main_latex1522x.png

main_latex2793x.png

main_latex1523x.png

main_latex2794x.png

main_latex1524x.png

main_latex2795x.png

main_latex1485x.png

main_latex2755x.png

main_latex1486x.png

main_latex2757x.png

main_latex1487x.png

main_latex2759x.png

main_latex1488x.png

main_latex2760x.png

main_latex2753x.png

main_latex1484x.png

main_latex2754x.png

main_latex1493x.png

main_latex1489x.png

main_latex2761x.png

main_latex1490x.png

main_latex2762x.png

main_latex1491x.png

main_latex2763x.png

main_latex1492x.png

main_latex2764x.png

main_latex1496x.png

main_latex2768x.png

main_latex1497x.png

main_latex2769x.png

main_latex1498x.png

main_latex2770x.png

main_latex1499x.png

main_latex2771x.png

main_latex2765x.png

main_latex1494x.png

main_latex2766x.png

main_latex1495x.png

main_latex2767x.png

main_latex1500x.png

main_latex2772x.png

main_latex1501x.png

main_latex2773x.png

main_latex1502x.png

main_latex2774x.png

main_latex1503x.png

Efield_1.png

Efield_2.png

Efield_-2.png

Efield_4.png

main_latex2744x.png

Epot_2.png

Efield_6.png

main_latex2741x.png

main_latex2742x.png

main_latex2743x.png

Epot_6.png

main_latex1474x.png

main_latex1475x.png

main_latex2745x.png

main_latex1476x.png

main_latex2746x.png

main_latex1477x.png

main_latex2747x.png

Epot_4.png

main_latex1482x.png

main_latex2752x.png

main_latex1483x.png

main_latex1478x.png

main_latex2748x.png

main_latex1479x.png

main_latex2749x.png

main_latex1480x.png

main_latex2750x.png

main_latex1481x.png

main_latex2751x.png

main_latex2834x.png

main_latex2835x.png

main_latex2836x.png

main_latex2841x.png

main_latex2842x.png

main_latex2843x.png

main_latex2837x.png

main_latex2838x.png

main_latex2839x.png

main_latex2840x.png

main_latex2844x.png

main_latex1569x.png

main_latex2845x.png

main_latex1570x.png

main_latex2846x.png

main_latex1571x.png

main_latex2847x.png

main_latex1576x.png

main_latex2852x.png

main_latex1577x.png

main_latex2853x.png

main_latex1578x.png

main_latex1572x.png

main_latex2848x.png

main_latex1573x.png

main_latex2849x.png

main_latex1574x.png

main_latex2850x.png

main_latex1575x.png

main_latex2851x.png

main_latex2814x.png

main_latex2818x.png

main_latex2819x.png

main_latex2820x.png

main_latex2825x.png

main_latex2815x.png

main_latex2816x.png

main_latex2817x.png

data.png

main_latex5145x.png

main_latex5146x.png

main_latex5143x.png

main_latex5144x.png

poissonQ1000-point.png

main_latex5150x.png

main_latex5151x.png

main_latex5148x.png

main_latex5149x.png

main_latex5147x.png

jack_m_02.png

main_latex2826x.png

poissonQ1000-square.png

main_latex2830x.png

main_latex2831x.png

main_latex2832x.png

main_latex2833x.png

main_latex2827x.png

poissonQ1000-unif.png

main_latex2828x.png

main_latex2829x.png

main_latex5154x.png

main_latex5155x.png

jack_chi_01.png

main_latex5153x.png

main_latex5152x.png

main_latex5160x.png

main_latex5158x.png

main_latex5159x.png

main_latex5156x.png

main_latex5157x.png

main_latex5123x.png

main_latex5124x.png

main_latex6454x.png

main_latex5125x.png

main_latex6455x.png

main_latex6453x.png

main_latex5132x.png

main_latex6462x.png

main_latex5133x.png

main_latex5130x.png

main_latex6460x.png

main_latex5131x.png

main_latex6461x.png

main_latex5128x.png

main_latex6458x.png

main_latex5129x.png

main_latex6459x.png

main_latex5126x.png

main_latex6456x.png

main_latex5127x.png

main_latex6457x.png

main_latex5135x.png

main_latex976x.png

main_latex5136x.png

main_latex975x.png

main_latex974x.png

main_latex5134x.png

main_latex973x.png

main_latex980x.png

main_latex979x.png

main_latex978x.png

main_latex977x.png

main_latex5142x.png

main_latex5140x.png

main_latex982x.png

main_latex5141x.png

main_latex981x.png

main_latex5138x.png

main_latex5139x.png

main_latex5137x.png

jack_m_01.png

main_latex5105x.png

main_latex5103x.png

main_latex6431x.png

main_latex5104x.png

main_latex6432x.png

main_latex6433x.png

main_latex5112x.png

main_latex6440x.png

main_latex5113x.png

main_latex6441x.png

main_latex5110x.png

main_latex6438x.png

main_latex5111x.png

main_latex6439x.png

main_latex5108x.png

main_latex6436x.png

main_latex5109x.png

main_latex6437x.png

main_latex5106x.png

main_latex6434x.png

main_latex5107x.png

main_latex6435x.png

main_latex5114x.png

main_latex6442x.png

main_latex5115x.png

main_latex6443x.png

main_latex5116x.png

main_latex6444x.png

main_latex5122x.png

main_latex6451x.png

boot_chi.png

main_latex6452x.png

main_latex5120x.png

main_latex6449x.png

main_latex5121x.png

main_latex6450x.png

main_latex5119x.png

main_latex6447x.png

boot_m.png

main_latex6448x.png

main_latex5117x.png

main_latex6445x.png

main_latex5118x.png

main_latex6446x.png

main_latex5086x.png

main_latex6411x.png

rho_01.png

main_latex5085x.png

main_latex6412x.png

main_latex5083x.png

main_latex6409x.png

main_latex5084x.png

main_latex6410x.png

main_latex5091x.png

main_latex6418x.png

main_latex6419x.png

rho_02.png

main_latex5089x.png

main_latex6416x.png

main_latex5090x.png

main_latex6417x.png

main_latex5087x.png

main_latex6414x.png

main_latex5088x.png

main_latex6415x.png

main_latex6413x.png

main_latex5094x.png

main_latex6422x.png

main_latex5095x.png

main_latex5092x.png

main_latex6420x.png

main_latex5093x.png

main_latex6421x.png

main_latex5101x.png

main_latex6429x.png

main_latex5102x.png

main_latex6430x.png

main_latex5099x.png

main_latex6427x.png

main_latex5100x.png

main_latex6428x.png

main_latex5097x.png

main_latex6425x.png

main_latex5098x.png

main_latex6426x.png

main_latex6423x.png

main_latex5096x.png

main_latex6424x.png

main_latex6391x.png

main_latex6392x.png

main_latex6389x.png

main_latex6390x.png

main_latex6387x.png

main_latex6388x.png

main_latex5056x.png

main_latex6396x.png

main_latex5057x.png

main_latex6397x.png

main_latex5051x.png

main_latex6394x.png

main_latex5055x.png

main_latex6395x.png

main_latex6393x.png

main_latex5062x.png

main_latex6402x.png

main_latex5063x.png

main_latex5060x.png

main_latex6400x.png

main_latex5061x.png

main_latex6401x.png

main_latex5058x.png

main_latex6398x.png

main_latex5059x.png

main_latex6399x.png

main_latex5081x.png

main_latex6407x.png

main_latex5082x.png

main_latex6408x.png

main_latex5079x.png

main_latex6405x.png

main_latex5080x.png

main_latex6406x.png

main_latex6403x.png

main_latex5074x.png

main_latex6404x.png

main_latex6371x.png

main_latex6372x.png

main_latex6369x.png

main_latex6370x.png

main_latex6367x.png

main_latex6368x.png

main_latex6365x.png

main_latex6366x.png

main_latex6374x.png

main_latex6375x.png

main_latex6373x.png

main_latex6382x.png

main_latex6380x.png

main_latex6381x.png

main_latex6378x.png

main_latex6379x.png

main_latex6376x.png

main_latex6377x.png

main_latex6385x.png

main_latex6386x.png

main_latex6383x.png

main_latex6384x.png

main_latex6363x.png

main_latex6364x.png

main_latex1470x.png

main_latex1471x.png

main_latex1472x.png

main_latex1473x.png

main_latex886x.png

main_latex885x.png

log06.png

main_latex890x.png

main_latex889x.png

main_latex888x.png

main_latex887x.png

main_latex1452x.png

main_latex1453x.png

main_latex1448x.png

main_latex1449x.png

main_latex1450x.png

main_latex1451x.png

main_latex1455x.png

main_latex1456x.png

main_latex1457x.png

main_latex1458x.png

main_latex1454x.png

main_latex1463x.png

main_latex1459x.png

main_latex1460x.png

main_latex1461x.png

main_latex1462x.png

