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   This book has been written assuming that the reader executes all
the commands presented in the text and follows all the
instructions at the same time. If this advice is neglected, then
the book will be of little help and some parts of the text may seem
incomprehensible.                                                                

   The book’s website is at                                                               
http://www.physics.ntua.gr/~konstant/ComputationalPhysics/

From there, you can can download the accompanying software, which
contains, among other things, all the programs presented in the book.

   Some conventions: Text using the font shown below refers to commands
given using a shell (the “command line”), input and output of programs, code
written in Fortran (or any other programming language), as well as to names of
files and programs:
                                                                          

                                                                          


   
> echo Hello world
 
Hello world


 When a line starts with the prompt
                                                                          

                                                                          


   
>


 then the text that follows is a command, which can be given from the command
line of a terminal. The second line, Hello World, is the output of the
command.

   The contents of a file with Fortran code is listed below:
                                                                          

                                                                          


   
program add
 
 z = 1.0
 
 y = 2.0
 
 x = z + y
 
 print *, x
 
end program add




   What you need in order to work on your PC: 

      
      	An operating system of the GNU/Linux family and its basic tools.
      

      	A  Fortran  compiler.  The  gfortran compiler  is  freely  available
      for  all  major  operating  systems  under  an  open  source  license  at
      http://www.gfortran.org.
      

      	An advanced text editor, suitable for editing code in several programming
      languages, like Emacs2 .
      

      	A good plotting program, suitable for data analysis, like gnuplot3 .
      

      	The shell tcsh4 .
      

      	The programs awk5 ,
      grep, sort, cat, head, tail, less. Make sure that they are available
      in your computer environment.


                                                                          

                                                                          
   If you have installed a GNU/Linux distribution on your computer, all of the
above can be installed easily. For example, in a Debian like distribution (Ubuntu,
...) the commands
                                                                          

                                                                          


   
> sudo apt-get install tcsh emacs gnuplot-x11 gnuplot-doc
 
> sudo apt-get install gfortran gawk gawk-doc binutils
 
> sudo apt-get install manpages-dev coreutils liblapack3


 install all the necessary tools.

   If you don’t wish to install GNU/Linux on your computer, you can try the
following: 

      
      	Boot your computer using a usb/DVD live GNU/Linux, like Ubuntu6 .
      This will not make any permanent changes in your hard drive but it
      will start and run slower. On the other hand, you may save all your
      computing environment and documents and use it on any computer
      you like.
      

      	Install Cygwin7 
      in your Microsoft Windows. It is a very good solution for Microsoft-addicted
      users. If you choose the full installation, then you will find all the tools
      needed in this book.
      

      	Mac OS X is based on Unix. It is possible to install all the software
      needed in this book and follow the material as presented. Search the
      internet for instructions, e.g. google “gfortran for Mac”, “emacs for
      Mac”, “tcsh for Mac”, etc.


                                                                          

                                                                          

                                                                          

                                                                          


   
Foreword
 
This book is the culmination of my ten years’ experience in teaching three
introductory, undergraduate level, scientific computing/computational physics
classes at the National Technical University of Athens. It is suitable mostly
for junior or senior level science courses, but I am currently teaching its
first chapters to sophomores without a problem. A two semester course
can easily cover all the material in the book, including lab sessions for
practicing.

   Why another book in computational physics? Well, when I started teaching
those classes there was no bibliography available in Greek, so I was compelled to
write lecture notes for my students. Soon, I realized that my students, majoring in
physics or applied mathematics, were having a hard time with the technical
details of programming and computing, rather than with the physics concepts. I
had to take them slowly by the hand through the “howto” of computing,
something that is reflected in the philosophy of this book. Hoping that this could
be useful to a wider audience, I decided to translate these notes in English
and put them in an order and structure that would turn them into “a
book”.

   I also decided to make the book freely available on the web. I was
partly motivated by my anger caused by the increase of academic (e)book
prices to ridiculous levels during times of plummeting publishing costs.
Publishers play a diminishing role in academic publishing. They get an almost
ready-made manuscript in electronic form by the author. They need to
take no serious investment risk on an edition, thanks to print-on-demand
capabilities. They have virtually zero cost ebook publishing. Moreover, online
bookstores have decreased costs quite a lot. Academic books need no
advertisement budget, their success is due to their academic reputation. I don’t
see all of these reflected on reduced book prices, quite the contrary, I’m
afraid.

   My main motivation, however, is the freedom that independent publishing
would give me in improving, expanding and changing the book in the future. It is
great to have no length restrictions for the presentation of the material, as well as
not having to report to a publisher. The reader/instructor that finds the book
long, can read/print the portion of the book that she finds useful for
her.

   This is not a reference book. It uses some interesting, I hope, physics problems
in order to introduce the student to the fundamentals of solving a scientific
problem numerically. At the same time, it keeps an eye in the direction of
advanced and high performance scientific computing. The reader should follow the
instructions given in each chapter, since the book teaches by example. Several
                                                                          

                                                                          
skills are taught through the solution of a particular problem. My lectures take
place in a (large) computer lab, where the students are simultaneously doing
what I am doing (and more). The program that I am editing and the
commands that I am executing are shown on a large screen, displaying my
computer monitor and actions live. The book provides no systematic
teaching of a programming language or a particular tool. A very basic
introduction is given in the first chapter and then the reader learns whatever is
necessary for the solution of her problem. There is more than one way to do
it8 
and the problems can be solved by following a basic or a fancy way, depending on
the student’s computational literacy. The book provides the necessary tools for
both. A bibliography is provided at the end of the book, so that the missing pieces
of a puzzle can be sought in the literature.

   This is also not a computational physics playground. Of course I hope that the
reader will have fun doing what is in the book, but my goal is to provide an
experience that will set the solid foundation for her becoming a high performance
computing, number crunching, heavy duty data analysis expert in the future. This
is why the programming language of the core numerical algorithms has
been chosen to be Fortran, a highly optimized, scientifically oriented,
programming language. The computer environment is set in a Unix family
operating system, enriched by all the powerful GNU tools provided by the
FSF9 .
These tools are indispensable in the complicated data manipulation needed in
scientific research, which requires flexibility and imagination. Of course,
Fortran is not the best choice for heavy duty object oriented programming,
and is not optimal for interacting with the operating system. The
philosophy10 
is to let Fortran do what is best for, number crunching, and leave data
manipulation and file administration to external, powerful tools. Tools, like
awk, shell scripting, gnuplot, Perl and others, are quite powerful and
                                                                          

                                                                          
complement all the weaknesses of Fortran mentioned before. The plotting
program is chosen to be gnuplot, which provides very powerful tools to
manipulate the data and create massive and complicated plots. It can
also create publication quality plots and contribute to the “fun part” of
the learning experience by creating animations, interactive 3d plots etc.
All the tools used in the book are open source software and they are
accessible to everyone for free. They can be used in a Linux environment, but
they can also be installed and used in Microsoft Windows and Mac OS
X.

   The other hard part in teaching computational physics to scientists and
engineers is to explain that the approach of solving a problem numerically is quite
different from solving it analytically. Usually, students of this level are coming
with a background in analysis and fundamental physics. It is hard to
put them into the mode of thinking about solving a problem using only
additions, multiplications and some logical operations. The hardest part is to
explain the discretization of a model defined analytically, which can be done
in many ways, depending on the accuracy of the approximation. Then,
one has to extrapolate the numerical solution, in order to obtain a good
approximation of the analytic one. This is done step by step in the book, starting
with problems in simple motion and ending with discussing finite size
scaling in statistical physics models in the vicinity of a continuous phase
transition.

   The book comes together with additional material which can be found at the web page
of the book11 .
The accompanying software contains all the computer programs presented in the
book, together with useful tools and programs solving some of the exercises of
each chapter. Each chapter has problems complementing the material
covered in the text. The student needs to solve them in order to obtain
hands on experience in scientific computing. I hope that I have already
stressed enough that, in order for this book to be useful, it is not enough
to be read in a café or in a living room, but one needs to do what it
says.

   Hoping that this book will be useful to you as a student or as an instructor, I
would like to ask you to take some time to send me feedback for improving and/or
correcting it. I would also appreciate fan mail or, if you are an expert, a review of
the book. If you use the book in a class, as a main textbook or as supplementary
material, I would also be thrilled to know about it. Send me email at
konstantmail.ntua.gr and let me know if I can publish, anonymously or not,
                                                                          

                                                                          
(part of) what you say on the web page (otherwise I will only use it privately
for my personal ego-boost). Well, nothing is given for free: As one of
my friends says, some people are payed in dollars and some others in
ego-dollars!

   Have fun computing scientifically!

   Athens, 2014.
                                                                          

                                                                          
                                                                          

                                                                          


                                                                          

                                                                          


   


Chapter 1
The Computer

The aim of this chapter is to lay the grounds for the development of the
computational skills which are necessary in the following chapters. It is not an in
depth exposition but a practical training by example. For a more systematic study
of the topics discussed, we refer to the bibliography. Many of the references are
freely available in the web.

   The are many choices that one has to make when designing a computer
project. These depend on the needs for numerical efficiency, on available
programming hours, on the needs for extensibility and upgradability and so on. In
this book we will get the flavor of a project that is mostly scientifically and
number crunching oriented. One has to make the best of the available computing
resources and have powerful tools available for a productive analysis of the data.
Such an environment, found in most of today’s supercomputers, that offers
flexibility, dependability, simplicity, powerful tools for data analysis and effective
compilers is provided by the family of the Unix operating systems. The
GNU/Linux operating system is a Unix variant that is freely available
and most of its utilities are open source software. The voluntary work of
millions of excellent programmers worldwide has built the most stable,
fastest and highest quality software available for scientific computing today.
Thanks to the idea of the open source software pioneered by Richard
Stallman1 
this giant collaboration has been made possible.

   Another choice that we have to make is the programming language, and this is
going to be Fortran. Fortran has been built mainly for numerical applications and
it has been used by many scientists and engineers because of its efficiency in high
performance computing. The language is simple and compilers are able to
optimize, parallelize and vectorize the code very efficiently. There is a lot of
scientific and engineering software available in libraries written in Fortran, which
has been used and tested extensively for many years. This is a crucial factor for
scientific software, so that it can be trusted to be efficient and free of errors.
Fortran is not the best choice for interacting with the operating system or for
text processing. This shortcoming can be easily overcome by the use of
external tools and Fortran can be left to do what she has been designed
for: number crunching. Its structure is simple and can be used both for
procedural and object oriented programming, in such a way that, it will not
make the life of an inexperienced programmer difficult, and at the same
time provide high level, abstract and powerful tools for high performance,
                                                                          

                                                                          
modular, object oriented, programming needed in a large and complicated
project.

   Fortran, as well as other languages like C, C++ and Java, is a language that
needs to be compiled by a compiler. Other languages, like perl, awk, shell
scripting, Macsyma, Mathematica, Octave, Matlab, [image: ...  ], are interpreted
line by line. These languages can be simple in their use, but they can be
prohibitively slow when it comes to a numerically demanding program. A
compiler is a tool that analyzes the whole program and optimizes the
computer instructions executed by the computer. But if programming time is
more valuable, then a simple, interpreted language can lead to faster
results.

   Another choice that we make in this book, and we mention it because it is not the
default in most Linux distributions, is the choice of shell. The shell is a program that
“connects” the user to the operating system. In this book, we will teach how to use a
shell2 
to “send” commands to the operating system, which is the most effective way to
perform complicated tasks. We will use the shell tcsh, although most of the
commands can be interpreted by most popular shells. Shell scripting is simpler in
this shell, although shells like bash provide more powerful tools, mostly needed
for complicated system administration tasks. That may cause a small
inconvenience to some readers, since tcsh is not preinstalled in Linux
distributions3 .


   1.1    The Operating System

The Unix family of operating systems offer an environment where complicated
tasks can be accomplished by combining many different tools, each of which
performs a distinct task. This way, one can use the power of each tool, so that
trivial but complicated parts of a calculation don’t have to be programmed. This
makes the life of a researcher much easier and much more productive, since
research requires from us to try many things before we understand how to
compute what we are looking for.
                                                                          

                                                                          

   In the Unix operating system everything is a file, and files are organized in a
unique and unified filesystem. Documents, pictures, music, movies, executable
programs are files. But also directories or devices, like hard disks, monitors, mice,
sound cards etc, are, from the point of view of the operating system, files. In order
for a music file to be played by your computer, the music data needs to be written
to a device file, connected by the operating system to the sound card. The
characters you type in a terminal are read from a file “the keyboard”,
and written to a file “the monitor” in order to be displayed. Therefore,
the first thing that we need to understand is the structure of the Unix
filesystem.




   1.1.1    Filesystem


There is at least one path in the filesystem associated with each file. There
are two types of paths, relative paths and absolute paths. These are two
examples:
                                                                          

                                                                          


   
bin/RungeKutta/rk.exe
 
/home/george/bin/RungeKutta/rk.exe


 The paths shown above may refer to the same or a different file. This
depends on “where we are”. If “we are” in the directory /home/george,
then both paths refer to the same file. If on the other way “we are” in a
directory /home/john or /home/george/CompPhys, then the paths
refer4 
to two different files. In the last two cases, the paths refer to the files
                                                                          

                                                                          


   
/home/john/bin/RungeKutta/rk.exe
 
/home/george/CompPhys/bin/RungeKutta/rk.exe


 respectively. How can we tell the difference? An absolute path always begins with
the / character, whereas a relative path does not. When we say that “we are in a
directory”, we refer to a position in the filesystem called the current directory, or
working directory. Every process in the operating system has a unique current
directory associated with it.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 1.1: The Unix filesystem. It looks like a tree, with the root directory / at the top
and branches that connect directories with their parents. Every directory contains files,
among them other directories called its subdirectories. Every directory has a unique parent
directory, noted by .. (double dots). The parent of the root directory is itself.



                                                                          

                                                                          
   


   The filesystem is built on its root and looks like a tree positioned upside down.
The symbol of the root is the character / The root is a directory. Every directory
is a file that contains a list of files, and it is connected to a unique directory, its
parent directory . Its list of files contains other directories, called its subdirectories,
which all have it as their parent directory. All these files are the contents
of the directory. Therefore, the filesystem is a tree of directories with
the root directory at its top which branch to its subdirectories, which in
their turn branch into other subdirectories and so on. There is practically
no limit to how large this tree can become, even for a quite demanding
environment5 .

   A path consists of a string of characters, with the characters / separating its
components, and refers to a unique location in the filesystem. Every component
refers to a file. All, but the last one, must be directories in a hierarchy, from
parent directory to subdirectory. The only exception is a possible / in the
beginning, which refers to the root directory. Such an example can be seen in
figure 1.1.

   In a Unix filesystem there is complete freedom in the choice of the location of the
files6 .
Fortunately, there are some universally accepted conventions respected by almost
everyone. One expects to find home directories in the directory /home,
configuration files in the directory /etc, application executables in directories
with names such as /bin, /usr/bin, /usr/local/bin, software libraries in
directories with names such as /lib, /usr/lib etc.

   There are some important conventions in the naming of the paths. A single
dot “.” refers to the current directory and a double dot “..” to the parent
directory. Similarly, a tilde “~” refers to the home directory of the user. Assume,
e.g., that we are the user george running a process with a current directory
/home/george/Music/Rock (see figure 1.1). Then, the following paths refer to the
same file /home/george/Doc/lyrics.doc:
                                                                          

                                                                          


   
../../Doc/lyrics.doc
 
~/Doc/lyrics.doc
 
~george/Doc/lyrics.doc
 
./../../Doc/lyrics.doc


 Notice that ~ and ~george refer to the home directory of the user george
(ourselves), whereas ~mary refer to the home directory of another user,
mary.

   We are now going to introduce the basic commands for filesystem navigation and
manipulation7 .
The command cd (=change directory) changes the current directory, whereas the
command pwd (=print working directory) prints the current directory:
                                                                          

                                                                          


   
> cd /usr/bin
 
> pwd
 
/usr/bin
 
> cd /usr/local/lib
 
> pwd
 
/usr/local/lib
 
> cd
 
> pwd
 
/home/george
 
> cd -
 
> pwd
 
/usr/local/lib
 
> cd ../../
 
> pwd
 
/usr


 The argument of the command cd is an absolute or a relative path. If the path is
correct and we have the necessary permissions, the command changes the current
directory to this path. If no path is given, then the current directory changes to
the home directory of the user. If the character - is given instead of a path,
then the command changes the current directory to the previous current
directory.

   The command mkdir creates new directories, whereas the command rmdir
removes empty directories. Try:
                                                                          

                                                                          


   
> mkdir new
 
> mkdir new/01
 
> mkdir new/01/02/03
 
mkdir: cannot create directory ‘new/01/02/03’: No such file or
 
       directory
 
> mkdir -p new/01/02/03
 
> rmdir new
 
rmdir: ‘new’: Directory not empty
 
> rmdir new/01/02/03
 
> rmdir new/01/02
 
> rmdir new/01
 
> rmdir new


 Note that the command mkdir cannot create directories more than one level
down the filesystem, whereas the command mkdir -p can. The “switch” -p makes
the behavior of the command different than the default one.

   In order to list the contents of a directory, we use the command ls
(=list):
                                                                          

                                                                          


   
> ls
 
BE.eps  Byz.eps  Programs      srBE_xyz.eps  srB_xyz.eps
 
B.eps   Bzy.eps  srBd_xyz.eps  srB_xy.eps
 
> ls Programs
 
Backup            rk3_Byz.f90  rk3.f90
 
plot-commands     rk3_Bz.f90   rk3_g.f90


 The first command is given without an argument and it lists the contents of the
current directory. The second one, lists the contents of the subdirectory of the
current directory Programs. If the argument is a list of paths pointing to regular
files, then the command prints the names of the paths. Another way of giving the
command is
                                                                          

                                                                          


   
[literate={-}{{\texttt{-}}}1]%[basicstyle=\ttfamily]
 
> ls -l
 
total 252
 
-rw-r--r--  1 george users 24284 May  1 12:08 BE.eps
 
-rw-r--r--  1 george users 22024 May  1 11:53 B.eps
 
-rw-r--r--  1 george users 29935 May  1 13:02 Byz.eps
 
-rw-r--r--  1 george users 48708 May  1 12:41 Bzy.eps
 
drwxr-xr-x  4 george users  4096 May  1 23:38 Programs
 
-rw-r--r--  1 george users 41224 May  1 22:56 srBd_xyz.eps
 
-rw-r--r--  1 george users 23187 May  1 21:13 srBE_xyz.eps
 
-rw-r--r--  1 george users 24610 May  1 20:29 srB_xy.eps
 
-rw-r--r--  1 george users 23763 May  1 20:29 srB_xyz.eps


 The switch -l makes ls to list the contents of the current directory together with
useful information on the files in 9 columns. The first column lists the permissions
of the files (see below). The second one lists the number of links of the
files8 .
The third one lists the user who is the owner of each file. The fourth one lists the
group that is assigned to the files. The fifth one lists the size of the file in bytes
(=8 bits). The next three ones list the modification time of the file and the last
one the paths of the files.

   File permissions9 
are separated in three classes: owner permissions, group permissions and other
permissions. Each class is given three specific permissions, r=read, w=write and
x=execute. For regular files, read permission effectively means access to the file
for reading/copying, write permission means permission to modify the contents of
the file and execute permission means permission to execute the file as a
                                                                          

                                                                          
command10 .
For directories, read permission means that one is able to read the names of the
files in the directory (but not make it as current directory with the cd command),
write permission means to be able to modify its contents (i.e. create, delete, and
rename files) and execute permission grants permission to access/modify the
contents of the files (but not list the names of the files, this is granted by the read
permission).

   The command ls -l lists permissions in three groups. The owner (positions
2-4), the group (positions 5-7) and the rest of the world (others - positions 8-10).
For example
                                                                          

                                                                          


   
[literate={-}{{\texttt{-}}}1]
 
-rw-r--r--
 
-rwxr-----
 
drwx--x--x


 In the first case, the owner has read and write but not execute permissions and
the group+others have only read permissions. In the second case, the user has
read, write and execute permissions, the group has read permissions and others
have no permissions at all. In the last case, the user has read, write and execute
permissions, whereas the group and the world have only execute permissions. The
first character d indicates a special file, which in this case is a directory. All
special files have this position set to a character, while regular files have it set to
-.

   File permissions can be modified by using the command chmod:
                                                                          

                                                                          


   
> chmod u+x  file
 
> chmod og-w file1 file2
 
> chmod a+r  file


 Using the first command, the owner (u[image: ≡ ] user) obtains (+) permission to
execute (x) the file named file. Using the second one, the rest of the world (o[image: ≡ ]
others) and the group (g[image: ≡ ]group) loose (-) the write (w) permission to the files
named file1 and file2. Using the third one, everyone (a[image: ≡ ]all) obtain read (r)
permission on the file named file.

   We will close this section by discussing some commands which are used for
administering files in the filesystem. The command cp (copy) copies the contents
of files into other files:
                                                                          

                                                                          


   
> cp file1.f90 file2.f90
 
> cp file1.f90 file2.f90 file3.f90 Programs


 If the file file2.f90 does not exist, the first command copies the contents of
file1.f90 to a new file file2.f90. If it already exists, it replaces its
contents by the contents of the file file2.f90. In order for the second
command to be executed, Programs needs to be a directory. Then, the
contents of the files file1.f90, file2.f90, file3.f90 are copied to
indentical files in the directory Programs. Of course, we assume that
the user has the appropriate privileges for the command to be executed
successfully.

   The command mv “moves”, or renames, files: 
                                                                          

                                                                          


   
> mv file1.f90 file2.f90
 
> mv file1.f90 file2.f90 file3.f90 Programs


 The first command renames the file file1.f90 to file2.f90. The second
one moves files file1.f90, file2.f90, file3.f90 into the directory
Programs.

   The command rm (remove) deletes
files11 .
Beware, the command is unforgiving: after deletion, a file cannot be restored into the
filesystem12 .
Therefore, after executing successfully the following commands
                                                                          

                                                                          


   
> ls
 
file1.f90  file2.f90  file3.f90  file4.csh
 
> rm file1.f90 file2.f90 file3.f90
 
> ls
 
file4.csh


 the files file1.f90, file2.f90, file3.f90 do not exist in the filesystem
anymore. A more prudent use of the command demands the flag -i. Then, before
deletion we are asked for confirmation:
                                                                          

                                                                          


   
> rm -i *
 
rm: remove regular file ‘file1.f90’? y
 
rm: remove regular file ‘file2.f90’? y
 
rm: remove regular file ‘file3.f90’? y
 
rm: remove regular file ‘file4.csh’? n
 
> ls
 
file4.csh


 When we type y, the file is deleted, when we type n, the file is not deleted.

   We cannot remove directories the same way. It is possible to use the command
rmdir in order to remove empty directories. In order to delete directories together
with their contents (including subdirectories and their contents) use the
command13 
rm -r. For example, assume that the contents of the directories dir1 and
dir1/dir2 are the files:
                                                                          

                                                                          


   
./dir1
 
./dir1/file2.f90
 
./dir1/file1.f90
 
./dir1/dir2
 
./dir1/dir2/file3.f90


 Then the results of the following commands are:
                                                                          

                                                                          


   
> rm dir1
 
rm: cannot remove ‘dir1’: Is a directory
 
> rm dir1/dir2
 
rm: cannot remove ‘dir1/dir2’: Is a directory
 
> rmdir dir1
 
rmdir: dir1: Directory not empty
 
> rmdir dir1/dir2
 
rmdir: dir1/dir2: Directory not empty
 
> rm -r dir1


 The last command removes all files (assuming that we have write permissions
for all directories and subdirectories). Alternatively, we can empty the
contents of all directories first, and then remove them with the command
rmdir:
                                                                          

                                                                          


   
> cd dir1/dir2; rm file3.f90
 
> cd .. ; rmdir dir2
 
> rm file1.f90 file2.f90
 
> cd .. ; rmdir dir1


 Note that by using a semicolon, we can execute two or more commands on the
same line.


   1.1.2    Commands

Commands in a Unix operating system are files with execute permission. When
we write a sentence on the command line, like
                                                                          

                                                                          


   
> ls -l test.f90 test.dat


 the shell reads its and interprets it. The shell is a program that creates a interface
between a user and the operating system. The first word (ls) of the sentence is
interpreted as a command. The rest of the words are the arguments of the
command and the program can use them (or not) at the discretion of its
programmer. There is a special convention for arguments that begin with a - (e.g.
-l, --help, --version, -O3). They are called options or switches, and they act as
virtual switches that make the program act in a particular way. We have
already seen that the program ls gives a different output with the switch
-l.

   In order for a command to be executed, the shell looks for a file that has the
same name as the command (here a file named ls). In order to understand where
the shell looks for such a file, we should digress a little bit and explain the use
of shell variables and environment variables. These have a name, which
is a string of permissible characters, and their values are obtained by
preceding their name with the $ character. For example the variable PATH has
value $PATH. The values of the environment variables can be set with the
command14 
setenv and of the shell variables with the command set:
                                                                          

                                                                          


   
> setenv MYVAR test-env
 
> set myvar = test-shell
 
> echo $MYVAR $myvar
 
test-env test-shell


 Two special variables are the variables PATH and path:
                                                                          

                                                                          


   
>echo $PATH
 
/usr/local/bin:/usr/bin:/bin:/usr/X11/bin
 
>echo $path
 
/usr/local/bin /usr/bin /bin /usr/X11/bin


 The first one is an environment variable and the second one is a shell variable.
Their values are set by the shell, and we don’t need to worry about them, unless
we want to change them. Their value is a string of characters whose components
should be valid paths to directories. In the first case, the components are
separated by a :, while in the second case, by one or more spaces. In the
example shown above, the shell searches each component of the path or
PATH variables (in this order) until it finds a file ls in their contents. If
it succeeds and the file has execute permissions, then the program in
this file is executed. If it fails, then it prints an error message. Try the
commands:
                                                                          

                                                                          


   
> which ls
 
/bin/ls
 
> ls -l /bin/ls
 
-rwxr-xr-x 1 root root 93560 Sep 28  2006 /bin/ls


 We see that the program that the ls command executes the program in the file
/bin/ls.

   The arguments of a command are passed on to the program that the command
executes for possible interpretation. For example:
                                                                          

                                                                          


   
> ls -l test.f90 test.dat


 The argument -l is the switch that results in a long listing of the files. The
arguments test.f90 and test.dat are interpreted by the program ls as paths
that it will look up for file information.

   You can use the * (wildcard) character as a shorthand notation for a group of
files. For example, in the command shown below
                                                                          

                                                                          


   
> ls -l *.f90 *.dat


 the shell will expand *.f90 and *.dat to a list of all files whose names end with
.f90 or .dat. Therefore, if the current directory contains the files test.f90,
test1.f90, myprog.f90, test.dat, hello.dat, the arguments that will be
passed on to the command ls are
                                                                          

                                                                          


   
> ls -l myprog.f90 test1.f90 test.f90 hello.dat test.dat




   For each command there are three special files associated with it. The first
one is the standard input (stdin), the second one is the standard output
(stdout) and the third one the standard error (stderr). These are files
where the program can print or read data from. By default, these files are
the terminal that the user uses to execute the command. In this case,
when the program reads data from the stdin, then it reads the data that
we type to the terminal using the keyboard. When the program writes
data to the stdout or to the stderr, then the data is written to the
terminal.

   The advantage of using these special files in order to read/write data is that
the user can redirect the input/output to these files to any file she wants. Using
the character > at the end of a command redirects the stdout to the file whose
name is written after >. For example:
                                                                          

                                                                          


   
> ls
 
file1.f90  file2.f90  file3.f90  file4.csh
 
> ls > results
 
> ls
 
file1.f90  file2.f90  file3.f90  file4.csh  results


 The first of the above commands, prints the contents of the current working
directory to the terminal. The second command redirects data written to
the stdout to the file results. After executing the command, the file
results is created and its contents are the names of the files file1.f90
file2.f90 file3.f90 file4.csh. If the file results does not exist
(as in the above example), the file is created. If it already exists, it is
truncated and its contents replaced by the data written to the stdout of the
command. If we want to append data without erasing the existing contents,
then we should use the string of characters >>. Therefore, if we give the
command
                                                                          

                                                                          


   
> ls >> results


 after executing the previous commands, then the contents of the file results will
be
                                                                          

                                                                          


   
file1.f90  file2.f90  file3.f90  file4.csh
 
file1.f90  file2.f90  file3.f90  file4.csh  results




   The redirection of the stdin is accomplished by the use of the
character < while that of the stderr by the use of the string of
characters15 
>&. We will see more examples in section 1.2.

   It is possible to redirect the stdout of a command to be the stdin of
another command. This is very useful for creating filters. A filter is a
command that creates a flow of data between two or more programs.
This process is called piping. Pipes are creating by using the character
|
                                                                          

                                                                          


   
> cmd1 | cmd2 | cmd3 | ... | cmdN


 Using the syntax shown above, the stdout of the command cmd1 is redirected to
the stdin of the command cmd2, the stdout of the command cmd2 is redirected
to the stdin of the command cmd3 etc. More examples will be presented in
section 1.2.


   1.1.3    Looking for Help

Unix got itself a reputation for not being user friendly. This is far from the truth.
Although there is a steep learning curve, detailed documentation for almost
everything is available online.

   The key for a comfortable ride is to learn how to use the help system available
on your computer and on the internet. Most of the commands are self
documented. A simple test, like the one shown below, will help you with the basic
usage of most of the commands:
                                                                          

                                                                          


   
[literate={-}{{\texttt{-}}}1]
 
> cmd --help
 
> cmd -h
 
> cmd -help
 
> cmd -\?


 For example, try the command ls --help. For a window application, start from
the menu “Help”. You should not be afraid and/or lazy and you should proceed
with careful searching and reading.

   For example, let’s assume that you have heard about a command that sounds
like printf, or something like that. The first level of online help is the man
(=manual) command that searches the “man pages”. Read the output of the
command
                                                                          

                                                                          


   
> man printf


 The command info usually provides more detailed and user friendly
documentation. It has basic browsing capabilities like the browsers you use to
read pages from the internet. Try the command
                                                                          

                                                                          


   
> info printf


 Furthermore, the commands
                                                                          

                                                                          


   
> man -k printf
 
> whatis printf


 will inform you that there are other, possibly related, commands with names like
fprintf, fwprintf, wprintf, sprintf...:
                                                                          

                                                                          


   
> whatis printf
 
printf               (1)   - format and print data
 
printf               (1p)  - write formatted output
 
printf               (3)   - formatted output conversion
 
printf               (3p)  - print formatted output
 
printf [builtins]    (1)   - bash built-in commands, see bash(1)


 The second column printed by the whatis command is the “section” of the man
pages. In order to gain access to the information in a particular section, you have
to give it as an argument to the man command:
                                                                          

                                                                          


   
> man 1  printf
 
> man 1p printf
 
> man 3  printf
 
> man 3p printf
 
> man bash


 Section 1 of the man pages contains information of ordinary command line
commands, section 3 contains information on functions in libraries of
the C language. Section 2 contains information on commands used for
system administration. You may browse the directory /usr/share/man, or
read the man page of the man command (use the command man man for
that!).

   By using the command
                                                                          

                                                                          


   
[literate={-}{{\texttt{-}}}1]
 
> printf --help


 we obtain plenty of memory refreshing information. The command
                                                                          

                                                                          


   
> locate printf


 shows us many files related to the command printf. The commands
                                                                          

                                                                          


   
> which printf
 
> where printf


 give information on the location of the executable(s) of the command
printf.

   Another useful feature of the shell is the command or it filename completion.
  This means that we can write only the first characters of the name
of a command or filename and then press simultaneously the keys
[Ctrl-d]16 
(i.e. press the key Ctrl and the key of the letter d at the same time). Then the shell will
complete the name of the command up to the point that is is unique with the given string of
characters17 :
                                                                          

                                                                          


   
> pri[Ctrl-d]
 
printafm    printf  printenv   printnodetest


 Try to type an x on the command line and then type [Ctrl-d]. You will learn all
the commands that are available and whose name begins with an x: xterm,
xeyes, xclock, xcalc, ...

   Finally, the internet contains a wealth of information. Google your blues... and
you will be rewarded!


   1.2    Text Processing Tools – Filters

For doing data analysis, we will need powerful tools for manipulating data in text
files. These are files that consist solely of printable characters. Some tools that can
be used in order to construct complicated and powerful filters are the programs
cat, less, head, tail, grep, sort and awk.

   Suppose that we have data in a file named
data18 
which contains information on the contents of a food warehouse and their
prices:
                                                                          

                                                                          


   
bananas  100 pieces 1.45
 
apples   325 boxes  1.18
 
pears     34 kilos  2.46
 
bread     62 kilos  0.60
 
ham       85 kilos  3.56


 The command
                                                                          

                                                                          


   
> cat data


 prints the contents of the file data to the stdout. In general, this command
prints the contents of all files given in its arguments or the stdin if none is given.
Since the stdin and the stdout can be redirected, the command
                                                                          

                                                                          


   
> cat <  data > data1


 takes the contents of the file data from the stdin and prints them to the stdout,
which in this case is the file data1. This command has the same result as the
command:
                                                                          

                                                                          


   
> cp data data1


 The command
                                                                          

                                                                          


   
> cat data data1 > data2


 prints the contents of the file data and then the contents of the file data1 to the
stdout. Since the stdout is redirected to the file data2, data2 contains the data
of both files.

   By giving the command
                                                                          

                                                                          


   
> less gfortran.txt


 you can browse the data contained in the file gfortran.txt one page at a time.
Press [space] in order to “turn” a page, [b] to turn back a page. Press the up
and down arrows to move one line backwards/forward. Press [g] in order to
jump to the beginning of the file and press [G] in order to jump to the
end. Press [h] in order to get a help message and press [q] in order to
quit.

   The commands
                                                                          

                                                                          


   
> head -n 1 data
 
bananas  100 pieces 1.45
 
> tail -n 2 data
 
bread     62 kilos  0.60
 
ham       85 kilos  3.56
 
> tail -n 2 data | head -n 1
 
bread     62 kilos  0.60


 print the first line, the last two lines and the second to the last line of the file
data to the stdout respectively. Note that, by piping the stdout of the command
tail to the stdin of the command head, we are able to construct the filter “print
the line before the last one”.

   The command sort sorts the contents of a file by comparing each line of its
text with all others. The sorting is alphabetical, unless otherwise set by using
options. For example
                                                                          

                                                                          


   
> sort data
 
apples   325 boxes  1.18
 
bananas  100 pieces 1.45
 
bread     62 kilos  0.60
 
ham       85 kilos  3.56
 
pears     34 kilos  2.46


 For reverse sorting, try sort -r data. We can also sort by comparing specific
fields of each line. By default, fields are words separated by one or more spaces.
For example, in order to sort w.r.t. the second column of the file data, we can use
the switch -k 2 (=second field). Furthermore, we can use the switch -n for
numerical sorting:
                                                                          

                                                                          


   
> sort -k 2 -n data
 
pears     34 kilos  2.46
 
bread     62 kilos  0.60
 
ham       85 kilos  3.56
 
bananas  100 pieces 1.45
 
apples   325 boxes  1.18


 If we omit the switch -n, the comparison of the lines is performed based on
character sorting of the second field and the result is
                                                                          

                                                                          


   
> sort -k 2 data
 
bananas  100 pieces 1.45
 
apples   325 boxes  1.18
 
pears     34 kilos  2.46
 
bread     62 kilos  0.60
 
ham       85 kilos  3.56


 The last column contains floating point numbers (not integers). In order to sort
by the values of such numbers we should use the switch -g:
                                                                          

                                                                          


   
> sort -k 4 -g data
 
bread     62 kilos  0.60
 
apples   325 boxes  1.18
 
bananas  100 pieces 1.45
 
pears     34 kilos  2.46
 
ham       85 kilos  3.56




   The command grep processes a text file line by line, searching for a given
string of characters. When this string is found anywhere in a line, this line is
printed to the stdout. The command
                                                                          

                                                                          


   
> grep kilos data
 
pears     34 kilos  2.46
 
bread     62 kilos  0.60
 
ham       85 kilos  3.56


 prints each line containing the string “kilos”. If we want to search for all line not
containing the string “kilos”, then we add the switch -v:
                                                                          

                                                                          


   
> grep -v kilos data
 
bananas  100 pieces 1.45
 
apples   325 boxes  1.18


 We can use a regular expression for searching a whole family of strings of
characters. These monsters need a full book for discussing them in detail! But it is
not hard to learn how to use some simple forms of regular expressions. Here are
some examples:
                                                                          

                                                                          


   
> grep ^b data
 
bananas  100 pieces 1.45
 
bread     62 kilos  0.60
 
> grep ’0$’ data
 
bread     62 kilos  0.60
 
> grep ’3[24]’ data
 
apples   325 boxes  1.18
 
pears     34 kilos  2.46


The first one, prints each line whose first character is a b. The second one, prints
each line that ends with a 0. The third one, prints each line contaning the strings
32 or 34.

   By far, the strongest tool in our toolbox is the awk program. By default, awk
analyzes a text file line by line. Each word (or field in the awk jargon) of these
lines is stored in a set of variables with names $1, $2, .... The variable $0
contains the full line currently processed, whereas the variable NF counts the
number of fields in the current line. The variable NR counts the number of lines of
the file processed so far by awk.

   An awk program can be written in the command line. A set of commands
within { ... } is executed for each line of input. The constructs BEGIN{ ... }
and END{ ... } contain commands executed, only once, before and after the
processing of the file respectively. For example, the command
                                                                          

                                                                          


   
> awk ’{print $1,"total value= ",$2*$4}’ data
 
bananas total value=  145
 
apples  total value=  383.5
 
pears   total value=  83.64
 
bread   total value=  37.2
 
ham     total value=  302.6


 prints the name of the product (1st column = $1) and the total value stored in
the warehouse (2nd column = $2) [image: × ] (4th column = $4). More examples are
given below:
                                                                          

                                                                          


   
> awk ’{value += $2*$4}END{print "Total= ",value}’ data
 
Total=  951.94
 
> awk ’{av += $4}END{print "Average Price= ",av/NR}’ data
 
Average Price=  1.85
 
> awk ’{print $2^2 * sin($4) + exp($4)}’ data


 The first one calculates the total value of all products: The processing of each line
results in the increment (+=) of the variable value by the product of the second
and fourth fields. In the end (END{ ... }), the string Total= is printed, together
with the final value of the variable value. This is an easy way for computing
the sum of the values calculated for each line. The second command,
calculates and prints an average. The sum is calculated in each line and stored
in the variable av. In the end, we print the quotient of the sum of all
values by the number of lines that have been processed (NR). The last
command shows a (crazy) mathematical expression based on numerical values
found in each line of the file data: It computes the square of the second
field times the sine of the fourth field plus the exponential of the fourth
field.