main_latex1466x.png

main_latex1467x.png

main_latex1468x.png

main_latex1469x.png

main_latex1464x.png

main_latex1465x.png

main_latex1430x.png

main_latex2705x.png

main_latex1431x.png

main_latex2706x.png

main_latex1432x.png

main_latex2707x.png

main_latex1433x.png

main_latex1426x.png

main_latex2701x.png

main_latex1427x.png

main_latex2702x.png

main_latex1428x.png

main_latex2703x.png

main_latex1429x.png

main_latex2704x.png

main_latex2708x.png

main_latex1434x.png

main_latex2709x.png

main_latex1435x.png

main_latex2710x.png

main_latex1436x.png

main_latex2711x.png

main_latex1441x.png

main_latex2720x.png

main_latex1442x.png

main_latex2721x.png

main_latex1443x.png

main_latex1437x.png

main_latex2712x.png

main_latex1438x.png

main_latex2718x.png

main_latex1439x.png

main_latex2719x.png

eline.png

main_latex1440x.png

main_latex1444x.png

main_latex1445x.png

main_latex1446x.png

main_latex1447x.png

main_latex1408x.png

main_latex2683x.png

main_latex1409x.png

main_latex2684x.png

main_latex1410x.png

main_latex2685x.png

main_latex1411x.png

main_latex2686x.png

main_latex1404x.png

main_latex2679x.png

main_latex1405x.png

main_latex2680x.png

main_latex1406x.png

main_latex2681x.png

main_latex1407x.png

main_latex2682x.png

main_latex1412x.png

main_latex2687x.png

main_latex1413x.png

main_latex942x.png

main_latex946x.png

main_latex945x.png

main_latex944x.png

main_latex943x.png

main_latex951x.png

main_latex948x.png

bif03.png

main_latex2688x.png

main_latex1414x.png

main_latex2689x.png

main_latex947x.png

main_latex952x.png

main_latex1419x.png

main_latex2694x.png

main_latex1420x.png

main_latex2695x.png

main_latex1421x.png

main_latex2696x.png

main_latex1422x.png

main_latex2697x.png

main_latex1415x.png

main_latex2690x.png

main_latex1416x.png

main_latex2691x.png

main_latex1417x.png

main_latex2692x.png

main_latex1418x.png

main_latex2693x.png

main_latex1423x.png

main_latex935x.png

main_latex934x.png

main_latex933x.png

main_latex932x.png

main_latex939x.png

main_latex2698x.png

main_latex938x.png

main_latex1424x.png

main_latex2699x.png

main_latex937x.png

main_latex1425x.png

main_latex2700x.png

main_latex936x.png

main_latex941x.png

main_latex940x.png

main_latex1386x.png

main_latex2661x.png

main_latex1387x.png

main_latex2662x.png

main_latex1388x.png

main_latex2663x.png

main_latex1389x.png

main_latex2664x.png

main_latex2657x.png

main_latex1384x.png

main_latex2660x.png

main_latex1385x.png

srBd_xyz.png

main_latex1390x.png

main_latex2665x.png

main_latex1391x.png

main_latex2666x.png

main_latex1392x.png

main_latex2667x.png

main_latex1393x.png

main_latex965x.png

main_latex964x.png

main_latex963x.png

main_latex969x.png

main_latex968x.png

main_latex967x.png

main_latex966x.png

main_latex972x.png

main_latex971x.png

main_latex970x.png

main_latex1397x.png

main_latex2672x.png

main_latex1398x.png

main_latex2673x.png

main_latex1399x.png

main_latex2674x.png

main_latex1400x.png

main_latex2675x.png

main_latex2668x.png

main_latex1394x.png

main_latex2669x.png

main_latex1395x.png

main_latex2670x.png

main_latex1396x.png

main_latex2671x.png

main_latex1401x.png

main_latex2676x.png

main_latex1402x.png

main_latex2677x.png

main_latex1403x.png

main_latex954x.png

main_latex953x.png

main_latex958x.png

main_latex957x.png

main_latex956x.png

main_latex955x.png

main_latex962x.png

main_latex961x.png

main_latex960x.png

main_latex2678x.png

main_latex959x.png

srB_xy.png

main_latex2640x.png

main_latex2641x.png

main_latex903x.png

main_latex2642x.png

main_latex902x.png

main_latex2639x.png

srBE_xyz.png

main_latex2643x.png

main_latex2644x.png

main_latex2645x.png

main_latex2646x.png

main_latex904x.png

main_latex908x.png

main_latex907x.png

main_latex906x.png

main_latex905x.png

main_latex912x.png

main_latex911x.png

main_latex910x.png

main_latex909x.png

main_latex1375x.png

main_latex2649x.png

main_latex1376x.png

main_latex2650x.png

main_latex893x.png

main_latex1377x.png

main_latex2651x.png

main_latex892x.png

main_latex1378x.png

main_latex2652x.png

main_latex891x.png

main_latex2647x.png

main_latex1374x.png

main_latex2648x.png

main_latex1383x.png

main_latex1379x.png

main_latex2653x.png

main_latex1380x.png

main_latex2654x.png

main_latex1381x.png

main_latex2655x.png

main_latex1382x.png

main_latex2656x.png

main_latex897x.png

main_latex896x.png

main_latex895x.png

main_latex894x.png

main_latex901x.png

main_latex900x.png

main_latex899x.png

main_latex898x.png

main_latex2620x.png

main_latex2621x.png

main_latex2622x.png

main_latex2627x.png

main_latex2628x.png

main_latex2629x.png

main_latex2623x.png

main_latex2624x.png

main_latex2625x.png

main_latex2626x.png

main_latex926x.png

main_latex925x.png

main_latex924x.png

main_latex928x.png

main_latex927x.png

bif02.png

bif01.png

main_latex931x.png

main_latex930x.png

main_latex929x.png

main_latex2630x.png

main_latex2631x.png

main_latex2632x.png

main_latex2633x.png

main_latex913x.png

main_latex2637x.png

main_latex2638x.png

srB_xyz.png

main_latex2634x.png

main_latex2635x.png

main_latex2636x.png

main_latex915x.png

main_latex914x.png

main_latex919x.png

main_latex918x.png

main_latex917x.png

main_latex916x.png

main_latex923x.png

main_latex922x.png

main_latex921x.png

main_latex920x.png

main_latex2722x.png

main_latex2723x.png

main_latex2728x.png

main_latex2729x.png

main_latex2730x.png

main_latex2731x.png

main_latex2724x.png

main_latex2725x.png

main_latex2726x.png

main_latex2727x.png

main_latex5033x.png

main_latex5034x.png

main_latex5031x.png

main_latex5032x.png

main_latex5030x.png

main_latex5039x.png

main_latex5037x.png

main_latex5038x.png

main_latex5035x.png

main_latex5036x.png

main_latex2732x.png

main_latex2733x.png

main_latex2734x.png

main_latex2738x.png

main_latex2739x.png

main_latex2740x.png

main_latex2735x.png

main_latex2736x.png

main_latex2737x.png

ELines_version0.png

main_latex5045x.png

main_latex5046x.png

main_latex5042x.png

main_latex5043x.png

main_latex5040x.png

main_latex5041x.png

main_latex5049x.png

main_latex5050x.png

main_latex5047x.png

main_latex5048x.png

main_latex5012x.png

main_latex6355x.png

main_latex5013x.png

main_latex6356x.png

main_latex6353x.png

main_latex5011x.png

main_latex6354x.png

main_latex5020x.png

main_latex5018x.png

main_latex6361x.png

main_latex5019x.png

main_latex6362x.png

main_latex5016x.png

main_latex6359x.png

main_latex5017x.png

main_latex6360x.png

main_latex5014x.png

main_latex6357x.png

main_latex5015x.png

main_latex6358x.png

main_latex5023x.png

jack.png

main_latex5021x.png

main_latex5022x.png

main_latex5028x.png

main_latex5029x.png

main_latex5026x.png

main_latex5027x.png

main_latex5024x.png

main_latex5025x.png

main_latex4989x.png

main_latex6332x.png

main_latex4990x.png

main_latex6333x.png

main_latex869x.png

log04.png

main_latex4991x.png

main_latex6334x.png

log03.png

main_latex868x.png

main_latex873x.png

main_latex872x.png

main_latex871x.png

main_latex870x.png

main_latex4998x.png

main_latex6341x.png

main_latex4999x.png

main_latex6342x.png

main_latex4996x.png

main_latex6339x.png

main_latex875x.png

main_latex4997x.png

main_latex6340x.png

main_latex874x.png

main_latex4994x.png

main_latex6337x.png

main_latex4995x.png

main_latex6338x.png

main_latex4992x.png

main_latex6335x.png

main_latex4993x.png

main_latex6336x.png