   There is much more potential in the commands presented above. Reading the
documentation and getting experience by using them will provide you with very
strong tools in order to accomplish complicated tasks.


   1.3    Programming with Emacs


For a programmer that spends many hours programming every day, the
environment and the tools available for editing the commands of a large and
complicated program determine, to a large extent, the quality of her life! An
editor edits the contents of a text file, that consists solely of printable characters.
Such editors, available in most Linux environments, are the programs gedit,
vim, pico, nano, zile... They provide basic functionality such as adding,
removing or changing text within a file as well as more complicated functions,
such as copying, pasting, searching and replacing text etc. There are many
functions that are particularly useful to a programmer, such as detecting and
formatting keywords of a particular programming language, pretty printing,
                                                                          

                                                                          
closing scopes etc, which can be very useful for comfortable programming and for
spotting errors. A very powerful and “knowledgeable” editor, offering many
such functions for several programming languages, is the GNU Emacs
editor19 .
Emacs is open source software, it is available for free and
can be used in most available operating systems. It is
programmable20 
and the user can automate most of her everyday repeated tasks and configure it to
her liking. There is a full interaction with the operating system, in fact Emacs has
been built with the ambition of becoming an operating system. For example, a
programmer can edit a Fortran file, compile it, debug it and run it, everything
done with Emacs commands.


   1.3.1    Calling Emacs

In the command line type
                                                                          

                                                                          


   
> emacs &


 Note the character & at the end of the line. This makes the particular command
to run in the background. Without it, the shell waits until a command exits in
order to return the prompt.

   In a desktop environment, Emacs starts in its own window. For a quick and
dirty editing session, or in the case that a windows environment is not
available21 ,
we can run Emacs in a terminal mode. Then, we omit the & at the end of the line
and we run the command
                                                                          

                                                                          


   
> emacs -nw


 The switch -nw forces Emacs to run in terminal mode. 
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Figure 1.2: The Emacs window in a windows environment. The buttons of very basic
functions found on its toolbar are shown and explained.
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Figure 1.3: Emacs in a non-window mode running on the console. In this figure, we
have typed the command save-buffers-kill-emacs in the minibuffer, a command that
exits Emacs after saving edited data from all buffers. The same command can be given
using the keyboard shortcut C-x C-c. We can see the mode line and the name of the buffer
toy.f written on it, the percentage of the buffer (6%) shown in the window, the line and
columns (33,0) where the point lies and the editing mode which is active on the buffer
(Fortran mode (Fortran), Abbreviation mode (Abbrev), Auto Fill mode (Fill)).



                                                                          

                                                                          
   


   1.3.2    Interacting with Emacs

We can interact with Emacs in various ways. Newbies will prefer buttons and
menus that offer a simple and intuitive interface. For advanced usage, however, we
recommend that you make an effort to learn the keyboard shortcuts. There are
also thousands of functions available to be used interactively. They are
called from a “command line”, called the minibuffer in the Emacs jargon.




   Keyboard shortcuts are usually combinations of keystrokes that
consist of the simultaneous pressing of the Ctrl or Alt keys together
with other keys. Our convention is that a key sequence starting with a C-
means that the characters that follow are keys simultaneously pressed
with the Ctrl key. A key sequance starting with a M- means that the
characters that follow are keys simultaneously pressed with the Alt
key22 .
Some commands have shortcuts consisting of two or more composite keystrokes.
For example by C-x C-c we mean that we have to press simultaneously the Ctrl
key together with x and then press simultaneously the Ctrl key together with c.
This sequence is a shortcut to the command that exits Emacs. Another example is
C-x 2 which means to press the Ctrl key together with x and then press only the
key 2. This is a shortcut to the command that splits a window horizontally to two
equal parts.

   The most useful shortcuts are M-x (press the Alt key siumutaneously with the
x key) and C-g. The first command takes us to the minibuffer where we can
give a command by typing its name. For example, type M-x and then
type save-buffers-kill-emacs in the minibuffer (this will terminate
Emacs). The second one is an “SOS button” that interrupts anything Emacs
does and returns control to the working buffer. This can be pretty handy
when a command hangs or destroys our work and we need to interrupt
it.
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Figure 1.4: The basic menus found in Emacs when run in a desktop environment. We
can see the basic commands and the keyboard shortcut reminders in the parentheses. E.g.
the command File [image: → ] Visit New File can be given by typing C-x C-f. Note the
commands File [image: → ] Visit New File (open a file), File[image: → ]Save (write contents of a
buffer to a file), File[image: → ]Exit Emacs, File [image: → ] Split Window (split window in two),
File[image: → ]New Frame (open a new Emacs desktop window) and of course the well known
commands Cut, Copy, Paste, Undo from the Edit menu. We can choose different buffers
from the menu Buffers, which contain the contents of other files that we have opened for
editing. We recommend trying the Emacs Tutorial and Read Emacs Manual in the Help
menu.



                                                                          

                                                                          
   


   The conventions for the mouse events are as follows: With Mouse-1, Mouse-2
and Mouse-3 we denote a simple click with the left, middle and right buttons of
the mouse respectively. With Drag-Mouse-1 we mean to press the left button of
the mouse and at the same time drag the mouse.

   We summarize the possible ways of giving a command in Emacs with the
following examples that have the same effect: Open a file and put its contents in a
buffer for editing. 

      
      	By pressing the toolbar button that looks like a white sheet of paper
      (see figure 1.2).
      

      	By choosing the File[image: → ]Visit New File menu entry.
      

      	By typing the keyboard shortcut C-x C-f.
      

      	By typing the name of the command in the minibuffer: M-x find-file


The number of available commands increases from the top to the bottom of the above
list.


   1.3.3    Basic Editing

In order to edit a file, Emacs places the contents of a file in a buffer. Such a buffer
is a chunk of computer memory where the contents of the file are copied and it is
not the file itself. When we make changes to the contents of a buffer, the file
remains intact. For our changes to take effect and be written to the file, we
have to save the buffer. Then, the contents of the buffer are written back
to the file. It is important to understand the following cycle of events:


      
      	Read a file’s contents to a buffer.
      

      	Edit buffer contents.
      

      	Write (save) buffer’s contents back into the file.


                                                                          

                                                                          
Emacs may have more than one buffers open for editing simultaneously. By default, the
name of the buffer is the same as the name of the file that is edited, although this is not
necessary23 .
The name of a buffer is written in the modeline of the window of the buffer, as
can be seen in figure 1.3.

   If Emacs crashes or exits before we save our edits, it is possible to recover
(part of) them. There is a command M-x recover-file that will guide us
through the necessary recovery steps, or we can look for a file that has the same
name as the buffer we were editing surrounded by two #. For example, if we were
editing the file file.f90, the automatically saved changes can be found in the file
#file.f90#. Auto saving is done periodically by Emacs and its frequency can be
controlled by the user.

   The point where we insert text while editing is called “the point”. This is right before the
blinking cursor24 .
Each buffer has another position marked by “the mark”.  A point and the
mark define a “region” in the buffer. This is a part of the text in the
buffer where the functions of Emacs can act (e.g. copy, cut, change case,
spelling etc.). We can set the region by setting a point and then press
C-SPC25 
or give the command M-x set-mark-command. This defines the current point to
be the mark. Then we can move the cursor to another point which will define
a region together with the mark that we set. Alternatively we can use
Drag-Mouse-1 (hold the left mouse button and drag the mouse) and
mark a region. The mark can be set with Mouse-3, i.e. with a simple click
of the right button of the mouse. Therefore by Mouse-1 at a point and
then Mouse-3 at a different point will set the region between the two
points.
                                                                          

                                                                          




   We can open a file in a buffer with the command C-x C-f, and then by typing
its path. If the file already exists, its contents are copied to a buffer, otherwise a
new buffer is created. Then: 

      
      	We can browse the buffer’s contents with the Up/Down/Left/Right
      arrows. Alternatively, by using the commands C-n, C-p, C-f and C-b.
      

      	If  the  buffer  is  large,  we  can  browse  its  contents  one  page  at  a
      time by using the Page Up/Page Dn keys. Alternatively, by using the
      commands C-v, M-v.
      

      	Enter text at the points simply by typing it.
      

      	Delete characters before the point by using the Backspace key and
      after the point by using the Delete key. The command C-d deletes a
      forward character.
      

      	Erase all the characters in a line that lie ahead of the point by using
      the command C-k.
      

      	Open a new line by using Enter or C-o.
      

      	Go to the first character of a line by using Home and the last one by using
      End. Alternatively, by using the commands C-a and C-e, respectively.
      

      	Go  to  the  first  character  of  the  buffer  with  the  key  C-Home
      and  the  last  one  with  the  key  C-End.  Alternatively,  with  M-x
      beginning-of-buffer and M-x end-of-buffer.
      

      	Jump to any line we want: Type M-x goto-line and then the line
      number.
                                                                          

                                                                          
      

      	Search  for  text  after  the  point:  Press  C-s and  then  the  text  you
      are looking for. This is an incremental search and the point jumps
      immediately to the first string that matches the search. The same search
      can be repeated by pressing C-s repeatedely.


   When we finish editing (or frequently enough so that we don’t loose our work
due to an unfortunate event), we save the changes in the buffer, either by pressing
the save icon on the toolbar, or by pressing the keys C-s, or by giving the
command M-x save-buffer.


   1.3.4    Cut and Paste

Use the instructions below for slightly more advanced editing:  

      
      	Undo! Some of the changes described below can be catastrophic. Emacs
      has a great Undo function that keeps in its memory many of the changes
      inflicted by our editing commands. By repeatedely pressing C-/, we
      undo the changes we made. Alternatively, we can use C-x u or the
      menu entry Edit[image: → ]Undo. Remember that C-g interrupts any Emacs
      process currently running in the buffer.
      

      	Cut text by using the mouse: Click with Mouse-1 at the point before
      the beginning of the text and then Mouse-3 at the point after the end.
      A second Mouse-3 and the region is ... gone (in fact it is written in the
      “kill ring” and it is available for pasting)!
      

      	Cut text by using a keyboard shortcut: Set the mark by C-SPC at the
      point before the beginning of the text that you want to cut. Then move
      the cursor after the last character of the text that you want to cut and
      type C-w.
      

      	Copy text by using the mouse: Drag the mouse Drag-Mouse-1 and
      mark the region that you want to copy. Alternatively, Mouse-1 at the
      point before the beginning of the text and then Mouse-3 at the point
      after the end.
                                                                          

                                                                          
      

      	Copy text by using a keyboard shortcut: Set the mark at the beginning
      of the text with C-SPC and then move the cursor after the last character
      of the text. Then type M-w.
      

      	Pasting text with the mouse: We click the middle button26 
      Mouse-2 at the point that we want to insert the text from the kill ring
      (the copied text).
      

      	Pasting text with a keyboard shortcut: We move the point to the desired
      insertion point and type C-y.
      

      	Pasting text from previous copying: A fast choice is the menu entry
      Edit[image: → ]Paste from kill manu and  then  select  from  the  copied
      texts.  The  keyboard  shortcut  is  to  first  type  C-y and  then  M-y
      repeatedly, until the text that we want is yanked.
      

      	Insert the contents of a file: Move the point to the desired place and
      type C-x i and the path of the file. Alternatively, give the command
      M-x insert-file.
      

      	Insert the contents of a buffer: We can insert the contents of a whole
      buffer at a point by giving the command M-x insert-buffer.
      

      	Replace text: We can replace text interactively with the command M-x
      query-replace, then type the string we want to replace, and then the
      replacement string. Then, we will be asked whether we want the change
      to be made and we can answer by typing y (yes), n (no), q (quit the
      replacements). A , (comma) makes only one replacement and quits
      (useful if we know that this is the last change that we want to make).
      If we are confident, we can change all string in a buffer, no questions
      asked, by giving the command M-x replace-string.
      

      	Change case: We can change the case in the words of a region with
      the commands M-x upcase-region, M-x capitalize-region and M-x
                                                                          

                                                                          
      downcase-region. Try it.


We note that cutting and pasting can be made between different windows of the same
or different buffers.




   
1.3.5    Windows

Sometimes it is very convenient to edit one or more different buffers in two or
more windows. The term “windows” in Emacs refers to regions of the same Emacs
desktop window. In fact, a desktop window running an Emacs session is referred
to as a frame in the Emacs jargon. Emacs can split a frame in two or
more windows, horizontally or/and vertically. Study figure 1.5 on page
81 for details. We can also open a new frame and edit several buffers
simultaneously27 .
We can manipulate windows and frames as follows:
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Figure 1.5: In this figure, the Emacs window has been split in three windows. The
splitting was done horizontally first (C-x 2), and then vertically (C-x 3). By dragging the
mouse (Drag-Mouse-1) on the horizontal mode lines and vertical lines that separate the
windows, we can change window sizes. Notice the useful information diplayed on the mode
lines. Each window has one point and the cursor is on the active window (in this case the
window of the buffer named ELines.f). A buffer with no active changes in its contents
is marked by a --, an edited buffer is marked by ** and a buffer in read only mode with
(%%). With a mouse click on a %%, we can change them to -- (so that we can edit) and
vice versa. With Mouse-3 on the name of a mode we can activate a choice of minor modes.
With Mouse-1 on the name of a mode we ca have access to commands relevant to the
mode. The numbers (17,31), (16,6) and (10,15) on the mode lines show the (line,column)
of the point location on the respective windows.



                                                                          

                                                                          
   



      
      	Position the point at the center of the window and clear the screen
      from garbage: C-l (careful: l not 1).
      

      	Split a window in two, horizontally: C-x 2.
      

      	Split a window in two, vertically: C-x 3.
      

      	Delete all other windows (remain only with the current one): C-x 1.
      

      	Delete the current windows (the others remain): C-x 0.
      

      	Move the cursor to the other window: Mouse-1 or C-x o.
      

      	Change the size of window: Use Drag-Mouse-1 on the line separating
      two windows (the mode line). Use C-^, C-} for making a change of the
      horizontal/vertical size of a window respectively.
      

      	Create a new frame: C-x 5 2.
      

      	Delete a frame: C-x 5 0.
      

      	Move the cursor to a different frame: With Mouse-1 or with C-x 5 o.


You can have many windows in a dumb terminal. This is a blessing when a dekstop
environment is not available. Of course, in that case you cannot have many
frames.
                                                                          

                                                                          


   1.3.6    Files and Buffers





      
      	Open a file: C-x C-f or M-x find-file.
      

      	Save a buffer: C-x C-s or M-x save buffer. With C-x C-c or M-x
      save-buffers-kill-emacs we can also exit Emacs. From the menu:
      File[image: → ]Save. From the toolbar: click on the save icon.
      

      	Save buffer contents to a different file: C-x C-w or M-x write-file.
      From the menu: File[image: → ]Save As. From the toolbar: click on the
      “save as” icon.
      

      	Save all buffers: C-x s or M-x save-some-buffers.
      

      	Connect a buffer to a different file: M-x set-visited-filename.
      

      	Kill a buffer: C-x k.
      

      	Change the buffer of the current window: C-x b. Also, use the menu
      Buffers, then choose the name of the buffer.
      

      	Show the list of all buffers: C-x C-b. From the menu: Buffers [image: → ]
      List All Buffers. By typing Enter next to the name of the buffer, we
      make it appear in the window. There are several buffer administration
      commands. Learn about them by typing C-h m when the cursor is in
      the Bufer List window.
                                                                          

                                                                          
      

      	Recover data from an edited buffer: If Emacs crashed, do not despair.
      Start  a  new  Emacs  and  type  M-x recover-file and  follow  the
      instructions. The command M-x recover-session recovers all unsaved
      buffers.
      

      	Backup files: When you save a buffer, the previous contents of the file
      become a backup file. This is a file whose path is the same as the
      original’s file with a ~ appended in the end. For example a file test.f90
      will have as a backup the file test.f90~. Emacs has version control,
      and you can configure it to keep as many versions of your edits as you
      want.
      

      	Directory browsing and directory administration commands: C-x d or
      M-x dired. You can act on the files of a directory (open, delete, rename,
      copy etc) by giving appropriate commands. When the cursor is in the
      dired window, type C-h m to read the relevant documentation.





   1.3.7    Modes

Each buffer can be in different modes. Each mode may activate different
commands or editing environment. For example each mode can color keywords
relevant to the mode and/or bind keys to different commands. There
exist major modes, and a buffer can be in only one of them. There are
also minor modes, and a buffer can be in one or more of them. Emacs
activates major and minor modes by default for each file. This usually
depends on the filename but there are also other ways to control this. The
user can change both major and minor modes at will, using appropriate
commands.




   Active modes are shown in a parenthesis on the mode line (see figures 1.3 and
1.5. 

      
      	M-x f90-mode: This mode is of special interest in this book since we will
                                                                          

                                                                          
      edit a lot of Fortran code. We need it activated in buffers that contain a
      Fortran program and its most useful characteristics are automatic code
      alignment by pressing the key TAB, the coloring of Fortran commands,
      variables and other structural constructs (subroutines, if statements, do
      loops, variable declarations, statement labels etc). Another interesting
      function is the one that comments out a whole region of code, as well
      as the inverse function.
      

      	M-x c-mode:   For   files   containing   programs   written   in   the   C
      language. Related modes are the c++-mode, java-mode, perl-mode,
      awk-mode, python-mode, makefile-mode, octave-mode,
      gnuplot-mode, mathematica-mode and others.
      

      	latex-mode: For files containing LATEX  text formatting commands.
      

      	text-mode: For editing simple text files (.txt).
      

      	fundamental-mode: The basic mode, when one that fits better doesn’t
      exist...


   Some interesting minor modes are:  

      
      	M-x auto-fill-mode: When a line becomes too long, it is wrapped
      automatically. A related command to do that for the whole region is
      M-x fill-region, and for a paragraph M-x fill-paragraph.
      

      	M-x overwite-mode:  Instead  of  inserting  characters  at  the  point,
      overwrite the existing ones. By giving the command several times, we
      toggle between activating and deactivating the mode.
      

      	M-x read-only mode: When visiting a file with valuable data that
      we don’t want to change by mistake, we can activate this mode so
      that changes will not be allowed by Emacs. When we open a file with
      the  command  C-x C-r or  M-x find-file-read-only this  mode  is
      activated. We can toggle this mode on and off with the command C-x
      C-q (M-x toggle-read-only). See the mode line of the buffer jack.c
      in figure 1.5 which contains a string %%. By clicking on the %% we can
      toggle the read-only mode on and off.
                                                                          

                                                                          
      

      	flyspell-mode: Spell checking as we type.
      

      	font-lock-mode: Colors the structural elements of the buffer which are
      defined by the major mode (e.g. the commands of a Fortran program).


   In a desktop environment, we can choose modes from the menu of the mode
line. By clicking with Mouse-3 on the name of a mode we are offered options
for (de)activating minor modes. With a Mouse-1 we can (de)activate
the read-only mode with a click on :%% or :-- respectively. See figure
1.5.


   1.3.8    Emacs Help

Emacs’ documentation is impressive. For newbies, we recommend to follow the
mini course offered by the Emacs tutorial. You can start the tutorial by typing
C-h t or select Help [image: → ] Emacs Tutorial from the menu. Enjoy... The Emacs
man page (give the man emacs command in the command line) will give you a
summary of the basic options when calling Emacs from the command
line.



   A quite detailed manual can be found in the Emacs info
pages28 .
Using info needs some training, but using the Emacs interface is quite intuitive
and similar to using a web browser. Type the command C-h r (or choose
Help[image: → ]Emacs Tutorial from the menu) and you will open the front page of
the emacs manual in a new window. By using the keys SPC and Backspace we can
read the documentation page by page. When you find a link (similar to web page
hyperlinks), you can click on it in order to open to read the topic it refers to.
Using the navigation icons on the toolbar, you can go to the previous or to
the next pages, go up one level etc. There are commands that can be
given by typing single characters. For example, type d in order to jump to
the main info directory. There you can find all the available manuals in
the info system installed on your computer. Type g (emacs) and go to
the top page of the Emacs manual. Type g (info) and read the info
                                                                          

                                                                          
manual.

   Emacs is structured in an intuitive and user friendly way. You will learn a lot
from the names of the commands: Almost all names of Emacs commands consist
of whole words, separated by a hyphen “-”, which almost form a full sentence.
These make them quite long sometimes, but by using auto completion of their
names this does not pose a grave problem.



      
      	auto completion: The names of the commands are auto completed
      by  typing  a  TAB one  or  more  times.  E.g.,  type  M-x in  order  to  go
      to the minibuffer. Type capi[TAB] and the command autocompletes
      to capitalize-. By typing [TAB] for a second time, a new window
      opens and offers the options for completing to two possible commands:
      capitalize-region and  capitalize-word.  Type  an  extra  r[TAB]
      and  the  command  auto  completes  to  the  only  possible  choice
      capitalize-region. You can see all the commands that start with
      an s by typing M-x s[TAB][TAB]. Sure, there are many... Click on the
      *Completions* buffer and browse the possibilities. A lot will become
      clear  just  by  reading  the  names  of  the  commands.  By  typing  M-x
      [TAB][TAB], all available commands will appear in your buffer!
      

      	keyboard shortcuts: If you don’t remember what happens when you
      type  C-s,  no  problem:  Type  C-h k and  then  the  ...  forgotten  key
      sequence C-s. Conversely, have you forgotten what is the keyboard
      shortcut  of  the  command  save-buffer?  Type  C-h w and  then  the
      command.
      

      	functions:  Are  you  looking  for  a  command,  e.g.  save-something
      -I-forgot? Type C-h f and then save-[TAB] in order to browse over
      different choices. Use Mouse-2 in order to select the command you are
      interested in, or type and complete the rest of its name (you may use
      [TAB] again). Read about the function in the *Help* buffer that opens.
      

      	variables: Do the same after typing C-h v in order to see a variable’s
      value and documentation.
      

                                                                          

                                                                          
      	command apropos: Have you forgotten the exact name of a command?
      No problem... Type C-h a and a keyword. All commands related to the
      keyword you typed will appear in a buffer. Use C-h d for even more
      information.
      

      	modes: When in a buffer, type C-h m and read information about the
      active modes of the buffer.
      

      	info: Type C-h i
      

      	Have you forgotten everything mentioned above? Just type C-h ?


   1.3.9    Emacs Customization

You can customize everything in Emacs. From key bindings to programming your
own functions in the Elisp language. The most common way for a user to
customize her Emacs sessions, is to put all her customization commands in the
file [image: ∼ ]/.emacs in her home directory. Emacs reads and executes all
these commands just before starting a session. Such a .emacs file is given
below:
                                                                          

                                                                          


   
; Define F1 key to save the buffer
 
(global-set-key [f1]    ’save-buffer)
 
; Define Control-c s to save the buffer
 
(global-set-key "\C-cs" ’save-some-buffers)
 
; Define Meta-s (Alt-s) to interactively search forward
 
(global-set-key "\M-s"  ’isearch-forward)
 
; Define M-x is         to interactively search forward
 
(defalias       ’is     ’isearch-forward)
 
; Define M-x fm         to set fortran-mode for the buffer
 
(defun fm()    (interactive) (f90-mode))
 
; Define M-x sign       to sign my name
 
(defun sign()  (interactive) (insert "K. N. Anagnostopoulos"))




   Everything after a ; is a comment. Functions/commands are enclosed in
parentheses. The first three ones bind the keys F1, C-c s and M-s to the
commands save-buffer, save-some-buffers and isearch-forward
respectively. The next one defines an alias of a command. This means that,
when we give the command M-x is in the minibuffer, then the command
isearch-forward will be executed. The last two commands are the definitions of
the functions (fm) and (sign), which can be called interactively from the
minibuffer.

   For more complicated examples google “emacs .emacs file” and you will see
other users’ .emacs files. You may also customize Emacs from the menu
commands Options[image: → ]Customize Emacs. For learning the Elisp language, you
can read the manual “Emacs Lisp Reference Manual” found at the address

www.gnu.org/software/emacs/manual/elisp.html




   1.4    The Fortran Programming Language

In this section, we give a very basic introduction to the Fortran programming
language. This is not a systematic exposition and you are expected to learn what
is needed in this book by example. So, please, if you have not already done it, get
                                                                          

                                                                          
in front of a computer and do what you read. You can find many good
tutorials and books introducing Fortran in a more complete way in the
bibliography.




   1.4.1    The Foundation

The first program that one writes when learning a new programming language is
the “Hello World!” program. This is the program that prints “Hello World!” on
your screen:
                                                                          

                                                                          


   
program hello
 

 
!print a message to the world:
 
 print *, ’Hello World!’  !this is a comment
 

 
end program hello


  Commands, or statements, in Fortran are strings of characters
separated by blanks (“words”) that we are allowed to write from
the 1st to the 132nd column of a file. Each line starts a new
command29 .
We can put more than one command on each line by separating them with a
semicolon (;). Everything after an exclamation mark (!) is a comment.
Proliferation of comments is necessary for documenting our code. Good
documentation of our code is an integral part of programming. If the code is
planned to be read by others, or by us at a later time, make sure to explain in
detail what each line is supposed to do. You and your collaborators will save a
lot of time in the process of debugging, improving and extending your
code.

   The main entry to the program is defined by the command program
name, where name can be any string of alphanumeric characters and an
underscore. When the program runs, it starts executing commands at
this point. The end of the program, as well as of any other program unit
(functions, subroutines, modules), is defined by the line end program
name.

   The first (and only) command given in the above program is the print
command. It prints the string of characters “Hello World!” to the stdout. The
“*,” is part of the syntax and it is not printed, of course. Fortran does not
distinguish capital from small letters, so we could have written PRINT, Print,
prINt, ... A string of characters in Fortran is enclosed in single or double quotes
(’Hello World!’ or "Hello World!" is equivalent).

   In order to execute the commands in a program, it is necessary to compile it.
This is a job done by a program called the compiler that translates the
                                                                          

                                                                          
human language programming statements into binary commands that
can be loaded to the computer memory for execution. There are many
Fortran compilers available, and you should learn which compilers are
available for use in your computing environment. Typical names for Fortran
compilers are gfortran, f90, ifort, g95, .... You should find out
which compiler is best suited for your program and spend time reading
its documentation carefully. It is important to learn how to use a new
compiler so that you can finely tune it to optimize the performance of your
program.



   We are going to use the open source and freely available compiler
gfortran, which can be installed on most popular operating
systems30 .
The compilation command is:
                                                                          

                                                                          


   
> gfortran hello.f90 -o hello


 The switch -o defines the name of the executable file, which in our case is hello.
If the compilation is successful, the program runs with the command:
                                                                          

                                                                          


   
> ./hello
 
 Hello world!




   Now, we will try a simple calculation. Given the radius of a circle we
will compute its length and area. The program can be found in the file
area_01.f90:
                                                                          

                                                                          


   
program circle_area
 

 
 PI = 3.141593
 
 R  = 4.0
 
 print *,’Perimeter= ’,2.0*PI*R
 
 print *,’Area=      ’,PI*R**2
 

 
end program circle_area


 The first two commands define the values of the variables PI and R. These
variables are of type REAL, which are floating point numbers. Fortran
has implicit rules that can be used to define the type of variables. By
default, variables whose name starts with i, j, k, l, m and n are of
INTEGER type. These are exact whole numbers. All other variables are of type
REAL31 .
We can override these implicit rules by explicitly declaring the type of a variable
or by changing the implicit rules with the use of the implicit statement. The
following two commands have two effects: Computing the length [image: 2πR  ]
and the area [image:    2
πR   ] of the circle and printing the results. The expressions
2.0*PI*R and PI*R**2 are evaluated before being printed by the print
command. The multiplication and raising to a power operators are * and **,
respectively. Note the explicit decimal points at the constants 2.0 and 4.0.
If we write 2 or 4 instead, then these are going to be constants of the
INTEGER type and by using them the wrong way we may obtain surprising
results32 .
We compile and run the program with the commands:
                                                                          

                                                                          


   
> gfortran area_01.f90 -o area
 
> ./area
 
 Perimeter=    25.13274
 
 Area=         50.26548




   We will now try a process that repeats itself for many times. We will calculate
the length and area of 10 circles of different radii [image: Ri = 1.28 + i  ], [image: i = 1,2,...,10  ].
We will store the values of the radii in an array R(10) of the REAL type. The code
can be found in the file area_02.f90:
                                                                          

                                                                          


   
program circle_area
 

 
 dimension R(10)
 

 
 PI = 3.141593
 
 R(1) = 2.28
 
 do i=2,10
 
  R(i) = R(i-1) + 1.0
 
 enddo
 

 
 do i = 1,10
 
  perimeter = 2*PI*R(i)
 
  area      = PI*R(i)**2
 
  print *,i,’) R= ’,R(i),’ perimeter= ’,perimeter
 
  print *,i,’) R= ’,R(i),’ area     = ’,area
 
 enddo
 

 
end program circle_area


 The command dimension R(10) defines an array of length 10. This way, the
elements of the array are referred by an index that takes value from 1 to 10. For
example R(4) is the fourth element of the array.

   Between the lines
                                                                          

                                                                          


   
 do  i = 2, 10
 
  ...
 
 enddo


 we can write commands that are repeatedly executed while the
INTEGER variable i takes values from 2 to 10 with increasing
step33 
equal to 1. The command:
                                                                          

                                                                          


   
 R(i) = R(i-1) + 1.0


 defines the i-th radius to have a value which is larger by the (i-1)-th by 1. For the loop
to work correctly, we must define the initial value of R(1), otherwise the final result is
undefined34 .
The second loop uses the defined R-values in order to do the computation and
printing of the results.

   Now, we will write an interactive version of the program. Instead of hard
coding the values of the radii, we will interact with the user asking her to
give her own values. The program will read the 10 values of the radii
from the standard input (stdin). The program can be found in the file
area_03.f90:
                                                                          

                                                                          


   
program circle_area
 

 
 implicit none
 

 
 integer,parameter    :: N=10
 
 real   ,parameter    :: PI=3.141593
 
 real   ,dimension(N) :: R
 
 real                 :: area,perimeter
 
 integer              :: i
 

 
 do i=1,N
 
  print*,’Enter radius of circle: ’
 
  read *, R(i)
 
  print*,’i= ’,i,’ R(i)= ’,R(i)
 
 enddo
 

 
 open(UNIT=13,FILE=’AREA.DAT’)
 

 
 do i = 1,N
 
  perimeter = 2*PI*R(i)
 
  area      = PI*R(i)**2
 
  write(13,*)i,’) R= ’,R(i),’ area= ’,area,&
 
       ’ perimeter= ’,perimeter
 
 enddo
 

 
 close(13)
 

 
end program circle_area


 The first statement in the above program is implicit none! This statement
deactivates the implicit rules of Fortran, and the programmer is obliged to declare
all variables in a program unit. It is highly recommendable that you always use
this option... You might spend a little more time typing the declarations, but this
effort cannot be compared to the pain looking for bugs due to typos in the names of
                                                                          

                                                                          
variables35 !
We will follow this practice throughout the book.

   The declarations of the variables follow this statement. The variables
N and i are declared to be of the INTEGER type, whereas the variables
PI, area, perimeter and R(N) are declared to be of the REAL type.
The variables PI and N are specified to be parameters. Parameters are
given specific values which cannot be changed during the execution of the
program.

   The array elements R(i) are read using the command read:
                                                                          

                                                                          


   
  read *, R(i)


 The command read reads from the stdin. The user types the values at the
terminal and then presses [Enter]. We can read more than one variables with one
read command.


   In order to print data to a file, we have to connect it to a unit. Each unit is
represented by any number between 0 and 99. Some numbers are reserved for special
units36 .
The connection of a unit to a file is done with the open
command. When this is done, we can write to the file with the
command37 
write(n,*), where n is the unit number. When we are done writing to a file we
should use the command close(n). Then the unit number is available to be used
for a different file. The flow of commands is like
                                                                          

                                                                          


   
 open(UNIT=13,FILE=’AREA.DAT’)
 
 ...
 
 write(13,*) ....
 
 ...
 
 close(13)


 The name of the file is determined by the option FILE=’AREA.DAT’ of the open
statement. Uppercase or lowercase characters in the filename make a difference.
The option FILE=’path’ can use any valid path in the filesystem, provided that
we have the necessary permissions.

   The line
                                                                          

                                                                          


   
  write(13,*)i,’) R= ’,R(i),’ area= ’,area,&
 
       ’ perimeter= ’,perimeter


 shows us how to continue a line containing a long statement to the next one. We
place a & at the end of the line and then continue writing the statement to the
next. This can happen up to 39 times.

   The next step will be to learn how to define and use functions and subroutines.
The program below shows how to define a subroutine area_of_circle, which
computes the length and area of a circle of given radius. The following program
can be found in the file area_04.f90:
                                                                          

                                                                          


   
program circle_area
 

 
 implicit none
 

 
 integer,parameter   :: N=10
 
 real   ,parameter   :: P=3.141593
 
 real   ,dimension(N):: R
 
 real                :: area,perimeter
 
 integer             :: i
 

 
 do i=1,N
 
  print*,’Enter radius of circle: ’
 
  read *, R(i)
 
  print*,’i= ’,i,’ R(i)= ’,R(i)
 
 enddo
 

 
 open(UNIT=13,FILE=’AREA.DAT’)
 

 
 do i = 1,N
 
  call area_of_circle(R(i),perimeter,area)
 
  write(13,*)i,’) R= ’,R(i),’ area= ’,area,&
 
         ’ perimeter= ’,perimeter
 
 enddo
 

 
 close(13)
 

 
end program circle_area
 

 
subroutine area_of_circle(R,L,A)
 
 implicit none
 
 real           :: R,L,A
 
 real,parameter :: PI = 3.141593 , PI2 = 2.0*PI
 

 
 L= PI2*R
 
 A= PI*R*R
 

                                                                          

                                                                          
 
 return
 

 
end subroutine area_of_circle


 The calculation of the length and the area of the circle is performed by the call
to the subroutine:
                                                                          

                                                                          


   
  call area_of_circle(R(i),perimeter,area)


 The command call calls a subroutine and transfers the control of the
program within the subroutine. The above subroutine has the arguments
(R(i),perimeter,area). The argument R(i) is an input variable. It provides the
necessary data to the subroutine in order to perform its computation. The
arguments perimeter and area are intended for output. Upon return of the
subroutine to the main program, they store the result of the computation. The
user of a subroutine must learn how to use its arguments in order to be able to
call it in her program. These must be documented carefully by the programmer of
the subroutine.

   The actual program executed by the subroutine is between the lines:
                                                                          

                                                                          


   
subroutine area_of_circle(R,L,A)
 
 ...
 
end subroutine area_of_circle


 The arguments (R,L,A) must be declared in the subroutine and need not have the
same names as the ones that we use when we call it. A change of their values within
the subroutine will change the values of the corresponding variables in the calling
program38 .
Therefore, the statements L=PI2*R and A=PI*R*R change the values of the
variables perimeter and area to the desired values. The command return
returns the control to the calling program. The parameters PI and PI2 are
“private” to the subroutine. Their names and values are invisible outside the
subroutine. Similarly, the variables i, N, ..., defined in the main program, are
invisible within the subroutine.

   We summarize all of the above in a program trionymo.f90, which computes
the roots of a second degree polynomial:
                                                                          

                                                                          


   
! =============================================================
 
! Program to compute roots of a 2nd order polynomial
 
! Tasks: Input from user,logical statements,
 
!        use of functions,stop
 
!        Accuracy in floating point arithmetic
 
!        e.g. IF(x.eq.0.0)
 
!
 
! Tests: a,b,c= 1  2  3 D=   -8
 
!        a,b,c= 1 -8 16 D=    0  x1=   4
 
!        a,b,c= 1 -1 -2 D=    9. x1=   2. x2=  -1.
 
!        a,b,c= 2.3 -2.99 -16.422 x1=   3.4 x2=  -2.1
 
! But:   6.8(x-4.3)**2 = 6.8 x**2 -58.48*x+125.732
 
!        a,b,c= 6.8 -58.48 125.73199
 
!        D= 0.000204147349  x1=   4.30105066 x2=   4.29894924
 
!        a,b,c= 6.8 -58.48 125.732, D=   -0.000210891725 < 0!!
 
! =============================================================
 
program trionymo
 
 implicit none
 
 real :: a,b,c,D
 
 real :: x1,x2
 
 real :: Discriminant
 

 
 print*,’Enter a,b,c:’
 
 read *,a,b,c
 

 
! Test if we have a well defined polynomial of 2nd degree:
 
 if( a .eq. 0.0) stop ’trionymo: a=0’
 

 
! Compute the discriminant (= diakrinousa)
 
 D = Discriminant(a,b,c)
 
 print *, ’Discriminant: D=  ’,D
 

 

 
! Compute the roots in each case: D>0, D=0, D<0 (no roots)
 
 if(D .gt. 0.0 )then
 
  call roots(a,b,c,x1,x2)
                                                                          

                                                                          
 
  print *,’Roots:        x1= ’,x1,’ x2= ’,x2
 
 else if (D .eq. 0.0) then
 
  call roots(a,b,c,x1,x2)
 
  print *,’Double Root:  x1= ’,x1
 
 else
 
  print *,’No real roots’
 
 endif
 

 
end program trionymo
 
! =============================================================
 
! This is the function that computes the discriminant
 
! A function returns a value. This value is assigned with the
 
! statement:
 
! Discriminant = <value>
 
! i.e. we simply assign anywhere in the program a variable with
 
! the name  of the function.
 
! =============================================================
 
real function Discriminant(a,b,c)
 
 implicit none
 
 real :: a,b,c
 

 
 Discriminant = b**2 - 4.0 * a * c
 

 
end function Discriminant
 
! =============================================================
 
! The subroutine that computes the roots.
 
! =============================================================
 
subroutine roots(a,b,c,x1,x2)
 
 implicit none
 
 real :: a,b,c
 
 real :: x1,x2
 
 real :: D, Discriminant
 

 
 if(a .eq. 0.0) stop ’roots: a=0’
 

 
 D = Discriminant(a,b,c)
 
 if(D.ge.0.0)then
 
  D = sqrt(D)
 
 else
 
  print *,’roots: Sorry, cannot compute roots, D<0=’,D
 
  stop
                                                                          

                                                                          
 
 endif
 

 
 x1 = (-b + D)/(2.0*a)
 
 x2 = (-b - D)/(2.0*a)
 

 
end subroutine roots
 



 The program reads the coefficients of the polynomial [image: ax2 + bx + c  ]. After a
check whether [image: a ⁄= 0  ], it computes the discriminant [image: D =  b2 − 4ac  ] by calling the
function Discriminant(a,b,c). The only difference between a function and a
subroutine is that the first one returns a value of a given type. We don’t need to
use the command call in order to run the commands of a function, this
is done by computing its value in an expression. The type of the value
returned must be declared both in the program that uses the function
(real :: Discriminant) and at the entry point of its program unit (real
function Discriminant(a,b,c)). The value returned to the calling
program is the one assigned to the variable that has the same name as the
function:
                                                                          

                                                                          


   
real function Discriminant(a,b,c)
 
 ...
 
 Discriminant = b**2 - 4.0 * a * c
 
 ...
 
end function Discriminant





   Notice the use of the comparison operators .gt. (strictly greater than) and .eq.
(equal to)39 :
                                                                          

                                                                          


   
 if(D .gt. 0.0 )then
 
  ...
 
 else if (D .eq. 0.0) then
 
  ...
 
 else
 
  ...
 
 endif





   1.4.2    Details

You may skip this paragraph during a first reading of the book. It is intended
mainly to be a reference when reading the later chapters.









   There are more types of variables built in Fortran. In the program listed
below, we show how to use CHARACTER variables, floating point numbers of double
precision REAL(8) and complex numbers of single and double precision, COMPLEX
and COMPLEX(8) respectively:
                                                                          

                                                                          


   
program f90_vars
 
 implicit none
 

 
 character(100) :: string
 

 
 real(4)    ::   x !single precision, same as real :: x
 
 real(8)    ::  x8 !equivalent to: double precision x8
 
!real(16)   :: x16 !may not be supported by all compilers
 
!Complex Numbers:
 
 complex(4) :: z   !single precision, same as complex :: z
 
 complex(8) :: z8  !double precision
 

 
!A string: a character array:
 
 string = ’Hello World!’ !string smaller size, leaves blanks
 
                                         !TRIM: trim blanks
 
 print *,’A string ::’,      string, ’::’,TRIM(string),’::’
 
 print *,’join them::’,      string   //       string ,’::’
 
 print *,’join them::’, TRIM(string)  //  TRIM(string),’::’
 
!Reals with increasing accuracy: Determine PI=3.14159...
 
 x   = 4.0  *atan(1.0  )
 
!Use D for double    precision exponent
 
 x8  = 4.0D0*atan(1.0D0)
 
!Use Q for quadriple precision exponent
 
!x16 = 4.0Q0*atan(1.0Q0)
 
 print *,’x4= ’,x,’ x8= ’,x8 !,’ x16= ’,x16
 
 print *,’x4: ’,range(x ),precision(x ),EPSILON(x ),&
 
          TINY(x ),HUGE(x )
 
 print *,’x8: ’,range(x8),precision(x8),EPSILON(x8),&
 
          TINY(x8),HUGE(x8)
 

 
!Complex numbers: single precision
 
 z = (2.0,1.0)*cexp((3.0,-1.0))
 
 print *,’z= ’,z,’ Re(z)= ’,REAL(z),’ Im(z)= ’,IMAG(z),&
 
      ’ |z|= ’,ABS(z),’ z*= ’,CONJG(z)
 

 
!Complex numbers: double precision
                                                                          

                                                                          
 
 z8 = (2.0D0,1.0D0)*cdexp((3.0D0,-1.0D0))
 
 print *,’z= ’,z8,’ Re(z)= ’,DBLE(z8),’ Im(z)= ’,DIMAG(z8),&
 
      ’ |z|= ’,CDABS(z8),’ z*= ’,DCONJG(z8)
 
 print *,’z4: ’,range(z ),precision(z )
 
 print *,’z8: ’,range(z8),precision(z8)
 

 
end program f90_vars


 Some interesting points of the program above are: 

      
      	The number K in the declaration REAL(K):: x refers to the number of
      bytes allocated to the variable x. For K=4 we have single precision (same
      as REAL), for K=8 double precision and for K=16 quadruple precision.
      The latter is not always available. In the declarations COMPLEX(K), K
      refers to the number of bytes allocated to the real and imaginary parts
      of the complex number.
      

      	We always use the exponent notation D in double precision constants,
      even if the exponent 0. Otherwise the constants are of single precision
      and we loose the desired accuracy.
      

      	When we want to state the precision of the return value of an intrinsic
      function explicitly, we usually add a d at the beginning of its name
      (e.g. exp[image: → ]dexp, ABS[image: → ]DABS. When we want to use the complex
      version of a function, we usually add a c at the beginning of its name
      (e.g. exp[image: → ]cexp, ABS[image: → ]CABS). Modify the program in order to
      achieve higher accuracy in the calculation of [image: π  ] and [image: z = (2 + i)e3−i  ],
      by using double precision variables.
      

      	The maximum number of characters in the CHARACTER variable string
      is 100, and this is declared by the statement CHARACTER(100).
      

      	When we print a CHARACTER variable, all its characters are printed,
      including trailing blanks. This is very annoying and we can use the
      function TRIM in order to remove them.
      

      	The operator // joins two CHARACTER variables or constants. Notice the
      effect of the function TRIM in the above program.


                                                                          

                                                                          

   Another important point to discuss is how to be able to access the same variables
from different program units. So far, we simply mentioned that variables have a scope
within each function and subroutine. If we wish to have access to the same location of
memory40 
from different program units, then we use the COMMON statement which defines a
common block. See the following example:
                                                                          

                                                                          


   
! ---------------------------------------
 
program f90_common
 
 implicit none
 
 real :: k1=1.0,k2=1.0,k3=1.0
 
 common /CONSTANTS/k1,k2
 

 
 print *,’main: k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3
 
 call s1 !prints k1 and k2 but not k3
 
 call s2 !changes the value of k2 but not k3
 
 print *,’main: k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3
 

 
end program f90_common
 
! ---------------------------------------
 
subroutine s1()
 
 implicit none
 
 real k1,k2,k3
 
 common /CONSTANTS/k1,k2
 

 
 print *,’s1: k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3
 
end subroutine s1
 
! ---------------------------------------
 
subroutine s2()
 
 implicit none
 
 real k1,k2,k3
 
 common /CONSTANTS/k1,k2
 

 
 k2 = 2.0
 
 k3 = 2.0
 
end subroutine s2


 The common block has the name CONSTANTS and we can refer to it from any
program unit. Each program unit that uses this common block must use the same
declaration, although the names of variables are allowed to be different. The
common block CONSTANTS points to the same location in the computer memory,
where we expect to find the values of two real variables. These variables (k1 and
k2) are used and have their values changed in the subroutines s1 and s2. The
variable k3, is a different variable in each program unit. The program
                                                                          

                                                                          
prints
                                                                          

                                                                          


   
 main: k1=    1.000000   k2=    1.000000   k3=    1.000000
 
 s1:   k1=    1.000000   k2=    1.000000   k3=  -2.8117745E-05
 
 main: k1=    1.000000   k2=    2.000000   k3=    1.000000


 One of the weaknesses of Fortran is that it does not have a convenient control for
Input/Output (I/O). For complicated I/O and text manipulation we will use
other programs that can do a better job, like awk, perl, shell scripting, or
programs written in C/C++. It is important to know some details about I/O
commands in Fortran, mainly the specifications that control the accuracy of
printed floating point numbers. So far, I/O commands, like print, write, read,
used a * in order to control the printing of numbers. But we can replace the *
with explicit format directives as follows:
                                                                          

                                                                          


   
program f90_format1
 
 implicit none
 
 integer             :: i
 
 real                :: x
 
 real, dimension(10) :: a
 
 real(8)             :: x8
 

 
 i  = 123456
 
 x  = 2.0  *atan2(1.0,0.0)
 
 print ’(A5,I6,F12.7)’,’x,i= ’,i,x
 
 x8 = 2.0D0*atan2(1.0D0,0.0D0)
 
 write(6,’(F18.16,E24.17,G24.17,G24.17)’) x8,x8,&
 
      1.0D15*x8,1.0D18*x8
 
 write(6,’(3F20.16)’) x8,x8/2.0,cos(x8)
 
 write(6,’(200F12.6)’)(a(i), i=1,10)
 
end program f90_format1


 Note the parentheses within the single quotes: (A5,I6,F12.7) is a format
directive for the print statement. The A is for printing a CHARACTER, the I for
printing an INTEGER and the F for printing a floating point number. The numbers
after the letter declare the number of spaces used for printing each one.
Beware! If the printing space is not enough, Fortran will not print and
you will find a series of * in place of the value of your result! Bummer...
In order to estimate the number of spaces needed for a floating point
number, you have to include the space taken by the decimal point, the sign,
the exponent character, the sign of the exponent and the digits needed
for the exponent. Plus a space to separate the numbers in between...
So, be generous and give plenty of printing space. In the example shown
above, A5 denotes a character of 5 spaces, I6 and integer of 6 spaces and
F12 a floating point number of 12 spaces. The decimal point in F12.7
means that we want a floating point with the accuracy of 7 significant
digits.

   The format directive (F18.16,E24.17,G24.17,G24.17) shows how to print
double precision variables. These provide an accuracy of 16-17 significant
digits and there is no need for keeping more digits. The command E prints
a number in scientific form with an exponent. The command G prints
the exponent when it is needed. The numbers before the letters denote
                                                                          

                                                                          
multiplicity. Therefore 3F20.16 instructs the printing of 3 floating point
numbers by reserving 20 spaces and using 16 significant digits for each one of
them.

   The command write(6,’(200F12.6)’)(a(i), i=1,10) shows how to print a
large array using an implicit loop. We used many more spaces than actually
needed (200F12.16) which is OK. If the array gets larger by increasing the
range of i, then we will have enough room for printing in the same line.
The program prints (we have folded the long line in order to make it
visible):
                                                                          

                                                                          


   
x,i= 123456   3.1415927
 
3.1415926535897931 0.31415926535897931E+01  3141592653589793.0
 
                                        0.31415926535897933E+19
 
  3.1415926535897931  1.5707963267948966 -1.0000000000000000
 
    0.000000    0.000000    0.000000 ....


 We can organize the format commands by using the FORMAT statement.
Then, we use labeled statements in order to refer to them. Labels are
numbers put in the beginning of a line which should be unique to a program
unit and are within the range 1-99999. We can transfer the control of the
program to such a line with a goto command or by using the label in
the I/O statements print, write and read as in the example shown
below:
                                                                          

                                                                          


   
program f90_format2
 
 implicit none
 
 integer i
 
 real    x, a(10)
 
 real*8  x8
 

 
 i  = 123456
 
 x  = 2.0  *atan2(1.0,0.0)
 
 print 100,’x,i= ’,i,x
 
 x8 = 2.0D0*atan2(1.0D0,0.0D0)
 
 write(6,123) x8,x8,&
 
      1.0D15*x8,1.0D18*x8
 
 write(6,4444) x8,x8/2.0,cos(x8)
 
 write(6,9999)(a(i), i=1,10)
 
100  FORMAT(A5,I6,F12.7)
 
123  FORMAT(F18.16,E24.17,G24.17,G24.17)
 
4444 FORMAT(3F20.16)
 
9999 FORMAT(200F12.6)
 
end program f90_format2




   The reader should also study the Fortran intrinsic functions shown in table
1.2, page 181.


   1.4.3    Arrays

You may skip this section during the first reading of this book. It will be useful to
come back here later.

   Arrays are related data of the same type which can be accessed by using one
or more indices. For example, after a declaration real, dimension(10) :: A,
the expressions
                                                                          

                                                                          


   
A(1), A(2), ... , A(10)


 refer to its 10 real values. The indices can be integer expressions, for
example
                                                                          

                                                                          


   
A(i), B(2*i+3), C(INT(x+y(j)))


 where in the last case we used the integer value of the intrinsic function INT(x),
which returns the integer part of x. Note that, arrays and functions enclose indices
and arguments between parentheses (...) which are of the same style, and the
compiler must look at their declarations in order to tell the difference. Examples
of array declarations are
                                                                          

                                                                          


   
 real, dimension(10) :: a,b
 
 real, dimension(20) :: c,d


 which declare the arrays a, b, c, d, which are of the real kind, with elements
a(1) ... a(10), b(1) ... b(10), c(1) ... c(20) and d(1) ... d(20). An
equivalent declaration is
                                                                          

                                                                          


   
 real :: a(10), b(10), c(20), d(20)


 or
                                                                          

                                                                          


   
 integer, parameter     :: n1 = 10, n2 = 20
 
 real,    dimension(n1) :: a, c(n2)
 
 real                   :: b(n1), d(n2)


 In the last form, we show how to use constant parameters for declaring the size of
arrays. For the declarations shown above, the lower bound of all arrays is 1 and
the upper bound for a and b is 10 and for c and d is 20. The upper and
lower bound of arrays can be explicitly determined. The declarations

                                                                          

                                                                          


   
 integer, parameter          :: n1 = 10, n2 = 20
 
 real,    dimension(0:n1)    :: a
 
 real,    dimension(-n1:n2)  :: c


 define the real array a with 11 values a(0) ... a(10) and the array c with 31
values c(-10) c(-9) ... c(-1) c(0) c(1) ... c(20).

   The arrays shown above have dimension 1 and they are like vectors.
We can declare arrays of more than one dimension. This means
that we need more than one indices in order to determine an array
element41 .
Therefore, the declaration
                                                                          

                                                                          


   
integer, dimension(2,2)     :: a


 defines an integer array with values a(1,1), a(1,2), a(2,1) and a(2,2).
The following declarations define two three dimensional real arrays a and
b:
                                                                          

                                                                          


   
 integer, parameter :: n1 = 10, n2 = 20, n3 = 2*n1+n2
 
 real, dimension(n1,n2,n3)          :: a
 
 real, dimension(-n1:n1,0:n2,13:n3) :: b












   Some important definitions used in the bibliography are: 

      
      	array: Variables of the same type to which we refer with one or more
      indices. Variables with only one value are called scalar.
      

      	An array’s dimension has an upper bound and a lower bound
      which define the allowed range of index values. If the lower bound is
      omitted in a declaration, then it takes the value 1.
      

      	The rank of an array is the number of its dimensions, i.e. the number
      of indices needed to determine its values.
      

      	The extent of a dimension it the number of its elements. It is equal to
      (upper bound)-(lower bound)+1.
      

      	The size of an array is the total number of its elements. For a one
      dimensional array, its size is equal to its extent, whereas for a multi
      dimensional one, it is equal to the product of the extents of all of its
      dimensions.
                                                                          

                                                                          
      

      	The shape of an array is its rank and extents of all its dimensions.


   The values of arrays can be set the same way as scalars:
                                                                          

                                                                          


   
 integer :: i
 
 real    :: a(4), b(2,2)
 

 
 b(1,1) = 2.0 ; b(1,2) = 4.0
 
 b(2,1) = 3.4 ; b(2,2) = 7.8
 
 do i=1,4
 
  a(i) = 1.0
 
 enddo


 Alternatively we can use the name of the array as one object:
                                                                          

                                                                          


   
 a = (/ 1.0, 2.0, 3.0, 4.0 /)
 
 b = 0.0


 The first line defines the values of an array by using an array constructor. The
second line defines all elements of the array b to be equal to 0. This is an
example of a very convenient feature of the Fortran language. If all the
arrays in an expression are conformable,  then we can use the intrinsic
Fortran operations to act on whole arrays. Two arrays are conformable if
they have the same shape or if one of them is a scalar. Therefore the
program
                                                                          

                                                                          


   
 integer :: i,j
 
 real    :: x,y,a(10),b(10),c(4,4),d(4,4)
 

 
 do i=1,10
 
  a(i) = b(i)
 
 enddo
 

 
 do j=1,4
 
  do i=1,4
 
   c(i,j) = x*d(i,j)+y
 
  enddo
 
 enddo


 is equivalent to
                                                                          

                                                                          


   
 integer :: i,j
 
 real    :: x,y,a(10),b(10),c(4,4),d(4,4)
 

 
 a = b
 
 c = x*d+y
 



 Many Fortran intrinsic functions are elemental. This means that their arguments
can be arrays, in which case the function acts on each array element separately.
For example, the commands
                                                                          

                                                                          


   
 integer :: i,j
 
 real    :: x,y,a(10),b(10),c(4,4),d(4,4)
 

 
 c = sin(d) + x*exp(-2.0*d)
 
 call random_number(a)
 



 set c(i,j) = sin(d(i,j))+x*exp(-2.0*d(i,j)) for all i and j, and the
elements of a(i) equal to a random number uniformly distributed in the interval
[image: [0,1)  ]. We should stress that in order for two arrays to be conformable, it is not
necessary that they have the same lower and upper bounds. For example, the
command b=c*d in the following program has the same effect as the do
loop:
                                                                          

                                                                          


   
 integer :: i
 
 real    :: b(0:19), c(10:29), d(-9:10)
 

 
 b = c*d
 

 
 do i=1,20
 
  b(i-1) = c(i+9) * d(i-10)
 
 enddo




   In the following, we mention some useful functions that act on arrays. Assume
that
                                                                          

                                                                          


   
 real    :: a(-10:10), b(-10:10), c(10,10), d(10,10), e(10,10)


 then 

      
      	LBOUND(a) and  UBOUND(a) return  the  lower  bound  and  the  upper
      bound of the array a. In the above example LBOUND(a) = -10 and
      UBOUND(a) = 10.
      

      	c = TRANSPOSE(d) sets c(i,j)=d(j,i).
      

      	e = MATMUL(c,d) sets the array e equal to the matrix product c, d.
      I.e. e(i,j)=[image: ∑10
  k=1   ]c(i,k)*d(k,j). Be careful, the command e=c*d
      sets e(i,j)=c(i,j)*d(i,j).
      

      	SUM(a) computes the sum of all the elements of a.
I.e. SUM(a) = [image: ∑10
   i= −10   ]a(i)
      

      	PRODUCT(a) computes the product of all the elements of a.
I.e. PRODUCT(a) = [image: ∏10
  i=−10   ]a(i)
      

      	DOT_PRODUCT(a,b) computes the inner product of a, b.
I.e. DOT_PRODUCT(a,b) = [image: ∑10
  i=− 10   ]a(i)*b(i)
      

      	MAXVAL(a) and MINVAL(a) return the maximum and minimum values
      in the array a respectively.








                                                                          

                                                                          



You can find more functions and documentation in the bibliography  [11, 10]. In the
following, we provide some information related to the Input/Output (I/O) of
arrays. Input (“reading”) and output (“writing”) of array values can be
done by reading and writing their elements in any order we want. In the
example below, we read the array a and write the array b in two different
ways:
                                                                          

                                                                          


   
 integer :: i,j
 
 real    :: a(4), b(2,2)
 

 
 do i=1,4
 
  read *,a(i)
 
 enddo
 
 read *, (a(i), i=1,4)
 

 
 do j=1,2
 
  do i=1,2
 
   print *,b(i,j)
 
  enddo
 
 enddo
 
 print *,( (b(i,j), i=1,2), j=1,2)


 Inside the do loops, input and output is done one element per line from/to
standard input/output. The commands (a(i), i=1,4) and ( (b(i,j) i=1,2),
j=1,2) are implied do loops and read/write from/to the same line. During input,
if the number of values for a are exhausted, then the program tries to read
values from the following line(s). Similarly, if the output of b exhausts the
maximum number of characters per line, then the output continues in the next
line42 .
Try it...

   We can also preform I/O of arrays without explicit reference to their elements.
In this case, the arrays are read/written in a specified order. For example, the
program
                                                                          

                                                                          


   
 real  :: a(4), b(2,2)
 

 
 read  *, a
 
 read  *, b
 

 
 print *, a,b


 reads the values a(1) a(2) a(3) a(4) from the stdin. Then, it continues
reading b(1,1), b(2,1), b(1,2), b(2,2) from the next line (record). Notice
that the array b is read in a column major way. Printing a and b, will print a(1)
a(2) a(3) a(4) and b(1,1), b(2,1), b(1,2), b(2,2) in two different records
(also in column major mode).




   Finally, we summarize some of the Fortran capabilities in array manipulation.
More details can be found in the bibliography. Read the comments in the program
for a partial explanation of each command:
                                                                          

                                                                          


   
program arrays
 
 implicit none
 
 integer :: i,j,n,m
 
 real    :: a(3), b(3,3), c(3,3)=-99.0, d(3,3)=-99.0, s
 
 integer :: semester(1000),grade(1000)
 
 logical :: pass(1000)
 
 !construct the matrix: use the RESHAPE function
 
 !|1.1 -1.2 -1.3|
 
 !|2.1  2.2 -2.3|
 
 !|3.1  3.2  3.3|
 
 b = RESHAPE((/  1.1,  2.1,  3.1, & !(notice rows<->columns)
 
                -1.2,  2.2,  3.2, &
 
                -1.3, -2.3,  3.3  /),(/3,3/))
 
 !same matrix, now exchange rows and columns: ORDER=(/2,1/)
 
 b = RESHAPE((/  1.2, -1.2, -1.3, &
 
                 2.1,  2.2, -2.3, &
 
                 3.1,  3.2,  3.3  /),(/3,3/),ORDER=(/2,1/))
 
 a = b(:,2) !a assigned the second column of b: a(i)=b(i,2)
 
 a = b(1,:) !a assigned the first  row    of b: a(i)=b(1,i)
 
 a = 2.0*b(:,3)+sin(b(2,:))!a(i)= 2*b(i,3)+sin(b(2,i))
 
 a = 1.0+2.0*exp(-a)+b(:,3)!a(i)= 1+2*exp(-a(i))+b(i,3)
 
 s = SUM(b)              !returns sum of all      elements of b
 
 s = SUM(b,MASK=(b.gt.0))!returns sum of positive elements of b
 
 a = SUM(b,DIM=1)     !each a(i) is the sum of the columns of b
 
 a = SUM(b,DIM=2)     !each a(i) is the sum of the rows    of b
 
 !repeat all the above using PRODUCT!
 
 !all instructions may be executed in parallel at any order!
 
 FORALL(i=1:3) c(i,i) = a(i) !set the diagonal of c
 
 !compute upper bounds of indices in b:
 
 n=UBOUND(b,DIM=1);m=UBOUND(b,DIM=2)
 
 !log needs positive argument, add a restriction ("mask")
 
 FORALL(i=1:n,j=1:m, b(i,j).gt.0.0 ) c(i,j) = log(b(i,j))
 
 !upper triangular part of matrix:
 
 !careful, j=i+1:m NOT permitted
 
 FORALL(i=1:n,j=1:m, i     .lt.  j ) c(i,j) = b(i,j)
 
 !each statement executed BEFORE the next one!
                                                                          

                                                                          
 
 FORALL(i=2:n-1,j=2:n-1)
 
  !all right hand side evaluated BEFORE the assignment
 
  !i.e., the OLD values of b averaged and then assigned to b
 
  b(i,j)=(b(i+1,j)+b(i-1,j)+b(i,j+1)+b(i,j-1))/4.0
 
  c(i,j)=1.0/b(i+1,j+1) !the NEW values of b are assigned
 
 END FORALL
 
 ! assignment but only for elements  b(i,j) which are not  0
 
 WHERE (b     .ne. 0.0)              c      = 1.0/b
 
 !MATMUL(b,c) is evaluated, then d is assigned the result only
 
 !at positions where b>0.
 
 WHERE (b     .gt. 0.0)              d      = MATMUL(b,c)
 
 WHERE (grade .ge. 5  )
 
  semester = semester + 1 !student’s semester increases by 1
 
  pass     = .true.
 
 ELSEWHERE
 
  pass     = .false.
 
 END WHERE
 
end program arrays


 The code shown above can be found in the file f90_arrays.f90 of the
accompanying software.


   1.5    Gnuplot


Plotting data is an indispensable tool for their qualitative, but also quantitative,
analysis. Gnuplot is a high quality, open source, plotting program that
can be used for generating publication quality plots, as well as for heavy
duty analysis of a large amount of scientific data. Its great advantage is
the possibility to use it from the command line, as well as from shell
scripts and other programs. Gnuplot is programmable and it is possible to
call external programs in order manipulate data and create complicated
plots. There are many mathematical functions built in gnuplot and a fit
command for non linear fitting of data. There exist interactive terminals
where the user can transform a plot by using the mouse and keyboard
commands.

   This section is brief and only the features, necessary for the
following chapters, are discussed. For more information visit the official
page of gnuplot http://gnuplot.info. Try the rich demo gallery at
                                                                          

                                                                          
http://gnuplot.info/screenshots/, where you can find the type of
graph that you want to create and obtain an easy to use recipe for it.
The book  [14] is an excellent place to look for many of gnuplot’s
secrets43 .

   You can start a gnuplot session with the gnuplot command:
                                                                          

                                                                          


   
> gnuplot
 

 
  G N U P L O T
 
  Version X.XX
 
  ....
 
  The gnuplot FAQ is available from www.gnuplot.info/faq/
 
  ....
 
Terminal type set to ’wxt’
 
gnuplot>


 There is a welcome message and then a prompt gnuplot> is issued waiting for
your command. Type a command an press [Enter]. Type quit in order to quit
the program. In the following, when we show a prompt gnuplot>, it is
assumed that the command after the prompt is executed from within
gnuplot.

   Plotting a function is extremely easy. Use the command plot and x as the independent variable
of the function44 .
The command
                                                                          

                                                                          


   
gnuplot> plot x


 plots the function [image: y = f(x ) = x  ] which is a straight line with slope 1. In order to
plot many functions simultaneously, you can write all of them in one
line:
                                                                          

                                                                          


   
gnuplot> plot [-5:5][-2:4] x, x**2, sin(x),besj0(x)


 The above command plots the functions [image: x  ], [image: x2   ], [image: sinx  ] and [image: J0(x )  ].
Within the square brackets [:], we set the limits of the [image: x  ] and [image: y  ] axes,
respectively. The bracket [-5:5] sets [image: −  5 ≤ x ≤ 5  ] and the bracket
[-2:4] sets [image: − 2 ≤  y ≤ 4  ]. You may leave the job of setting such
limits to gnuplot, by omitting some, or all of them, from the respective
positions in the brackets. For example, typing [1:][:5] changes the lower
and upper limits of [image: x  ] and [image: y  ] and leaves the upper and lower limits
unchanged45 .

   In order to plot data points [image: (xi,yi)  ], we can read their values from files.
Assume that a file data has the following numbers recorded in it:
                                                                          

                                                                          


   
# x  y1   y2
 
0.5 1.0 0.779
 
1.0 2.0 0.607
 
1.5 3.0 0.472
 
2.0 4.0 0.368
 
2.5 5.0 0.287
 
3.0 6.0 0.223


 The first line is taken by gnuplot as a comment line, since it begins with a #. In
fact, gnuplot ignores everything after a #. In order to plot the second column as a
function of the first, type the command:
                                                                          

                                                                          


   
gnuplot> plot "data" using 1:2 with points


 The name of the file is within double quotes. After the keyword using, we
instruct gnuplot which columns to use as the [image: x  ] and [image: y  ] coordinates, respectively.
The keywords with points instructs gnuplot to add each pair [image: (xi,yi)  ] to the plot
with points.

   The command
                                                                          

                                                                          


   
gnuplot> plot "data" using 1:3 with lines


 plots the third column as a function of the first, and the keywords with
lines instruct gnuplot to connect each pair [image: (x ,y )
  i  i  ] with a straight line
segment.

   We can combine several plots together in one plot:
                                                                          

                                                                          


   
gnuplot> plot   "data" using 1:3 with points, exp(-0.5*x)
 
gnuplot> replot "data" using 1:2
 
gnuplot> replot 2*x


 The first line plots the 1st and 3rd columns in the file data together with
the function [image: e−x∕2   ]. The second line adds the plot of the 1st and 2nd
columns in the file data and the third line adds the plot of the function
[image: 2x  ].



   There are many powerful ways to use the keyword using. Instead of column
numbers, we can put mathematical expressions enclosed inside brackets, like
using (...):(...). Gnuplot evaluates each expression within the brackets and
plots the result. In these expressions, the values of each column in the
file data are represented as in the awk language. $i are variables that
expand to the number read from columns i=1,2,3,.... Here are some
examples:
                                                                          

                                                                          


   
gnuplot> plot "data" using 1:($2*sin($1)*$3) with points
 
gnuplot> replot 2*x*sin(x)*exp(-x/2)


 The first line plots the 1st column of the file data together with the value
[image: yisin(xi)zi  ], where [image: yi  ], [image: xi  ] and [image: zi  ] are the numbers in the 2nd, 1st and
3rd columns respectively. The second line adds the plot of the function
[image: 2x sin(x)e−x∕2   ].
                                                                          

                                                                          


   
gnuplot> plot "data" using (log($1)):(log($2**2))
 
gnuplot> replot 2*x+log(4)


 The first line plots the logarithm of the 1st column together with the logarithm
of the square of the 2nd column.

   We can plot the data written to the standard output of any command. Assume
that there is a program called area that prints the perimeter and area of a circle
to the stdout in the form shown below:
                                                                          

                                                                          


   
> ./area
 
R=    3.280000      area=    33.79851
 
R=    6.280000      area=    123.8994
 
R=    5.280000      area=    87.58257
 
R=    4.280000      area=    57.54895


 The interesting data is at the second and fourth columns. These can be plotted
directly with the gnuplot command:
                                                                          

                                                                          


   
gnuplot> plot "< ./area" using 2:4


 All we have to do is to type the full command after the < within the double
quotes. We can create complicated filters using pipes as in the following
example:
                                                                          

                                                                          


   
gnuplot> plot \
 
 "< ./area|sort -g -k 2|awk ’{print log($2),log($4)}’" \
 
 using 1:2


 The filter produces data to the stdout, by combining the action of the
commands area, sort and awk. The data printed by the last program is in two
columns and we plot the results using 1:2.

   In order to save plots in files, we have to change the terminal that gnuplot
outputs the plots. Gnuplot can produce plots in several languages (e.g. PDF,
postscript, SVG, LATEX, jpeg, png, gif, etc), which can be interpreted and
rendered by external programs. By redirecting the output to a file, we can save
the plot to the hard disk. For example:
                                                                          

                                                                          


   
gnuplot> plot "data" using 1:3
 
gnuplot> set terminal jpeg
 
gnuplot> set output "data.jpg"
 
gnuplot> replot
 
gnuplot> set output
 
gnuplot> set terminal wxt


 The first line makes the plot as usual. The second one sets the output to
be in the JPEG format and the third one sets the name of the file to
which the plot will be saved. The fourth lines repeats all the previous
plotting commands and the fifth one closes the file data.jpg. The last
line chooses the interactive terminal wxt to be the output of the next
plot. High quality images are usually saved in the PDF, encapsulated
postcript or SVG format. Use set terminal pdf,postscript eps or svg,
respectively.

   And now a few words for 3-dimensional (3d) plotting. The next example uses
the command splot in order to make a 3d plot of the function [image: f (x, y) = e−x2−y2   ].
After you make the plot, you can use the mouse in order to rotate it and view it
from a different perspective:
                                                                          

                                                                          


   
gnuplot> set pm3d
 
gnuplot> set hidden3d
 
gnuplot> set size ratio 1
 
gnuplot> set isosamples 50
 
gnuplot> splot [-2:2][-2:2] exp(-x**2-y**2)




   If you have data in the form [image: (xi,yi,zi)  ] and you want to create a plot of
[image: zi = f(xi,yi)  ], write the data in a file, like in the following example:
                                                                          

                                                                          


   
-1 -1 2.000
 
-1  0 1.000
 
-1  1 2.000
 

 
 0 -1 1.000
 
 0  0 0.000
 
 0  1 1.000
 

 
 1 -1 2.000
 
 1  0 1.000
 
 1  1 2.000


 Note the empty line that follows the change of the value of the first column. If
the name of the file is data3, then you can plot the data with the commands:
                                                                          

                                                                          


   
gnuplot> set pm3d
 
gnuplot> set hidden3d
 
gnuplot> set size ratio 1
 
gnuplot> splot "data3" with lines




   We close this section with a few words on parametric plots. A parametric
plot on the plane (2-dimensions) is a curve [image: (x(t),y(t))  ], where [image: t  ] is a
parameter. A parametric plot in space (3-dimensions) is a surface [image: (x(u, v)  ]
[image: ,y(u, v),  ] [image: z (u, v))  ], where [image: (u,v)  ] are parameters. The following commands
plot the circle [image: (sin t,cost)  ] and the sphere [image: (cos ucos v,  ] [image: cosu sinv,  ]
[image: sin u)  ]:
                                                                          

                                                                          


   
gnuplot> set parametric
 
gnuplot> plot sin(t),cos(t)
 
gnuplot> splot cos(u)*cos(v),cos(u)*sin(v),sin(u)





   1.6    Shell Scripting

Complicated system administration tasks are not among the strengths of the
Fortran programming language. But in a typical GNU/Linux environment, there
exist many powerful tools that can be used very effectively for this purpose. This
way, one can use Fortran for the high performance and scientific computing part
of the project and leave the administration and trivial data analysis tasks to
other, external, programs.

   One can avoid repeating the same sequence of commands by coding them in a
file. An example can be found in the file script01.csh:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 
gfortran area_01.f90 -o area
 
./area
 
gfortran area_02.f90 -o area
 
./area
 
gfortran area_03.f90 -o area
 
./area
 
gfortran area_04.f90 -o area
 
./area


 This is a very simple shell script. The first line instructs the operating
system that the lines that follow are to be interpreted by the program
/bin/tcsh46 .
This can be any program in the system, which in our case is the tcsh shell.
The following lines are valid commands for the shell, one in each line.
They compile the Fortran programs found in the files that we created in
section 1.4 with gfortran, and then they run the executable ./area. In
order to execute the commands in the file, we have to make sure that the
file has the appropriate execute permissions. If not, we have to give the
command:
                                                                          

                                                                          


   
> chmod u+x script01.csh


 Then we simply type the path to the file script01.csh
                                                                          

                                                                          


   
> ./script01.csh


 and the above commands are run the one after the other. Some of the versions of
the programs that we wrote are asking for input from the stdin, which, normally,
you have to type on the terminal. Instead of interacting directly with
the program, we can write the input data to a file Input, and run the
command
                                                                          

                                                                          


   
./area < Input


 A more convenient solution is to use the, so called, “Here Document”.
A “Here Document” is a section of the script that is treated as if it
were a separate file. As such, it can be used as input to programs by
sending its “contents” to the stdin of the command that runs the
program47 .
The “Here Document” does not appear in the filesystem and we don’t need to
administer it as a regular file. An example of using a “Here Document” can be
found in the file script02.csh:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 
gfortran area_04.f90 -o area
 
./area <<EOF
 
1.0
 
2.0
 
3.0
 
4.0
 
5.0
 
6.0
 
7.0
 
8.0
 
9.0
 
10.0
 
EOF


 The stdin of the command ./area is redirected to the contents between the
lines
                                                                          

                                                                          


   
./area <<EOF
 
...
 
EOF


 The string EOF marks the beginning and the end of the “Here Document”, and
can be any string you like. The last EOF has to be placed exactly in the beginning
of the line.



   The power of shell scripting lies in its programming capabilities: Variables,
arrays, loops and conditionals can be used in order to create a complicated
program. Shell variables can be used as discussed in section 1.1.2: The value of a
variable name is $name and it can be set with the command set name = value.
An array is defined, for example, by the command
                                                                          

                                                                          


   
set R = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)


 and its data can be accessed using the syntax $R[1] ... $R[10].

   Lets take a look at the following script:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 

 
set files = (area_01.f90 area_02.f90 area_03.f90 area_04.f90)
 
set R     = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0)
 

 
echo "Hello $USER Today is " ‘date‘
 
foreach file ($files)
 
 echo "# ----------- Working on file $file "
 
 gfortran $file -o area
 
 ./area <<EOF
 
$R[1]
 
$R[2]
 
$R[3]
 
$R[4]
 
$R[5]
 
$R[6]
 
$R[7]
 
$R[8]
 
$R[9]
 
$R[10]
 
EOF
 
 echo "# ----------- Done "
 
 if( -f AREA.DAT ) cat AREA.DAT
 
end


 The first two lines of the script define the values of the arrays files (4 values)
and R (10 values). The command echo echoes its argument to the stdin. $USER is
the name of the user running the script. ‘date‘ is an example of command
substitution: When a command is enclosed between backquotes and is part of
a string, then the command is executed and its stdout is pasted back
to the string. In the example shown above, ‘date‘ is replaced by the
current date and time in the format produced by the date command.


   The foreach loop
                                                                          

                                                                          


   
foreach file ($files)
 
 ...
 
end


 is executed once for each of the 4 values of the array files. Each time the
value of the variable file is set equal to one of the values area_01.f90,
area_02.f90, area_03.f90, area_04.f90. These values can be used by
the commands in the loop. Therefore, the command gfortran $file
-o area compiles a different file each time that it is executed by the
loop.

   The last line in the loop
                                                                          

                                                                          


   
 if( -f AREA.DAT ) cat AREA.DAT


 is a conditional. It executes the command cat AREA.DAT if the condition -f
AREA.DAT is true. In this case, -f constructs a logical expression which is true
when the file AREA.DAT exists.

   We close this section by presenting a more complicated and advanced
script. It only serves as a demonstration of the shell scripting capabilities.
For more information, the reader is referred to the bibliography
 [16, 17, 18, 19, 20]. Read carefully the commands, as well as the
comments which follow the # mark. Then, write the commands to a file
script04.csh48 ,
make it an executable file with the command chmod u+x script04.csh and give
the command
                                                                          

                                                                          


   
> ./script04.csh This is my first serious tcsh script


 The script will run with the words “This is my first serious tcsh script” as its
arguments. Notice how these arguments are manipulated by the script.
Then, the script asks for the values of the radii of ten or more circles
interactively, so that it will compute their perimeter and area. Type them on the
terminal and then observe the script’s output, so that you understand the
function of each command. You will not regret the time investment!     