main_latex5000x.png

main_latex5001x.png

main_latex6344x.png

main_latex860x.png

main_latex5002x.png

main_latex6345x.png

main_latex859x.png

main_latex858x.png

main_latex6343x.png

main_latex864x.png

main_latex863x.png

main_latex862x.png

main_latex861x.png

main_latex5009x.png

main_latex6352x.png

main_latex5010x.png

main_latex867x.png

main_latex5007x.png

main_latex6350x.png

main_latex866x.png

main_latex5008x.png

main_latex6351x.png

main_latex865x.png

main_latex5005x.png

main_latex6348x.png

main_latex5006x.png

main_latex6349x.png

main_latex5003x.png

main_latex6346x.png

main_latex5004x.png

main_latex6347x.png

main_latex4973x.png

main_latex6312x.png

main_latex4974x.png

main_latex4971x.png

main_latex6310x.png

main_latex4972x.png

main_latex6311x.png

main_latex4977x.png

main_latex6319x.png

main_latex4978x.png

main_latex6320x.png

main_latex4976x.png

main_latex6317x.png

main_latex6318x.png

rho_m_bcL.png

main_latex4975x.png

main_latex6315x.png

main_latex6316x.png

rho_m_L40_c.png

main_latex6313x.png

main_latex6314x.png

rho_m_L40.png

main_latex4980x.png

main_latex6321x.png

tauint.png

main_latex4979x.png

main_latex6322x.png

main_latex876x.png

main_latex880x.png

main_latex6323x.png

main_latex879x.png

main_latex878x.png

main_latex877x.png

main_latex884x.png

main_latex883x.png

main_latex882x.png

main_latex881x.png

main_latex4987x.png

main_latex6330x.png

main_latex4988x.png

main_latex6331x.png

main_latex4985x.png

main_latex6328x.png

log05.png

main_latex4986x.png

main_latex6329x.png

main_latex4983x.png

main_latex6326x.png

main_latex4984x.png

main_latex6327x.png

main_latex4981x.png

main_latex6324x.png

main_latex4982x.png

main_latex6325x.png

main_latex6292x.png

main_latex6290x.png

main_latex6291x.png

main_latex6288x.png

main_latex6289x.png

main_latex4958x.png

main_latex6297x.png

main_latex4959x.png

main_latex6298x.png

main_latex4956x.png

main_latex6295x.png

main_latex4957x.png

main_latex6296x.png

main_latex6293x.png

main_latex4955x.png

main_latex6294x.png

main_latex4965x.png

main_latex6301x.png

rho_m_b0_20.png

main_latex4964x.png

main_latex6302x.png

main_latex4960x.png

main_latex6299x.png

main_latex4963x.png

main_latex6300x.png

main_latex4969x.png

main_latex6308x.png

main_latex4970x.png

main_latex6309x.png

main_latex4967x.png

main_latex6306x.png

main_latex4968x.png

main_latex6307x.png

main_latex4966x.png

main_latex6304x.png

main_latex6305x.png

rho_m_b0_65.png

main_latex6303x.png

main_latex6272x.png

main_latex6270x.png

main_latex6271x.png

main_latex6268x.png

main_latex6269x.png

main_latex6266x.png

main_latex6267x.png

main_latex6275x.png

main_latex6276x.png

main_latex6273x.png

main_latex6274x.png

main_latex6281x.png

main_latex6282x.png

main_latex6279x.png

main_latex6280x.png

main_latex6277x.png

main_latex6278x.png

main_latex6286x.png

main_latex6287x.png

main_latex6284x.png

main_latex6285x.png

main_latex6283x.png

main_latex6264x.png

main_latex6265x.png

main_latex6263x.png

main_latex1371x.png

main_latex1372x.png

main_latex1373x.png

main_latex1353x.png

main_latex1349x.png

main_latex1350x.png

main_latex1351x.png

main_latex1352x.png

main_latex1356x.png

main_latex1357x.png

main_latex1358x.png

main_latex1359x.png

main_latex1354x.png

main_latex1355x.png

main_latex1360x.png

main_latex1361x.png

main_latex1362x.png

main_latex1363x.png

main_latex1367x.png

main_latex1368x.png

main_latex1369x.png

main_latex1370x.png

main_latex1364x.png

main_latex1365x.png

main_latex1366x.png

main_latex1332x.png

main_latex2608x.png

main_latex1333x.png

main_latex2609x.png

main_latex1334x.png

main_latex1328x.png

main_latex2604x.png

main_latex1329x.png

main_latex2605x.png

main_latex1330x.png

main_latex2606x.png

main_latex1331x.png

main_latex2607x.png

main_latex1335x.png

main_latex2611x.png

main_latex1336x.png

main_latex2612x.png

main_latex1337x.png

main_latex2613x.png

main_latex1338x.png

main_latex2614x.png

main_latex2610x.png

main_latex1342x.png

main_latex2619x.png

main_latex1343x.png

main_latex1339x.png

main_latex2615x.png

main_latex1340x.png

main_latex2616x.png

main_latex1341x.png

main_latex2617x.png

main_latex2618x.png

rc1.png

main_latex1345x.png

main_latex1346x.png

main_latex1347x.png

main_latex1348x.png

main_latex1344x.png

main_latex1310x.png

main_latex2586x.png

main_latex3919x.png

main_latex1311x.png

main_latex2587x.png

main_latex3918x.png

main_latex1312x.png

main_latex2588x.png

main_latex1313x.png

main_latex2589x.png

main_latex3920x.png

main_latex1306x.png

main_latex2582x.png

main_latex3915x.png

main_latex1307x.png

main_latex2583x.png

main_latex3914x.png

main_latex1308x.png

main_latex2584x.png

main_latex3917x.png

main_latex1309x.png

main_latex2585x.png

main_latex3916x.png

main_latex1314x.png

main_latex2590x.png

main_latex1315x.png

main_latex2591x.png

main_latex1316x.png

main_latex2592x.png

main_latex1321x.png

main_latex2597x.png

main_latex1322x.png

main_latex2598x.png

main_latex1323x.png

main_latex2599x.png

main_latex1324x.png

main_latex1317x.png

main_latex2593x.png

main_latex1318x.png

main_latex2594x.png

main_latex1319x.png

main_latex2595x.png

main_latex1320x.png

main_latex2596x.png

main_latex2600x.png

main_latex1325x.png

main_latex2601x.png

main_latex1326x.png

main_latex2602x.png

main_latex1327x.png

main_latex2603x.png

main_latex1288x.png

main_latex2566x.png

main_latex3897x.png

main_latex1289x.png

main_latex2567x.png

uoc-06.png

main_latex1290x.png

main_latex2568x.png

main_latex3899x.png

Bzy.png

main_latex1291x.png

main_latex3898x.png

main_latex2562x.png

uoc-03.png

main_latex1285x.png

main_latex2563x.png

uoc-02.png

main_latex1286x.png

main_latex2564x.png

uoc-05.png

main_latex1287x.png

main_latex2565x.png

uoc-04.png

main_latex1292x.png

main_latex2569x.png

main_latex1293x.png

main_latex2570x.png

main_latex3900x.png

main_latex1294x.png

main_latex3902x.png

main_latex2571x.png

main_latex3901x.png

Byz.png

main_latex1299x.png

main_latex3908x.png

main_latex1300x.png

main_latex2576x.png

main_latex3907x.png

main_latex1301x.png

main_latex2577x.png

main_latex3910x.png

main_latex1302x.png

main_latex2578x.png

main_latex3909x.png

main_latex1295x.png

main_latex2572x.png

main_latex3904x.png

main_latex1296x.png

main_latex2573x.png

main_latex3903x.png

main_latex1297x.png

main_latex2574x.png

main_latex3906x.png

main_latex1298x.png

main_latex2575x.png

main_latex3905x.png

main_latex1303x.png

main_latex2579x.png

main_latex1304x.png

main_latex3911x.png

main_latex2580x.png

main_latex3913x.png

main_latex1305x.png

main_latex2581x.png

main_latex3912x.png

main_latex2546x.png

main_latex3881x.png

main_latex2547x.png

main_latex3880x.png

main_latex2548x.png

main_latex3883x.png

main_latex2549x.png

main_latex3882x.png

main_latex3877x.png

main_latex2544x.png

main_latex3879x.png

main_latex2545x.png

main_latex3878x.png

main_latex2550x.png

main_latex3885x.png

main_latex2551x.png

main_latex3884x.png

main_latex2552x.png

main_latex2553x.png

main_latex3886x.png

main_latex1277x.png

main_latex2556x.png

main_latex3892x.png

main_latex1278x.png

main_latex2557x.png

main_latex3891x.png

main_latex1279x.png

main_latex2558x.png

main_latex3894x.png

main_latex1280x.png

main_latex2559x.png

main_latex3893x.png

main_latex3888x.png

main_latex2554x.png

main_latex3887x.png

B.png

main_latex1275x.png