                                                                          

                                                                          


   
#!/bin/tcsh -f
 
# Run this script as:
 
# ./script04.csh Hello this is a tcsh script
 
#----------------------------------------------------------------------
 
# ‘command‘ is command substitution: it is replaced by stdout of command
 
set now = ‘date‘ ; set mypc = ‘uname -a‘
 
# Print information: variables are expanded within double quotes
 
echo "I am user $user working on the computer $HOST" #HOST is predefined
 
echo "Today the date is      :  $now"                #now  is defined above
 
echo "My home directory is   :  $home"               #home is predefined
 
echo "My current directory is:  $cwd"                #cwd changes with cd
 
echo "My computer runs       :  $mypc"               #mypc is defined above
 
echo "My process id is       :  $$   "               #$$   is predefined
 
# Manipulate the command line: ($#argv is number of elements in array argv)
 
echo "The command line has $#argv arguments"
 
echo "The name of the command I am running is: $0"
 
echo "Arguments 3rd to last of the command   : $argv[3-]"    #third to last
 
echo "The last argument is                   : $argv[$#argv]" #last element
 
echo "All arguments                          : $argv"
 

 
# Ask user for input: enter radii of circles
 
echo -n "Enter radii of circles: " # variable $< stores one line of input
 
set  Rs = ($<)  #Rs is now an array with all words entered by user
 
if($#Rs < 10 )then #make a test, need at least 10 of them
 
 echo "Need more than 10 radii. Exiting...."
 
 exit(1)
 
endif
 
echo "You entered $#Rs radii, the first is $Rs[1] and the last $Rs[$#Rs]"
 
echo "Rs= $Rs"
 
# Now, compute the perimeter of each circle:
 
foreach R ($Rs)
 
 # -v rad=$R set the awk variable rad equal to $R. pi=atan2(0,-1)=3.14...
 
 set l = ‘awk -v rad=$R ’BEGIN{print 2*atan2(0,-1)*rad}’‘
 
 echo "Circle with R= $R has perimeter $l"
 
end
 
# alias defines a command to do what you want: use awk as a calculator
                                                                          

                                                                          
 
alias acalc  ’awk "BEGIN{print \!* }"’ # \!* substitutes args of acalc
 
echo "Using acalc to compute       2+3=" ‘acalc 2+3‘
 
echo "Using acalc to compute cos(2*pi)=" ‘acalc cos(2*atan2(0,-1))‘
 
# Now do the same loop over radii as above in a different way
 
# while( expression ) is executed as long as "expression" is true
 
while($#Rs > 0) #executed as long as $Rs contains radii
 
 set R = $Rs[1] #take first element of $Rs
 
 shift Rs       #now $Rs has one less element:old $Rs[1] has vanished
 
 set a = ‘acalc atan2(0,-1)*${R}*${R}‘ # =pi*R*R calculated by acalc
 
 # construct a filename to save the result from the value of R:
 
 set file = area${R}.dat
 
 echo "Circle with R= $R has area $a" > $file #save result in a file
 
end             #end while
 
# Now look for our files: save their names in an array files:
 
set files = (‘ls -1 area*.dat‘)
 
if( $#files == 0) echo "Sorry, no area files found"
 
echo "--------------------------------------------"
 
echo "files: $files"
 
ls -l $files
 
echo "--------------------------------------------"
 
echo "And the results for the area are:"
 
foreach f ($files)
 
 echo -n "file ${f}: "
 
 cat $f
 
end
 
# now play a little bit with file names:
 
echo "--------------------------------------------"
 
set f = $files[1] # test permissions on first file
 
# -f, -r, -w, -x, -d test existence of file, rwxd permissions
 
# the ! negates the expression (true -> false, false -> true)
 
echo "testing permissions on files:"
 
if(  -f $f     ) echo "$file exists"
 
if(  -r $f     ) echo "$file is readable by me"
 
if(  -w $f     ) echo "$file is writable by be"
 
if(! -w /bin/ls) echo "/bin/ls is NOT writable by me"
 
if(! -x $f     ) echo "$file is NOT an executable"
 
if(  -x /bin/ls) echo "/bin/ls is executable by me"
 
if(! -d $f     ) echo "$file is NOT a directory"
 
if(  -d /bin   ) echo "/bin is a directory"
 
echo "--------------------------------------------"
 
# transform the name of a file
                                                                          

                                                                          
 
set f = $cwd/$f       # add the full path in $f
 
set filename  = $f:r  # removes extension .dat
 
set extension = $f:e  # gets    extension .dat
 
set fdir      = $f:h  # gets    directory of $f
 
set base      = ‘basename $f‘ # removes directory name
 
echo "file      is: $f"
 
echo "filename  is: $filename"
 
echo "extension is: $extension"
 
echo "directory is: $fdir"
 
echo "basename  is: $base"
 
# now transform the name to one with different extension:
 
set newfile = ${filename}.jpg
 
echo "jpeg name is: $newfile"
 
echo "jpeg base is:" ‘basename $newfile‘
 
if($newfile:e == jpg)echo ‘basename $newfile‘ " is a picture"
 
echo "--------------------------------------------"
 
# Now save all data in a file using a "here document"
 
# A here document starts with <<EOF and ends with a line
 
# starting exactly with EOF (EOF can be any string as below)
 
# In a "here document" we can use variables and command
 
# substitution:
 
cat <<AREAS >> areas.dat
 
# This file contains the areas of circle of given radii
 
# Computation done by ${user} on ${HOST}. Today is ‘date‘
 
‘cat $files‘
 
AREAS
 
# now see what we got:
 
if( -f areas.dat) cat areas.dat
 
# You can use a "here document" as standard input to any command:
 
# use gnuplot to save a plot: gnuplot does the job and exits...
 
gnuplot <<GNU
 
set terminal jpeg
 
set output   "areas.jpg"
 
plot "areas.dat" using 4:7 title "areas.dat",\
 
     pi*x*x                title "pi*R^2"
 
set output
 
GNU
 
# check our results: display the jpeg file using eog
 
if( -f areas.jpg) eog areas.jpg &



                                                                          

                                                                          


   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	

	 awk   	search for and process patterns in a file,                                       

	 cat    	display, or join, files                                                                 

	 cd     	change working directory                                                           

	 chmod  	change the access mode of a file                                                  

	 cp     	copy files                                                                                

	 date   	display current time and date                                                     

	 df     	display the amount of available disk space                                    

	 diff   	display the differences between two files                                       

	 du     	display information on disk usage                                                

	 echo   	echo a text string to output                                                       

	 find   	find files                                                                                 
	 grep 	search for a pattern in files

	 gzip   	compress files in the gzip (.gz) format (gunzip to uncompress)          

	 head   	display the first few lines of a file                                                

	 kill   	send a signal (like KILL) to a process                                          

	 locate 	search for files stored on the system (faster than find)                     

	 less   	display a file one screen at a time                                                

	 ln     	create a link to a file                                                                
	 lpr 	print files

	 ls     	list information about files                                                         

	 man    	search information about command in man pages                           

	 mkdir  	create a directory                                                                     

	 mv     	move and/or rename a file                                                         

	 ps     	report information on the processes run on the system                    

	 pwd    	print the working directory                                                        

	 rm     	remove (delete) files                                                                 

	 rmdir  	remove (delete) a directory                                                        

	 sort   	sort and/or merge files                                                              

	 tail   	display the last few lines of a file                                                 

	 tar    	store or retrieve files from an archive file                                      

	 top    	dynamic real-time view of processes                                             

	 wc     	counts lines, words and characters in a file                                    

	 whatis 	list man page entries for a command                                            

	 where  	show where a command is located in the path (alternatively: whereis)

	 which  	locate an executable program using ”path”                                   

	 zip    	create compressed archive in the zip format (.zip)                          

	 unzip  	get/list contents of zip archive                                                    

	
	

	        





 Table 1.1:  Basic Unix commands.

                                                                          

                                                                          
   


   

                                                                          

                                                                          


    
	 Table 1.2:  Some intrinsic functions in Fortran. 
                    


	
	

	Function	
Description                                            


	
	

	       

	         	

	     ABS     	
modulus  of  a  complex  number,  absolute
value of number                                     


	     ACOS    	
arccosine of a number                             


	   ADJUSTL   	
moves non blank characters of a string to the
left                                                      


	   ADJUSTR   	
moves non blank characters of a string to the
right                                                    


	    AIMAG    	
imaginary part of a complex number          


	     AINT    	
truncates fractional part but preserves data
type                                                    


	    ANINT    	
rounds   to   nearest   whole   number   but
preserves data type                                 


	     ASIN    	
arcsine of a number                                


	     ATAN    	
arctangent of a number                           


	    ATAN2    	
arctangent of arg1 divided by arg2 resolved
into the correct quadrant                         


	    CMPLX    	
converts to the COMPLEX data type arg1
+ i arg2                                               


	    CONJG    	
complex conjugate of a complex number     


	     COS     	
cosine of an angle in radians                     


	     COSH    	
hyperbolic cosine                                    


	DATE_AND_TIME	
returns current date and time                   

                                                                          

                                                                          

	     DBLE    	
converts to the real(8) data type             


	     DIM     	
if arg1 [image: >  ] arg2, then returns arg1 - arg2;
otherwise 0                                           


	    DPROD    	
double   precision   product   of   two   single
precision numbers                                   


	     EXP     	
exponential                                           


	   EPSILON   	
Returns a positive number that is negligible
compared to 1.0                                     


	             

	      HUGE     	
Returns the largest number of the same kind
as the argument                                     


	      INT      	
converts  to  the  INTEGER  data  type  by
truncation                                            


	      KIND     	
Returns the KIND value of argument         


	      LEN      	
Returns the length of a string                   


	    LEN_TRIM   	
returns the length of a string without trailing
blanks                                                  


	LGE,LGT,LLE,LLT	
string comparison functions                      


	      LOG      	
natural logarithm                                   


	     LOG10     	
common logarithm                                 


	      MAX      	
maximum value of arguments                   


	  MAXEXPONENT  	
returns the maximum exponent of the same
kind as the argument                              


	      MIN      	
minimum value of arguments                    


	  MINEXPONENT  	
returns the minimum exponent of the same
kind as the argument                              


	      MOD      	
arg1 modulo arg2                                   

                                                                          

                                                                          

	      NINT     	
converts  to  the  INTEGER  data  type  by
rounding                                              


	 RANDOM_NUMBER 	
returns pseudo-random numbers [image: 0 ≤ r < 1  ]


	  RANDOM_SEED  	
starts random number generator or returns
generator parameters                              


	   PRECISION   	
returns  the  decimal  precision  of  the  same
kind as the argument                              


	      REAL     	
real part of a complex number                  


	      REAL     	
converts to the REAL data type                


	      SIGN     	
if arg2 [image: <  ] 0, then returns -arg1; else +arg1


	               

	    SIN    	
sine of an angle in radians                        


	    SINH   	
hyperbolic sine                                      


	    SQRT   	
square root                                           


	    TAN    	
tangent of an angle in radians                   


	    TANH   	
hyperbolic tangent                                  


	    TINY   	

returns the smallest positive number of the
same kind as the argument                       


	    TRIM   	

returns string with trailing blanks removed  


	
	

	Array functions


	
	

	    ALL    	
true if all values are true                          


	 ALLOCATED 	

array allocation status                             


	    ANY    	
true if any values are true                        


	   COUNT   	
number of elements in an array                 

                                                                          

                                                                          

	DOT_PRODUCT	
dot product of two rank-one arrays            


	   LBOUND  	
lower dimension bounds of an array           


	   MATMUL  	
matrix multiplication                              


	   MAXLOC  	
location of a maximum value in an array     


	   MAXVAL  	
maximum value in an array                      


	   MERGE   	
merge arrays under mask                         


	   MINLOC  	
location of a minimum value in an array     


	   MINVAL  	
minimum value in an array                      


	           

	   PACK  	
pack an array into an array of rank one under
a mask                                                 


	 PRODUCT 	
product of array elements                        


	 RESHAPE 	
reshape an array                                    


	  SHAPE  	
shape of an array or scalar                       


	   SIZE  	
size of an array                                      


	  SPREAD 	
replicate an array by adding a dimension    


	   SUM   	
sum of array elements                             


	TRANSPOSE	
transpose an array of rank two                  


	  UBOUND 	
upper dimension bounds of an array           


	  UNPACK 	
unpack an array of rank one into an array
under a mask                                        


	         

	         

	         

	         

	         

	
	

	

	 

   


                                                                          

                                                                          


    
	 Table 1.3:  Basic Emacs commands.
                                   


	
	
	

	

			

	
	
	

	Leaving Emacs


	
	
	

	suspend Emacs (or iconify it under X)          	C-z                	 

	exit Emacs permanently                            	C-x C-c            	 

	
	
	

	Files


	
	
	

	read a file into Emacs                               	C-x C-f            	 

	 save a file back to disk                            	C-x C-s            	 

	save all files                                            	C-x s              	 

	insert contents of another file into this buffer	C-x i              	 

	toggle read-only status of buffer                  	C-x C-q            	 

	
	
	

	Getting Help


	
	
	

	The help system is simple. Type C-h (or F1) and follow the directions. If you
are a first-time user, type C-h t for a tutorial.                                      


	remove help window                                  	C-x 1              	 

	apropos: show commands matching a string   	C-h a              	 

	describe the function a key runs                  	C-h k              	 

	describe a function                                   	C-h f              	 

	get mode-specific information                     	C-h m              	 

	
	
	

	Error Recovery


	
	
	

	abort partially typed or executing command 	C-g                	 

	recover files lost by a system crash             	M-x recover-session	 

	undo an unwanted change                         	C-x u, C-_ or  C-/  	 

	                            

	restore a buffer to its original contents	M-x revert-buffer	       

	redraw garbaged screen                    	C-l              	       

	
	
	

	Incremental Search


	
	
	

	search forward                               	C-s              	       

	search backward                             	C-r              	       

	regular expression search                  	C-M-s            	       

	abort current search                        	C-g              	       

	Use C-s or C-r again to repeat the search in either direction. If Emacs is still
searching, C-g cancels only the part not matched.                                   


	
	
	

	Motion


	
	
	

	entity to move over                  	backward          	forward    

	character                                      	C-b              	C-f       

	word                                            	M-b              	M-f       

	line                                              	C-p              	C-n       

	go to line beginning (or end)             	C-a              	C-e       

	go to buffer beginning (or end)          	M-<              	M->       

	scroll to next screen                        	C-v              	       

	scroll to previous screen                   	M-v              	       

	scroll left                                      	C-x <            	       

	scroll right                                    	C-x >            	       

	scroll current line to center of screen   	C-u C-l          	       

	                       

	
	
	

	Killing and Deleting


	
	
	

	entity to kill                       	backward                   	forward

	character (delete, not kill)            	DEL                     	C-d     

	word                                        	M-DEL                   	M-d     

	line (to end of)                          	M-0 C-k                 	C-k     

	kill region                           	C-w                     	     

	copy region to kill ring                	M-w                     	     

	yank back last thing killed           	C-y                     	     

	replace last yank with previous kill	M-y                     	     

	
	
	

	Marking


	
	
	

	set mark here                            	C-@ or  C-SPC            	     

	exchange point and mark             	C-x C-x                 	     
                                                                          

                                                                          

	mark paragraph                    	M-h                     	     

	mark entire buffer                  	C-x h                   	     

	
	
	

	Query Replace


	
	
	

	interactively replace a text string  	M-% or M-x query-replace	     

	using regular expressions             	M-x query-replace-regexp	     

	
	
	

	Buffers


	
	
	

	select another buffer                   	C-x b                   	     

	list all buffers                            	C-x C-b                 	     

	                     

	kill a buffer                                 	C-x k    	              

	
	
	

	Multiple Windows


	
	
	

	When two commands are shown, the second is a similar command for a frame
instead of a window.                                                                         


	delete all other windows                 	C-x 1    	C-x 5 1             

	split window, above and below        	C-x 2    	C-x 5 2             

	delete this window                        	C-x 0    	C-x 5 0             

	split window, side by side               	C-x 3    	              

	switch cursor to another window      	C-x o    	C-x 5 o             

	grow window taller                       	C-x ^    	              

	shrink window narrower                 	C-x {   	              

	grow window wider                       	C-x }   	              

	
	
	

	Formatting


	
	
	

	indent current line (indent code etc)	TAB      	              

	insert newline after point               	C-o      	              

	fill paragraph                               	M-q      	              

	
	
	

	Case Change


	
	
	

	uppercase word                            	M-u      	              

	lowercase word                             	M-l      	              

	capitalize word                             	M-c      	              

	uppercase region                          	C-x C-u  	              

	                      

	lowercase region                          	C-x C-l          	         

	
	
	

	The Minibuffer


	
	
	

	The following keys are defined in the minibuffer.                                     


	complete as much as possible         	TAB              	         

	complete up to one word               	SPC              	         

	complete and execute                   	RET              	         

	abort command                     	C-g              	         

	Type  C-x ESC ESC to  edit  and  repeat  the  last  command  that  used  the
minibuffer. Type F10 to activate menu bar items on text terminals.            


	
	
	

	Spelling Check


	
	
	

	check spelling of current word        	M-$              	         

	check spelling of all words in region 	M-x ispell-region	         

	check spelling of entire buffer         	M-x ispell-buffer	         

	On the fly spell checking               	M-x flyspell-mode	         

	
	
	

	Info – Getting Help Within Emacs


	
	
	

	enter the Info documentation reader	C-h i            	         

	scroll forward                              	SPC              	         

	scroll reverse                               	DEL              	         

	next node                                  	n                	         

	previous node                            	p                	         

	move up                               	u                	         

	                      

	select menu item by name  	m	

	return to last node you saw	l	

	return to directory node    	d	

	go to top node of Info file   	t	

	go to any node by name    	g	

	quit Info                        	q	

	                 

	                 

	                 

	                 

	                 

	
	
	

	

	 

                                                                          

                                                                          
   


                                                                          

                                                                          

                                                                          

                                                                          


   


Chapter 2
Kinematics
 In this chapter we show how to program simple
kinematic equations of motion of a particle and how to do basic analysis of
numerical results. We use simple methods for plotting and animating trajectories
on the two dimensional plane and three dimensional space. In section 2.3 we study
numerical errors in the calculation of trajectories of freely moving particles
bouncing off hard walls and obstacles. This will be a prelude to the study of the
integration of the dynamical equations of motion that we will introduce in the
following chapters.
   2.1    Motion on the Plane

When a particle moves on the plane, its position can be given in Cartesian
coordinates [image: (x(t),y(t))  ]. These, as a function of time, describe the particle’s
trajectory. The position vector is [image: ⃗r(t) = x(t)xˆ+  y(y)ˆy  ], where [image: ˆx  ] and [image: ˆy  ] are the
unit vectors on the [image: x  ] and [image: y  ] axes respectively. The velocity vector is
[image: ⃗v(t) = vx(t)ˆx + vy(t)ˆy  ] where 

   
[image:           ⃗v(t)  =   d⃗r(t)
                     dt
        dx (t)              dy (t)
vx (t) = -----       vy(t) = ----- ,                (2.1)
          dt                 dt
]


The acceleration [image: ⃗a(t) = ax(t)ˆx + ay(t)ˆy  ] is given by 
   
[image:                    d⃗v(t)      d2⃗r(t)
            ⃗a(t) = -----  =   ------
                    dt         dt2
        dvx-(t)    d2x(t)              dvy(t)   d2y(t)
ax (t) =   dt   =   dt2        ay(t) =   dt  =   dt2  .      (2.2)
]
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Figure 2.1: The trajectory of a particle moving in the plane. The figure shows its
position vector [image: ⃗r  ], velocity [image: ⃗v  ] and acceleration [image: ⃗a  ] and their Cartesian components in the
chosen coordinate system at a point of the trajectory.



                                                                          

                                                                          
   


   In this section we study the kinematics of a particle trajectory, therefore we
assume that the functions [image: (x(t),y(t))  ] are known. By taking their derivatives, we
can compute the velocity and the acceleration of the particle in motion. We will
write simple programs that compute the values of these functions in a time
interval [image: [t0,tf]  ], where [image: t0   ] is the initial and [image: tf  ] is the final time. The continuous
functions [image: x(t),y(t),vx (t),vy(t)  ] are approximated by a discrete sequence
of their values at the times [image: t0,t0 + δt,t0 + 2δt,t0 + 3δt,...  ] such that
[image: t0 + nδt ≤ tf  ].
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Figure 2.2: The flowchart of a typical program computing the trajectory of a particle
from its (kinematic) equations of motion.



                                                                          

                                                                          
   


   We will start the design of our program by forming a generic template to be
used in all of the problems of interest. Then we can study each problem of particle
motion by programming only the equations of motion without worrying about the
less important tasks, like input/output, user interface etc. Figure 2.2 shows a
flowchart of the basic steps in the algorithm. The first part of the program
declares variables and defines the values of the fixed parameters (like
[image: π =  3.1459 ...  ], [image: g = 9.81  ], etc). The program starts by interacting with
the user (“user interface”) and asks for the values of the variables [image: x0   ],
[image: y
 0   ], [image: t
 0   ], [image: t
 f  ], [image: δt...  ]. The program prints these values to the stdout
so that the user can check them for correctness and store them in her
data.

   The main calculation is performed in a loop executed while [image: t ≤ tf  ]. The values
of the positions and the velocities [image: x(t),y(t),vx(t),vy(t)  ] are calculated and
printed in a file together with the time [image: t  ]. At this point we fix the format
of the program output, something that is very important to do it in a
consistent and convenient way for easing data analysis. We choose to
print the values t, x, y, vx, vy in five columns in each line of the output
file.

   The specific problem that we are going to solve is the computation of the
trajectory of the circular motion of a particle on a circle with center [image: (x0,y0)  ]
and radius [image: R  ] with constant angular velocity [image: ω  ]. The position on the
circle can be defined by the angle [image: 𝜃  ], as can be seen in figure 2.3. We
define the initial position of the particle at time [image: t
 0   ] to be [image: 𝜃(t ) = 0
   0  ].
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Figure 2.3: The trajectory of a particle moving on a circle with constant angular velocity
calculated by the program Circle.f90.



                                                                          

                                                                          
   


   The equations giving the position of the particle at time [image: t  ] are 

   
[image: x(t) =   x0 + R cos(ω (t − t0))
y(t) =   y0 + R sin (ω(t − t0)) .                 (2.3)
]


Taking the derivative w.r.t. [image: t  ] we obtain the velocity 
   
[image: vx(t)  =   − ωR sin (ω(t − t0))
v (t)  =   ωR cos(ω (t − t )),                  (2.4)
 y                       0
]


and the acceleration 
   
[image: ax(t)  =  − ω2R  cos(ω(t − t0)) = − ω2(x (t) − x0)
              2                     2
ay(t)  =  − ω R  sin (ω(t − t0)) = − ω (y(t) − y0).         (2.5)
]

                                                                          

                                                                          

We note that the above equations imply that [image: ⃗
R ⋅⃗v =  0  ] ([image: ⃗
R ≡  ⃗r − ⃗r0   ], [image:      ⃗
⃗v ⊥ R  ],
[image: ⃗v ] tangent to the trajectory) and [image: ⃗a = − ω2 ⃗R  ] ([image: R⃗  ] and [image: ⃗a  ] anti-parallel,
[image: ⃗a ⊥ ⃗v  ]).
   The data structure is quite simple. The constant angular velocity [image: ω  ] is stored
in the REAL variable omega. The center of the circle [image: (x ,y )
  0  0  ], the radius [image: R  ] of the
circle and the angle [image: 𝜃  ] are stored in the REAL variables x0, y0, R, theta. The
times at which we calculate the particle’s position and velocity are defined
by the parameters [image: t0,tf ,δt  ] and are stored in the REAL variables t0,
tf, dt. The current position [image: (x(t),y (t))  ] is calculated and stored in the
REAL variables x, y and the velocity [image: (vx(t),vy(t))  ] in the REAL variables
vx, vy. The declarations of the variables are put in the beginning of the
program:
                                                                          

                                                                          


   
 real :: x0,y0,R,x,y,vx,vy,t,t0,tf,dt
 
 real :: theta,omega
 
 real, parameter :: PI=3.1415927


 were we defined the value1 
of [image: π = 3.1415927  ] by using the parameter specification.

   The user interface of the program is the interaction of the program with the
user and, in our case, it is the part of the program where the user enters the
parameters omega, x0, y0, R, t0, tf, dt. The program issues a prompt
with the names the variables expected to be read. This is done using
simple print statements. The variables are read from the stdin by simple
read statements and the values entered by the user are printed to the
stdout2 :
                                                                          

                                                                          


   
 print *,’# Enter omega:’
 
 read  *,omega
 
 print *,’# Enter center of circle (x0,y0) and radius R:’
 
 read  *,x0,y0,R
 
 print *,’# Enter t0,tf,dt:’
 
 read  *,t0,tf,dt
 
 print *,’# omega= ’,omega
 
 print *,’# x0= ’,x0,’ y0= ’,y0,’ R= ’,R
 
 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt


 Next, the program initializes the state of the computation. This includes checking
the validity of the parameters entered by the user, so that the computation will be
possible. For example, the program computes the expression 2.0*PI/omega, where
it is assumed that omega has a non zero value. We will also demand that
[image: R  > 0  ] and [image: ω > 0  ]. An if statement will make those checks and if the
parameters have illegal values, the stop statement will stop the program
execution3 .
The program opens the file Circle.dat for writing the calculated values of the
position and the velocity of the particle. 
                                                                          

                                                                          


   
 if(R     .le. 0.0) stop ’Illegal value of R’
 
 if(omega .le. 0.0) stop ’Illegal value of omega’
 
 print *,’# T= ’,2.0*PI/omega
 
 open(unit=11,file=’Circle.dat’)


 If [image: R  ≤ 0  ] or [image: ω ≤ 0  ] the corresponding stop statements are executed which end
the program execution. The optional error messages are included after the stop
statements which are printed to the stdout. The value of the period [image: T = 2 π∕ω  ]
is also calculated and printed for reference.

   The open statement uses unit 11 for writing to the file Circle.dat.
The choice of the unit number is free for the programmer to choose.
We recommend using the units 10 to 99 for input/output to
files4 .

   The main calculation is performed within the loop
                                                                          

                                                                          


   
 t   =  t0
 
 do while(t .le. tf)
 
  .........
 
  t  =  t + dt
 
 enddo


 The first statement sets the initial value of the time. The statements between the
do while(condition) and enddo are executed as long as condition has a .TRUE.
value. The statement t=t+dt increments the time and this is necessary in order
not to enter into an infinite loop. he commands put in place of the dots
......... calculate the position and the velocity and print them to the file
Circle.dat:
                                                                          

                                                                          


   
  theta = omega * (t-t0)
 
  x  =  x0+R*cos(theta)
 
  y  =  y0+R*sin(theta)
 
  vx =  -omega*R*sin(theta)
 
  vy =   omega*R*cos(theta)
 
  write(11,*)t,x,y,vx,vy


 Notice the use of the intrinsic functions sin and cos that calculate the sine
and cosine of an angle expressed in radians. We use the intermediate
variable theta in order to store the phase [image: 𝜃(t) = ω(t − t0)  ]. The command
write(11,*) writes the variables t,x,y,vx,vy to the unit 11, which has
been associated to the file Circle.dat with the open statement shown
above.

   The program is stored in the file Circle.f90 and can be found in the
accompanied software. The extension .f90 is used by the compiler in order to
denote source code written in free format Fortran language. Compilation and
running can be done using the commands:
                                                                          

                                                                          


   
> gfortran Circle.f90 -o cl
 
> ./cl


 The switch -o cl forces the compiler gfortran to write the binary commands executed by the
program to the file5 
cl. The command ./cl loads the program instructions to the computer memory
for execution. When the programs starts execution, it first asks for the
parameter data and then performs the calculation. A typical session looks
like:
                                                                          

                                                                          


   
> gfortran Circle.f90 -o cl
 
> ./cl
 
 # Enter omega:
 
1.0
 
 # Enter center of circle (x0,y0) and radius R:
 
1.0 1.0 0.5
 
 # Enter t0,tf,dt:
 
0.0 20.0 0.01
 
 # omega=   1.
 
 # x0=   1. y0=   1. R=   0.5
 
 # t0=   0. tf=   20. dt=   0.00999999978
 
 # T=   6.28318548


 The lines shown above that start with a # character are printed by the program
and lines without # are the values of the parameters entered interactively by the
user. The user types in the parameters and then presses the Enter key in order for
the program to read them. Here we have [image: ω = 1.0  ], [image: x0 = y0 = 1.0  ], [image: R =  0.5  ],
[image: t  = 0.0
 0  ], [image: t =  20.0
 f  ] and [image: δt = 0.01  ].

   You can execute the above program many times for different values of the
parameter by writing the parameter values in a file using an editor. For example,
in the file Circle.in type the following data:
                                                                          

                                                                          


   
1.0            omega
 
1.0  1.0 0.5   (x0, y0) , R
 
0.0 20.0 0.01  t0 tf dt


 Each line has the parameters read by the program with a read statement (a
record). The rest of the line is ignored by the program and the user can write
anything she likes as a comment on how to use the parameters. The program can
read the above values of the parameters with the command:
                                                                          

                                                                          


   
> ./cl < Circle.in > Circle.out


 The command ./cl runs the commands found in the executable file ./cl. The <
Circle.in redirects the contents of the file Circle.in to the standard input
(stdin) of the command ./cl. This way the program reads in the values of the
parameters from the contents of the file Circle.in. The > Circle.out redirects
the standard output (stdout) of the command ./cl to the file Circle.out. Its
contents can be inspected after the execution of the program with the command
cat:
                                                                          

                                                                          


   
> cat Circle.out
 
 # Enter omega:
 
 # Enter center of circle (x0,y0) and radius R:
 
 # Enter t0,tf,dt:
 
 # omega=   1.
 
 # x0=   1. y0=   1. R=   0.5
 
 # t0=   0. tf=   20. dt=   0.00999999978
 
 # T=   6.28318548




   We list the full program in Circle.f90 below:
                                                                          

                                                                          


   
!============================================================
 
!File Circle.f90
 
!Constant angular velocity circular motion
 
!Set (x0,y0) center of circle, its radius R and omega.
 
!At t=t0, the particle is at theta=0
 
!------------------------------------------------------------
 
program Circle
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real :: x0,y0,R,x,y,vx,vy,t,t0,tf,dt
 
 real :: theta,omega
 
 real, parameter :: PI=3.1415927
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter omega:’
 
 read  *,omega
 
 print *,’# Enter center of circle (x0,y0) and radius R:’
 
 read  *,x0,y0,R
 
 print *,’# Enter t0,tf,dt:’
 
 read  *,t0,tf,dt
 
 print *,’# omega= ’,omega
 
 print *,’# x0= ’,x0,’ y0= ’,y0,’ R= ’,R
 
 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 if(R     .le. 0.0) stop ’Illegal value of R’
 
 if(omega .le. 0.0) stop ’Illegal value of omega’
 
 print *,’# T= ’,2.0*PI/omega
 
 open(unit=11,file=’Circle.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 t   =  t0
 
 do while(t .le. tf)
 
  theta = omega * (t-t0)
 
  x  =  x0+R*cos(theta)
                                                                          

                                                                          
 
  y  =  y0+R*sin(theta)
 
  vx =  -omega*R*sin(theta)
 
  vy =   omega*R*cos(theta)
 
  write(11,*)t,x,y,vx,vy
 
  t  =  t + dt
 
 enddo
 
 close(11)
 
end program Circle





   2.1.1    Plotting Data

We use gnuplot for plotting the data produced by our programs. The file
Circle.dat has the time t and the components x, y, vx, vy in five columns.
Therefore we can plot the functions [image: x(t)  ] and [image: y (t)  ] by using the gnuplot
commands:
                                                                          

                                                                          


   
gnuplot> plot   "Circle.dat" using 1:2 with lines title "x(t)"
 
gnuplot> replot "Circle.dat" using 1:3 with lines title "y(t)"
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Figure 2.4: The plots [image: (x(t),y(t))  ] (left) and [image: 𝜃(t)  ] (right) from the data in Circle.dat
for [image: ω = 1.0  ], [image: x0 = y0 = 1.0  ], [image: R = 0.5  ], [image: t0 = 0.0  ], [image: tf = 20.0  ] and [image: δt = 0.01  ]. 



                                                                          

                                                                          
   


   The second line puts the second plot together with the first one. The results
can be seen in figure 2.4.

   Let’s see now how we can make the plot of the function [image: 𝜃(t)  ]. We can do that using
the raw data from the file Circle.dat within gnuplot, without having to write a new
program. Note that [image:           −1
𝜃(t) = tan   ((y − y0)∕(x − x0))  ]. The function atan2 is available in
gnuplot6 
as well as in Fortran. Use the online help system in gnuplot in order to see its
usage:
                                                                          

                                                                          


   
gnuplot> help atan2
 
 The ‘atan2(y,x)‘ function returns the arc tangent (inverse
 
 tangent) of the ratio of the real parts of its arguments.
 
 ‘atan2‘ returns its argument in radians or degrees, as
 
 selected by ‘set angles‘, in the correct quadrant.


 Therefore, the right way to call the function is atan2(y-y0,x-x0). In our case
x0=y0=1 and x, y are in the 2nd and 3rd columns of the file Circle.dat.
We can construct an expression after the using command as in page
153, where $2 is the value of the second and $3 the value of the third
column:
                                                                          

                                                                          


   
gnuplot> x0 = 1 ; y0 = 1
 
gnuplot> plot "Circle.dat" using 1:(atan2($3-y0,$2-x0)) \
 
                           with lines title "theta(t)",pi,-pi


 The second command is broken in two lines by using the character ∖ so that it fits conveniently
in the text7 .
Note how we defined the values of the variables x0, y0 and how we used them in the
expression atan2($3-x0,$2-y0). We also plot the lines which graph the constant
functions [image: f1(t) = π  ] and [image: f2(t) = − π  ] which mark the limit values of [image: 𝜃(t)  ]. The gnuplot
variable8 
pi is predefined and can be used in formed expressions. The result can be seen in
the left plot of figure 2.4.

   The velocity components [image: (vx(t),vy(t))  ] as function of time as well as the
trajectory [image: ⃗r(t)  ] can be plotted with the commands:
                                                                          

                                                                          


   
gnuplot> plot   "Circle.dat" using 1:4 title "v_x(t)" \
 
                             with lines
 
gnuplot> replot "Circle.dat" using 1:5 title "v_y(t)" \
 
                             with lines
 
gnuplot> plot   "Circle.dat" using 2:3 title "x-y"
 
                             with lines
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Figure 2.5:  The  particle  trajectory  plotted  by  the  gnuplot program  in  the  file
animate2D.gnu of the accompanied software. The position vector is shown at a given time
t, which is marked on the title of the plot together with the coordinates (x,y). The data
is produced by the program Circle.f90 described in the text.



                                                                          

                                                                          
   



   We close this section by showing how to do a simple animation of
the particle trajectory using gnuplot. There is a file animate2D.gnu in
the accompanied software which you can copy in the directory where
you have the data file Circle.dat. We are not going to explain how it
works9 
but how to use it in order to make your own animations. The final result
is shown in figure 2.5. All that you need to do is to define the data
file10 ,
the initial time t0, the final time tf and the time step dt. These times can be
different from the ones we used to create the data in Circle.dat. A full
animation session can be launched using the commands:
                                                                          

                                                                          


   
gnuplot> file = "Circle.dat"
 
gnuplot> set xrange [0:1.6]; set yrange [0:1.6]
 
gnuplot> t0   = 0; tf = 20 ; dt = 0.1
 
gnuplot> load "animate2D.gnu"


 The first line defines the data file that animate2D.gnu reads data from. The
second line sets the range of the plots and the third line defines the time
parameters used in the animation. The final line launches the animation. If you
want to rerun the animation, you can repeat the last two commands as many
times as you want using the same or different parameters. E.g. if you wish to run
the animation at “half the speed” you should simply redefine dt=0.05 and set the
initial time to t0=0:
                                                                          

                                                                          


   
gnuplot> t0   = 0; dt = 0.05
 
gnuplot> load "animate2D.gnu"





   2.1.2    More Examples

We are now going to apply the steps described in the previous section to
other examples of motion on the plane. The first problem that we are
going to discuss is that of the small oscillations of a simple pendulum.
Figure 2.6 shows the single oscillating degree of freedom [image: 𝜃(t)  ], which
is the small angle that the pendulum forms with the vertical direction.
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Figure 2.6: The simple pendulum whose motion for [image: 𝜃 ≪ 1  ] is described by the program
SimplePendulum.f90.



                                                                          

                                                                          
   


   The motion is periodic with angular frequency [image:      ∘ ---
ω =    g∕l  ] and period
[image: T  = 2π∕ω  ]. The angular velocity is computed from [image: ˙𝜃 ≡ d𝜃∕dt  ] which gives


   
[image: 𝜃(t) =   𝜃0cos (ω(t − t0))

˙𝜃(t) =   − ω𝜃0 sin (ω(t − t0))                  (2.6)
]


We have chosen the initial conditions [image: 𝜃 (t0) = 𝜃0   ] and [image: 𝜃˙(t0) = 0  ]. In order to
write the equations of motion in the Cartesian coordinate system shown in figure
2.6 we use the relations 
   
[image: x (t)  =   lsin (𝜃(t))
 y(t)  =   − lcos(𝜃(t))

vx(t)  =   dx(t) = l˙𝜃(t)cos(𝜃(t))
            dt
          dy(t)    ˙
vy(t)  =    dt   = l𝜃(t)sin (𝜃(t)).                (2.7)
]


These are similar to the equations  (2.3)  and  (2.4)  that we used in the case of
the circular motion of the previous section. Therefore the structure of the
program is quite similar. Its final form, which can be found in the file
SimplePendulum.f90, is:
                                                                          

                                                                          
   
!==============================================================
 
!File SimplePendulum.f90
 
!Set pendulum original position at theta0 with no initial speed
 
!--------------------------------------------------------------
 
program SimplePendulum
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real :: l,x,y,vx,vy,t,t0,tf,dt
 
 real :: theta,theta0,dtheta_dt,omega
 
 real, parameter ::PI=3.1415927,g=9.81
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter l: ’
 
 read  *,l
 
 print *,’# Enter theta0:’
 
 read  *,theta0
 
 print *,’# Enter t0,tf,dt:’
 
 read  *,t0,tf,dt
 
 print *,’# l=  ’,l ,’ theta0= ’,theta0
 
 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 omega = sqrt(g/l)
 
 print *,’# omega= ’,omega,’ T= ’,2.0*PI/omega
 
 open(unit=11,file=’SimplePendulum.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 t   =  t0
 
 do while(t .le. tf)
 
  theta     =        theta0*cos(omega*(t-t0))
 
  dtheta_dt = -omega*theta0*sin(omega*(t-t0))
 
  x  =  l*sin(theta)
 
  y  = -l*cos(theta)
 
  vx =  l*dtheta_dt*cos(theta)
 
  vy =  l*dtheta_dt*sin(theta)
 
  write(11,100)t,x,y,vx,vy,theta,dtheta_dt
                                                                          

                                                                          
 
  t  =  t + dt
 
 enddo
 
 close(11)
 
100 FORMAT(7G15.7)
 
end program SimplePendulum


  We note that the acceleration of gravity [image: g  ] is hard coded in the program and
that the user can only set the length [image: l  ] of the pendulum. The data file
SimplePendulum.dat produced by the program, contains two extra columns with
the current values of [image: 𝜃(t)  ] and the angular velocity [image: ˙𝜃(t)  ]. The statement
write(11,100) writes to the unit 11 according to the format set by the FORMAT
statement, found in the line labeled by the label 100. This is done so that we can
be sure that the data is printed in one line for each value of [image: t  ] (see the discussion
on page 119).

   A simple session for the study of the above problem is shown
below11 :
                                                                          

                                                                          


   
> gfortran SimplePendulum.f90 -o sp
 
> ./sp
 
 # Enter l:
 
1.0
 
 # Enter theta0:
 
0.314
 
 # Enter t0,tf,dt:
 
0 20 0.01
 
 # l=       1.       theta0=   0.31400001
 
 # t0=      0.       tf=       20. dt=   0.00999999978
 
 # omega=   3.132092 T=        2.0060668
 
> gnuplot
 
gnuplot> plot   "SimplePendulum.dat" u 1:2 w l t "x(t)"
 
gnuplot> plot   "SimplePendulum.dat" u 1:3 w l t "y(t)"
 
gnuplot> plot   "SimplePendulum.dat" u 1:4 w l t "v_x(t)"
 
gnuplot> replot "SimplePendulum.dat" u 1:5 w l t "v_y(t)"
 
gnuplot> plot   "SimplePendulum.dat" u 1:6 w l t "theta(t)"
 
gnuplot> replot "SimplePendulum.dat" u 1:7 w l t "theta’(t)"
 
gnuplot> plot   [-0.6:0.6][-1.1:0.1] "SimplePendulum.dat" \
 
                                     u 2:3 w l t "x-y"
 
gnuplot> file = "SimplePendulum.dat"
 
gnuplot> t0=0;tf=20.0;dt=0.1
 
gnuplot> set xrange  [-0.6:0.6];set yrange [-1.1:0.1]
 
gnuplot> load "animate2D.gnu"




   The next example is the study of the trajectory of a particle shot near the earth’s
surface12 
when we consider the effect of air resistance to be negligible. Then, the equations
describing the trajectory of the particle and its velocity are given by the
parametric equations 

                                                                          

                                                                          
   
[image:  x (t)  =   v0xt
                 1
 y (t)  =   v0yt −--gt2
                 2
vx (t)  =   v0x
 vy(t)  =   v0y − gt,                        (2.8)
]


where [image: t  ] is the parameter. The initial conditions are [image: x(0) = y(0) = 0  ],
[image: vx(0) = v0x = v0cos 𝜃  ] and [image: vy(0 ) = v0y = v0 sin 𝜃  ], as shown in figure 2.7.


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 2.7:   The   trajectory   of   a   particle   moving   under   the   influence   of   a
constant   gravitational   field.   The   initial   conditions   are   set   to   [image: x(0) = y(0) = 0  ],
[image: vx(0) = v0x = v0cos𝜃  ] and [image: vy(0) = v0y = v0sin 𝜃  ]. 



                                                                          

                                                                          
   


   The structure of the program is similar to the previous ones. The user enters
the magnitude of the particle’s initial velocity and the shooting angle [image: 𝜃  ] in
degrees. The initial time is taken to be [image: t0 = 0  ]. The program calculates [image: v0x  ]
and [image: v
 0y  ] and prints them to the stdout. The data is written to the file
Projectile.dat. The full program is listed below and it can be found in the file
Projectile.f90 in the accompanied software:
                                                                          

                                                                          


   
!============================================================
 
!File Projectile.f90
 
!Shooting a projectile near the earth surface.
 
!No air resistance.
 
!Starts at (0,0), set (v0,theta).
 
!------------------------------------------------------------
 
program Projectile
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real :: x0,y0,R,x,y,vx,vy,t,tf,dt
 
 real :: theta,v0x,v0y,v0
 
 real, parameter :: PI=3.1415927,g=9.81
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter v0,theta (in degrees):’
 
 read  *,v0,theta
 
 print *,’# Enter tf,dt:’
 
 read  *, tf,dt
 
 print *,’# v0= ’,v0,’ theta= ’,theta,’o (degrees)’
 
 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 if( v0    .le. 0.0) stop ’Illegal value of v0<=0’
 
 if( theta .le. 0.0 .or. theta .ge. 90.0) &
 
      stop ’Illegal value of theta’
 
 theta  = (PI/180.0)*theta !convert to radians
 
 v0x    = v0*cos(theta)
 
 v0y    = v0*sin(theta)
 
 print *,’# v0x = ’,v0x,’ v0y= ’,v0y
 
 open(unit=11,file=’Projectile.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 t   =  0.0
 
 do while(t .le. tf)
 
  x  =  v0x * t
                                                                          

                                                                          
 
  y  =  v0y * t - 0.5*g*t*t
 
  vx =  v0x
 
  vy =  v0y     -     g*t
 
  write(11,*)t,x,y,vx,vy
 
  t  =  t + dt
 
 enddo
 
 close(11)
 
end program Projectile




   A typical session for the study of this problem is shown below:
                                                                          

                                                                          


   
> gfortran Projectile.f90 -o pj
 
> ./pj
 
 # Enter v0,theta (in degrees):
 
10 45
 
 # Enter tf,dt:
 
1.4416 0.001
 
 # v0=    10.0000000   theta= 45.000000  o (degrees)
 
 # t0=     0.0000000   tf=     1.4416000 dt=   1.00000005E-03
 
 # v0x =   7.0710678   v0y=    7.0710678
 
> gnuplot
 
gnuplot> plot   "Projectile.dat" using 1:2 w l t "x(t)"
 
gnuplot> replot "Projectile.dat" using 1:3 w l t "y(t)"
 
gnuplot> plot   "Projectile.dat" using 1:4 w l t "v_x(t)"
 
gnuplot> replot "Projectile.dat" using 1:5 w l t "v_y(t)"
 
gnuplot> plot   "Projectile.dat" using 2:3 w l t "x-y"
 
gnuplot> file = "Projectile.dat"
 
gnuplot> set xrange [0:10.3];set yrange [0:10.3]
 
gnuplot> t0=0;tf=1.4416;dt=0.05
 
gnuplot> load "animate2D.gnu"




   Next, we will study the effect of air resistance of the form [image: ⃗F = − mk ⃗v  ]. The
solutions to the equations of motion 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 2.8: The forces that act on the particle of figure 2.7 when we assume air resistance
of the form [image: ⃗
F = − mk⃗v  ].



                                                                          

                                                                          
   


   
   
[image: a   =   dvx-=  − kv
 x       dt        x
        dvy
ay  =   ----=  − kvy − g                     (2.9)
         dt
]


with initial conditions [image: x(0) = y (0 ) = 0  ], [image: vx(0) = v0x = v0 cos𝜃  ] and [image: vy(0) = v0y = v0 sin 𝜃  ]
are13 

   
[image:               −kt
vx(t)  =  v(0xe     )
v (t)  =    v  + -g  e−kt − g-
 y           0y  k          k
           v0x-(     −kt)
 x(t)  =   k   1 − e
           1(       g) (        )   g
 y(t)  =   -- v0y + --  1 − e−kt −  -t            (2.10)
           k        k               k
]



                                                                          

                                                                          
   Programming the above equations is as easy as before, the only difference
being that the user needs to provide the value of the constant [image: k  ]. The full
program can be found in the file ProjectileAirResistance.f90 and it is listed
below:
                                                                          

                                                                          


   
!============================================================
 
!File ProjectileAirResistance.f90
 
!Shooting a projectile near the earth surface
 
!with air resistance
 
!Starts at (0,0), set k, (v0,theta).
 
!------------------------------------------------------------
 
program ProjectileAirResistance
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real :: x0,y0,R,x,y,vx,vy,t,tf,dt,k
 
 real :: theta,v0x,v0y,v0
 
 real, parameter :: PI=3.1415927,g=9.81
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter k, v0,theta (in degrees):’
 
 read  *,k, v0,theta
 
 print *,’# Enter tf,dt:’
 
 read  *, tf,dt
 
 print *,’# k = ’,k
 
 print *,’# v0= ’,v0,’ theta= ’,theta,’o (degrees)’
 
 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 if( v0    .le. 0.0) stop ’Illegal value of v0<=0’
 
 if( k     .le. 0.0) stop ’Illegal value of k <=0’
 
 if( theta .le. 0.0 .or. theta .ge. 90.0) &
 
      stop ’Illegal value of theta’
 
 theta  = (PI/180.0)*theta !convert to radians
 
 v0x    = v0*cos(theta)
 
 v0y    = v0*sin(theta)
 
 print *,’# v0x = ’,v0x,’ v0y= ’,v0y
 
 open(unit=11,file=’ProjectileAirResistance.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 t   =  0.0
                                                                          

                                                                          
 
 do while(t .le. tf)
 
  x  =  (v0x/k)*(1.0-exp(-k*t))
 
  y  =  (1.0/k)*(v0y+(g/k))*(1.0-exp(-k*t))-(g/k)*t
 
  vx =  v0x*exp(-k*t)
 
  vy =  (v0y+(g/k))*exp(-k*t)-(g/k)
 
  write(11,*)t,x,y,vx,vy
 
  t  =  t + dt
 
 enddo
 
 close(11)
 
end program ProjectileAirResistance
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Figure 2.9: The plots of [image: x(t)  ],[image: y(t)  ] (left) and [image: v (t)
 x  ],[image: v (t)
 y  ] (right) from the data
produced  by  the  program  ProjectileAirResistance.f90 for  [image: k = 5.0  ],  [image: v0 = 10.0  ],
[image: 𝜃 = π∕4  ], [image: tf = 0.91  ] and [image: δt = 0.001  ]. We also plot the asymptotes of these functions as
[image: t → ∞ ].
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Figure 2.10: Trajectories of the particles shot with [image: v = 10.0
 0  ], [image: 𝜃 = π∕4  ] in the absence
of air resistance and when the air resistance is present in the form [image:  ⃗
F = − mk ⃗v  ] with
[image: k = 5.0  ].



                                                                          

                                                                          
   


   We also list the commands of a typical session of the study of the
problem:
                                                                          

                                                                          


   
> gfortran ProjectileAirResistance.f90 -o pja
 
> ./pja
 
 # Enter k, v0,theta (in degrees):
 
5.0 10.0 45
 
 # Enter tf,dt:
 
0.91 0.001
 
 # k =   5.
 
 # v0=   10. theta=   45.o (degrees)
 
 # t0=   0. tf=   0.910000026 dt=   0.00100000005
 
 # v0x =   7.07106781 v0y=   7.07106781
 
> gnuplot
 
gnuplot> v0x = 10*cos(pi/4) ; v0y = 10*sin(pi/4)
 
gnuplot> g = 9.81 ; k = 5
 
gnuplot> plot [:][:v0x/k+0.1]  "ProjectileAirResistance.dat" \
 
         using 1:2 with lines title "x(t)",v0x/k
 
gnuplot> replot                "ProjectileAirResistance.dat" \
 
         using 1:3 with lines title "y(t)",\
 
         -(g/k)*x+(g/k**2)+v0y/k
 
gnuplot> plot [:][-g/k-0.6:]   "ProjectileAirResistance.dat" \
 
         using 1:4 with lines title "v_x(t)",0
 
gnuplot> replot                "ProjectileAirResistance.dat" \
 
         using 1:5 with lines title "v_y(t)",-g/k
 
gnuplot> plot                  "ProjectileAirResistance.dat" \
 
         using 2:3 with lines title "With air resistance k=5.0"
 
gnuplot> replot                "Projectile.dat"              \
 
         using 2:3 with lines title "No air resistance k=0.0"
 
gnuplot> file = "ProjectileAirResistance.dat"
 
gnuplot> set xrange [0:1.4];set yrange [0:1.4]
 
gnuplot> t0=0;tf=0.91;dt=0.01
 
gnuplot> load "animate2D.gnu"


 Long commands have been continued to the next line as before. We defined the
gnuplot variables v0x, v0y, g and k to have the values that we used when
running the program. We can use them in order to construct the asymptotes of
the plotted functions of time. The results are shown in figures 2.9 and
2.10.
                                                                          

                                                                          

   The last example of this section will be that of the anisotropic harmonic
oscillator. The force on the particle is


   	
   
[image: Fx = − m ω21x    Fy =  − mω22y
]
	(2.11)



where the “spring constants” [image:          2
k1 =  mω 1   ] and [image:          2
k2 = m ω 2   ] are different in the
directions of the axes [image: x  ] and [image: y  ]. The solutions of the dynamical equations
of motion for [image: x(0) = A  ], [image: y(0) = 0  ], [image: vx(0) = 0  ] and [image: vy(0 ) = ω2A  ] are


   
[image: x (t)  =   A cos(ω t)    y(t) = A sin (ω t)
                 1                    2
vx(t)  =   − ω1A sin (ω1t)    vy(t) = ω2A cos(ω2t).      (2.12)
]


If the angular frequencies [image: ω
 1   ] and [image: ω
 2   ] satisfy certain relations, the trajectories of
the particle are closed and self intersect at a given number of points.
The proof of these relations, as well as their numerical confirmation, is
left as an exercise for the reader. The program listed below is in the file
Lissajoux.f90:
                                                                          

                                                                          
   
!============================================================
 
!File Lissajous.f90
 
!Lissajous curves (special case)
 
!x(t)= cos(o1 t), y(t)= sin(o2 t)
 
!------------------------------------------------------------
 
program Lissajous
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real x0,y0,R,x,y,vx,vy,t,t0,tf,dt
 
 real o1,o2,T1,T2
 
 real, parameter :: PI=3.1415927
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter omega1 and omega2:’
 
 read  *,o1,o2
 
 print *,’# Enter tf,dt:’
 
 read  *,tf,dt
 
 print *,’# o1= ’,o1, ’ o2= ’,o2
 
 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 if(o1.le.0.0 .or. o2.le.0.0) stop ’omega1 or omega2<=0’
 
 T1 = 2.0*PI/o1
 
 T2 = 2.0*PI/o2
 
 print *,’# T1= ’,T1,’ T2= ’,T2
 
 open(unit=11,file=’Lissajous.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 t   =  0.0
 
 do while(t .le. tf)
 
  x  =  cos(o1*t)
 
  y  =  sin(o2*t)
 
  vx = -o1*sin(o1*t)
 
  vy =  o2*cos(o2*t)
 
  write(11,*)t,x,y,vx,vy
 
  t  =  t + dt
                                                                          

                                                                          
 
 enddo
 
 close(11)
 
end program Lissajous


 We have set [image: A  = 1  ] in the program above. The user must enter the two angular
frequencies [image: ω1   ] and [image: ω2   ] and the corresponding times. A typical session for the
study of the problem is shown below:
                                                                          

                                                                          


   
> gfortran  Lissajous.f90 -o lsj
 
> ./lsj
 
 # Enter omega1 and omega2:
 
3 5
 
 # Enter tf,dt:
 
10.0 0.01
 
 # o1=   3. o2=   5.
 
 # t0=   0. tf=   10. dt=   0.00999999978
 
 # T1=   2.09439516 T2=   1.2566371
 
>gnuplot
 
gnuplot> plot   "Lissajous.dat" using 1:2 w l t "x(t)"
 
gnuplot> replot "Lissajous.dat" using 1:3 w l t "y(t)"
 
gnuplot> plot   "Lissajous.dat" using 1:4 w l t "v_x(t)"
 
gnuplot> replot "Lissajous.dat" using 1:5 w l t "v_y(t)"
 
gnuplot> plot   "Lissajous.dat" using 2:3 w l t "x-y for 3:5"
 
gnuplot> file = "Lissajous.dat"
 
gnuplot> set xrange [-1.1:1.1];set yrange [-1.1:1.1]
 
gnuplot> t0=0;tf=10;dt=0.1
 
gnuplot> load "animate2D.gnu"


 The results for [image: ω1 = 3  ] and [image: ω2 = 5  ] are shown in figure 2.11. 
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Figure 2.11: The trajectory of the anisotropic oscillator with [image: ω  = 3
  1  ] and [image: ω  = 5
  2  ].



                                                                          

                                                                          
   


   2.2    Motion in Space

By slightly generalizing the methods described in the previous section, we will
study the motion of a particle in three dimensional space. All we have to do is to
add an extra equation for the coordinate [image: z(t)  ] and the component of the
velocity [image: vz(t)  ]. The structure of the programs will be exactly the same as
before.
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Figure 2.12: The conical pendulum of the program ConicalPendulum.f90.



                                                                          

                                                                          
   


   The first example is the conical pendulum, which can be seen in figure 2.12.
The particle moves on the [image: xy  ] plane with constant angular velocity [image: ω  ]. The
equations of motion are derived from the relations


   	
   
[image: Tz = T cos 𝜃 = mg     Txy = T sin 𝜃 = m ω2r,
]
	(2.13)



where [image: r =  lsin 𝜃  ]. Their solution14 
is 

   
[image: x(t)  =   rcosωt

y(t)  =   rsin ωt
z(t)  =   − lcos 𝜃,                     (2.14)
]


where we have to substitute the values 
                                                                          

                                                                          
   
[image:            g
cos𝜃  =   ----
          ω√2l---------
sin 𝜃  =     1 − cos2 𝜃
          g  sin 𝜃
   r  =   -2-----.                       (2.15)
          ω  cos𝜃
]


For the velocity components we obtain 
   
[image: vx  =   − rωsin ωt

vy  =   rω cosωt
vz  =   0.                              (2.16)
]


Therefore we must have
   	
   
[image:            ∘  --
              g
ω ≥ ωmin =    -,
              l
]
	(2.17)


                                                                          

                                                                          

and when [image: ω  → ∞ ], [image: 𝜃 → π ∕2  ].

   In the program that we will write, the user must enter the parameters [image: l  ], [image: ω  ],
the final time [image: tf  ] and the time step [image: δt  ]. We take [image: t0 = 0  ]. The convention that
we follow for the output of the results is that they should be written in a file
where the first 7 columns are the values of [image: t  ], [image: x  ], [image: y  ], [image: z  ], [image: vx  ], [image: vy  ] and
[image: vz  ]. Each line in this file is long and, in order to prevent Fortran from
breaking it into two separate lines, we have to give an explicit format
specification. See the discussion on page 119. The full program is listed
below:
                                                                          

                                                                          


   
!============================================================
 
!File ConicalPendulum.f90
 
!Set pendulum angular velocity omega and display motion in 3D
 
!------------------------------------------------------------
 
program ConicalPendulum
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real :: l,r,x,y,z,vx,vy,vz,t,tf,dt
 
 real :: theta,cos_theta,sin_theta,omega
 
 real, parameter :: PI=3.1415927,g=9.81
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter l,omega: ’
 
 read  *,l,omega
 
 print *,’# Enter tf,dt:’
 
 read  *,tf,dt
 
 print *,’# l=  ’,l           ,’ omega=     ’,omega
 
 print *,’# T=  ’,2.0*PI/omega,’ omega_min= ’,sqrt(g/l)
 
 print *,’# t0= ’,0.0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 cos_theta = g/(omega*omega*l)
 
 if( cos_theta .ge. 1) stop ’cos(theta)>= 1’
 
 sin_theta = sqrt(1.0-cos_theta*cos_theta)
 
 z = -g/(omega*omega) !they remain constant throught
 
 vz= 0.0              !the  motion
 
 r =  g/(omega*omega)*sin_theta/cos_theta
 
 open(unit=11,file=’ConicalPendulum.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 t   = 0.0
 
 do while(t .le. tf)
 
  x  =  r*cos(omega*t)
 
  y  =  r*sin(omega*t)
 
  vx = -r*sin(omega*t)*omega
                                                                          

                                                                          
 
  vy =  r*cos(omega*t)*omega
 
  write(11,100)t,x,y,z,vx,vy,vz
 
  t  =  t + dt
 
 enddo
 
 close(11)
 
100 FORMAT(20G15.7)
 
end program ConicalPendulum




   In order to compile and run the program we can use the commands shown
below:
                                                                          

                                                                          


   
> gfortran  ConicalPendulum.f90 -o cpd
 
> ./cpd
 
 # Enter l,omega:
 
1.0 6.28
 
 # Enter tf,dt:
 
10.0 0.01
 
 # l=    1. omega=       6.28000021
 
 # T=    1.00050724 omega_min=   3.132092
 
 # t0=   0. tf=   10. dt=   0.00999999978




   The results are recorded in the file ConicalPendulum.dat. In order to plot the
functions [image: x(t)  ], [image: y(t)  ], [image: z(t)  ], [image: v (t)
 x  ], [image: v (t)
 y  ], [image: v (t)
 z  ] we give the following gnuplot
commands:
                                                                          

                                                                          


   
> gnuplot
 
gnuplot> plot   "ConicalPendulum.dat" u 1:2 w l t "x(t)"
 
gnuplot> replot "ConicalPendulum.dat" u 1:3 w l t "y(t)"
 
gnuplot> replot "ConicalPendulum.dat" u 1:4 w l t "z(t)"
 
gnuplot> plot   "ConicalPendulum.dat" u 1:5 w l t "v_x(t)"
 
gnuplot> replot "ConicalPendulum.dat" u 1:6 w l t "v_y(t)"
 
gnuplot> replot "ConicalPendulum.dat" u 1:7 w l t "v_z(t)"


 The results are shown in figure 2.13. 
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Figure 2.13: The plots of the functions [image: x(t),y(t),z(t),v (t),v (t),v (t)
             x    y    z  ] of the program
ConicalPendulum.f90 for [image: ω = 6.28  ], [image: l = 1.0  ].



                                                                          

                                                                          
   


   In order to make a three dimensional plot of the trajectory, we should use the
gnuplot command splot:
                                                                          

                                                                          


   
gnuplot> splot "ConicalPendulum.dat" u 2:3:4 w l t "r(t)"


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 2.14:   The   plot   of   the   particle   trajectory   [image: ⃗r(t)  ]   of   the   program
ConicalPendulum.f90 for [image: ω = 6.28  ], [image: l = 1.0  ]. We can click and drag with the mouse on
the window and rotate the curve and see it from a different angle. At the bottom left of
the window, we see the viewing direction, given by the angles [image: 𝜃 = 55.0  ] degrees (angle
with the [image: z  ] axis) and [image: ϕ = 62  ] degrees (angle with the [image: x  ] axis).



                                                                          

                                                                          
   


   The result is shown in figure 2.14. We can click on the trajectory and rotate it
and view it from a different angle. We can change the plot limits with the
command:
                                                                          

                                                                          


   
gnuplot> splot [-1.1:1.1][-1.1:1.1][-0.3:0.0] \
 
 "ConicalPendulum.dat" using 2:3:4 w l t "r(t)"





   We can animate the trajectory of the particle by using the file animate3D.gnu
from the accompanying software. The commands are similar to the ones we had to
give in the two dimensional case for the planar trajectories when we used the file
animate2D.gnu:
                                                                          

                                                                          


   
gnuplot> file = "ConicalPendulum.dat"
 
gnuplot> set xrange [-1.1:1.1];set yrange [-1.1:1.1]
 
gnuplot> set zrange [-0.3:0]
 
gnuplot> t0=0;tf=10;dt=0.1
 
gnuplot> load "animate3D.gnu"


 The result can be seen in figure 2.15. 
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Figure 2.15:            The            particle            trajectory            [image: ⃗r(t)  ]
computed by the program ConicalPendulum.f90 for [image: ω = 6.28  ], [image: l = 1.0  ] and plotted by
the gnuplot script animate3D.gnu. The title of the plot shows the current time and the
particles coordinates.



                                                                          

                                                                          
   


   The program animate3D.gnu can be used on the data file of any program that
prints t x y z as the first words on each of its lines. All we have to do is to
change the value of the file variable in gnuplot.

   Next, we will study the trajectory of a charged particle in a homogeneous
magnetic field [image: ⃗
B = B ˆz  ]. At time [image: t0   ], the particle is at [image: ⃗r0 = x0ˆx  ] and its velocity
is [image: ⃗v0 = v0yˆy + v0zˆz  ], see figure 2.16. 
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Figure 2.16: A particle at time [image: t = 0
 0  ] is at the position [image: ⃗r = x ˆx
 0   0  ] with velocity
[image: ⃗v0 = v0yˆy +v0zˆz  ] in a homogeneous magnetic field [image: ⃗
B = Bˆz  ]. 



                                                                          

                                                                          
   


   The magnetic force on the particle is [image: F⃗ = q(⃗v × ⃗B ) = qBvy ˆx − qBvx ˆy  ] and
the equations of motion are 

   
[image:         dvx                qB
ax  =   ----= ωvy     ω ≡  ---
        dt                  m
ay  =   dvy-= − ωvx
        dt
az  =   0.                                    (2.18)
]


By integrating the above equations with the given initial conditions we obtain

   
[image: vx (t)  =   v0y sin ωt

 vy(t)  =   v0y cosωt
 vz(t)  =   v0z.                           (2.19)
]


Integrating once more, we obtain the position of the particle as a function of time

                                                                          

                                                                          
   
[image:          (      v0y)   v0y
x(t)  =    x0 + ---  − --- cosωt =  x0cosωt
          v      ω      ω                  v
y(t)  =   -0ysinωt =  − x0 sin ωt    x0 = − -0y
          ω                                 ω
z(t)  =  v0zt,                                        (2.20)
]


where we have chosen [image: x0 = − v0y∕ω  ]. This choice places the center of the circle,
which is the projection of the trajectory on the [image: xy  ] plane, to be at the origin of
the coordinate system. The trajectory is a helix with radius [image: R  = − x0   ] and pitch
[image: v0zT =  2πv0z∕ω  ].
   We are now ready to write a program that calculates the trajectory given by
(2.20) . The user enters the parameters [image: v
 0   ] and [image: 𝜃  ], shown in figure 2.16, as well
as the angular frequency [image: ω  ] (Larmor frequency). The components of the initial
velocity are [image: v0y = v0cos 𝜃  ] and [image: v0z = v0 sin 𝜃  ]. The initial position is calculated
from the equation [image: x0 = − v0y∕ ω  ]. The program can be found in the file
ChargeInB.f90:
                                                                          

                                                                          


   
!===========================================================
 
!File ChargeInB.f90
 
!A charged particle of mass m and charge q enters a magnetic
 
!field B in +z direction. It enters with velocity
 
!v0x=0,v0y=v0 cos(theta),v0z=v0 sin(theta), 0<=theta<pi/2
 
!at the position x0=-v0y/omega, omega=q B/m
 
!
 
!Enter v0 and theta and see trajectory from
 
!t0=0 to tf at step dt
 
!------------------------------------------------------------
 
program ChargeInB
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real :: x,y,z,vx,vy,vz,t,tf,dt
 
 real :: x0,y0,z0,v0x,v0y,v0z,v0
 
 real :: theta,omega
 
 real, parameter :: PI=3.1415927
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter omega: ’
 
 read  *,omega
 
 print *,’# Enter v0, theta (degrees):’
 
 read  *,v0,theta
 
 print *,’# Enter tf,dt:’
 
 read  *,tf,dt
 
 print *,’# omega=  ’,omega ,’ T=     ’,2.0*PI/omega
 
 print *,’# v0=     ’,v0,    ’ theta= ’,theta,’o (degrees)’
 
 print *,’# t0=     ’,0.0,   ’ tf=    ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 if(theta.lt.0.0 .or. theta.ge.90.0)stop ’Illegal 0<theta<90’
 
 theta = (PI/180.0)*theta !convert to radians
 
 v0y   = v0*cos(theta)
 
 v0z   = v0*sin(theta)
 
 print *,’# v0x= ’,0.0,’ v0y= ’,v0y,’ v0z= ’,v0z
                                                                          

                                                                          
 
 x0    = - v0y/omega
 
 print *,’# x0=  ’,x0, ’ y0=  ’,0.0,’ z0=  ’,0.0
 
 print *,’# xy plane: Circle with center (0,0) and R= ’,ABS(x0)
 
 print *,’# step of helix: s=v0z*T= ’,v0z*2.0*PI/omega
 
 open(unit=11,file=’ChargeInB.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 t   = 0.0
 
 vz  = v0z
 
 do while(t .le. tf)
 
  x  =  x0*cos(omega*t)
 
  y  = -x0*sin(omega*t)
 
  z  =  v0z*t
 
  vx =  v0y*sin(omega*t)
 
  vy =  v0y*cos(omega*t)
 
  write(11,100)t,x,y,z,vx,vy,vz
 
  t  =  t + dt
 
 enddo
 
 close(11)
 
100 FORMAT(20G15.7)
 
end program ChargeInB


 A typical session in which we calculate the trajectories shown in figures 2.17 and
2.18 is shown below: 
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Figure 2.17: The plots of the [image: x(t),y(t),z(t),v (t),v (t),v(t)
             x    y   z  ] functions calculated by
the program in ChargeInB.f90 for [image: ω = 6.28  ], [image: x0 = 1.0  ], [image: 𝜃 = 20  ] degrees.



                                                                          

                                                                          
   


                                                                          

                                                                          
   
> gfortran  ChargeInB.f90 -o chg
 
> ./chg
 
 # Enter omega:
 
6.28
 
 # Enter v0, theta (degrees):
 
1.0 20
 
 # Enter tf,dt:
 
10 0.01
 
 # omega=    6.28000021 T=       1.00050724
 
 # v0=       1. theta=   20.o (degrees)
 
 # t0=       0. tf=      10. dt=   0.00999999978
 
 # v0x=   0. v0y=   0.939692616 v0z=   0.342020124
 
 # x0=   -0.149632573 y0=    0. z0=    0.
 
 # xy plane: Circle with center (0,0) and R=   0.149632573
 
 # step of helix: s=v0z*T=   0.342193604
 
> gnuplot
 
gnuplot> plot   "ChargeInB.dat" u 1:2   w l title "x(t)"
 
gnuplot> replot "ChargeInB.dat" u 1:3   w l title "y(t)"
 
gnuplot> replot "ChargeInB.dat" u 1:4   w l title "z(t)"
 
gnuplot> plot   "ChargeInB.dat" u 1:5   w l title "v_x(t)"
 
gnuplot> replot "ChargeInB.dat" u 1:6   w l title "v_y(t)"
 
gnuplot> replot "ChargeInB.dat" u 1:7   w l title "v_z(t)"
 
gnuplot> splot  "ChargeInB.dat" u 2:3:4 w l title "r(t)"
 
gnuplot> file = "ChargeInB.dat"
 
gnuplot> set xrange [-0.65:0.65];set yrange [-0.65:0.65]
 
gnuplot> set zrange [0:1.3]
 
gnuplot> t0=0;tf=3.5;dt=0.1
 
gnuplot> load "animate3D.gnu"


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 2.18: The trajectory [image: ⃗r(t)  ] calculated by the program in ChargeInB.f90 for
[image: ω = 6.28  ], [image: v0 = 1.0  ], [image: 𝜃 = 20  ] degrees as shown by the program animate3D.gnu. The
current time and the coordinates of the particle are printed on the title of the plot.



                                                                          

                                                                          
   


   
2.3    Trapped in a Box

In this section we will study the motion of a particle that is free, except when
bouncing elastically on a wall or on certain obstacles. This motion is calculated by
approximate algorithms that introduce systematic errors. These types of
errors15 
are also encountered in the study of more complicated dynamics, but the
simplicity of the problem will allow us to control them in a systematic and easy to
understand way.


   2.3.1    The One Dimensional Box

The simplest example of such a motion is that of a particle in a “one
dimensional box”. The particle moves freely on the [image: x  ] axis for [image: 0 < x <  L  ], as
can be seen in figure 2.19. When it reaches the boundaries [image: x = 0  ] and
[image: x =  L  ] it bounces and its velocity instantly reversed. Its potential energy
is


   	
   
[image:        {
          0     0 < x < L
V(x) =    + ∞   elsewhere   ,
]
	(2.21)


                                                                          

                                                                          

which has the shape of an infinitely deep well. The force [image: F =  − dV (x )∕dx = 0  ]
within the box and [image: F = ± ∞ ] at the position of the walls.
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Figure 2.19: A particle in a one dimensional box with its walls located at [image: x = 0  ] and
[image: x = L  ].



                                                                          

                                                                          
   


   Initially we have to know the position of the particle [image: x0   ] as well as its velocity
[image: v0   ] (the sign of [image: v0   ] depends on the direction of the particle’s motion) at time
[image: t0   ]. As long as the particle moves within the box, its motion is free and


   
[image: x (t)  =   x +  v (t − t )
           0    0     0
v (t)  =   v0.                              (2.22)
]


For a small enough change in time [image: δt  ], so that there is no bouncing on the wall in
the time interval [image: (t,t + δt)  ], we have that 
   
[image: x(t + δt) =   x(t) + v(t)δt
v(t + δt) =   v(t).                         (2.23)
]


Therefore we could use the above relations in our program and when the particle
bounces off a wall we could simple reverse its velocity [image: v(t) → − v(t)  ]. The devil is
hiding in the word “when”. Since the time interval [image: δt  ] is finite in our program,
there is no way to know the instant of the collision with accuracy better than
[image: ∼ δt  ]. However, our algorithm will change the direction of the velocity
at time [image: t + δt  ], when the particle will have already crossed the wall.
This will introduce a systematic error, which is expected to decrease with
decreasing [image: δt  ]. One way to implement the above idea is by constructing the
loop
                                                                          

                                                                          
   
 do while(t .le. tf)
 
  write(11,*)t,x,v
 
  x = x + v*dt
 
  t = t + dt
 
  if(x .lt. 0.0 .or. x .gt. L) v = -v
 
 enddo


 where the last line gives the testing condition for the wall collision and the
subsequent change of the velocity.

   The full program that realizes the proposed algorithm is listed below and can
be found in the file box1D_1.f90. The user can set the size of the box L, the
initial conditions x0 and v0 at time t0, the final time tf and the time step
dt:
                                                                          

                                                                          


   
!============================================================
 
!File box1D_1.f90
 
!Motion of a free particle in a box  0<x<L
 
!Use integration with time step dt: x = x + v*dt
 
!------------------------------------------------------------
 
program box1D
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real ::  L,x0,v0,t0,tf,dt,t,x,v
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter L:’
 
 read  *,L
 
 print *,’# L = ’,L
 
 if( L .le. 0.0) stop ’L must be positive.’
 
 print *,’# Enter x0,v0:’
 
 read  *,x0,v0
 
 print *,’# x0= ’,x0,’ v0= ’,v0
 
 if(x0 .lt. 0.0 .or. x0 .gt. L) stop ’illegal value of x0.’
 
 if(v0 .eq. 0.0               ) stop ’illegal value of v0 = 0.’
 
 print *,’# Enter t0,tf,dt:’
 
 read  *,t0,tf,dt
 
 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 t = t0
 
 x = x0
 
 v = v0
 
 open(unit=11,file=’box1D_1.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 do while(t .le. tf)
 
  write(11,*)t,x,v
 
  x = x + v*dt
 
  t = t + dt
                                                                          

                                                                          
 
  if(x .lt. 0.0 .or. x .gt. L) v = -v
 
 enddo
 
 close(11)
 
end program box1D


 The computed data is recorded in the file box1D_1.dat in three columns.
Compiling, running and plotting the trajectory using gnuplot can be done as
follows:
                                                                          

                                                                          


   
> gfortran box1D_1.f90 -o box1
 
> ./box1
 
 # Enter L:
 
10
 
 # L =   10.
 
 # Enter x0,v0:
 
0 1.0
 
 # x0=   0. v0=   1.
 
 # Enter t0,tf,dt:
 
0 100 0.01
 
 # t0=   0. tf=   100. dt=   0.00999999978
 
> gnuplot
 
gnuplot> plot "box1D_1.dat" using  1:2 w l title "x(t)",\
 
                                    0 notitle,10 notitle
 
gnuplot> plot [:][-1.2:1.2] "box1D_1.dat" \
 
                            using  1:3 w l title "v(t)"
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Figure 2.20: The trajectory [image: x(t)  ] of a particle in a box with [image: L = 10  ], [image: x = 0.0
 0  ],
[image: v0 = 1.0  ], [image: t0 = 0  ], [image: δt = 0.01  ]. The plot to the right magnifies a detail when [image: t ≈ 90  ]
which exposes the systematic errors in determining the exact moment of the collision of
the particle with the wall at [image: tk = 90  ] and the corresponding maximum value of [image: x (t)  ],
[image: xm = L = 10.0  ].



                                                                          

                                                                          
   


   The trajectory [image: x(t)  ] is shown in figure 2.20. The effects of the systematic
errors can be easily seen by noting that the expected collisions occur every
[image: T ∕2 = L ∕v = 10  ] units of time. Therefore, on the plot to the right of figure 2.20,
the reversal of the particle’s motion should have occurred at [image: t = 90  ],
[image: x =  L = 10  ].


   The reader should have already realized that the above mentioned error can be
made to vanish by taking arbitrarily small [image: δt  ]. Therefore, we naively expect that
as long as we have the necessary computer power to take [image: δt  ] as small as possible
and the corresponding time intervals as many as possible, we can achieve any
precision that we want. Well, that is true only up to a point. The problem is that
the next position is determined by the addition operation x+v*dt and
the next moment in time by t+dt. Floating point numbers of the REAL
type have a maximum accuracy of approximately 7 significant decimal
digits. Therefore, if the operands x and v*dt are real numbers differing
by more than 7 orders of magnitude (v*dt[image: ≲ 10− 7   ] x), the effect of the
addition x+v*dt=x, which is null! The reason is that the floating point
unit of the processor has to convert both numbers x and v*dt into a
representation having the same exponent and in doing so, the corresponding
significant digits of the smaller number v*dt are lost. The result is less
catastrophic when v*dt[image: ≲  10−a  ] x with [image: 0 < a < 7  ], but some degree
of accuracy is also lost at each addition operation. And since we have
accumulation of such errors over many intervals t[image: → ]t+dt, the error can
become significant and destroy our calculation for large enough times.
A similar error accumulates in the determination of the next instant of
time t+dt, but we will discuss below how to make this contribution to
the total error negligible. The above mentioned errors can become less
detrimental by using floating point numbers of greater accuracy than the REAL
type. For example REAL(8) numbers have approximately 16 significant
decimal digits. But again, the precision is finite and the same type of
errors are there only to be revealed by a more demanding and complicated
calculation.