main_latex3890x.png

main_latex1276x.png

main_latex2555x.png

main_latex3889x.png

main_latex1281x.png

main_latex2560x.png

main_latex3896x.png

BE.png

main_latex1282x.png

main_latex3895x.png

main_latex1283x.png

main_latex2561x.png

main_latex1284x.png

uoc-01.png

main_latex2523x.png

main_latex3863x.png

main_latex2524x.png

main_latex3859x.png

hoc-01.png

main_latex2525x.png

main_latex2526x.png

main_latex3864x.png

main_latex3858x.png

main_latex2531x.png

main_latex2532x.png

main_latex3866x.png

hoc-10.png

main_latex2527x.png

hoc-01d.png

main_latex2528x.png

main_latex2529x.png

main_latex3865x.png

hoc-10d.png

main_latex2530x.png

main_latex2534x.png

main_latex3870x.png

main_latex2536x.png

main_latex3869x.png

main_latex2537x.png

main_latex3872x.png

main_latex2538x.png

main_latex3871x.png

main_latex3868x.png

main_latex2533x.png

main_latex3867x.png

main_latex2543x.png

main_latex2539x.png

main_latex3874x.png

main_latex2540x.png

main_latex3873x.png

main_latex2541x.png

main_latex3876x.png

main_latex2542x.png

main_latex3875x.png

main_latex3838x.png

main_latex3840x.png

main_latex3839x.png

main_latex3846x.png

main_latex3845x.png

main_latex3847x.png

main_latex3842x.png

main_latex3841x.png

main_latex3844x.png

main_latex3843x.png

main_latex6153x.png

main_latex6154x.png

main_latex6151x.png

main_latex6152x.png

main_latex6149x.png

main_latex6150x.png

main_latex6157x.png

main_latex6158x.png

main_latex6155x.png

main_latex6156x.png

main_latex3849x.png

main_latex3848x.png

main_latex3851x.png

main_latex3850x.png

main_latex3857x.png

main_latex3856x.png

main_latex3853x.png

main_latex3852x.png

main_latex3855x.png

main_latex3854x.png

main_latex300x.png

main_latex6256x.png

main_latex299x.png

main_latex6257x.png

main_latex298x.png

main_latex6254x.png

main_latex6255x.png

main_latex304x.png

main_latex303x.png

main_latex6253x.png

main_latex302x.png

main_latex301x.png

main_latex307x.png

main_latex306x.png

main_latex6262x.png

main_latex305x.png

main_latex6260x.png

main_latex6261x.png

main_latex6258x.png

main_latex6259x.png

fig06.png

main_latex289x.png

main_latex293x.png

main_latex292x.png

main_latex291x.png

main_latex290x.png

main_latex297x.png

main_latex296x.png

main_latex295x.png

main_latex294x.png

main_latex315x.png

main_latex319x.png

main_latex6234x.png

main_latex318x.png

main_latex6235x.png

main_latex317x.png

main_latex316x.png

main_latex6233x.png

fig07.png

main_latex322x.png

main_latex321x.png

main_latex320x.png

main_latex6242x.png

main_latex6240x.png

main_latex323x.png

main_latex6241x.png

main_latex6238x.png

main_latex6239x.png

main_latex6236x.png

main_latex6237x.png

main_latex309x.png

main_latex6245x.png

main_latex308x.png

main_latex6246x.png

charge_in_B_vxyzt.png

main_latex6243x.png

charge_in_B_xyzt.png

main_latex6244x.png

main_latex312x.png

charge_in_B_traj.png

main_latex311x.png

main_latex310x.png

main_latex314x.png

main_latex6251x.png

main_latex313x.png

main_latex6252x.png

main_latex6249x.png

main_latex6250x.png

main_latex6247x.png

main_latex6248x.png

main_latex6209x.png

main_latex6210x.png

main_latex6211x.png

main_latex6220x.png

main_latex6221x.png

main_latex6218x.png

main_latex6219x.png

main_latex6216x.png

main_latex6217x.png

main_latex6212x.png

main_latex6215x.png

main_latex6222x.png

main_latex6223x.png

main_latex6224x.png

main_latex6231x.png

main_latex6232x.png

main_latex6229x.png

main_latex6230x.png

main_latex6227x.png

main_latex6228x.png

main_latex6225x.png

main_latex6226x.png

main_latex6187x.png

main_latex6188x.png

main_latex6185x.png

main_latex6186x.png

main_latex280x.png

main_latex283x.png

conical_pendulum_anim.png

main_latex282x.png

main_latex281x.png

main_latex287x.png

main_latex6196x.png

main_latex286x.png

main_latex6197x.png

main_latex285x.png

main_latex6192x.png

main_latex284x.png

main_latex6193x.png

main_latex6190x.png

main_latex6191x.png

main_latex288x.png

main_latex6189x.png

main_latex6200x.png

main_latex6198x.png

main_latex6199x.png

main_latex6207x.png

main_latex6208x.png

main_latex6205x.png

main_latex6206x.png

main_latex6203x.png

main_latex6204x.png

main_latex6201x.png

main_latex6202x.png

main_latex6167x.png

main_latex6168x.png

main_latex6165x.png

main_latex6166x.png

main_latex6163x.png

main_latex6164x.png

main_latex6172x.png

main_latex6173x.png

main_latex6170x.png

main_latex6171x.png

main_latex6169x.png

main_latex6178x.png

main_latex6176x.png

main_latex6177x.png

main_latex6174x.png

main_latex6175x.png

main_latex363x.png

main_latex362x.png

main_latex367x.png

main_latex366x.png

main_latex365x.png

main_latex364x.png

main_latex371x.png

main_latex370x.png

main_latex369x.png

main_latex368x.png

main_latex6183x.png

main_latex6184x.png

main_latex6181x.png

main_latex6182x.png

main_latex6179x.png

main_latex6180x.png

main_latex6161x.png

main_latex6162x.png

main_latex6159x.png

main_latex6160x.png

main_latex336x.png

main_latex335x.png

main_latex334x.png

main_latex338x.png

box1Dx_detail.png

box1Dx.png

main_latex337x.png

main_latex341x.png

main_latex340x.png

main_latex339x.png

main_latex325x.png

main_latex324x.png

main_latex329x.png

main_latex328x.png

main_latex327x.png

main_latex326x.png

main_latex333x.png

main_latex332x.png

main_latex331x.png

main_latex330x.png

main_latex352x.png

main_latex356x.png

main_latex355x.png

main_latex354x.png

main_latex353x.png

main_latex360x.png

main_latex359x.png

main_latex358x.png

main_latex357x.png

main_latex361x.png

main_latex345x.png

main_latex344x.png

main_latex343x.png

main_latex342x.png

main_latex349x.png

main_latex348x.png

main_latex347x.png

main_latex346x.png

main_latex351x.png

main_latex350x.png

main_latex1251x.png

main_latex1252x.png

main_latex1253x.png

main_latex1254x.png

main_latex1258x.png

main_latex1259x.png

main_latex1260x.png

main_latex1261x.png

main_latex1255x.png

main_latex1256x.png

main_latex1257x.png

main_latex1262x.png

main_latex1263x.png

main_latex1264x.png

main_latex1269x.png

main_latex1270x.png

main_latex1271x.png

main_latex1272x.png

main_latex1265x.png

main_latex1266x.png

main_latex1267x.png

main_latex1268x.png

main_latex1233x.png

main_latex2513x.png

main_latex1234x.png

main_latex1229x.png

main_latex2509x.png

main_latex1230x.png

main_latex2510x.png

main_latex1231x.png

main_latex2511x.png

main_latex1232x.png

main_latex2512x.png

main_latex1236x.png

main_latex2516x.png

main_latex1237x.png

main_latex2517x.png

main_latex1238x.png

rkA_cpend.png

main_latex1239x.png

main_latex2518x.png

main_latex2514x.png

main_latex1235x.png

main_latex2515x.png

main_latex1244x.png

main_latex1240x.png

main_latex2519x.png

main_latex1241x.png

main_latex2520x.png

main_latex1242x.png

main_latex2521x.png

main_latex1243x.png

main_latex2522x.png

main_latex1247x.png

main_latex1248x.png

main_latex1249x.png

main_latex1250x.png

main_latex1245x.png

main_latex1246x.png

main_latex1212x.png

main_latex2491x.png

main_latex3825x.png

main_latex1213x.png

main_latex2492x.png

main_latex3824x.png

ent01.png

main_latex2493x.png

main_latex1214x.png

main_latex1208x.png

main_latex2487x.png

main_latex3821x.png

main_latex1209x.png

main_latex2488x.png

main_latex3820x.png

main_latex1210x.png

main_latex2489x.png

main_latex3823x.png

main_latex1211x.png

main_latex2490x.png

main_latex3822x.png

main_latex2494x.png

main_latex1215x.png

main_latex2495x.png

main_latex1216x.png

main_latex2496x.png

main_latex1217x.png

main_latex2497x.png

main_latex1222x.png

main_latex2502x.png

main_latex1223x.png

main_latex2503x.png

main_latex1224x.png

main_latex1218x.png

main_latex2498x.png

main_latex1219x.png

main_latex2499x.png

main_latex1220x.png

main_latex2500x.png

main_latex1221x.png

main_latex2501x.png

main_latex1225x.png

main_latex2505x.png

main_latex1226x.png

main_latex2506x.png

main_latex1227x.png

main_latex2507x.png

main_latex1228x.png

main_latex2508x.png

main_latex2504x.png

main_latex1191x.png

main_latex2469x.png

main_latex3802x.png

main_latex1192x.png

main_latex2470x.png

sch-converge.png

main_latex1193x.png

main_latex2471x.png

main_latex3804x.png

main_latex1194x.png

main_latex2472x.png

main_latex3803x.png

main_latex1187x.png

main_latex2465x.png

main_latex3799x.png

main_latex1188x.png

main_latex2466x.png

main_latex3798x.png

main_latex1189x.png

main_latex2467x.png

main_latex3801x.png

main_latex1190x.png

main_latex2468x.png

main_latex3800x.png

main_latex1195x.png

main_latex2473x.png

main_latex1196x.png

main_latex3805x.png

main_latex2474x.png

main_latex3808x.png

main_latex1197x.png

main_latex2475x.png

main_latex3807x.png

main_latex1201x.png

main_latex2480x.png

main_latex3814x.png

main_latex1202x.png

main_latex2481x.png

main_latex3813x.png

main_latex1203x.png

main_latex2482x.png

main_latex1204x.png

main_latex2483x.png

main_latex3815x.png

main_latex1198x.png

main_latex2476x.png

main_latex3810x.png

main_latex1199x.png

main_latex2477x.png

main_latex3809x.png

main_latex1200x.png

main_latex2478x.png

main_latex3812x.png

hist4_0.png

main_latex2479x.png

main_latex3811x.png

main_latex1205x.png

main_latex3817x.png

main_latex2484x.png

main_latex3816x.png

main_latex1206x.png

main_latex2485x.png

main_latex3819x.png

main_latex1207x.png

main_latex2486x.png

main_latex3818x.png

main_latex2447x.png

main_latex3775x.png

main_latex2448x.png

main_latex3774x.png

main_latex2449x.png

main_latex3777x.png

main_latex2450x.png

main_latex3776x.png

main_latex3771x.png

main_latex2444x.png

main_latex3770x.png

main_latex2445x.png

main_latex3773x.png

main_latex2446x.png

main_latex3772x.png

main_latex2451x.png

main_latex3779x.png

main_latex2452x.png

main_latex3778x.png

main_latex2453x.png

main_latex3780x.png

main_latex1180x.png

main_latex2458x.png

main_latex3792x.png

main_latex1181x.png

main_latex2459x.png

main_latex3791x.png

main_latex1182x.png

main_latex2460x.png

main_latex3794x.png

main_latex1183x.png

main_latex2461x.png

main_latex3793x.png

main_latex2454x.png

main_latex3782x.png

main_latex1177x.png

main_latex2455x.png

main_latex3781x.png

main_latex1178x.png

main_latex2456x.png

main_latex3790x.png

main_latex1179x.png

main_latex2457x.png

main_latex3789x.png

main_latex1184x.png

main_latex2462x.png

main_latex1185x.png

main_latex2463x.png

main_latex3795x.png

main_latex1186x.png

main_latex3797x.png

main_latex2464x.png

main_latex3796x.png

main_latex2425x.png

main_latex3752x.png

main_latex2426x.png

main_latex3751x.png

main_latex2427x.png

main_latex3754x.png

main_latex2428x.png

main_latex3753x.png

main_latex3750x.png

main_latex2424x.png

main_latex3748x.png

main_latex2433x.png

main_latex2429x.png

main_latex3756x.png

main_latex2430x.png

main_latex3755x.png

main_latex2431x.png

main_latex3758x.png

main_latex2432x.png

main_latex3757x.png

main_latex2436x.png

main_latex3763x.png

main_latex2437x.png

main_latex3762x.png

main_latex2438x.png

main_latex3765x.png

main_latex2439x.png

main_latex3764x.png

main_latex3759x.png

main_latex2434x.png

main_latex3761x.png

main_latex2435x.png

main_latex3760x.png

main_latex2440x.png

main_latex3767x.png

main_latex2441x.png

main_latex3766x.png

main_latex2442x.png

main_latex2443x.png

main_latex3769x.png

main_latex3729x.png

main_latex3728x.png

main_latex3731x.png

main_latex3730x.png

main_latex3737x.png

main_latex3736x.png

main_latex3733x.png

main_latex3732x.png

main_latex3735x.png

main_latex3734x.png

main_latex6050x.png

main_latex6051x.png

main_latex6049x.png

scale_LOD.png

main_latex6047x.png

main_latex6048x.png

main_latex6046x.png

main_latex6054x.png

main_latex6052x.png

main_latex6053x.png

main_latex3740x.png

main_latex3739x.png

main_latex3742x.png

main_latex3741x.png

main_latex3738x.png

main_latex3747x.png

main_latex3744x.png

main_latex3743x.png

main_latex3746x.png

main_latex3745x.png

main_latex6031x.png

main_latex6032x.png

main_latex6029x.png

main_latex6030x.png

main_latex6028x.png

main_latex6036x.png

main_latex6034x.png

main_latex6035x.png

scale_DU.png

main_latex6033x.png

main_latex3719x.png

main_latex3721x.png

main_latex3720x.png

main_latex3726x.png

v1.jpg

main_latex3727x.png

main_latex3723x.png

main_latex3722x.png

main_latex3725x.png

main_latex3724x.png

main_latex6041x.png

main_latex6042x.png

main_latex6039x.png

main_latex6040x.png

main_latex6037x.png

main_latex6038x.png

main_latex6045x.png

scale_LO.png

main_latex6043x.png

main_latex6044x.png

main_latex191x.png

main_latex6131x.png

main_latex190x.png

main_latex6132x.png

main_latex6125x.png

main_latex6130x.png

projectile.png

main_latex194x.png

main_latex193x.png

main_latex192x.png

main_latex198x.png

main_latex197x.png

main_latex196x.png

main_latex6137x.png

main_latex195x.png

main_latex6138x.png

main_latex6135x.png

main_latex6136x.png

main_latex6133x.png

main_latex6134x.png

main_latex3827x.png

main_latex3826x.png

main_latex3835x.png

main_latex3834x.png

main_latex3837x.png

main_latex3836x.png

main_latex3829x.png

main_latex3828x.png

main_latex3831x.png

main_latex3830x.png

main_latex6142x.png

main_latex6143x.png

main_latex6140x.png

main_latex6141x.png

main_latex6139x.png

main_latex6148x.png

main_latex6146x.png

main_latex6147x.png

main_latex6144x.png

main_latex6145x.png

main_latex6103x.png

main_latex6104x.png

projectileAirResistance_vxy.png

main_latex6105x.png

projectileAirResistance_xy.png

main_latex209x.png

main_latex208x.png

main_latex213x.png

main_latex212x.png

main_latex211x.png

main_latex210x.png

main_latex6113x.png

main_latex6114x.png

main_latex215x.png

main_latex6111x.png

main_latex214x.png

main_latex6112x.png

main_latex6108x.png

main_latex6109x.png

main_latex6106x.png

main_latex6107x.png

main_latex201x.png

main_latex6116x.png

main_latex200x.png

main_latex6117x.png

main_latex199x.png

main_latex6115x.png

main_latex204x.png

main_latex203x.png

projectileAirResistance.png

main_latex202x.png

main_latex6124x.png

main_latex207x.png

main_latex206x.png

main_latex6122x.png

main_latex205x.png

main_latex6123x.png

main_latex6120x.png

main_latex6121x.png

main_latex6118x.png

main_latex6119x.png

main_latex6083x.png

main_latex6081x.png

main_latex6082x.png

main_latex6090x.png

main_latex6091x.png

main_latex6088x.png

main_latex6089x.png

main_latex6086x.png

main_latex6087x.png

main_latex6084x.png

main_latex6085x.png

main_latex6092x.png

main_latex6093x.png

main_latex6094x.png

main_latex6101x.png

main_latex6102x.png

main_latex6099x.png

main_latex6100x.png

main_latex6097x.png

main_latex6098x.png

main_latex6095x.png

main_latex6096x.png

main_latex6063x.png

main_latex6061x.png

main_latex6062x.png

main_latex6059x.png

main_latex6060x.png

main_latex6068x.png

main_latex6069x.png

main_latex6066x.png