   The remedy to such a problem can only be a change in the algorithm. This
is not always possible, but in the case at hand this is easy to do. For
example, consider the equation that gives the position of a particle in free
motion


   	
                                                                          

                                                                          
   
[image: x (t) = x0 + v0(t − t0).
]
	(2.24)



Let’s use the above relation for the parts of the motion between two collisions.
Then, all we have to do is to reverse the direction of the motion and reset the
initial position and time to be the position and time of the collision. This can be
done by using the loop:
                                                                          

                                                                          


   
 t = t0
 
 do while(t .le. tf)
 
  x = x0 + v0*(t-t0)
 
  write(11,*)t,x,v0
 
  if( x .lt. 0.0 .or. x .gt. L)then
 
   x0 =  x
 
   t0 =  t
 
   v0 = -v0
 
  endif
 
  t   =  t + dt


 In the above algorithm, the error in the time of the collision is not
vanishing but we don’t have the “instability” problem of the dt[image: →  0  ]
limit16 .
Therefore we can isolate and study the effect of each type of error. The full
program that implements the above algorithm is given below and can be found in
the file box1D_2.f90:
                                                                          

                                                                          


   
!============================================================
 
!File box1D_2.f90
 
!Motion of a free particle in a box  0<x<L
 
!Use constant velocity equation: x = x0 + v0*(t-t0)
 
!Reverse velocity and redefine x0,t0 on boundaries
 
!------------------------------------------------------------
 
program box1D
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real ::  L,x0,v0,t0,tf,dt,t,x,v
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter L:’
 
 read  *,L
 
 print *,’# L = ’,L
 
 if( L .le. 0.0) stop ’L must be positive.’
 
 print *,’# Enter x0,v0:’
 
 read  *,x0,v0
 
 print *,’# x0= ’,x0,’ v0= ’,v0
 
 if(x0 .lt. 0.0 .or. x0 .gt. L) stop ’illegal value of x0.’
 
 if(v0 .eq. 0.0               ) stop ’illegal value of v0 = 0.’
 
 print *,’# Enter t0,tf,dt:’
 
 read  *,t0,tf,dt
 
 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 t = t0
 
 open(unit=11,file=’box1D_2.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 do while(t .le. tf)
 
  x = x0 + v0*(t-t0)
 
  write(11,*)t,x,v0
 
  if( x .lt. 0.0 .or. x .gt. L)then
 
   x0 =  x
                                                                          

                                                                          
 
   t0 =  t
 
   v0 = -v0
 
  endif
 
  t   =  t + dt
 
 enddo
 
 close(11)
 
end program box1D


 Compiling and running the above program is done as before and the results
are stored in the file box1D_2.dat. The algorithm can be improved in
order to compute the exact solution. We leave that as an exercise for the
reader17 .


   2.3.2    Errors


In this section we will study the effect of the systematic errors that we
encountered in the previous section in more detail. We considered two types of
errors: First, the systematic error of determining the instant of the collision of the
particle with the wall. This error is reduced by taking a smaller time step [image: δt  ].
Then, the systematic error that accumulates with each addition of two numbers
with increasing difference in their orders of magnitude. This error is increased
with decreasing [image: δt  ]. The competition of the two effects makes the optimal choice
of [image: δt  ] the result of a careful analysis. Such a situation is found in many
interesting problems, therefore it is quite instructive to study it in more
detail.

   When the exact solution of the problem is not known, the systematic errors
are controlled by studying the behavior of the solution as a function of [image: δt  ]. If the
solutions are converging in a region of values of [image: δt  ], one gains confidence
that the true solution has been determined up to the accuracy of the
convergence.

   In the previous sections, we studied two different algorithms, programmed in
the files box1D_1.f90 and box1D_2.f90. We will refer to them as “method
1” and “method 2” respectively. We will study the convergence of the
results as [image: δt →  0  ] by fixing all the parameters except [image: δt  ] and then study
the dependence of the results on [image: δt  ]. We will take [image: L = 10  ], [image: v0 = 1.0  ],
[image: x0 = 0.0  ], [image: t0 = 0.0  ], [image: tf =  95.0  ], so that the particle will collide with the
                                                                          

                                                                          
wall every 10 units of time. We will measure the position of the particle
[image: x (t ≈ 95)  ]18
as a function of [image: δt  ] and study its convergence to a
limit19 
as [image: δt → 0  ].

   The analysis requires a lot of repetitive work: Compiling, setting the
parameter values, running the program and calculating the value of [image: x(t ≈ 95)  ] for
many values of [image: δt  ]. We write the values of the parameters read by the program in
a file box1D_anal.in:
                                                                          

                                                                          


   
10         L
 
0 1.0      x0 v0
 
0 95  0.05 t0 tf dt


 Then we compile the program
                                                                          

                                                                          


   
> gfortran box1D_1.f90 -o box


 and run it with the command:
                                                                          

                                                                          


   
> cat box1D_anal.in | ./box


 By using the pipe |, we send the contents of box1D_anal.in to the stdin of the
command ./box by using the command cat. The result [image: x(t ≈ 95)  ] can be found
in the last line of the file box1D_1.dat:
                                                                          

                                                                          


   
> tail -n 1  box1D_1.dat
 
  94.9511948  5.45000267 -1.


 The third number in the above line is the value of the velocity. In a file
box1D_anal.dat we write [image: δt  ] and the first two numbers coming out from
the command tail. Then we decrease the value [image: δt →  δt∕2  ] in the file
box1D_anal.in and run again. We repeat for 12 more times until [image: δt  ] reaches the
value20  [image: 0.000012  ].
We do the same21 
using method 2 and we place the results for [image: x(t ≈ 95)  ] in two new columns in the
file box1D_anal.dat. The result is
                                                                          

                                                                          


   
# ------------------------------------------
 
#  dt     t1_95    x1(95)   x2(95)
 
# ------------------------------------------
 
0.050000 94.95119 5.450003 5.550126
 
0.025000 94.97849 5.275011 5.174837
 
0.012500 94.99519 5.124993 5.099736
 
0.006250 94.99850 4.987460 5.063134
 
0.003125 94.99734 5.021894 5.035365
 
0.001563 94.99923 5.034538 5.017764
 
0.000781 94.99939 4.919035 5.011735
 
0.000391 94.99979 4.695203 5.005493
 
0.000195 95.00000 5.434725 5.001935
 
0.000098 94.99991 5.528124 5.000745
 
0.000049 94.99998 3.358000 5.000330
 
0.000024 94.99998 2.724212 5.000232
 
0.000012 94.99999 9.240705 5.000158




   Convergence is studied in figure 2.21. The 1st method maximizes its accuracy
for [image: δt ≈ 0.01  ], whereas for [image: δt < 0.0001  ] the error becomes [image: >  10  ]% and the
method becomes useless. The 2nd method has much better behavior that the 1st
one.

   We observe that as [image: δt  ] decreases, the final value of [image: t  ] approaches the
expected [image: tf = 95  ]. Why don’t we obtain [image: t = 95  ], especially when [image: t∕δt  ] is an
integer? How many steps does it really take to reach [image: t ≈ 95  ], when the expected
number of those is [image: ≈ 95∕δt  ]? Each time you take a measurement, issue the
command
                                                                          

                                                                          


   
> wc -l box1D_1.dat


 which measures the number of lines in the file box1D_1.dat and compare this
number with the expected one. The result is interesting:
                                                                          

                                                                          


   
# ----------------------
 
#   dt   N       N0
 
# ----------------------
 
0.050000 1900    1900
 
0.025000 3800    3800
 
0.012500 7601    7600
 
0.006250 15203   15200
 
0.003125 30394   30400
 
0.001563 60760   60780
 
0.000781 121751  121638
 
0.000391 243753  242966
 
0.000195 485144  487179
 
0.000098 962662  969387
 
0.000049 1972589 1938775
 
0.000024 4067548 3958333
 
0.000012 7540956 7916666


 where the second column has the number of steps computed by the program and
the third one has the expected number of steps. We observe that the accuracy
decreases with decreasing [image: δt  ] and in the end the difference is about 5%! Notice
that the last line should have given [image: tf = 0.000012 ×  7540956 ≈ 90.5  ], an error
comparable to the period of the particle’s motion.

   We conclude that one important source of accumulation of systematic errors is
the calculation of time. This type of errors become more significant with
decreasing [image: δt  ]. We can improve the accuracy of the calculation significantly if we
use the multiplication t=t0+i*dt instead of the addition t=t+dt, where i is a
step counter:
                                                                          

                                                                          


   
!t = t  + dt     ! Not accurate,    avoid
 
 t = t0 + i*dt   ! Better accuracy, prefer


 The main loop in the program box1D_1.f90 becomes:
                                                                          

                                                                          


   
 t = t0
 
 x = x0
 
 v = v0
 
 i = 0
 
 do while(t .le. tf)
 
  write(11,*)t,x,v
 
  i = i  + 1
 
  x = x  + v*dt
 
  t = t0 + i*dt
 
  if(x .lt. 0.0 .or. x .gt. L) v = -v
 
 enddo


 The full program can be found in the file box1D_4.f90 of the accompanying
software. We call this “method 3”. We perform the same change in the file
box1D_2.f90, which we store in the file box1D_5.f90. We call this “method 4”.
We repeat the same analysis using methods 3 and 4 and we find that the problem
of calculating time accurately practically vanishes. The result of the analysis can
be found on the right plot of figure 2.21. Methods 2 and 4 have no significant
difference in their results, whereas methods 1 and 3 do have a dramatic
difference, with method 3 decreasing the error more than tenfold. The
problem of the increase of systematic errors with decreasing [image: δt  ] does not
vanish completely due to the operation x=x+v*dt. This type of error is
harder to deal with and one has to invent more elaborate algorithms in
order to reduce it significantly. This will be discussed further in chapter 4.
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Figure 2.21: The error [image: δx = 2|x (95)− x(95)|∕|x (95)+ x(95)|× 100
       i             i  ] where [image: x (95)
 i  ]
is the value calculated by method [image: i = 1,2,3,4  ] and [image: x (95)  ] the exact value according to
the text.



                                                                          

                                                                          
   


   2.3.3    The Two Dimensional Box

A particle is confined to move on the plane in the area [image: 0 < x < Lx  ] and
[image: 0 < y <  Ly  ]. When it reaches the boundaries of this two dimensional box, it
bounces elastically off its walls. The particle is found in an infinite depth
orthogonal potential well. The particle starts moving at time [image: t0   ] from [image: (x0, y0)  ]
and our program will calculate its trajectory until time [image: tf  ] with time step [image: δt  ].
Such a trajectory can be seen in figure 2.23.

   If the particle’s position and velocity are known at time [image: t  ], then at time
[image: t + δt  ] they will be given by the relations 

   
[image:  x(t + δt)  =   x(t) + v (t)δt
                       x
 y(t + δt)  =   y(t) + vy(t)δt
vx(t + δt)  =   vx(t)

vy(t + δt)  =   vy(t).                         (2.25)
]


The collision of the particle off the walls is modeled by reflection of the
normal component of the velocity when the respective coordinate of the
particle crosses the wall. This is a source of the systematic errors that
we discussed in the previous section. The central loop of the program
is:
                                                                          

                                                                          
   
  i = i  + 1
 
  t = t0 + i *dt
 
  x = x  + vx*dt
 
  y = y  + vy*dt
 
  if(x .lt. 0.0 .or. x .gt. Lx) vx = -vx
 
  if(y .lt. 0.0 .or. y .gt. Ly) vy = -vy


 The full program can be found in the file box2D_1.f90. Notice that we
introduced two counters nx and ny of the particle’s collisions with the
walls:
                                                                          

                                                                          


   
!============================================================
 
!File box2D_1.f90
 
!Motion of a free particle in a box  0<x<Lx 0<y<Ly
 
!Use integration with time step dt: x = x + vx*dt y=y+vy*dt
 
!------------------------------------------------------------
 
program box2D
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real(8) ::  Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,t,x,y,vx,vy
 
 integer ::  i,nx,ny
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter Lx,Ly:’
 
 read  *,Lx,Ly
 
 print *,’# Lx = ’,Lx,’ Ly= ’,Ly
 
 if( Lx .le. 0.0) stop ’Lx must be positive.’
 
 if( Ly .le. 0.0) stop ’Ly must be positive.’
 
 print *,’# Enter x0,y0,v0x,v0y:’
 
 read  *,x0,y0,v0x,v0y
 
 print *,’# x0= ’,x0,’ y0= ’,y0,’ v0x= ’,v0x,’ v0y= ’,v0y
 
 if(x0 .lt. 0.0 .or. x0 .gt. Lx) stop ’illegal value x0’
 
 if(y0 .lt. 0.0 .or. y0 .gt. Ly) stop ’illegal value y0’
 
 if(v0x**2+v0y**2.eq. 0.0      ) stop ’illegal value v0=0’
 
 print *,’# Enter t0,tf,dt:’
 
 read  *,t0,tf,dt
 
 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 i  = 0
 
 nx = 0  ;  ny = 0
 
 t  = t0
 
 x  = x0 ;  y  = y0
 
 vx = v0x;  vy = v0y
 
 open(unit=11,file=’box2D_1.dat’)
 
!------------------------------------------------------------
                                                                          

                                                                          
 
!Compute:
 
 do while(t .le. tf)
 
  write(11,*)t,x,y,vx,vy
 
  i = i  + 1
 
  t = t0 + i *dt
 
  x = x  + vx*dt
 
  y = y  + vy*dt
 
  if(x .lt. 0.0 .or. x .gt. Lx) then
 
   vx = -vx
 
   nx =  nx + 1
 
  endif
 
  if(y .lt. 0.0 .or. y .gt. Ly) then
 
   vy = -vy
 
   ny =  ny + 1
 
  endif
 
 enddo
 
 close(11)
 
 print *,’# Number of collisions:’
 
 print *,’# nx= ’,nx,’ ny= ’,ny
 
end program box2D




   A typical session for the study of a particle’s trajectory could be:
                                                                          

                                                                          


   
> gfortran box2D_1.f90 -o box
 
> ./box
 
 # Enter Lx,Ly:
 
10.0 5.0
 
 # Lx =   10. Ly=   5.
 
 # Enter x0,y0,v0x,v0y:
 
5.0 0.0 1.27 1.33
 
 # x0=   5. y0=   0. v0x=   1.27 v0y=   1.33
 
 # Enter t0,tf,dt:
 
0 50 0.01
 
 # t0=   0. tf=   50. dt=   0.01
 
 # Number of collisions:
 
 # nx=  6 ny=  13
 
> gnuplot
 
gnuplot> plot   "box2D_1.dat" using 1:2 w l title "x (t)"
 
gnuplot> replot "box2D_1.dat" using 1:3 w l title "y (t)"
 
gnuplot> plot   "box2D_1.dat" using 1:4 w l title "vx(t)"
 
gnuplot> replot "box2D_1.dat" using 1:5 w l title "vy(t)"
 
gnuplot> plot   "box2D_1.dat" using 2:3 w l title "x-y"


 Notice the last line of output from the program: The particle bounces off the
vertical walls 6 times (nx=6) and from the horizontal ones 13 (ny=13). The
gnuplot commands construct the diagrams displayed in figures 2.22 and 2.23.
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Figure 2.22: The results for the trajectory of a particle in a two dimensional box given
by the program box2D_1.f90. The parameters are [image: Lx = 10  ], [image: Ly = 5  ], [image: x0 = 5  ], [image: y0 = 0  ],
[image: v0x = 1.27  ], [image: v0y = 1.33  ], [image: t0 = 0  ], [image: tf = 50  ], [image: δt = 0.01  ].
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Figure 2.23: The trajectory of the particle of figure 2.22 until [image: t = 48  ]. The origin of
the arrow is at the initial position of the particle and its end is at its current position. The
bold lines mark the boundaries of the box.



                                                                          

                                                                          
   


   In order to animate the particle’s trajectory, we can copy the file
box2D_animate.gnu of the accompanying software to the current directory and
give the gnuplot commands:
                                                                          

                                                                          


   
gnuplot> file = "box2D_1.dat"
 
gnuplot> Lx = 10 ; Ly = 5
 
gnuplot> t0 = 0  ; tf = 50; dt = 1
 
gnuplot> load "box2D_animate.gnu"
 
gnuplot> t0 = 0  ; dt = 0.5; load "box2D_animate.gnu"


 The last line repeats the same animation at half speed. You can also use the file
animate2D.gnu discussed in section 2.1.1. We add new commands in the file
box2D_animate.gnu so that the plot limits are calculated automatically and the
box is drawn on the plot. The arrow drawn is not the position vector with respect
to the origin of the coordinate axes, but the one connecting the initial with the
current position of the particle.

   The next step should be to test the accuracy of your results. This can be done
by generalizing the discussion of the previous section and is left as an exercise for
the reader.


   2.4    Applications

In this section we will study simple examples of motion in a box with different
types of obstacles. We will start with a game of ... mini golf. The player shoots a
(point) “ball” which moves in an orthogonal box of linear dimensions [image: Lx  ] and
[image: L
  y  ] and which is open on the [image: x = 0  ] side. In the box there is a circular “hole”
with center at [image: (xc, yc)  ] and radius [image: R  ]. If the “ball” falls in the “hole”, the player
wins. If the ball leaves out of the box through its open side, the player
loses. In order to check if the ball is in the hole when it is at position
[image: (x,y )  ], all we have to do is to check whether [image: (x − xc)2 + (y − yc)2 ≤ R2   ].
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Figure 2.24: The trajectory of the particle calculated by the program MiniGolf.f90
using the parameters chosen in the text. The moment of ... success is shown. At time
[image: t = 45.3  ] the particle enters the hole’s region which has its center at [image: (8,2.5)  ] and its
radius is [image: 0.5  ].



                                                                          

                                                                          
   


   Initially we place the ball at the position [image: (0,Ly ∕2)  ] at time [image: t0 = 0  ]. The
player hits the ball which leaves with initial velocity of magnitude [image: v0   ] at an angle
[image: 𝜃  ] degrees with the [image: x  ] axis. The program is found in the file MiniGolf.f90 and
is listed below:
                                                                          

                                                                          


   
!============================================================
 
!File MiniGolf.f
 
!Motion of a free particle in a box  0<x<Lx 0<y<Ly
 
!The box is open at x=0 and has a hole at (xc,yc) of radius R
 
!Ball is shot at (0,Ly/2) with speed v0, angle theta (degrees)
 
!Use integration with time step dt: x = x + vx*dt y=y+vy*dt
 
!Ball stops in hole (success) or at x=0 (failure)
 
!------------------------------------------------------------
 
program MiniGolf
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real(8)            :: Lx,Ly,x0,y0,v0x,v0y,t0,tf,dt,t,x,y,vx,vy
 
 real(8)            :: v0,theta,xc,yc,R,R2
 
 real(8), parameter :: PI=3.14159265358979324D0
 
 integer            :: i,nx,ny
 
 character(7)       :: result
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter Lx,Ly:’
 
 read  *,Lx,Ly
 
 print *,’# Lx = ’,Lx,’ Ly= ’,Ly
 
 if( Lx .le. 0.0) stop ’Lx must be positive.’
 
 if( Ly .le. 0.0) stop ’Ly must be positive.’
 
 print *,’# Enter hole position and radius: (xc,yc), R:’
 
 read  *,xc,yc,R
 
 print *,’# (xc,yc)= ( ’,xc,’ , ’,yc,’ ) R= ’,R
 
 print *,’# Enter v0, theta(degrees):’
 
 read  *,v0,theta
 
 print *,’# v0= ’,v0,’ theta= ’,theta,’ degrees’
 
 if(v0        .le. 0.0D0 ) stop ’illegal value of v0.’
 
 if(ABS(theta).ge. 90.0D0) stop ’illegal value of theta.’
 
 print *,’# Enter dt:’
 
 read  *,dt
 
 print *,’# dt= ’,dt
 
!------------------------------------------------------------
                                                                          

                                                                          
 
!Initialize
 
 t0 = 0.0D0
 
 x0 = 0.00001D0 ! small but non-zero
 
 y0 = Ly/2.0
 
 R2 = R*R
 
 theta = (PI/180.0D0)*theta
 
 v0x = v0*cos(theta)
 
 v0y = v0*sin(theta)
 
 print *,’# x0= ’,x0,’ y0= ’,y0,’ v0x= ’,v0x,’ v0y= ’,v0y
 
 i  = 0
 
 nx = 0  ;  ny = 0
 
 t  = t0
 
 x  = x0 ;  y  = y0
 
 vx = v0x;  vy = v0y
 
 open(unit=11,file=’MiniGolf.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 do while( .TRUE. ) !forever!
 
  write(11,*)t,x,y,vx,vy
 
  i = i  + 1
 
  t = t0 + i*dt
 
  x = x  + vx*dt
 
  y = y  + vy*dt
 
  if(x .gt. Lx) then
 
   vx = -vx
 
   nx =  nx + 1
 
  endif
 
  if(y .lt. 0.0 .or. y .gt. Ly) then
 
   vy = -vy
 
   ny = ny  + 1
 
  endif
 
  if(x .le. 0.0D0)then
 
   result = ’Failure’
 
   exit !exit do loop
 
  endif
 
  if( ((x-xc)*(x-xc)+(y-yc)*(y-yc)) .le. R2)then
 
   result = ’Success’
 
   exit !exit do loop
 
  endif
 
 enddo
 
 close(11)
                                                                          

                                                                          
 
 print *,’# Number of collisions:’
 
 print *,’# Result= ’,result,’ nx= ’,nx,’ ny= ’,ny
 
end program MiniGolf


 In order to run it, we can use the commands:
                                                                          

                                                                          


   
> gfortran MiniGolf.f90 -o mg
 
> ./mg
 
 # Enter Lx,Ly:
 
10 5
 
 # Lx =   10. Ly=   5.
 
 # Enter hole position and radius: (xc,yc), R:
 
8 2.5 0.5
 
 # (xc,yc)= (   8. ,   2.5 ) R=   0.5
 
 # Enter v0, theta(degrees):
 
1 80
 
 # v0=   1. theta=   80. degrees
 
 # Enter dt:
 
0.01
 
 # dt=   0.01
 
 # x0=   1.E-05 y0=   2.5 v0x=   0.173648178 v0y=   0.984807753
 
 # Number of collisions:
 
 # Result= Success nx=  0 ny=  9


 You should construct the plots of the position and the velocity of the particle.
You can also use the animation program found in the file MiniGolf_animate.gnu
for fun. Copy it from the accompanying software to the current directory and give
the gnuplot commands:
                                                                          

                                                                          


   
gnuplot> file = "MiniGolf.dat"
 
gnuplot> Lx = 10;Ly = 5
 
gnuplot> xc = 8; yc = 2.5 ; R = 0.5
 
gnuplot> t0 = 0; dt = 0.1
 
gnuplot> load "MiniGolf_animate.gnu"


 The results are shown in figure 2.24.

   The next example with be three dimensional. We will study the motion of a
particle confined within a cylinder of radius [image: R  ] and height [image: L  ]. The collisions of
the particle with the cylinder are elastic. We take the axis of the cylinder to be
the [image: z  ] axis and the two bases of the cylinder to be located at [image: z = 0  ] and [image: z = L  ].
This is shown in figure 2.26.

   The collisions of the particle with the bases of the cylinder are easy to
program: we follow the same steps as in the case of the simple box. For the
collision with the cylinder’s side, we consider the projection of the motion on the
[image: x − y  ] plane. The projection of the particle moves within a circle of radius [image: R  ]
and center at the intersection of the [image: z  ] axis with the plane. This is shown in
figure 2.25. At the collision, the [image: r  ] component of the velocity is reflected
[image: vr →  − vr  ], whereas [image: v𝜃  ] remains the same. The velocity of the particle before the
collision is 

   
[image: ⃗v  =   vxˆx + vyˆy
   =   v ˆr + v 𝜃ˆ                      (2.26)
        r     𝜃
]


and after the collision is 
                                                                          

                                                                          
   
[image:  ′      ′      ′
⃗v   =  vxxˆ+ v yyˆ
    =  − vrˆr + v𝜃ˆ𝜃                      (2.27)
]


From the relations 
   
[image: ˆr  =   cos𝜃ˆx + sin𝜃 ˆy

ˆ𝜃  =   − sin 𝜃ˆx + cos 𝜃ˆy,                   (2.28)
]


and [image: v = ⃗v ⋅ ˆr
 r  ], [image: v  = ⃗v ⋅ ˆ𝜃
 𝜃 ], we have that 
   
[image: vr  =  vx cos𝜃 + vy sin 𝜃
v𝜃  =  − vx sin 𝜃 + vy cos𝜃.                 (2.29)
]


The inverse relations are 
                                                                          

                                                                          
   
[image: vx  =  vr cos𝜃 − v𝜃 sin 𝜃
v   =  v  sin 𝜃 + v cos 𝜃.                  (2.30)
 y       r        𝜃
]


With the transformation [image: vr →  − vr  ], the new velocity in Cartesian coordinates
will be 
   
[image: v′x  =   − vr cos𝜃 − v𝜃 sin𝜃
 ′
vy  =   − vr sin 𝜃 + v𝜃 cos𝜃.                (2.31)
]




                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 2.25:  The  elastic  collision  of  the  particle  moving  within  the  circle  of
radius [image:      ⃗
R = |R| ] and center [image: ⃗rc = xcˆx+ ycˆy  ] at the point [image: ⃗r = xˆx+ yˆy  ]. We have that
[image: R⃗= (x − xc)ˆx +(y − yc)ˆy  ]. The initial velocity is [image: ⃗v = vrrˆ+ v𝜃𝜃ˆ ] where [image: ˆr ≡ ⃗R∕R  ]. After
reflecting [image: vr → − vr  ] the new velocity of the particle is [image: ⃗v′ = − vrˆr +v𝜃ˆ𝜃 ].



                                                                          

                                                                          
   


   The transformation [image:       ′
vx → vx  ], [image:        ′
vy →  vy  ] will be performed in the
subroutine reflectVonCircle(vx,vy,x,y,xc,yc,R). Upon entry
to the subroutine, we provide the initial velocity (vx,vy), the collision
point (x,y), the center of the circle (xc,yc) and the radius of the
circle22 
R. Upon exit from the subroutine, (vx,vy) have been replaced with the new
values23 
[image: (v′,v′)
  x  y  ].

   The program can be found in the file Cylinder3D.f90 and is listed
below:
                                                                          

                                                                          


   
!============================================================
 
!File Cylinder3D.f90
 
!Motion of a free particle in a cylinder with axis the z-axis,
 
!radius R and 0<z<L
 
!Use integration with time step dt: x = x + vx*dt
 
!                                   y = y + vy*dt
 
!                                   z = z + vz*dt
 
!Use subroutine reflectVonCircle for collisions at r=R
 
!------------------------------------------------------------
 
program Cylinder3D
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real(8)  ::  x0,y0,z0,v0x,v0y,v0z,t0,tf,dt,t,x,y,z,vx,vy,vz
 
 real(8)  ::  L,R,R2,vxy,rxy,r2xy,xc,yc
 
 integer  ::  i,nr,nz
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter R, L:’
 
 read  *,R,L
 
 print *,’# R= ’,R,’ L= ’,L
 
 if( R .le. 0.0) stop ’R must be positive.’
 
 if( L .le. 0.0) stop ’L must be positive.’
 
 print *,’# Enter x0,y0,z0,v0x,v0y,v0z:’
 
 read  *,x0,y0,z0,v0x,v0y,v0z
 
 rxy = DSQRT(x0*x0+y0*y0)
 
 print *,’# x0 = ’,x0 ,’ y0 = ’,y0 ,’ z0=  ’,z0, ’ rxy= ’,rxy
 
 print *,’# v0x= ’,v0x,’ v0y= ’,v0y,’ v0z= ’,v0z
 
 if(rxy .gt. R                 )stop ’illegal value of rxy > R’
 
 if(z0  .lt. 0.0D0             )stop ’illegal value of z0  < 0’
 
 if(z0  .gt. L                 )stop ’illegal value of z0  > L’
 
 if(v0x**2+v0y**2+v0z**2.eq.0.0)stop ’illegal value of v0 = 0.’
 
 print *,’# Enter t0,tf,dt:’
 
 read  *,t0,tf,dt
 
 print *,’# t0= ’,t0,’ tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
                                                                          

                                                                          
 
!Initialize
 
 i  = 0
 
 nr = 0  ;  nz = 0
 
 t  = t0
 
 x  = x0 ;  y  = y0 ;  z  = z0
 
 vx = v0x; vy  = v0y;  vz = v0z
 
 R2 = R*R
 
 xc = 0.0D0 !center of circle which is the projection of the
 
 yc = 0.0D0 !cylinder on the xy plane
 
 open(unit=11,file=’Cylinder3D.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 do while(t .le. tf)
 
  write(11,100)t,x,y,z,vx,vy,vz
 
  i = i  + 1
 
  t = t0 + i *dt
 
  x = x  + vx*dt
 
  y = y  + vy*dt
 
  z = z  + vz*dt
 
  if(z .lt. 0.0 .or. z .gt. L) then
 
   vz = -vz           ! reflection on cylinder caps
 
   nz =  nz + 1
 
  endif
 
  r2xy = x*x+y*y
 
  if( r2xy .gt. R2)then
 
   call reflectVonCircle(vx,vy,x,y,xc,yc,R)
 
   nr  = nr + 1
 
  endif
 
 enddo
 
 close(11)
 
 print *,’# Number of collisions:’
 
 print *,’# nr= ’,nr,’ nz= ’,nz
 

 
100 FORMAT(100G28.16)
 
end program Cylinder3D
 
!------------------------------------------------------------
 
!============================================================
 
!------------------------------------------------------------
 
subroutine reflectVonCircle(vx,vy,x,y,xc,yc,R)
 
 implicit none
 
 real(8)  :: vx,vy,x,y,xc,yc,R
                                                                          

                                                                          
 
 real(8)  :: theta,cth,sth,vr,vth
 

 
 theta = atan2(y-yc,x-xc)
 
 cth   = cos(theta)
 
 sth   = sin(theta)
 

 
 vr    =  vx*cth + vy *sth
 
 vth   = -vx*sth + vy *cth
 

 
 vx    = -vr*cth - vth*sth !reflect vr -> -vr
 
 vy    = -vr*sth + vth*cth
 

 
 x     =  xc     + R*cth   !put x,y on the circle
 
 y     =  yc     + R*sth
 
end subroutine reflectVonCircle




   Notice that the function atan2 is used for computing the angle theta. This
function, when called with two arguments atan2(y,x), returns the angle
[image: 𝜃 = tan −1(y∕x)  ] in radians. The correct quadrant of the circle where [image: (x, y)  ] lies
is chosen. The angle that we want to compute is given by atan2(y-yc,x-xc).
Then we apply equations  (2.29)  and  (2.31)  and in the last two lines we enforce
the particle to be at the point [image: (xc + R cos𝜃, yc + R sin𝜃)  ], exactly on the circle.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 2.26:   The   trajectory   of   a   particle   moving   inside   a   cylinder   with
[image: R = 10  ],  [image: L = 10  ],  computed  by  the  program  Cylinder3D.f90.  We  have  chosen
[image: ⃗r0 = 1.0ˆx+ 2.2ˆy+ 3.1ˆz  ], [image: ⃗v0 = 0.93ˆx− 0.89yˆ+ 0.74ˆz  ], [image: t0 = 0  ], [image: tf = 500.0  ], [image: δt = 0.01  ].



                                                                          

                                                                          
   


   A typical session is shown below:
                                                                          

                                                                          


   
> gfortran Cylinder3D.f90 -o cl
 
> ./cl
 
 # Enter R, L:
 
10.0 10.0
 
 # R=   10. L=   10.
 
 # Enter x0,y0,z0,v0x,v0y,v0z:
 
1.0 2.2 3.1   0.93 -0.89 0.74
 
 # x0 =   1. y0 =   2.2 z0=    3.1 rxy=   2.41660919
 
 # v0x=   0.93 v0y=  -0.89 v0z=   0.74
 
 # Enter t0,tf,dt:
 
0.0 500.0 0.01
 
 # t0=   0. tf=   500. dt=   0.01
 
 # Number of collisions:
 
 # nr=  33 nz=  37


 In order to plot the position and the velocity as a function of time, we use the
following gnuplot commands:
                                                                          

                                                                          


   
gnuplot> file="Cylinder3D.dat"
 
gnuplot> plot file using 1:2 with lines title "  x(t)",\
 
              file using 1:3 with lines title "  y(t)",\
 
              file using 1:4 with lines title "  z(t)"
 
gnuplot> plot file using 1:5 with lines title "v_x(t)",\
 
              file using 1:6 with lines title "v_y(t)",\
 
              file using 1:7 with lines title "v_z(t)"


 We can also compute the distance of the particle from the cylinder’s axis
[image:        ∘ ----2------2-
r(t) =   x(t) +  y(t)   ] as a function of time using the command:
                                                                          

                                                                          


   
gnuplot> plot file using 1:(sqrt($2**2+$3**2)) w l t "r(t)"


 In order to plot the trajectory, together with the cylinder, we give the
commands:
                                                                          

                                                                          


   
gnuplot> L = 10 ; R = 10
 
gnuplot> set urange [0:2.0*pi]
 
gnuplot> set vrange [0:L]
 
gnuplot> set parametric
 
gnuplot> splot file using 2:3:4 with lines notitle,\
 
                       R*cos(u),R*sin(u),v notitle


 The command set parametric is necessary if one wants to make a parametric plot
of a surface [image: ⃗r(u,v ) = x (u,v)ˆx + y(u,v)ˆy + z(u,v )zˆ  ]. The cylinder (without the
bases) is given by the parametric equations [image: ⃗r(u,v ) = R cosuˆx + R sin uˆy + vˆz  ]
with [image: u ∈ [0,2π )  ], [image: v ∈ [0,L ]  ].

   We can also animate the trajectory with the help of the gnuplot script file
Cylinder3D_animate.gnu. Copy the file from the accompanying software to the
current directory and give the gnuplot commands:
                                                                          

                                                                          


   
gnuplot> R=10;L=10;t0=0;tf=500;dt=10
 
gnuplot> load "Cylinder3D_animate.gnu"


 The result is shown in figure 2.26.

   The last example will be that of a simple model of a spacetime wormhole. This
is a simple spacetime geometry which, in the framework of the theory of general
relativity, describes the connection of two distant areas in space which are
asymptotically flat. This means, that far enough from the wormhole’s mouths,
space is almost flat - free of gravity. Such a geometry is depicted in figure 2.27.
The distance traveled by someone through the mouths could be much smaller
than the distance traveled outside the wormhole and, at least theoretically,
traversable wormholes could be used for interstellar/intergalactic traveling and/or
communications between otherwise distant areas in the universe. Of course we
should note that such macroscopic and stable wormholes are not known to
be possible to exist in the framework of general relativity. One needs
an exotic type of matter with negative energy density which has never
been observed. Such exotic geometries may realize microscopically as
quantum fluctuations of spacetime and make the small scale structure of the
geometry24 
a “spacetime foam”. 


                                                                          

                                                                          

                                                                          

                                                                          

[image: pict]

 
Figure 2.27:  A typical geometry of space near a wormhole. Two asymptotically flat
regions of space are connected through a “neck” which can be arranged to be of small
length compared to the distance of the wormhole mouths when traveled from the outside
space.

                                                                          

                                                                          
   


   We will study a very simple model of the above geometry on the plane with a particle moving
freely in it25 .



                                                                          

                                                                          

                                                                          

                                                                          

[image: pict]

 
Figure 2.28:  A simple model of the spacetime geometry of figure 2.27. The particle
moves on the whole plane except withing the two disks that have been removed. The neck
of the wormhole is modeled by the two circles [image: x (𝜃) = ±d ∕2± R cos𝜃  ], [image: y(𝜃) = R sin 𝜃  ],
[image: − π < 𝜃 ≤ π  ] and has zero length since their points have been identified. There is a given
direction in this identification, so that points with the same [image: 𝜃  ] are the same (you can
imagine how this happens by folding the plane across the [image: y  ] axis and then glue the two
circles together). The entrance of the particle through one mouth and exit through the
other is done as shown for the velocity vector [image: ⃗v → ⃗v′ ].

                                                                          

                                                                          
   


   We take the two dimensional plane and cut two equal disks of radius [image: R  ] with
centers at distance [image: d  ] like in figure 2.28. We identify the points on the two circles
such that the point 1 of the left circle is the same as the point 1 on the right
circle, the point 2 on the left with the point 2 on the right etc. The two circles are
given by the parametric equations [image: x (𝜃) = d∕2 + R cos𝜃  ], [image: y(𝜃) = R sin𝜃  ],
[image: − π < 𝜃 ≤  π  ] for the right circle and [image: x(𝜃) = − d∕2 − R cos𝜃  ], [image: y (𝜃 ) = R sin 𝜃  ],
[image: − π < 𝜃 ≤  π  ] for the left. Points on the two circles with the same [image: 𝜃  ] are
identified. A particle entering the wormhole from the left circle with velocity [image: v  ] is
immediately exiting from the right with velocity [image: v′ ] as shown in figure
2.28.

   Then we will do the following:
      

      	Write a program that computes the trajectory of a particle moving
      in  the  geometry  of  figure  2.28.  We  set  the  limits  of  motion  to  be
      [image: −  L∕2 ≤ x ≤  L∕2  ] and  [image: − L ∕2 ≤ y ≤ L ∕2  ].  We  will  use  periodic
      boundary  conditions  in  order  to  define  what  happens  when  the
      particle attempts to move outside these limits. This means that we
      identify  the  [image: x = − L ∕2  ]  line  with  the  [image: x = +L ∕2  ]  line  as  well  as
      the  [image: y = − L ∕2  ]  line  with  the  [image: y = +L ∕2  ]  line.  The  user  enters  the
      parameters [image: R  ], [image: d  ] and [image: L  ] as well as the initial conditions [image: (x0, y0)  ],
      [image: (v0,ϕ)  ] where  [image: ⃗v0 = v0(cos ϕˆx + sin ϕyˆ)  ].  The  user  will  also  provide
      the  time  parameters  [image: tf  ]  and  [image: dt  ] for  motion  in  the  time  interval
      [image: t ∈ [t = 0,t ]
     0      f  ] with step [image: dt  ].
      

      	Plot                   the                   particle’s                   trajectory
      with [image: (x0,y0) = (0,− 1)  ], [image: (v0,ϕ) = (1,10o)  ]   [image: tf = 40  ], [image: dt = 0.05  ] in
      the geometry with [image: L = 20,d =  5,R = 1  ].
      

      	Find  a  closed  trajectory  which  does  not  cross  the  boundaries
      [image: |x | = L ∕2  ], [image: |y| = L ∕2  ] and determine whether it is stable under small
      perturbations of the initial conditions.
      

      	Find  other  closed  trajectories  that  go  through  the  mouths  of  the
      wormhole and study their stability under small perturbations of the
      initial conditions.
      

                                                                          

                                                                          
      	Add  to  the  program  the  option  to  calculate  the  distance  traveled
      by  the  particle.  If  the  particle  starts  from  [image: (− x0,0)  ]  and  moves  in
      the [image: +  x  ] direction to the [image: (x0,0)  ], [image: x0 > R  + d∕2  ] position, draw the
      trajectory and calculate the distance traveled on paper. Then confirm
      your calculation from the numerical result coming from your program.
      