main_latex6067x.png

main_latex6064x.png

main_latex6065x.png

main_latex6072x.png

main_latex6073x.png

main_latex6070x.png

main_latex6071x.png

main_latex6079x.png

main_latex6080x.png

main_latex6077x.png

main_latex6078x.png

main_latex6075x.png

main_latex6076x.png

main_latex6074x.png

main_latex264x.png

main_latex263x.png

main_latex268x.png

main_latex267x.png

main_latex266x.png

main_latex265x.png

main_latex272x.png

main_latex271x.png

main_latex270x.png

main_latex269x.png

main_latex253x.png

main_latex257x.png

main_latex256x.png

main_latex255x.png

main_latex254x.png

main_latex261x.png

main_latex260x.png

main_latex259x.png

main_latex258x.png

main_latex262x.png

main_latex6057x.png

main_latex6058x.png

V.png

main_latex6056x.png

main_latex6055x.png

main_latex273x.png

conical_pendulum_vxyzt.png

conical_pendulum_xyzt.png

main_latex276x.png

splot.png

main_latex275x.png

main_latex274x.png

main_latex279x.png

main_latex278x.png

main_latex277x.png

main_latex226x.png

main_latex225x.png

main_latex230x.png

main_latex229x.png

main_latex228x.png

main_latex227x.png

main_latex234x.png

main_latex233x.png

main_latex232x.png

main_latex231x.png

main_latex216x.png

projectileAirResistance_traj.png

main_latex219x.png

main_latex218x.png

main_latex217x.png

main_latex223x.png

main_latex222x.png

main_latex221x.png

main_latex220x.png

main_latex224x.png

main_latex1273x.png

main_latex1274x.png

main_latex246x.png

main_latex245x.png

fig05.png

main_latex244x.png

main_latex250x.png

main_latex249x.png

main_latex248x.png

main_latex247x.png

main_latex252x.png

main_latex251x.png

main_latex237x.png

main_latex236x.png

main_latex235x.png

lissajoux.png

main_latex240x.png

main_latex239x.png

main_latex238x.png

main_latex243x.png

main_latex242x.png

main_latex241x.png

main_latex1139x.png

main_latex1135x.png

main_latex2410x.png

main_latex1136x.png

main_latex2411x.png

main_latex1137x.png

main_latex2412x.png

main_latex1138x.png

main_latex2413x.png

main_latex1141x.png

main_latex2417x.png

main_latex1142x.png

main_latex2418x.png

main_latex1143x.png

main_latex2419x.png

main_latex1144x.png

main_latex2420x.png

main_latex2414x.png

main_latex1140x.png

main_latex2415x.png

lia04.png

main_latex2416x.png

main_latex1145x.png

main_latex2421x.png

main_latex1146x.png

main_latex2422x.png

main_latex1147x.png

main_latex2423x.png

main_latex1148x.png

main_latex1152x.png

main_latex1153x.png

main_latex1154x.png

main_latex1155x.png

main_latex1149x.png

main_latex1150x.png

main_latex1151x.png

main_latex1117x.png

main_latex2394x.png

main_latex1118x.png

main_latex2395x.png

main_latex3718x.png

main_latex1119x.png

main_latex1113x.png

main_latex2391x.png

well-psiDbl05.png

main_latex1114x.png

main_latex2392x.png

well-psiDbl04.png

main_latex1115x.png

main_latex3717x.png

scatter_yu_b_v.png

main_latex1116x.png

main_latex2393x.png

well-psiDbl06.png

main_latex1120x.png

main_latex2397x.png

main_latex1121x.png

main_latex2398x.png

main_latex1122x.png

main_latex2399x.png

main_latex1123x.png

main_latex2400x.png

main_latex2396x.png

main_latex1128x.png

main_latex2404x.png

main_latex1129x.png

main_latex1124x.png

scatter_yu_b_a.png

main_latex1125x.png

main_latex2401x.png

main_latex1126x.png

main_latex2402x.png

main_latex1127x.png

main_latex2403x.png

main_latex1131x.png

main_latex2407x.png

main_latex1132x.png

main_latex2408x.png

main_latex1133x.png

rkA_pcb.png

main_latex1134x.png

main_latex2409x.png

main_latex2405x.png

main_latex1130x.png

main_latex2406x.png

main_latex1096x.png

main_latex2375x.png

main_latex3709x.png

main_latex1097x.png

main_latex2376x.png

main_latex3708x.png

main_latex1098x.png

scatter_hy_b_v.png

main_latex1099x.png

main_latex2377x.png

main_latex3710x.png

main_latex1092x.png

main_latex2371x.png

main_latex3705x.png

main_latex1093x.png

main_latex2372x.png

main_latex3704x.png

main_latex1094x.png

main_latex2373x.png

main_latex3707x.png

main_latex1095x.png

main_latex2374x.png

main_latex3706x.png

main_latex1100x.png

main_latex3712x.png

main_latex2378x.png

main_latex3711x.png

main_latex1101x.png

main_latex2379x.png

well-psi02.png

main_latex1102x.png

main_latex2380x.png

well-psi01.png

main_latex1107x.png

main_latex2384x.png

main_latex3714x.png

lia02.png

main_latex2385x.png

main_latex3713x.png

main_latex1108x.png

main_latex2386x.png

main_latex1109x.png

main_latex1103x.png

main_latex2381x.png

well-psi04.png

main_latex1104x.png

main_latex2382x.png

well-psi03.png

main_latex1105x.png

main_latex2383x.png

well-psi12.png

main_latex1106x.png

scatter_hy_s_v.png

well-psi08.png

main_latex2387x.png

well-psiDbl01.png

main_latex1110x.png

main_latex2388x.png

main_latex3716x.png

main_latex1111x.png

main_latex2389x.png

well-psiDbl03.png

main_latex1112x.png

main_latex2390x.png

well-psiDbl02.png

main_latex3715x.png

main_latex2353x.png

main_latex3687x.png

main_latex2354x.png

main_latex3686x.png

main_latex2355x.png

main_latex3689x.png

main_latex2356x.png

main_latex3688x.png

main_latex2349x.png

main_latex3683x.png

main_latex2350x.png

main_latex3682x.png

main_latex2351x.png

main_latex3685x.png

main_latex2352x.png

main_latex3684x.png

main_latex2357x.png

main_latex2358x.png

main_latex3690x.png

main_latex3692x.png

main_latex2359x.png

main_latex3691x.png

main_latex1086x.png

main_latex2364x.png

main_latex3698x.png

main_latex1087x.png

main_latex2365x.png

main_latex3697x.png

lia01.png

main_latex2366x.png

main_latex3700x.png

main_latex1088x.png

main_latex2367x.png

main_latex3699x.png

main_latex1082x.png

main_latex2360x.png

main_latex3694x.png

main_latex1083x.png

main_latex2361x.png

main_latex3693x.png

main_latex1084x.png

main_latex2362x.png

main_latex3696x.png

main_latex1085x.png

main_latex2363x.png

main_latex3695x.png

main_latex1089x.png

main_latex2368x.png

main_latex1090x.png

main_latex3701x.png

main_latex2369x.png

main_latex3703x.png

main_latex1091x.png

main_latex2370x.png

main_latex3702x.png

main_latex2333x.png

main_latex3665x.png

main_latex2334x.png

main_latex3664x.png

main_latex2335x.png

main_latex3667x.png

main_latex3666x.png

scatter_sigma_01.png

main_latex3661x.png

main_latex2331x.png

main_latex3663x.png

main_latex2332x.png

main_latex3662x.png

main_latex2336x.png

main_latex3669x.png

main_latex2337x.png

main_latex3668x.png

main_latex2338x.png

main_latex2339x.png

main_latex3670x.png

main_latex567x.png

main_latex566x.png

main_latex571x.png

main_latex570x.png

main_latex569x.png

main_latex568x.png

main_latex575x.png

main_latex574x.png

main_latex573x.png

main_latex572x.png

main_latex2342x.png

main_latex3676x.png

main_latex2343x.png

main_latex3675x.png

main_latex2344x.png

main_latex3678x.png

main_latex2345x.png

main_latex3677x.png

main_latex3672x.png

main_latex2340x.png

main_latex3671x.png

main_latex3674x.png

scatter_sigma_02.png

main_latex2341x.png

main_latex3673x.png

main_latex2346x.png

main_latex3680x.png

main_latex2347x.png

main_latex3679x.png

main_latex2348x.png

main_latex3681x.png

main_latex3644x.png

main_latex3636x.png

main_latex3646x.png

main_latex3645x.png

main_latex3635x.png

main_latex3651x.png

main_latex3648x.png

main_latex3647x.png

main_latex3650x.png

main_latex3649x.png

main_latex589x.png

main_latex588x.png

main_latex587x.png

main_latex586x.png

main_latex593x.png

main_latex592x.png

main_latex591x.png