      	Change  the  boundary  conditions,  so  that  the  particle  bounces  off
      elastically  at  [image: |x | = L ∕2  ],  [image: |y| = L∕2  ]  and  replot  all  the  trajectories
      mentioned above.


Define the right circle [image: c
 1   ] by the parametric equations


   	
   
[image:         d
x (𝜃) = --+ R cos𝜃,     y(𝜃) = R sin𝜃,     − π < 𝜃 ≤ π,
        2
]
	(2.32)



and the left circle [image: c
 2   ] by the parametric equations


   	
   
[image:          d
x(𝜃) = − --− R cos 𝜃,    y(𝜃) = R sin𝜃,     − π < 𝜃 ≤ π.
         2
]
	(2.33)


                                                                          

                                                                          


   The particle’s position changes at time [image: dt  ] by 

   
[image: ti  =  idt
x   =  x    + v dt
 i       i−1    x
yi  =  yi−1 + vydt
                                        (2.34)
]


for [image: i = 1, 2,...  ] for given [image: (x0,y0)  ], [image: t0 = 0  ] and as long as [image: ti ≤ tf  ]. If the point
[image: (xi,yi)  ] is outside the boundaries [image: |x| = L∕2  ], [image: |y| = L ∕2  ], we redefine
[image: x  →  x ± L
  i    i  ], [image: y →  y ±  L
 i    i  ] in each case respectively. Points defined by the same
value of [image: 𝜃  ] are identified, i.e. they represent the same points of space. If the point
[image: (xi,yi)  ] crosses either one of the circles [image: c1   ] or [image: c2   ], then we take the particle out
from the other circle.
   

                                                                          

                                                                          

                                                                          

                                                                          

[image: pict]

 
Figure 2.29:  The particle crossing the wormhole through the right circle [image: c1  ]  with
velocity [image: ⃗v  ]. It emerges from [image: c2  ] with velocity [image: ⃗v′ ]. The unit vectors [image: (ˆer,eˆ𝜃)  ], [image: (ˆe′r,ˆe′𝜃)  ]
are computed from the parametric equations of the two circles [image: c1  ] and [image: c2  ].

                                                                          

                                                                          
   


   Crossing the circle [image: c1   ] is determined by the relation


   	
   
[image: (       )
       d  2    2    2
  xi − 2-  +  yi ≤ R .
]
	(2.35)



The angle [image: 𝜃  ] is calculated from the equation


   	
   
[image:           (       )
𝜃 = tan −1  --yi---  ,
            xi − d
                 2
]
	(2.36)



and the point [image: (xi,yi)  ] is mapped to the point [image: (x′i,y′i)  ] where


   	
   
                                                                          

                                                                          
[image: x′i = − d-− R cos𝜃,     y′i = yi,
       2
]
	(2.37)



as can be seen in figure 2.29. For mapping [image:      ′
⃗v → ⃗v ], we first calculate the
vectors


   	
   
[image:                           }    {
ˆer =    cos𝜃ˆx  +   sin𝜃 ˆy         ˆe′=   − cos𝜃xˆ  +   sin 𝜃ˆy
ˆe =   − sin𝜃ˆx  +   cos𝜃 ˆy   →     ˆer′=     sin𝜃xˆ  +  cos 𝜃ˆy  ,
 𝜃                                 𝜃
]
	(2.38)



so that the velocity


   	
   
[image: ⃗v = vrˆer + v 𝜃ˆe𝜃  →    ⃗v ′ = − vrˆe′r + v 𝜃eˆ′𝜃,
]
	(2.39)



where the radial components are [image: v  = ⃗v ⋅ ˆe
 r       r  ] and [image: v  = ⃗v ⋅ ˆe
 𝜃       𝜃  ]. Therefore, the
relations that give the “emerging” velocity [image:  ′
⃗v ] are:


                                                                          

                                                                          
   	
   
[image: v  =    v cos 𝜃  +   v sin𝜃
 r       x            y
v𝜃 =  − vx sin 𝜃  +  vy cos𝜃 .
v′x =    vr cos 𝜃 +   v𝜃 sin𝜃
v′y =   − vr sin 𝜃 +   v𝜃 cos𝜃
]
	(2.40)




   Similarly we calculate the case of entering from [image: c2   ] and emerging from [image: c1   ].
The condition now is:


   	
   
[image: (       )
       d- 2    2    2
  xi + 2   + y i ≤ R .
]
	(2.41)



The angle [image: 𝜃  ] is given by


   	
                                                                          

                                                                          
   
[image:               (        )
            −1  --yi--
𝜃 = π −  tan     x  + d   ,
                  i  2
]
	(2.42)



and the point [image: (xi,yi)  ] is mapped to the point [image: (x′,y′)
  i  i  ] where


   	
   
[image: x′=  d-+ R cos 𝜃,    y′ = yi.
 i   2                i
]
	(2.43)



For mapping [image:       ′
⃗v →  ⃗v ], we calculate the vectors


   	
   
[image:                           }    {
ˆer =  − cos𝜃 ˆx  +   sin 𝜃ˆy         ˆe′r =    cos𝜃xˆ  +   sin 𝜃ˆy
ˆe =     sin𝜃 ˆx  +  cos 𝜃ˆy   →     ˆe′=   − sin𝜃xˆ  +  cos 𝜃ˆy  ,
 𝜃                                 𝜃
]
	(2.44)


                                                                          

                                                                          

so that the velocity


   	
   
[image: ⃗v = vrˆer + v𝜃ˆe𝜃  →    ⃗v′ = − vrˆe′+ v𝜃ˆe′.
                                r      𝜃
]
	(2.45)



The emerging velocity [image:  ′
⃗v ] is:


   	
   
[image: vr =  − vx cos𝜃  +   vy sin𝜃
v𝜃 =    vx sin 𝜃  +   vy cos𝜃
 ′                          .
vx′ =  − vr cos𝜃  −   v𝜃 sin𝜃
vy =   − vr sin 𝜃 +   v𝜃 cos𝜃
]
	(2.46)




   Systematic errors are now coming from crossing the two mouths of the
wormhole. There are no systematic errors from crossing the boundaries
[image: |x| = L∕2  ], [image: |y| = L∕2  ] (why?). Try to think of ways to control those errors and
study them.

   The closed trajectories that we are looking for come from the initial
conditions


                                                                          

                                                                          
   	
   
[image: (x0,y0,v0,ϕ) = (0,0,1,0)
]
	(2.47)



and they connect points 1 of figure 2.28. They are unstable, as can be seen by
taking [image: ϕ →  ϕ + 𝜖  ].

   The closed trajectories that cross the wormhole and “wind” through space can
come from the initial conditions 

   
[image: (x0,y0,v0,ϕ)  =   (− 9,0,1, 0)
(x0,y0,v0,ϕ)  =   (2.5,− 3,1,90o)
]


and cross the points [image: 3 → 3  ] and [image: 2 →  2 → 4 →  4  ] respectively. They are also
unstable, as can be easily verified by using the program that you will write. The
full program is listed below:
                                                                          

                                                                          
   
!============================================================
 
program WormHole2D
 
 implicit none
 
!------------------------------------------------------------
 
!Declaration of variables
 
 real(8), parameter :: PI=3.14159265358979324D0
 
 real(8) ::  Lx,Ly,L,R,d
 
 real(8) ::  x0,y0,v0,theta
 
 real(8) ::  t0,tf,dt
 
 real(8) ::  t,x,y,vx,vy
 
 real(8) ::  xc1,yc1,xc2,yc2,r1,r2
 
 integer ::  i
 
!------------------------------------------------------------
 
!Ask user for input:
 
 print *,’# Enter L,d,R:’
 
 read  *,L,d,R
 
 print *,’# L= ’,L,’ d= ’,d,’ R= ’,R
 
 if( L .le. d+2.0D0*R) stop ’L <= d+2*R’
 
 if( d .le.   2.0D0*R) stop ’d <=   2*R’
 
 print *,’# Enter (x0,y0), v0, theta(degrees):’
 
 read  *,x0,y0,v0,theta
 
 print *,’# x0= ’,x0,’ y0   = ’,y0
 
 print *,’# v0= ’,v0,’ theta= ’,theta,’ degrees’
 
 if(v0 .le.   0.0D0  ) stop ’illegal value of v0.’
 
 print *,’# Enter tf, dt:’
 
 read  *,tf,dt
 
 print *,’# tf= ’,tf,’ dt= ’,dt
 
!------------------------------------------------------------
 
!Initialize
 
 theta = (PI/180.0D0)*theta
 
 i     =  0
 
 t     =  0.0D0
 
 x     =  x0           ; y     =  y0
 
 vx    =  v0*cos(theta); vy    =  v0*sin(theta)
 
 print *,’# x0= ’,x,’ y0= ’,y,’ v0x= ’,vx,’ v0y= ’,vy
 
!Wormhole’s centers:
 
 xc1   =  0.5D0*d; yc1   =  0.0D0
                                                                          

                                                                          
 
 xc2   = -0.5D0*d; yc2   =  0.0D0
 
!Box limits coordinates:
 
 Lx    =  0.5D0*L; Ly    =  0.5D0*L
 
!Test if already inside cut region:
 
 r1    = sqrt((x-xc1)**2+(y-yc1)**2)
 
 r2    = sqrt((x-xc2)**2+(y-yc2)**2)
 
 if( r1    .le. R ) stop ’r1 <= R’
 
 if( r2    .le. R ) stop ’r2 <= R’
 
!Test if outside box limits:
 
 if(ABS(x) .ge. Lx) stop ’|x| >= Lx’
 
 if(ABS(y) .ge. Ly) stop ’|y| >= Ly’
 
 open(unit=11,file=’Wormhole.dat’)
 
!------------------------------------------------------------
 
!Compute:
 
 do while( t .lt. tf )
 
  write(11,*)t,x,y,vx,vy
 
  i  = i+1
 
  t  = i*dt
 
  x  = x + vx*dt; y  = y + vy*dt
 
! Toroidal boundary conditions:
 
  if( x .gt.  Lx) x  = x - L
 
  if( x .lt. -Lx) x  = x + L
 
  if( y .gt.  Ly) y  = y - L
 
  if( y .lt. -Ly) y  = y + L
 
! Test if inside the cut disks
 
  r1 = sqrt((x-xc1)**2+(y-yc1)**2)
 
  r2 = sqrt((x-xc2)**2+(y-yc2)**2)
 
  if( r1 .lt. R)then
 
! Notice: we pass r1 as radius of circle, not R
 
   call crossC1(x,y,vx,vy,dt,r1,d)
 
  else if( r2 .lt. R)then
 
   call crossC2(x,y,vx,vy,dt,r2,d)
 
  endif
 
! small chance here that still in C1 or C2, but OK since
 
! another dt-advance given at the beginning of do-loop
 
 enddo !do while( t .lt. tf )
 
end program WormHole2D
 
!=======================================================
 
subroutine crossC1(x,y,vx,vy,dt,R,d)
 
 implicit none
 
 real(8) ::  x,y,vx,vy,dt,R,d
                                                                          

                                                                          
 
 real(8) ::  vr,v0 !v0 -> vtheta
 
 real(8) ::  theta,xc,yc
 
 print *,’# Inside C1: (x,y,vx,vy,R)= ’,x,y,vx,vy,R
 
 xc    =  0.5D0*d !center of C1
 
 yc    =  0.0D0
 
 theta =  atan2(y-yc,x-xc)
 
 x     = -xc - R*cos(theta) !new x-value, y invariant
 
!Velocity transformation:
 
 vr    =  vx*cos(theta)+vy*sin(theta)
 
 v0    = -vx*sin(theta)+vy*cos(theta)
 
 vx    =  vr*cos(theta)+v0*sin(theta)
 
 vy    = -vr*sin(theta)+v0*cos(theta)
 
!advance x,y, hopefully outside C2:
 
 x     = x + vx*dt
 
 y     = y + vy*dt
 
 print *,’# Exit   C2: (x,y,vx,vy  )= ’,x,y,vx,vy
 
end subroutine crossC1
 
!=======================================================
 
subroutine crossC2(x,y,vx,vy,dt,R,d)
 
 implicit none
 
 real(8), parameter :: PI=3.14159265358979324D0
 
 real(8) ::  x,y,vx,vy,dt,R,d
 
 real(8) ::  vr,v0 !v0 -> vtheta
 
 real(8) ::  theta,xc,yc
 

 
 print *,’# Inside C2: (x,y,vx,vy,R)= ’,x,y,vx,vy,R
 
 xc    = -0.5D0*d !center of C2
 
 yc    =  0.0D0
 
 theta =  PI-atan2(y-yc,x-xc)
 
 x     = -xc + R*cos(theta) !new x-value, y invariant
 
!Velocity transformation:
 
 vr    = -vx*cos(theta)+vy*sin(theta)
 
 v0    =  vx*sin(theta)+vy*cos(theta)
 
 vx    = -vr*cos(theta)-v0*sin(theta)
 
 vy    = -vr*sin(theta)+v0*cos(theta)
 
!advance x,y, hopefully outside C1:
 
 x     = x + vx*dt
 
 y     = y + vy*dt
 
 print *,’# Exit   C1: (x,y,vx,vy  )= ’,x,y,vx,vy
 
end subroutine crossC2
 

                                                                          

                                                                          




   It is easy to compile and run the program. See also the files Wormhole.csh and
Wormhole_animate.gnu of the accompanying software and run the gnuplot
commands:
                                                                          

                                                                          


   
gnuplot> file  = "Wormhole.dat"
 
gnuplot> R=1;d=5;L=20;
 
gnuplot> ! ./Wormhole.csh
 
gnuplot> t0=0;dt=0.2;load "Wormhole_animate.gnu"


 You are now ready to answer the rest of the questions that we asked in our
list.
                                                                          

                                                                          


   2.5    Problems


      

      	 Change the program Circle.f90 so that it prints the number of full
      circles traversed by the particle.
      

      	 Add all the necessary tests on the parameters entered by the user in
      the program Circle.f90, so that the program is certain to run without
      problems. Do the same for the rest of the programs given in the same
      section.
      

      	 A particle moves with constant angular velocity [image: ω  ] on a circle that
      has the origin of the coordinate system at its center. At time [image: t0 = 0  ],
      the particle is at [image: (x0,y0)  ]. Write the program CircularMotion.f90
      that will calculate the particle’s trajectory. The user should enter the
      parameters [image: ω,x0,y0,t0,tf,δt  ]. The program should print the results
      like the program Circle.f90 does.
      

      	 Change the program SimplePendulum.f90 so that the user could enter
      a non zero initial velocity.
      

      	 Study the [image: k →  0  ] limit in the projectile motion given by equations
      (2.10)  .  Expand  [image:  −kt           -1    2
e   = 1 − kt + 2!(kt) + ...  ]  and  keep  the  non
      vanishing terms as [image: k →  0  ]. Then keep the next order leading terms
      which have a smaller power of [image: k  ]. Program these relations in a file
ProjectileSmallAirResistance.f90. Consider the initial conditions
      [image: ⃗v =  ˆx + ˆy
 0  ] and calculate the range of the trajectory numerically by
      using the two programs 
ProjectileSmallAirResistance.f90,
      ProjectileAirResistance.f90. Determine the range of values of [image: k  ]
      for which the two results agree within 5% accuracy.
      

      	 Write a program for a projectile which moves through a fluid with
      fluid resistance proportional to the square of the velocity. Compare
      the range of the trajectory with the one calculated by the program
                                                                          

                                                                          
      ProjectileAirResistance.f90 for  the  parameters  shown  in  figure
      2.10.
      

      	 Change the program Lissajous.f90 so that the user can enter a
      different amplitude and initial phase in each direction. Study the case
      where the amplitudes are the same and the phase difference in the two
      directions are [image: π∕4,π ∕2,π,− π  ]. Repeat by taking the amplitude in the
      [image: y  ] direction to be twice as much the amplitude in the [image: x  ] direction.
      

      	 Change the program ProjectileAirResistance.f90, so that it can
      calculate also the [image: k = 0  ] case.
      

      	 Change the program ProjectileAirResistance.f90 so that it can
      calculate the trajectory of the particle in three dimensional space. Plot
      the position coordinates and the velocity components as a function of
      time. Plot the three dimensional trajectory using splot in gnuplot
      and animate the trajectory using the gnuplot script animate3D.gnu.
      

      	 Change  the  program  ChargeInB.f90 so  that  it  can  calculate  the
      number of full revolutions that the projected particle’s position on the
      [image: x − y  ] plane makes during its motion.
      

      	 Change the program box1D_1.f90 so that it prints the number of
      the particle’s collisions on the left wall, on the right wall and the total
      number of collisions to the stdout.
      

      	 Do the same for the program box1D_2.f90. Fill the table on page 311
      the number of calculated collisions and comment on the results.
      

      	 Run the program box1D_1.f90 and choose L= 10, v0=1. Decrease the
      step dt up to the point that the particle stops to move. For which value
      of dt this happens? Increase v0=10,100. Until which value of dt the
      particle moves now? Why?
      

      	  Change   the   REAL  declarations   to   REAL(8)  in   the   program
                                                                          

                                                                          
      box1D_1.f90.  Add  explicit  exponents  D0 to  all  constants  (e.g.
      0.0[image: → ]0.0D0).  Compare  your  results  to  those  obtained  in  section
      2.3.2. Repeat problem 2.13. What do you observe?
      

      	 Change the program box1D_1.f90 so that you can study non elastic
      collisions [image:  ′
v  = − ev  ], [image: 0 < e ≤ 1  ] with the walls.
      

      	 Change the program box2D_1.f90 so that you can study inelastic
      collisions   with   the   walls,   such   that   [image:  ′
vx = − evx  ],   [image:  ′
vy = − evy  ],
      [image: 0 < e ≤ 1  ].
      

      	 Use the method of calculating time in the programs box1D_4.f90 and
      box1D_5.f90 in order to produce the results in figure 2.21.
      

      	 Particle falls freely moving in the vertical direction. It starts with
      zero  velocity  at  height  [image: h  ].  Upon  reaching  the  ground,  it  bounces
      inelastically such that [image:  ′
vy = − evy  ] with [image: 0 < e ≤ 1  ] a parameter. Write
      the  necessary  program  in  order  to  study  numerically  the  particle’s
      motion and study the cases [image: e = 0.1,0.5,0.9,1.0  ].
      

      	 Generalize the program of the previous problem so that you can study
      the case [image: ⃗v0 = v0xˆx  ]. Animate the calculated trajectories.
      

      	 Study the motion of a particle moving inside the box of figure 2.30. Count
      the number of collisions of the particle with the walls before it leaves the
      box. 





[image: pict]

 
Figure 2.30: Problem 2.20.



      


                                                                          

                                                                          
      

      	 Study the motion of the point particle on the “billiard table” of figure 2.31.
      Count the number of collisions with the walls before the particle enters into
      a hole. The program should print from which hole the particle left the table.
      





[image: pict]

 
Figure 2.31: Problem 2.21.



      


      

      	 Write a program in order to study the motion of a particle in the box of
      figure 2.32. At the center of the box there is a disk on which the particle
      bounces off elastically (Hint: use the routine reflectVonCircle of the
      program Cylinder3D.f90). 





[image: pict]

 
Figure 2.32: Problem 2.22.



      


      

      	 In the box of the previous problem, put four disks on which the particle
      bounces of elastically like in figure 2.33. 





[image: pict]

 
Figure 2.33: Problem 2.23.



      


                                                                          

                                                                          
      

      	 Consider the arrangement of figure 2.34. Each time the particle bounces
      elastically off a circle, the circle disappears. The game is over successfully if
      all the circles vanish. Each time the particle bounces off on the wall to the
      left, you lose a point. Try to find trajectories that minimize the number of
      lost points. 





[image: pict]

 
Figure 2.34: Problem 2.24.



      


      


                                                                          

                                                                          
   


Chapter 3
Logistic Map

Nonlinear differential equations model interesting dynamical systems in physics,
biology and other branches of science. In this chapter we perform a numerical
study of the discrete logistic map as a “simple mathematical model with complex
dynamical properties”  [21] similar to the ones encountered in more complicated
and interesting dynamical systems. For certain values of the parameter of the
map, one finds chaotic behavior giving us an opportunity to touch on this very
interesting topic with important consequences in physical phenomena. Chaotic
evolution restricts out ability for useful predictions in an otherwise fully
deterministic dynamical system: measurements using slightly different initial
conditions result in a distribution which is indistinguishable from the distribution
coming from sampling a random process. This scientific field is huge and active
and we refer the reader to the bibliography for a more complete introduction
 [21, 22, 23, 24, 25, 26, 27, 38].


   3.1    Introduction

The most celebrated application of the logistic map comes from the study of
population growth in biology. One considers populations which reproduce at fixed
time intervals and whose generations do not overlap.

   The simplest (and most naive) model is the one that makes the reasonable
assumption that the rate of population growth [image: dP (t)∕dt  ] of a population [image: P(t)  ] is
proportional to the current population:


   	
   
[image: dP (t)
------= kP (t).
 dt
]
	(3.1)



The general solution of the above equation is [image: P (t) = P(0)ekt  ] showing an
exponential population growth for [image: k > 0  ] an decline for [image: k <  0  ]. It is obvious that
this model is reasonable as long as the population is small enough so that the
                                                                          

                                                                          
interaction with its environment (adequate food, diseases, predators etc)
can be neglected. The simplest model that takes into account some of
the factors of the interaction with the environment (e.g. starvation) is
obtained by the introduction of a simple non linear term in the equation so
that


   	
   
[image: dP-(t) = kP (t)(1 − bP (t)).
  dt
]
	(3.2)



The parameter [image: k  ] gives the maximum growth rate of the population and [image: b  ]
controls the ability of the species to maintain a certain population level. The
equation  (3.2)  can be discretized in time by assuming that each generation
reproduces every [image: δt  ] and that the n-th generation has population [image: Pn  = P (tn)  ]
where [image: tn =  t0 + (n − 1)δt  ]. Then [image:                       ′
P(tn+1) ≈ P (tn ) + δtP (tn)  ] and equation  (3.1)
becomes


   	
   
[image: Pn+1 =  rPn,
]
	(3.3)



where [image: r = 1 + kδt  ]. The solutions of the above equation are well approximated
by [image: Pn  ∼ P0ektn   ] [image: ∝ e(r−1)n  ] so that we have population growth when
                                                                          

                                                                          
[image: r > 1  ] and decline when [image: r < 1  ]. Equation  (3.2)  can be discretized as
follows:


   	
   
[image: Pn+1 =  Pn(r − bPn).
]
	(3.4)



Defining [image: xn =  (b∕r )Pn  ] we obtain the logistic map


   	
   
[image: xn+1 =  rxn(1 − xn).
]
	(3.5)



We define the functions


   	
   
[image: f (x) = rx(1 − x),     F(x,r) = rx (1 − x )
]
	(3.6)



(their only difference is that, in the first one, [image: r  ] is considered as a given
parameter), so that


   	
   
[image: xn+1 =  f(xn) = f(2)(xn−1) = ...= f (n)(x1) = f(n+1)(x0),
]
	(3.7)



where we use the notation [image:   (1)
f   (x) = f(x)  ], [image:  (2)
f   (x ) = f(f(x))  ], [image:  (3)
f  (x) = f (f(f(x)))  ],
[image: ... ] for function composition. In what follows, the derivative of [image: f  ] will be
useful:


   	
   
[image: f ′(x) =  ∂F-(x,-r)-= r(1 − 2x).
           ∂x
]
	(3.8)



                                                                          

                                                                          

   Since we interpret [image: xn  ] to be the fraction of the population with
respect to its maximum value, we should have [image: 0 ≤ xn ≤  1  ] for
each1 
[image: n  ]. The function [image: f(x)  ] has one global maximum for [image: x = 1∕2  ] which is equal
to [image: f(1∕2 ) = r ∕4  ]. Therefore, if [image: r > 4  ], then [image: f(1∕2) > 1  ], which for an
appropriate choice of [image: x0   ] will lead to [image: xn+1  = f(xn) > 1  ] for some value of [image: n  ].
Therefore, the interval of values of [image: r  ] which is of interest for our model
is


   	
   
[image: 0 < r ≤ 4.
]
	(3.9)




   The logistic map  (3.5)  may be viewed as a finite difference equation and it
is a one step inductive relation. Given an initial value [image: x0   ], a sequence
of values [image: {x0,  ] [image: x1,  ] [image: ...,  ] [image: xn,  ] [image: ...  ] [image: } ] is produced. This will be
referred2 
to as the trajectory of [image: x0   ]. In the following sections we will study the properties of
these trajectories as a function of the parameter [image: r  ].

   The solutions of the logistic map are not known except in special cases. For
[image: r = 2  ] we have 


   	
                                                                          

                                                                          
   
[image:      1 (            2n)
xn = -- 1 − (1 − x0)   ,
     2
]
	(3.10)



and for3 
[image: r = 4  ]


   	
   
[image:          2 n              1-  − 1√ ---
xn =  sin (2  π𝜃),    𝜃 =  π sin     x0.
]
	(3.11)



For [image: r = 2  ], [image: limn →∞ xn =  1∕2  ] whereas for [image: r = 4  ] we have periodic trajectories
resulting in rational [image: 𝜃  ] and non periodic resulting in irrational [image: 𝜃  ]. For other
values of [image: r  ] we have to resort to a numerical computation of the trajectories of
the logistic map.


   3.2    Fixed Points and [image: 2n  ] Cycles

                                                                          

                                                                          
It is obvious that if the point [image:   ∗
x ] is a solution of the equation [image: x = f(x )  ], then
[image:        ∗
xn =  x ] [image: ⇒ ] [image:          ∗
xn+k =  x ] for every [image: k ≥  0  ]. For the function [image: f(x ) = rx (1 − x)  ]
we have two solutions 


   	
   
[image: x∗1 = 0     and     x∗2 = 1 − 1∕r.
]
	(3.12)



We will see that for appropriate values of [image: r  ], these solutions are attractors of
most of the trajectories. This means that for a range of values for the initial point
[image: 0 ≤ x0 ≤  1  ], the sequence [image: {xn} ] approaches asymptotically one of these points as
[image: n →  ∞ ]. Obviously the (measure zero) sets of initial values [image: {x0} = {x ∗1} ] and
[image: {x0 } = {x∗}
          2 ] result in trajectories attracted by [image: x∗
 1   ] and [image: x∗
 2   ] respectively. In
order to determine which one of the two values is preferred, we need to study the
stability of the fixed points [image:   ∗
x 1   ] and [image:  ∗
x2   ]. For this, assume that for some
value of [image: n  ], [image: xn  ] is infinitesimally close to the fixed point [image: x∗ ] so that


   
[image:            ∗
  xn   =  x  + 𝜖n
xn+1   =  x∗ + 𝜖n+1.                     (3.13)
]


Since
   	
                                                                          

                                                                          
   
[image: xn+1 =  f(xn) = f (x ∗ + 𝜖n) ≈ f (x ∗) + 𝜖nf ′(x∗) = x∗ + 𝜖nf′(x∗),
]
	(3.14)



where we used the Taylor expansion of the analytic function [image: f(x∗ + 𝜖 )
        n  ] about
[image:   ∗
x ] and the relation [image:  ∗       ∗
x  = f (x )  ], we have that [image:           ′  ∗
𝜖n+1 = 𝜖nf (x )  ]. Then we
obtain


   	
   
[image: |     |
|𝜖n+1 |
||-----|| = |f′(x∗)|.
  𝜖n
]
	(3.15)



Therefore, if [image: |f′(x ∗)| < 1  ] we obtain [image: lim      𝜖 =  0
   n→ ∞  n  ] and the fixed point [image: x ∗ ] is
stable: the sequence [image: {xn+k } ] approaches [image:  ∗
x ] asymptotically. If [image:   ′ ∗
|f (x )| > 1  ]
then the sequence [image: {xn+k} ] deviates away from [image:  ∗
x ] and the fixed point is
unstable. The limiting case [image: |f′(x∗)| = 1  ] should be studied separately
and it indicates a change in the stability properties of the fixed point. In
the following discussion, these points will be shown to be bifurcation
points.

   For the function [image: f (x ) = rx(1 − x)  ] with [image: f ′(x) = r(1 − 2x)  ] we have that
[image: f ′(0) = r  ] and [image: f′(1 − 1∕r ) = 2 − r  ]. Therefore, if [image: r < 1  ] the point [image: x∗1 = 0  ] is an
attractor, whereas the point [image: x∗=  1 − 1∕r < 0
 2  ] is irrelevant. When [image: r > 1  ],
the point [image: x∗ = 0
 1  ] results in [image: |f′(x∗)| = r > 1
     1  ], therefore [image: x∗
 1   ] is unstable.
Any initial value [image: x0   ] near [image:  ∗
x1   ] deviates from it. Since for [image: 1 <  r < 3  ] we
have that [image: 0 ≤ |f′(x∗2)| = |2 − r| < 1  ], the point [image: x∗2   ] is an attractor. Any
                                                                          

                                                                          
initial value [image: x0 ∈ (0,1 )  ] approaches [image:  ∗
x2 = 1 − 1∕r  ]. When [image:      (1)
r = rc  = 1  ] we
have the limiting case [image:   ∗    ∗
x 1 = x2 = 0  ] and we say that at the critical value
[image: r(c1)= 1  ] the fixed point [image: x∗1   ] bifurcates to the two fixed points [image: x∗1   ] and
[image: x ∗
  2   ].

   As [image: r  ] increases, the fixed points continue to bifurcate. Indeed, when
[image:      (2)
r = rc  =  3  ] we have that [image:  ′  ∗
f (x2) = 2 − r = − 1  ] and for [image:      (2)
r > rc  ] the point [image:  ∗
x2   ]
becomes unstable. Consider the solution of the equation [image: x = f (2)(x)  ]. If
[image: 0 < x ∗ < 1  ] is one of its solutions and for some [image: n  ] we have that [image: xn =  x∗ ], then
[image: x    =
  n+2  ] [image: x    =
  n+4  ] [image: ...=  ] [image: x     =
 n+2k  ] [image: ...=  ] [image: x ∗ ] and [image: x    =
 n+1  ] [image: x    =
 n+3  ] [image: ...=  ]
[image: xn+2k+1 =  ] [image: ...=  ] [image:    ∗
f(x )  ] (therefore [image:    ∗
f(x )  ] is also a solution). If [image:      ∗
0 < x3 <  ]
[image:   ∗
x 4 < 1  ] are two such different solutions with [image:  ∗       ∗
x3 = f(x 4)  ], [image:  ∗       ∗
x4 = f (x3)  ], then the
trajectory is periodic with period 2. The points [image: x∗3   ], [image: x∗4   ] are such that they are
real solutions of the equation


   	
   
[image: f(2)(x ) = r2x(1 − x)(1 − rx(1 − x)) = x,
]
	(3.16)



and at the same time they are not the solutions [image: x∗=  0
 1  ] [image: x∗ = 1 − 1∕r
 2  ] of the
equation4 
[image: x =  f(2)(x)  ], the polynomial above can be written in the form (see  [22] for more
details)


   	
                                                                          

                                                                          
   
[image:   (     (      ) )
              1-       2
x   x −   1 − r    (Ax  + Bx  + C ) = 0.
]
	(3.17)



By expanding the polynomials  (3.16) ,  (3.17)  and comparing their coefficients
we conclude that [image: A = − r3   ], [image: B  = r2(r + 1)  ] and [image: C  = − r(r + 1)  ]. The
roots of the trinomial in  (3.17)  are determined by the discriminant
[image:       2
Δ  = r (r + 1)(r − 3)  ]. For the values of [image: r  ] of interest ([image: 1 <  r ≤ 4  ]), the
discriminant becomes positive when [image:      (2)
r > rc  = 3  ] and we have two different
solutions


   	
   
[image:   ∗             √ -2---------
x α = ((r + 1) ∓  r  − 2r − 3)∕(2r)    α =  3,4.
]
	(3.18)



When [image: r = r(c2)  ] we have one double root, therefore a unique fixed point.

   The study of the stability of the solutions of [image: x =  f(2)(x)  ] requires
the same steps that led to the equation  (3.15)  and we determine if the
absolute value of [image:  (2)′
f   (x)  ] is greater, less or equal to one. By noting
that5 
[image: f (2)′(x ) =
      3  ] [image: f(2)′(x ) =
      4  ] [image: f ′(x )f ′(x )
    3     4  ] [image: = − r2 + 2r + 4  ], we see that for
[image:      (2)
r = rc  =  3  ], [image:  (2)′  ∗
f   (x 3) =  ] [image:  (2)′ ∗
f   (x4) = 1  ] and for [image:      (3)      √ --
r = rc  = 1 +   6 ≈ 3.4495  ],
[image: f (2)′(x3) =  ][image: f(2)′(x4) = − 1  ]. For the intermediate values [image:             √ --
3 < r < 1 +   6  ] the
                                                                          

                                                                          
derivatives [image:   (2)′ ∗
|f   (xα)| < 1  ] for [image: α = 3,4  ]. Therefore, these points are stable
solutions of [image:       (2)
x = f   (x)  ] and the points [image:  ∗  ∗
x1,x2   ] bifurcate to [image:  ∗
xα  ], [image: α = 1,2, 3,4  ]
for [image: r = r(2c) = 3  ]. Almost all trajectories with initial points in the interval
[image: [0,1]  ] are attracted by the periodic trajectory with period 2, the “2-cycle”
[image:    ∗  ∗
{x 3,x4} ].


   Using similar arguments we find that the fixed points [image: x∗α  ], [image: α = 1, 2,3,4  ]
bifurcate to the eight fixed points [image: x∗
 α  ], [image: α = 1, ...,8  ] when [image:               √ --
r = r(c3) = 1 +   6  ].
These are real solutions of the equation that gives the 4-cycle [image:       (4)
x =  f  (x)  ].
For [image:  (3)        (4)
rc  <  r < rc ≈  3.5441  ], the points [image:  ∗
xα  ], [image: α = 5, ...,8  ] are a stable
4-cycle which is an attractor of almost all trajectories of the logistic
map6 .
Similarly, for [image:  (4)        (5)
rc  < r < rc  ] the 16 fixed points of the equation
[image:       (8)
x =  f  (x)  ] give a stable 8-cycle, for [image:  (5)        (6)
rc  < r < rc  ] a stable 16-cycle
etc7 .
This is the phenomenon which is called period doubling which continues ad
infinitum. The points [image:  (n)
rc  ] are getting closer to each other as [image: n  ] increases so that
[image:          (n)
limn →∞ rc  =  rc ≈ 3.56994567  ]. As we will see, [image: rc  ] marks the onset
of the non-periodic, chaotic behavior of the trajectories of the logistic
map.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 3.1: (Left) Some trajectories of the logistic map with [image: x = 0.1
 0  ] and various
values of [image: r  ]. We can see the first bifurcation for [image:  (1)
rc  = 1  ] from [image:  ∗
x1 = 0  ] to [image:  ∗
x2 = 1− 1∕r  ].
(Right) Trajectories of the logistic map for [image:  (2)           (3)
rc  < r = 3.5 < rc  ]. The three curves start
from three different initial points. After a transient period, depending on the initial point,
one obtains a periodic trajectory which is a 2-cycle. The horizontal lines are the expected
values [image: x∗  = ((r+ 1)∓ √r2-−-2r−-3)∕(2r)
 3,4  ] (see text). 



                                                                          

                                                                          
   


   Computing the bifurcation points becomes quickly intractable and we have to
resort to a numerical computation of their values. Initially we will write a program
that computes trajectories of the logistic map for chosen values of [image: r  ] and
[image: x
  0   ]. The program can be found in the file logistic.f90 and is listed
below:
                                                                          

                                                                          


   
!===========================================================
 
!Discrete Logistic Map
 
!===========================================================
 
program logistic_map
 
 implicit none
 
 integer :: NSTEPS,i
 
 real(8) :: r,x0,x1
 
! ----- Input:
 
 print *,’# Enter NSTEPS, r, x0:’
 
 read  *,NSTEPS,r,x0
 
 print *,’# NSTEPS = ’,NSTEPS
 
 print *,’# r      = ’,r
 
 print *,’# x0     = ’,x0
 
! ----- Initialize:
 
 open(unit=33,file=’log.dat’)
 
 write(33,*) 0,x0
 
! ----- Calculate:
 
 do i=1,NSTEPS
 
  x1 = r * x0 * (1.0D0-x0)
 
  write(33,*)i,x1
 
  x0 = x1
 
 enddo
 
 close(33)
 
end program logistic_map


 The program is compiled and run using the commands:
                                                                          

                                                                          


   
> gfortran logistic.f90 -o l
 
> echo "100 0.5 0.1" | ./l


 The command echo prints to the stdout the values of the parameters
NSTEPS=100, r=0.5 and x0=0.1. Its stdout is redirected to the stdin of the
command ./l by using a pipe via the symbol |, from which the program reads
their value and uses them in the calculation. The results can be found
in two columns in the file log.dat and can be plotted using gnuplot.
The plots are put in figure 3.1 and we can see the first two bifurcations
when [image: r  ] goes past the values [image:  (1)
rc  ] and [image:  (2)
rc  ]. Similarly, we can study
trajectories which are [image: 2n  ]-cycles when [image: r  ] crosses the values [image:  (n− 1)
rc  ].
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Figure 3.2: Cobweb plots of the logistic map for [image: r = 2.8  ] and [image: 3.3  ]. (Left) The left plot
is an example of a fixed point [image:   ∗     ∗
x  = f(x )  ]. The green line is [image: y = f(x)  ] and the blue line
is [image: y = f(2)(x)  ]. The trajectory ends at the unique non zero intersection of the diagonal
and [image: y = f(x )  ] which is [image: x∗2 = 1 − 1∕r  ]. The trajectory intersects the curve [image: y = f(2)(x )  ]
at the same point. [image: y = f (2)(x)  ] does not intersect the diagonal anywhere else. (Right)
The right plot shows an example of a 2-cycle. [image: y = f(2)(x)  ] intersects the diagonal at two
additional points determined by [image:  ∗
x3  ] and [image:  ∗
x4  ]. The trajectory ends up on the orthogonal
[image: (x∗3,x∗3)  ], [image: (x∗4,x ∗3)  ], [image: (x∗4,x∗4)  ], [image: (x∗3,x∗4)  ]. 
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Figure 3.3: (Left) A 4-cycle for [image: r = 3.5  ]. The blue curve is [image: y = f(4)(x)  ] which intersects
the  diagonal  at  four  points  determined  by  [image: xα  ],  [image: α = 5,6,7,8  ].  The  four  cycle  passes
through these points. (Right) a non periodic orbit for [image: r = 3.7  ] when the system exhibits
chaotic behavior. 