main_latex590x.png

main_latex595x.png

main_latex594x.png

main_latex3653x.png

well-convergence2.png

main_latex3655x.png

main_latex3654x.png

well-convergence1.png

main_latex3652x.png

main_latex3657x.png

main_latex3656x.png

main_latex3659x.png

main_latex3658x.png

main_latex578x.png

main_latex577x.png

main_latex576x.png

main_latex582x.png

main_latex581x.png

main_latex580x.png

main_latex579x.png

main_latex585x.png

main_latex584x.png

main_latex583x.png

main_latex3626x.png

main_latex3625x.png

main_latex3628x.png

main_latex3627x.png

main_latex3634x.png

main_latex3633x.png

main_latex3630x.png

main_latex3629x.png

main_latex3632x.png

main_latex3631x.png

main_latex527x.png

main_latex531x.png

main_latex6010x.png

main_latex530x.png

main_latex6011x.png

main_latex529x.png

main_latex528x.png

main_latex6009x.png

main_latex535x.png

main_latex534x.png

main_latex533x.png

main_latex532x.png

main_latex6018x.png

main_latex6016x.png

main_latex536x.png

main_latex6017x.png

main_latex6014x.png

main_latex6015x.png

main_latex6012x.png

main_latex6013x.png

main_latex520x.png

scale_binder.png

main_latex519x.png

main_latex6021x.png

main_latex518x.png

main_latex6019x.png

main_latex517x.png

main_latex6020x.png

main_latex524x.png

main_latex523x.png

main_latex522x.png

main_latex521x.png

main_latex526x.png

main_latex6026x.png

main_latex525x.png

main_latex6027x.png

main_latex6024x.png

main_latex6025x.png

main_latex6022x.png

main_latex6023x.png

main_latex5988x.png

main_latex5989x.png

main_latex549x.png

main_latex548x.png

main_latex547x.png

main_latex552x.png

Wormhole03.png

main_latex5990x.png

main_latex551x.png

main_latex550x.png

main_latex555x.png

main_latex554x.png

main_latex553x.png

main_latex5996x.png

main_latex5997x.png

main_latex5994x.png

main_latex5995x.png

binder_cross.png

main_latex5993x.png

main_latex5991x.png

main_latex5992x.png

main_latex5998x.png

main_latex538x.png

main_latex537x.png

main_latex542x.png

main_latex5999x.png

main_latex541x.png

main_latex6000x.png

main_latex540x.png

main_latex539x.png

main_latex546x.png

main_latex545x.png

main_latex544x.png

main_latex543x.png

main_latex6007x.png

main_latex6008x.png

main_latex6005x.png

main_latex6006x.png

main_latex6003x.png

main_latex6004x.png

main_latex6001x.png

main_latex6002x.png

main_latex5962x.png

main_latex5963x.png

main_latex5960x.png

main_latex5961x.png

main_latex487x.png

main_latex491x.png

main_latex490x.png

main_latex489x.png

main_latex488x.png

main_latex495x.png

main_latex5969x.png

main_latex494x.png

main_latex5970x.png

main_latex493x.png

main_latex5967x.png

main_latex492x.png

main_latex5968x.png

main_latex5965x.png

main_latex5966x.png

main_latex496x.png

main_latex5964x.png

main_latex5979x.png

main_latex5971x.png

main_latex5972x.png

main_latex482x.png

main_latex481x.png

main_latex480x.png

main_latex479x.png

main_latex486x.png

main_latex5986x.png

main_latex485x.png

main_latex5987x.png

main_latex484x.png

main_latex5984x.png

main_latex483x.png

main_latex5985x.png

main_latex5982x.png

main_latex5983x.png

Wormhole02.png

main_latex5980x.png

Wormhole01.png

main_latex5981x.png

main_latex509x.png

main_latex508x.png

main_latex507x.png

main_latex513x.png

main_latex512x.png

main_latex511x.png

main_latex510x.png

main_latex516x.png

main_latex515x.png

main_latex514x.png

main_latex498x.png

main_latex497x.png

main_latex502x.png

main_latex501x.png

main_latex500x.png

main_latex499x.png

main_latex506x.png

main_latex5958x.png

main_latex505x.png

main_latex5959x.png

main_latex504x.png

main_latex5956x.png

main_latex503x.png

main_latex5957x.png

main_latex5954x.png

main_latex5955x.png

main_latex1176x.png

main_latex559x.png

main_latex558x.png

main_latex557x.png

main_latex556x.png

main_latex563x.png

main_latex562x.png

main_latex561x.png

main_latex560x.png

main_latex565x.png

main_latex564x.png

main_latex1156x.png

main_latex1157x.png

main_latex1158x.png

main_latex1163x.png

main_latex1164x.png

main_latex1165x.png

hist3_59.png

main_latex1159x.png

main_latex1160x.png

main_latex1161x.png

main_latex1162x.png

hist3_8.png

main_latex1166x.png

main_latex1167x.png

main_latex1172x.png

main_latex1173x.png

main_latex1174x.png

main_latex1175x.png

main_latex1168x.png

main_latex1169x.png

main_latex1170x.png

main_latex1171x.png

main_latex1020x.png

main_latex2300x.png

main_latex1021x.png

main_latex1016x.png

main_latex2296x.png

main_latex3622x.png

main_latex1017x.png

main_latex2297x.png

main_latex3621x.png

main_latex1018x.png

main_latex2298x.png

main_latex3624x.png

main_latex1019x.png

main_latex2299x.png

main_latex3623x.png

main_latex1023x.png

main_latex2303x.png

main_latex1024x.png

main_latex2304x.png

main_latex1025x.png

main_latex2305x.png

main_latex1026x.png

main_latex2306x.png

main_latex2301x.png

main_latex1022x.png

main_latex2302x.png

main_latex1031x.png

main_latex1027x.png

main_latex2307x.png

main_latex1028x.png

main_latex2308x.png

main_latex1029x.png

main_latex2309x.png

main_latex1030x.png

main_latex2310x.png

main_latex1034x.png

main_latex2314x.png

main_latex1035x.png

main_latex2315x.png

main_latex1036x.png

main_latex2316x.png

main_latex1037x.png

main_latex2317x.png

main_latex2311x.png

main_latex1032x.png

main_latex2312x.png

main_latex1033x.png

main_latex2313x.png

main_latex2278x.png

main_latex3601x.png

main_latex999x.png

main_latex1000x.png

main_latex2279x.png

main_latex3600x.png

main_latex1001x.png

main_latex2280x.png

main_latex1002x.png

main_latex2274x.png

main_latex3597x.png

main_latex995x.png

main_latex2275x.png

main_latex3596x.png

main_latex996x.png

main_latex2276x.png

main_latex3599x.png

main_latex997x.png

main_latex2277x.png

main_latex3598x.png

main_latex998x.png

main_latex2281x.png

main_latex3604x.png

main_latex1003x.png

main_latex2282x.png

main_latex3603x.png

main_latex1004x.png

main_latex2283x.png

main_latex3610x.png

main_latex1005x.png

main_latex2284x.png

main_latex3609x.png

main_latex3602x.png

main_latex1009x.png

main_latex2289x.png

main_latex1010x.png

main_latex2290x.png

main_latex3615x.png

main_latex1011x.png

main_latex1006x.png

main_latex2285x.png

main_latex3612x.png

main_latex1007x.png

main_latex2286x.png

main_latex3611x.png

main_latex1008x.png

main_latex2287x.png

main_latex3614x.png

ev.png

main_latex2288x.png

main_latex3613x.png

main_latex1012x.png

main_latex2292x.png

main_latex3619x.png

main_latex1013x.png

main_latex2293x.png

main_latex3618x.png

main_latex1014x.png

main_latex2294x.png

wells.png

main_latex1015x.png

main_latex2295x.png

main_latex3620x.png

main_latex3617x.png

main_latex2291x.png

main_latex3616x.png

main_latex2256x.png

main_latex3575x.png

main_latex4944x.png

main_latex2257x.png

main_latex3574x.png

main_latex4943x.png

main_latex2258x.png

main_latex3577x.png

main_latex2259x.png

main_latex3576x.png

main_latex4945x.png

main_latex2252x.png

main_latex3571x.png

main_latex4940x.png

main_latex2253x.png

main_latex3570x.png

main_latex4939x.png

main_latex2254x.png

main_latex3573x.png

main_latex4942x.png

main_latex2255x.png

main_latex3572x.png

main_latex4941x.png

main_latex2260x.png

main_latex3578x.png

main_latex4947x.png

main_latex4946x.png

main_latex2261x.png

main_latex3580x.png

main_latex4949x.png

main_latex2262x.png

main_latex3579x.png

main_latex4948x.png

main_latex983x.png

main_latex2267x.png

main_latex3586x.png

main_latex4954x.png

main_latex988x.png

main_latex2268x.png

main_latex3585x.png

main_latex4953x.png

main_latex989x.png

main_latex2269x.png

main_latex990x.png

main_latex2270x.png

main_latex3587x.png

main_latex991x.png

main_latex2263x.png

main_latex3582x.png

main_latex984x.png

trho_m_L100b0_42.png

main_latex2264x.png

main_latex3581x.png

main_latex4950x.png

main_latex985x.png

main_latex2265x.png

main_latex3584x.png

main_latex4952x.png

main_latex986x.png

main_latex2266x.png

main_latex3583x.png

main_latex4951x.png

main_latex987x.png

main_latex992x.png

main_latex3589x.png

main_latex2271x.png

main_latex3588x.png

main_latex2272x.png

main_latex3595x.png

main_latex993x.png

main_latex2273x.png

main_latex3590x.png

main_latex994x.png

main_latex2234x.png

main_latex3551x.png

main_latex4924x.png

main_latex2235x.png

main_latex3550x.png

main_latex4923x.png

main_latex2236x.png

main_latex3553x.png

rho_m_L100b0_42.png

main_latex2237x.png

main_latex3552x.png

main_latex4925x.png

main_latex3547x.png

main_latex4920x.png

main_latex2231x.png

main_latex3546x.png

main_latex4919x.png

main_latex2232x.png

main_latex3549x.png

main_latex4922x.png

main_latex2233x.png

main_latex3548x.png

main_latex4921x.png

main_latex2238x.png

main_latex3555x.png

main_latex2239x.png

main_latex3554x.png

main_latex4926x.png

main_latex2240x.png

main_latex3556x.png

main_latex4928x.png

main_latex4927x.png

main_latex2245x.png

main_latex3564x.png

main_latex4933x.png

main_latex2246x.png

main_latex3563x.png

main_latex4932x.png

main_latex2247x.png

main_latex3566x.png

main_latex4935x.png

main_latex2248x.png

main_latex3565x.png

main_latex4934x.png

main_latex2241x.png

main_latex3558x.png

main_latex4930x.png

main_latex2242x.png

main_latex3557x.png

main_latex4929x.png

main_latex2243x.png

main_latex3562x.png

main_latex4931x.png

lrho_m_L100b0_42.png

main_latex2244x.png

main_latex3561x.png

main_latex2249x.png

main_latex2250x.png

main_latex3567x.png

main_latex4936x.png

main_latex3569x.png

main_latex4938x.png

main_latex2251x.png

main_latex3568x.png

main_latex4937x.png

main_latex3529x.png

main_latex4901x.png

main_latex3528x.png

main_latex4900x.png

main_latex3531x.png

main_latex4903x.png

main_latex3530x.png

main_latex4902x.png

main_latex4897x.png

main_latex3527x.png

main_latex4899x.png

main_latex3526x.png

main_latex4898x.png

main_latex3533x.png

main_latex4905x.png

main_latex3532x.png

main_latex4904x.png

main_latex3535x.png

main_latex3534x.png

main_latex4906x.png

main_latex3540x.png

main_latex4912x.png

main_latex3539x.png

main_latex4911x.png

main_latex3542x.png

main_latex4914x.png

main_latex3541x.png

main_latex4913x.png

main_latex3536x.png

main_latex4908x.png

main_latex4907x.png

main_latex3538x.png

main_latex4910x.png

main_latex3537x.png

main_latex4909x.png

main_latex3544x.png

main_latex4916x.png

main_latex3543x.png

main_latex4915x.png

main_latex3545x.png

main_latex4917x.png

main_latex4881x.png

therm_b0_20.png

thermL100b0_48_m.png

main_latex4882x.png

main_latex4880x.png

main_latex4886x.png

main_latex4884x.png

main_latex4883x.png

main_latex4885x.png

thermL100b0_48_m_av.png

main_latex472x.png

main_latex471x.png

main_latex468x.png

main_latex475x.png

cylinder3D_traj.png

main_latex474x.png

main_latex473x.png

main_latex478x.png

main_latex477x.png

main_latex476x.png

main_latex3518x.png

main_latex4890x.png

main_latex3517x.png

main_latex4889x.png

main_latex3520x.png

main_latex4892x.png

main_latex3519x.png

main_latex4891x.png

main_latex3516x.png

main_latex4888x.png

main_latex4887x.png

main_latex3525x.png

main_latex3522x.png

main_latex4894x.png

main_latex3521x.png

main_latex4893x.png

main_latex3524x.png

main_latex4896x.png

main_latex3523x.png

main_latex4895x.png

main_latex4855x.png

main_latex4857x.png

main_latex4856x.png

main_latex4863x.png

main_latex4862x.png

main_latex4864x.png

main_latex4859x.png

main_latex4858x.png

main_latex4861x.png

main_latex4860x.png

main_latex4867x.png

main_latex4866x.png

main_latex4869x.png

main_latex4868x.png

main_latex4879x.png

therm_b0_50.png

thermL40b0_48.png

main_latex4872x.png

main_latex4878x.png

main_latex4877x.png

main_latex414x.png

box2D_1_dat_vt.png

box2D_1_dat_xyt.png

main_latex413x.png

main_latex418x.png

main_latex417x.png

main_latex416x.png

main_latex415x.png

main_latex420x.png

main_latex419x.png

main_latex405x.png

main_latex404x.png

main_latex403x.png

main_latex409x.png

main_latex408x.png

main_latex407x.png

main_latex406x.png

main_latex412x.png

main_latex411x.png

main_latex410x.png

mini_golf_traj.png

main_latex430x.png

main_latex434x.png

main_latex433x.png

main_latex432x.png

main_latex431x.png

main_latex438x.png

main_latex437x.png

main_latex436x.png

main_latex435x.png

main_latex421x.png

main_latex424x.png

main_latex423x.png

box2D_1_dat_traj_1.png

main_latex422x.png

main_latex428x.png

main_latex427x.png

main_latex426x.png

main_latex425x.png

main_latex429x.png

main_latex377x.png

main_latex375x.png

main_latex373x.png

main_latex372x.png

main_latex381x.png

main_latex380x.png

main_latex379x.png

main_latex378x.png

main_latex383x.png

main_latex382x.png

main_latex396x.png

main_latex395x.png

main_latex400x.png

main_latex399x.png

main_latex398x.png

main_latex397x.png

main_latex402x.png

main_latex401x.png

box1D_anal_err_2.png

box1D_anal_err_1.png

main_latex385x.png

main_latex389x.png

main_latex388x.png

main_latex387x.png

main_latex386x.png

main_latex393x.png

main_latex392x.png

main_latex391x.png

main_latex390x.png

main_latex394x.png

main_latex1060x.png

main_latex1061x.png

main_latex452x.png

main_latex451x.png

main_latex450x.png

main_latex449x.png

main_latex456x.png

main_latex455x.png

main_latex454x.png

main_latex1062x.png

main_latex453x.png

main_latex458x.png

main_latex457x.png

main_latex1067x.png

main_latex1068x.png

main_latex1069x.png

main_latex1070x.png

main_latex1063x.png

main_latex1064x.png

main_latex1065x.png

main_latex1066x.png

main_latex1071x.png

main_latex441x.png

main_latex440x.png

main_latex439x.png

main_latex445x.png

main_latex444x.png

main_latex1072x.png

main_latex443x.png

main_latex1073x.png

main_latex442x.png

main_latex448x.png

main_latex447x.png

main_latex446x.png

main_latex1078x.png

main_latex1079x.png

main_latex1080x.png

main_latex1081x.png

main_latex1074x.png

main_latex1075x.png

main_latex1076x.png

main_latex1077x.png

main_latex1038x.png

main_latex2318x.png

main_latex1039x.png

main_latex2319x.png

main_latex1040x.png

main_latex2320x.png

main_latex1041x.png

main_latex1045x.png

main_latex2325x.png

main_latex1046x.png

main_latex2326x.png

main_latex1047x.png

main_latex2327x.png

main_latex1048x.png

main_latex2328x.png

main_latex2321x.png

main_latex1042x.png

main_latex2322x.png

main_latex1043x.png

main_latex2323x.png

main_latex1044x.png

main_latex2324x.png

main_latex1049x.png

main_latex2329x.png

main_latex1050x.png

main_latex2330x.png

main_latex1051x.png

fig08.png

main_latex462x.png

main_latex461x.png

main_latex460x.png

main_latex459x.png

main_latex466x.png

main_latex465x.png

main_latex464x.png

main_latex463x.png

main_latex467x.png

main_latex1056x.png

main_latex1057x.png

main_latex1058x.png

main_latex1059x.png

main_latex1052x.png

main_latex1053x.png

main_latex1054x.png

main_latex1055x.png