                                                                          

                                                                          
   


   Another way to depict the 2-cycles is by constructing the cobweb plots: We
start from the point [image: (x0,0)  ] and we calculate the point [image: (x0,x1)  ], where
[image: x1 = f (x0)  ]. This point belongs on the curve [image: y =  f(x)  ]. The point [image: (x0,x1)  ] is
then projected on the diagonal [image: y = x  ] and we obtain the point [image: (x ,x )
  1  1  ]. We
repeat [image: n  ] times obtaining the points [image: (xn,xn+1 )  ] and [image: (xn+1,xn+1 )  ] on [image: y = f(x )  ]
and [image: y = x  ] respectively. The fixed points [image:   ∗      ∗
x  =  f(x )  ] are at the intersections of
these curves and, if they are attractors, the trajectories will converge on them. If
we have a [image: 2n  ]-cycle, we will observe a periodic trajectory going through
points which are solutions to the equation [image: x =  f(2n)(x)  ]. This exercise can
be done by using the following program, which can be found in the file
logistic1.f90:
                                                                          

                                                                          


   
!===========================================================
 
! Discrete Logistic Map
 
! Map the trajectory in 2d space (plane)
 
!===========================================================
 
program logistic_map
 
 implicit none
 
 integer :: NSTEPS,i
 
 real(8) :: r,x0,x1
 
! ----- Input:
 
 print *,’# Enter NSTEPS, r, x0:’
 
 read  *,NSTEPS,r,x0
 
 print *,’# NSTEPS = ’,NSTEPS
 
 print *,’# r      = ’,r
 
 print *,’# x0     = ’,x0
 
! ----- Initialize:
 
 open(unit=33,file=’trj.dat’)
 
! ----- Calculate:
 
 write(33,*) 0, x0,0
 
 do i=1,NSTEPS
 
  x1 = r * x0 * (1.0D0-x0)
 
  write(33,*) 2*i-3,x0,x1
 
  write(33,*) 2*i-2,x1,x1
 
  x0 = x1
 
 enddo
 
 close(33)
 
end program logistic_map


 Compiling and running this program is done exactly as in the case of the
program in logistic.f90. We can plot the results using gnuplot. The plot in
figure 3.2 can be constructed using the commands:
                                                                          

                                                                          


   
gnuplot> set size square
 
gnuplot> f(x) = r*x*(1.0-x)
 
gnuplot> r = 3.3
 
gnuplot> plot "<echo 50 3.3 0.2|./l;cat trj.dat" using 2:3 w l
 
gnuplot> replot f(x) ,f(f(x)),x


 The plot command shown above, runs the program exactly as it is done on the
command line. This is accomplished by using the symbol <, which reads the plot
from the stdout of the command "echo 50 3.3 0.2|./l;cat trj.dat". Only
the second command "echo trj.dat" writes to the stdout, therefore the plot is
constructed from the contents of the file trj.dat. The following line adds
the plots of the functions [image: f(x)  ], [image: f(2)(x ) = f(f(x))  ] and of the diagonal
[image: y = x  ]. Figures 3.2 and 3.3 show examples of attractors which are fixed
points, 2-cycles and 4-cycles. An example of a non periodic trajectory
is also shown, which exhibits chaotic behavior which can happen when
[image: r > rc ≈ 3.56994567  ].


   3.3    Bifurcation Diagrams

The bifurcations of the fixed points of the logistic map discussed in the previous
section can be conveniently shown on the “bifurcation diagram”. We remind
to the reader that the first bifurcations happen at the critical values of
r


   	
   
[image: r(c1)<  r(2c) < r(c3) < ...<  r(nc) < ...<  rc,
                                                                          

                                                                          
]
	(3.19)



where [image:  (1)
rc  = 1  ], [image:  (2)
rc  = 3  ], [image:  (3)      √ --
rc  = 1 +   6  ] and [image:              (n)
rc = limn →∞ rc  ] [image: ≈ 3.56994567  ].
For [image: r(cn)<  r < r(nc+1 )  ] we have [image: 2n  ] fixed points [image: x∗α  ], [image: α =  1,2,...,2n  ] of
[image: x =  f(2n)(x)  ]. By plotting these points [image: x∗ (r )
 α  ] as a function of [image: r  ] we construct
the bifurcation diagram. These can be calculated numerically by using the
program bifurcate.f90. In this program, the user selects the values of [image: r  ] that
she needs to study and for each one of them the program records the point of the
[image: 2n− 1   ]-cycles8 
[image:   ∗
x α(r)  ], [image:       n−1      n−1          n
α =  2    + 1,2    + 2,...,2  ]. This is easily done by computing the
logistic map several times until we are sure that the trajectories reach the stable
state. The parameter NTRANS in the program determines the number of points
that we throw away, which should contain all the transient behavior. After
NTRANS steps, the program records NSTEPS points, where NSTEPS should be
large enough to cover all the points of the [image:  n− 1
2   ]-cycles or depict a dense
enough set of values of the non periodic orbits. The program is listed
below:
                                                                          

                                                                          


   
!===========================================================
 
! Bifurcation Diagram of the Logistic Map
 
!===========================================================
 
program bifurcation_diagram
 
 implicit none
 
 real(8),parameter :: rmin   = 2.5D0
 
 real(8),parameter :: rmax   = 4.0D0
 
 integer,parameter :: NTRANS = 500   !Number of discarded steps
 
 integer,parameter :: NSTEPS = 100   !Number of recorded  steps
 
 integer,parameter :: RSTEPS = 2000  !Number of values of r
 
 integer           :: i
 
 real(8)           :: r,dr,x0,x1
 
! ----- Initialize:
 
 open(unit=33,file=’bif.dat’)
 
 dr     = (rmax-rmin)/RSTEPS !Increment in r
 
! ----- Calculate:
 
 r = rmin
 
 do while ( r .le. rmax)
 
  x0 = 0.5D0
 
! ---- Transient steps: skip
 
  do i=1,NTRANS
 
   x1 = r * x0 * (1.0D0-x0)
 
   x0 = x1
 
  enddo
 
  do i=1,NSTEPS
 
   x1 = r * x0 * (1.0D0-x0)
 
   write(33,*) r,x1
 
   x0 = x1
 
  enddo
 
  r = r + dr
 
 enddo ! do while
 
 close(33)
 
end program bifurcation_diagram
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Figure 3.4: (Left) The bifurcation diagram computed by the program bifurcate.f90
for  [image: 2.5 < r < 4  ].  Notice  the  first  bifurcation  points  followed  by  intervals  of  chaotic,
non-periodic orbits interrupted by intermissions of stable periodic trajectories. The chaotic
trajectories take values in subsets of the interval [image: (0,1)  ]. For [image: r = 4  ] they take values within
the whole [image: (0,1)  ]. One can see that for [image: r = 1 +√8 ≈ 3.8284  ] we obtain a 3-cycle which
subsequently bifurcates to [image: 3⋅2n  ]-cycles. (Right) The diagram on the left is magnified in
a range of [image: r  ] showing the self-similarity of the diagram at all scales. 



                                                                          

                                                                          
   


   The program can be compiled and run using the commands:
                                                                          

                                                                          


   
> gfortran bifurcate.f90 -o b
 
> ./b;


 The left plot of figure 3.4 can be constructed by the gnuplot commands:
                                                                          

                                                                          


   
gnuplot> plot "bif.dat" with dots




   We observe the fixed points and the [image: 2n  ]-cycles for [image: r < rc  ]. When [image: r  ] goes
past [image: rc  ], the trajectories become non-periodic and exhibit chaotic behavior.
Chaotic behavior will be discussed more extensively in the next section. For the
time being, we note that if we measure the distance between the points
[image:    (n)    (n+1)    (n)
Δr    =  rc    − rc  ], we find that it decreases constantly with [image: n  ] so
that


   	
   
[image:          (n)
lim  -Δr-----= δ ≈ 4.669201609,
n→∞  Δr (n+1)
]
	(3.20)



where [image: δ  ] is the Feigenbaum constant. An additional constant [image: α  ], defined by the
quotient of the separation of adjacent elements [image: Δwn  ] of period doubled attractors
from one double to the next [image: Δwn+1   ], is


   	
   
[image:       Δwn
 lim  ------- = α ≈ 2.502907875.
n→ ∞ Δwn+1
]
	(3.21)



It is also interesting to note the appearance of a 3-cycle right after
[image:         √ --
r = 1 +   8 ≈ 3.8284 >  rc  ]! By using the theorem of Sharkovskii, Li and
Yorke9 
showed that any one dimensional system has 3-cycles, therefore it will have cycles
of any length and chaotic trajectories. The stability of the 3-cycle can be studied
from the solutions of [image:       (3)
x =  f  (x)  ] in exactly the same way that we did in
equations  (3.16)  and  (3.17)  (see  [22] for details). Figure 3.5 magnifies a branch
of the 3-cycle. By magnifying different regions in the bifurcation plot, as shown in
the right plot of figure 3.4, we find similar shapes to the branching of the 3-cycle.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 3.5: Magnification of one of the three branches of the 3-cycle for [image: r > 1+ √8-  ].
To the left, we observe the temporary halt of the chaotic behavior of the trajectory, which
comes back as shown in the plot to the right after an intermission of stable periodic
trajectories. 



                                                                          

                                                                          
   


   Figure 3.4 shows that between intervals of chaotic behavior we obtain
“windows” of periodic trajectories. These are infinite but countable. It is also
quite interesting to note that if we magnify a branch withing these windows, we
obtain a diagram that is similar to the whole diagram! We say that the
bifurcation diagram exhibits self similarity. There are more interesting properties
of the bifurcation diagram and we refer the reader to the bibliography for a more
complete exposition.

   We close this section by mentioning that the qualitative properties
of the bifurcation diagram are the same for a whole class of functions.
Feigenbaum discovered that if one takes any function that is concave
and has a unique global maximum, its bifurcation diagram behaves
qualitatively the same way as that of the logistic map. Examples of such
functions10 
studied in the literature are [image:          r(1−x)
g(x) = xe   ], [image: u(x ) = rsin (πx)  ] and [image:             2
w(x) = b − x   ].
The constants [image: δ  ] and [image: α  ] of equations  (3.20)  and  (3.21)  are the same
of all these mappings. The functions that result in chaotic behavior are
studied extensively in the literature and you can find a list of those in
 [28].


   3.4    The Newton-Raphson Method

In order to determine the bifurcation points, one has to solve the nonlinear,
polynomial, algebraic equations [image:       (n)
x = f   (x)  ] and [image:  (n)′
f   (x) = − 1  ]. For
this reason, one has to use an approximate numerical calculation of the
roots, and the simple Newton-Raphson method will prove to be a good
choice.

   Newton-Raphson’s method uses an initial guess [image: x
 0   ] for the solution of the
equation [image: g (x ) = 0  ] and computes a sequence of points [image: x1,  ] [image: x2,  ] [image: ...,  ] [image: xn,  ]
[image: xn+1,  ] [image: ...  ] that presumably converges to one of the roots of the equation.
The computation stops at a finite [image: n  ], when we decide that the desired
level of accuracy has been achieved. In order to understand how it works,
we assume that [image: g(x )  ] is an analytic function for all the values of [image: x  ]
used in the computation. Then, by Taylor expanding around [image: xn  ] we
obtain
                                                                          

                                                                          


   	
   
[image:                               ′
g(xn+1) = g(xn) + (xn+1 − xn)g (x) + ....
]
	(3.22)



If we wish to have [image: g(xn+1) ≈ 0  ], we choose


   	
   
[image:              g (x  )
xn+1 =  xn − ----n-.
             g′(xn)
]
	(3.23)



The equation above gives the Newton-Raphson method for one equation
[image: g(x ) = 0  ] of one variable [image: x  ]. Different choices for [image: x0   ] will possibly lead to
different roots. When [image: g′(x )  ], [image: g ′′(x )  ] are non zero at the root and [image: g ′′′(x)  ] is
bounded, the convergence of the method is quadratic with the number of
iterations. This means that there is a neighborhood of the root [image: α  ] such that the
distance [image: Δxn+1  = xn+1 − α  ] is [image:                 2
Δxn+1  ∝  (Δxn  )   ]. If the root [image: α  ] has multiplicity
larger than 1, convergence is slower. The proofs of these statements are simple and
can be found in  [29].

   The Newton-Raphson method is simple to program and, most of the times,
sufficient for the solution of many problems. In the general case it works well only
close enough to a root. We should also keep in mind that there are simple reasons
for the method to fail. For example, when [image: g′(xn ) = 0  ] for some [image: n  ], the method
                                                                          

                                                                          
stops. For functions that tend to [image: 0  ] as [image: x →  ±∞ ], it is easy to make a bad choice
for [image: x0   ] that does not lead to convergence to a root. Sometimes it is a
good idea to combine the Newton-Raphson method with the bisection
method. When the derivative [image: g′(x )  ] diverges at the root we might get into
trouble. For example, the equation [image: |x|ν = 0  ] with [image: 0 < ν <  1∕2  ], does
not lead to a convergent sequence. In some cases, we might enter into
non-convergent cycles  [8]. For some functions the basin of attraction of a root
(the values of [image: x0   ] that will converge to the root) can be tiny. See problem
13.

   As a test case of our program, consider the equation


   	
   
[image:          ∘ -------
𝜖tan 𝜖 =   ρ2 − 𝜖2
]
	(3.24)



which results from the solution of Schrödinger’s equation for the energy spectrum
of a quantum mechanical particle of mass [image: m  ] in a one dimensional potential well
of depth [image: V0   ] and width [image: L  ]. The parameters [image:     ∘  ------------
𝜖 =    mL2E  ∕(2ℏ)  ] and
[image:     ∘  ------------
ρ =    mL2V0 ∕(2ℏ )  ]. Given [image: ρ  ], we solve for [image: 𝜖  ] which gives the energy [image: E  ]. The
function [image: g(x)  ] and its derivative [image: g′(x)  ] are 

   
[image:                     ∘ --2---2-
 g(x)  =   xtan x −   ρ  − x
g ′(x)  =   ∘---x-----+ ---x-- + tan x.            (3.25)
             ρ2 − x2   cos2 x
]


The program of the Newton-Raphson method for solving the equation [image: g (x) = 0  ]
can be found in the file nr.f90:
                                                                          

                                                                          
   
!===========================================================
 
!Newton Raphson for a function of one variable
 
!===========================================================
 
program NewtonRaphson
 
 implicit none
 
 real(8), parameter :: rho  = 15.0D0
 
 real(8), parameter :: eps  = 1D-6
 
 integer, parameter :: NMAX = 1000
 
 real(8) :: x0, x1, err, g, gp
 
 integer :: i
 
 print *, ’Enter x0: ’
 
 read  *, x0
 
 err = 1.0D0
 
 print *,’iter           x                        error    ’
 
 print *,’-------------------------------------------------’
 
 print *, 0,x0,err
 
 do i=1,NMAX
 
!value of function g(x):
 
  g   = x0*tan(x0)-sqrt(rho*rho-x0*x0)
 
!value of the derivative g’(x):
 
  gp  = x0/sqrt(rho*rho-x0*x0)+x0/(cos(x0)**2)+tan(x0)
 
  x1  = x0 - g/gp
 
  err = ABS(x1-x0)
 
  print *,i,x1,err
 
  if(err .lt. eps) exit
 
  x0 = x1
 
 enddo
 
end program NewtonRaphson


 In the program listed above, the user is asked to set the initial point [image: x0   ]. We fix
[image: ρ =  ] rho [image: = 15  ]. It is instructive to make the plot of the left and right hand sides
of  (3.24)  and make a graphical determination of the roots from their
intersections. Then we can make appropriate choices of the initial point [image: x0   ].
Using gnuplot, the plots are made with the commands:
                                                                          

                                                                          


   
gnuplot> g1(x) = x*tan(x)
 
gnuplot> g2(x) = sqrt(rho*rho-x*x)
 
gnuplot> plot [0:20][0:20]  g1(x), g2(x)


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 3.6: Plots of the right and left hand sides of equation  (3.24) . The intersections
of the curves determine the solutions of the equation and their approximate graphical
estimation can serve as initial points [image: x0  ] for the Newton-Raphson method. 



                                                                          

                                                                          
   


   The compilation and running of the program can be done as follows:
                                                                          

                                                                          


   
> gfortran nr.f90 -o n
 
> echo "1.4"|./n
 
 Enter x0:
 
 iter x                         error
 
 -------------------------------------------------
 
 0    1.3999999999999999        1.0000000000000000
 
 1    1.5254292024457967        0.12542920244579681
 
 2    1.5009739120496131        2.4455290396183660E-002
 
 3    1.4807207017202200        2.0253210329393090E-002
 
 4    1.4731630533073483        7.5576484128716537E-003
 
 5    1.4724779331237687        6.8512018357957949E-004
 
 6    1.4724731072313519        4.8258924167932093E-006
 
 7    1.4724731069952235        2.3612845012621619E-010


 We conclude that one of the roots of the equation is [image: 𝜖 ≈ 1.472473107  ].
The reader can compute more of these roots by following these steps by
herself.

   The method discussed above can be easily generalized to the case of two
equations. Suppose that we need to solve simultaneously two algebraic equations
[image: g1(x1,x2) = 0  ] and [image: g2(x1,x2) = 0  ]. In order to compute a sequence [image: (x10,x20)  ],
[image: (x11,x21)  ], [image: ...  ], [image: (x1n, x2n)  ], [image: (x1(n+1),x2(n+1))  ], [image: ...  ] that may converge to a root
of the above system of equations, we Taylor expand the two functions around
[image: (x1n,x2n)  ] 

   
[image:                                                    ∂g  (x  ,x  )
g1(x1(n+1),x2(n+1))  =  g1(x1n,x2n) + (x1(n+1) − x1n)--1--1n--2n-
                                                        ∂x1
                                          ∂g1(x1n,x2n)-
                       +   (x2(n+1) − x2n )   ∂x       + ...
                                                 2
g2(x1(n+1),x2(n+1))  =  g2(x1n,x2n) + (x1(n+1) − x1n)∂g2-(x1n,x2n)
                                                        ∂x1
                                          ∂g2(x1n,x2n)
                       +   (x2(n+1) − x2n )------------+ ....  (3.26)
                                              ∂x2
]


Defining [image: δx1 = (x1(n+1) − x1n)  ] and [image: δx2 =  (x2 (n+1) − x2n)  ] and setting
[image: g1(x1(n+1),x2(n+1)) ≈ 0  ], [image: g2(x1(n+1),x2(n+1)) ≈ 0  ], we obtain 
   
[image:     ∂g1       ∂g1
δx1 ----+ δx2 ----  =  − g1
    ∂x1       ∂x2
δx  ∂g2-+ δx  ∂g2-  =  − g .                 (3.27)
   1∂x1      2∂x2         2
]


This is a linear [image: 2 × 2  ] system of equations 
   
[image: A11δx1 + A12 δx2  =  b1

A21δx1 + A22 δx2  =  b2,                   (3.28)
]

                                                                          

                                                                          

where [image: Aij = ∂gi∕∂xj  ] and [image: bi = − gi  ], with [image: i,j = 1,2  ]. Solving for [image: δxi  ] we obtain

   
[image: x1(n+1) =   x1n + δx1
x2(n+1) =   x2n + δx2.                    (3.29)
]


The iterations stop when [image: δxi  ] become small enough.
   As an example, consider the equations with [image: g1(x) = 2x2 − 3xy +  y − 2  ],
[image: g2(x) = 3x + xy +  y − 1  ]. We have [image: A11 =  4x − 3y  ], [image: A12 =  1 − 3x  ], [image: A21 = 3 + y  ],
[image: A22 =  1 + x  ]. The program can be found in the file nr2.f90:
                                                                          

                                                                          


   
!===========================================================
 
!Newton Raphson of two functions of two variables
 
!===========================================================
 
program NewtonRaphson2
 
 implicit none
 
 real(8), parameter :: eps  = 1D-6
 
 integer, parameter :: NMAX = 1000
 
 real(8) :: A(2,2),b(2),dx(2)
 
 real(8) :: x,y, err
 
 integer :: i
 
 print *, ’Enter x0,y0: ’
 
 read  *, x,y
 
 err = 1.0D0
 
 print *,’iter           x          y             error    ’
 
 print *,’-------------------------------------------------’
 
 print *, 0,x,y,err
 
 do i=1,NMAX
 
  b(1)   = -(2.0D0*x*x-3.0D0*x*y+y-2.0D0) ! -g1(x,y)
 
  b(2)   = -(3.0D0*x + x*y + y - 1.0D0)   ! -g2(x,y)
 
! dg1/dx                    dg1/dy
 
  A(1,1) = 4.0D0*x-3.0D0*y; A(1,2) = 1.0D0-3.0D0*x
 
! dg2/dx                    dg2/dy
 
  A(2,1) = 3.0D0+y        ; A(2,2) = 1.0D0+x
 
  call solve2x2(A,B,dx)
 
  x = x + dx(1)
 
  y = y + dx(2)
 
  err = 0.5D0*SQRT(dx(1)**2+dx(2)**2)
 
  print *,i,x,y,err
 
  if(err .lt. eps) exit
 
 enddo
 
end program NewtonRaphson2
 
!===========================================================
 
subroutine solve2x2(A,b,dx)
 
 implicit none
 
 real(8) :: A(2,2),b(2),dx(2)
 
 real(8) :: num1,num2,det
                                                                          

                                                                          
 
 num1 = A(2,2)*b(1)-A(1,2)*b(2)
 
 num2 = A(1,1)*b(2)-A(2,1)*b(1)
 
 det  = A(1,1)*A(2,2)-A(1,2)*A(2,1)
 
 if(det .eq. 0.0D0) stop ’solve2x2: det=0’
 
 dx(1)= num1/det
 
 dx(2)= num2/det
 
end subroutine solve2x2


 In order to guess the region where the real roots of the systems lie, we make a
3-dimensional plot using gnuplot:
                                                                          

                                                                          


   
gnuplot> set isosamples 20
 
gnuplot> set hidden3d
 
gnuplot> splot 2*x**2-3*x*y+y-2,3*x+y*x+y-1,0


 We plot the functions [image: gi(x, y)  ] together with the plane [image: x = 0  ]. The intersection
of the three surfaces determine the roots we are looking for. Compiling and
running the program can be done by using the commands:
                                                                          

                                                                          


   
> gfortran nr2.f90 -o n
 
> echo 2.2 1.5 |./n
 
 Enter x0,y0:
 
 iter    x          y      error
 
 --------------------------------------
 
 0  2.20000000  1.50000000 1.0000
 
 1  0.76427104  0.26899383 0.9456
 
 2  0.73939531 -0.68668275 0.4780
 
 3  0.74744506 -0.71105605 1.2834E-002
 
 4  0.74735933 -0.71083147 1.2019E-004
 
 5  0.74735932 -0.71083145 1.2029E-008
 
> echo 0 1 |./n
 
.................
 
 5 -0.10899022  1.48928857 4.3461E-012
 
> echo -5 0|./n
 
 6 -6.13836909 -3.77845711 3.2165E-013


 The computation above leads to the roots [image: (0.74735932,  ] [image: − 0.71083145 )  ],
[image: (− 0.10899022,  ] [image: 1.48928857 )  ], [image: (− 6.13836909,  ] [image: − 3.77845711 )  ].

   The Newton-Raphson method for many variables becomes hard quite soon:
One needs to calculate the functions as well as their derivatives, which is
prohibitively expensive for many problems. It is also hard to determine the roots,
since the method converges satisfactorily only very close to the roots. We refer
the reader to  [8] for more information on how one can deal with these
problems.


   3.5    Calculation of the Bifurcation Points

In order to determine the bifurcation points for [image: r < rc  ] we will solve the algebraic
equations [image: x =  f(k)(x)  ] and [image: f(k)′(x) = − 1  ]. At these points, [image: k  ]-cycles
become unstable and [image: 2k  ]-cycles appear and are stable. This happens when
[image: r = r(cn)  ], where [image: k = 2n −2   ]. We will look for solutions [image: (x∗,r(cn))
  α  ] for
[image: α =  k + 1,k + 2,...,2k  ].

   We define the functions [image: F (x,r) = f(x ) = rx (1 − x)  ] and [image:   (k)         (k)
F   (x,r) = f   (x)  ]
as in equation  (3.6) . We will solve the algebraic equations: 

                                                                          

                                                                          
   
[image: g1(x,r)  =   x − F(k)(x,r) = 0
                (k)
g (x,r)  =   ∂F---(x,r)-+ 1 = 0.               (3.30)
 2               ∂x
]


According to the discussion of the previous section, in order to calculate the roots
of these equations we have to solve the linear system  (3.28) , where the
coefficients are 
   
[image:   b   =  − g (x,r) = − x + F (k)(x,r)
   1        1             (k)
  b   =  − g (x,r) = − ∂F---(x,-r)−  1
   2        2              ∂x
          ∂g (x,r)       ∂F (k)(x, r)
A11   =   --1------= 1 − -----------
            ∂x               ∂x
          ∂g1(x,r)-    ∂F-(k)(x,-r)
A12   =      ∂r    = −     ∂r
          ∂g (x,r)   ∂2F (k)(x, r)
A21   =   --2------= ------------
            ∂x           ∂x2
          ∂g2(x,r)-  ∂2F-(k)(x,-r)
A22   =      ∂r    =     ∂x∂r    .                (3.31)
]


The derivatives will be calculated approximately using finite differences

                                                                          

                                                                          
   
[image:    (k)            (k)             (k)
∂F---(x,-r)  ≈   F---(x-+-𝜖,r)-−-F---(x-−-𝜖,r)-
    ∂x                        2𝜖
∂F (k)(x, r)      F(k)(x, r + 𝜖) − F (k)(x,r − 𝜖)
-----------  ≈   ----------------------------,        (3.32)
    ∂r                        2𝜖
]


and similarly for the second derivatives 
   
[image:                   ∂F(k)(x+ 𝜖,r)   ∂F(k)(x− 𝜖,r)
∂2F-(k)(x,r-)     -----∂x-2--−------∂x-2--
    ∂x2       ≈             2-𝜖
                     {       2                                              }
                    1- F-(k)(x-+-𝜖,r)-−-F-(k)(x,r)   F-(k)(x,r)-−-F-(k)(x-−-𝜖,r)
              =     𝜖              𝜖             −             𝜖
                      {                                          }
              =     1- F (k)(x + 𝜖,r) − 2F (k)(x,r) + F (k)(x − 𝜖,r)
                    𝜖2
∂2F (k)(x,r )      ∂F(k)(x+-𝜖x,r)-− ∂F(k)(x−𝜖x,r)
------------  ≈  -----∂r------------∂r----
   ∂x ∂r             {      2𝜖x
                 -1--  F-(k)(x-+-𝜖x,r +-𝜖r)-−-F-(k)(x-+-𝜖x,r −-𝜖r)
              =  2 𝜖                     2𝜖
                   x                       r                    }
                        F-(k)(x-−-𝜖x,r +-𝜖r)-−-F-(k)(x-−-𝜖x,r −-𝜖r)
                      −                   2𝜖r
                       {
              =  --1--  F (k)(x + 𝜖x,r + 𝜖r) − F (k)(x + 𝜖x,r − 𝜖r)
                 4 𝜖x𝜖r                                         }
                      − F(k)(x − 𝜖x,r + 𝜖r) + F (k)(x − 𝜖x,r − 𝜖r)       (3.33)
]


We are now ready to write the program for the Newton-Raphson method like in
                                                                          

                                                                          
the previous section. The only difference is the approximate calculation of the
derivatives using the relations above and the calculation of the function
[image: F (k)(x,r)  ] by a routine that will compose the function [image: f(x)  ] [image: k  ]-times. The
program can be found in the file  bifurcationPoints.f90:
                                                                          

                                                                          
   
!===========================================================
 
!        bifurcationPoints.f
 
! Calculate bifurcation points of the discrete logistic map
 
! at period k by solving the condition
 
! g1(x,r) = x - F(k,x,r)   = 0
 
! g2(x,r) = dF(k,x,r)/dx+1 = 0
 
! determining when the Floquet multiplier becomes 1
 
! F(k,x,r) iterates F(x,r) = r*x*(x-1) k times
 
! The equations are solved by using a Newton-Raphson method
 
!===========================================================
 
program bifurcationPoints
 
 implicit none
 
 real(8),parameter :: tol=1.0D-10
 
 integer :: k,iter
 
 real(8) :: r0,x0
 
 real(8) :: A(2,2),B(2),dX(2)
 
 real(8) :: error
 
 real(8) :: F,dFdx,dFdr,d2Fdx2,d2Fdrdx
 
! ---- Input:
 
 print *,’# Enter k,r0,x0:’
 
 read  *,k,r0,x0
 
 print *,’# Period k= ’,k
 
 print *,’# r0= ’,r0,’ x0= ’,x0
 
! ---- Initialize
 
 error   = 1.0D0           !initial large value of error>tol
 
 iter    = 0
 
 do while(error .gt. tol)
 
! ---- Calculate jacobian matrix
 
  A(1,1) = 1.0D0-dFdx(k,x0,r0)
 
  A(1,2) = -dFdr     (k,x0,r0)
 
  A(2,1) = d2Fdx2    (k,x0,r0)
 
  A(2,2) = d2Fdrdx   (k,x0,r0)
 
  B(1)   = -x0 +    F(k,x0,r0)
 
  B(2)   = -dFdx     (k,x0,r0)-1.0D0
 
! ---- Solve a 2x2 linear system:
 
  call solve2x2(A,B,dX)
 
  x0     = x0 + dX(1)
                                                                          

                                                                          
 
  r0     = r0 + dX(2)
 
  error  = 0.5D0*sqrt(dX(1)**2+dX(2)**2)
 
  iter   = iter+1
 
  print*,iter,’x0= ’,x0,’ r0= ’,r0,’ err=’,error
 
 enddo !do while(error .gt. tol)
 
end program bifurcationPoints
 
!===========================================================
 
!Function F(k,x,r) and its derivatives
 
real(8) function F(k,x,r)
 
 implicit none
 
 real(8) :: x,r,x0
 
 integer k,i
 

 
 x0  = x
 
 do i=1,k
 
  x0 = r*x0*(1.0D0-x0)
 
 enddo
 
 F   = x0
 

 
end function F
 
! ----------------------------------
 
real(8) function dFdx(k,x,r)
 
 implicit none
 
 real(8) :: x,r,eps
 
 real(8) :: F
 
 integer k
 

 
 eps     = 1.0D-6*x
 
 dFdx    = (F(k,x+eps,r)-F(k,x-eps,r))/(2.0D0*eps)
 
end function dFdx
 
! ----------------------------------
 
real(8) function dFdr(k,x,r)
 
 implicit none
 
 real(8) :: x,r,eps
 
 real(8) :: F
 
 integer k
 

 
 eps     = 1.0D-6*r
 
 dFdr    = (F(k,x,r+eps)-F(k,x,r-eps))/(2.0D0*eps)
 
end function dFdr
 
! ----------------------------------
                                                                          

                                                                          
 
real(8) function d2Fdx2(k,x,r)
 
 implicit none
 
 real(8) :: x,r,eps
 
 real(8) :: F
 
 integer k
 

 
 eps     = 1.0D-6*x
 
 d2Fdx2  = (F(k,x+eps,r)-2.0D0*F(k,x,r)+F(k,x-eps,r))/(eps*eps)
 
end function d2Fdx2
 
! ----------------------------------
 
real(8) function d2Fdrdx(k,x,r)
 
 implicit none
 
 real(8) :: x,r,epsx,epsr
 
 real(8) :: F
 
 integer k
 

 
 epsx    = 1.0D-6*x
 
 epsr    = 1.0D-6*r
 
 d2Fdrdx = (F(k,x+epsx,r+epsr)-F(k,x+epsx,r-epsr) &
 
      -F(k,x-epsx,r+epsr)+F(k,x-epsx,r-epsr))     &
 
          /(4.0D0*epsx*epsr)
 
end function d2Fdrdx
 
!===========================================================
 
subroutine solve2x2(A,b,dx)
 
 implicit none
 
 real(8) :: A(2,2),b(2),dx(2)
 
 real(8) :: num1,num2,det
 
 num1 = A(2,2)*b(1)  - A(1,2)*b(2)
 
 num2 = A(1,1)*b(2)  - A(2,1)*b(1)
 
 det  = A(1,1)*A(2,2)- A(1,2)*A(2,1)
 
 if(det .eq. 0.0D0) stop ’solve2x2: det = 0’
 
 dx(1) = num1/det
 
 dx(2) = num2/det
 
end subroutine solve2x2


 Compiling and running the program can be done as follows:
                                                                          

                                                                          


   
> gfortran bifurcationPoints.f90 -o b
 
> echo 2 3.5 0.5 |./b
 
 # Enter k,r0,x0:
 
 # Period k=            2
 
 # r0= 3.5000000000000 x0= 0.50000000000
 
 1 x0= 0.4455758353187 r0= 3.38523275827 err= 6.35088E-002
 
 2 x0= 0.4396562547624 r0= 3.45290970406 err= 3.39676E-002
 
 3 x0= 0.4399593001407 r0= 3.44949859951 err= 1.71226E-003
 
 4 x0= 0.4399601690333 r0= 3.44948974267 err= 4.44967E-006
 
 5 x0= 0.4399601689937 r0= 3.44948974281 err= 7.22160E-011
 
> echo 2 3.5 0.85 | ./b
 
 .................
 
 4 x0= 0.8499377795512 r0= 3.44948974275 err= 1.85082E-011
 
> echo 4 3.5 0.5 |./b
 
 .................
 
 5 x0= 0.5235947861540 r0= 3.54409035953 err= 1.86318E-011
 
> echo 4 3.5 0.35 | ./b
 
 .................
 
 5 x0= 0.3632903374118 r0= 3.54409035955 err= 5.91653E-013


 The above listing shows the points of the 2-cycle and some of the points of the
4-cycle. It is also possible to compare the calculated value [image: r(3c)=  3.449490132  ]
with the expected one [image:           √ --
r(3c)=  1 +   6  ] [image: ≈ 3.449489742  ]. Improving the accuracy
of the calculation is left as an exercise for the reader who has to control the
systematic errors of the calculations and achieve better accuracy in the
computation of [image:  (4)
rc  ].




   3.6    Liapunov Exponents

We have seen that when [image: r > rc ≈ 3.56994567  ], the trajectories of the logistic map
become non periodic and exhibit chaotic behavior. Chaotic behavior mostly
means sensitivity of the evolution of a dynamical system to the choice of initial
conditions. More precisely, it means that two different trajectories constructed
from infinitesimally close initial conditions, diverge very fast from each other. This
                                                                          

                                                                          
implies that there is a set of initial conditions that densely cover subintervals of
[image: (0,1)  ] whose trajectories do not approach arbitrarily close to any cycle of finite
length.


   Assume that two trajectories have [image: x
  0   ], [image: ˜x
  0   ]  as initial points and
[image: Δx0  = x0 − ˜x0   ]. When the points [image: xn  ], [image: ˜xn  ] have a distance [image: Δxn  = ˜xn − xn  ]
that for small enough [image: n  ] increases exponentially with [image: n  ] (the “time”),
i.e.


   	
   
[image:             λn
Δxn  ∼ Δx0e   ,     λ > 0,
]
	(3.34)



the system is most likely exhibiting chaotic
behavior11 .
The exponent [image: λ  ] is called a Liapunov exponent. A useful equation for the
calculation of [image: λ  ] is


   	
   
[image:            n∑−1
λ = lim  1-   ln |f ′(x )|.
    n→ ∞ n           k
           k=0
]
	(3.35)



This relation can be easily proved by considering infinitesimal [image: 𝜖 ≡ |Δx0 | ] so that
[image: λ =  lim  lim  1ln |Δxn  |∕𝜖
     n→∞ 𝜖→0 n  ]. Then we obtain 

   
[image:   ˜x1  =   f(˜x0) = f (x0 + 𝜖) ≈ f (x0) + 𝜖f ′(x0)
                 ′
      =   x1 + 𝜖f (x0) ⇒
Δx1--     ˜x1-−-x1-    ′
  𝜖   =      𝜖    ≈  f (x0 )

                            ′                  ′      ′
  ˜x2  =   f(˜x1) = f (x1 + 𝜖f (x0)) ≈ f(x1 ) + (𝜖f (x0))f(x1 )
      =   x2 + 𝜖f′(x0)f′(x1 ) ⇒
Δx2       ˜x2 − x2
----- =   --------≈  f′(x0 )f′(x1)
  𝜖          𝜖

  ˜x3  =   f(˜x2) = f (x2 + 𝜖f ′(x0)f ′(x1)) ≈ f(x2) + (𝜖f′(x0 )f′(x1))f ′(x2)
      =   x  + 𝜖f′(x )f′(x  )f′(x ) ⇒
           3        0     1     2
Δx3-- =   ˜x3-−-x3-≈  f′(x0 )f′(x1)f ′(x2).                           (3.36)
  𝜖          𝜖
]


We can show by induction that [image: |Δxn |∕𝜖 ≈ f′(x0)f′(x1)f′(x2 )...f′(xn−1)  ] and by
taking the logarithm and the limits we can prove  (3.35) . 

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 3.7: A plot of [image: |Δx  |∕𝜖
    n  ] for the logistic map for [image: r = 3.6  ], [image: x = 0.2
 0  ]. Note
the convergence of the curves as [image: 𝜖 → 0  ] and the approximate exponential behavior in
this limit. The two lines are fits to the equation   (3.34)   and give [image: λ = 0.213(4)  ] and
[image: λ = 0.217(6)  ] respectively. 



                                                                          

                                                                          
   


   A first attempt to calculate the Liapunov exponents could be made by using
the definition  (3.34) . We modify the program logistic.f90 so that it calculates
two trajectories whose initial distance is [image: 𝜖 =  ] epsilon:
                                                                          

                                                                          


   
!===========================================================
 
!Discrete Logistic Map:
 
!Two trajectories with close initial conditions.
 
!===========================================================
 
program logistic_map
 
 implicit none
 
 integer :: NSTEPS,i
 
 real(8) :: r,x0,x1,x0t,x1t,epsilon
 

 
! ----- Input:
 
 print *,’# Enter NSTEPS, r, x0, epsilon:’
 
 read  *,NSTEPS,r,x0,epsilon
 
 print *,’# NSTEPS  = ’,NSTEPS
 
 print *,’# r       = ’,r
 
 print *,’# x0      = ’,x0
 
 print *,’# epsilon = ’,epsilon
 

 
 x0t = x0+epsilon
 
! ----- Initialize:
 
 open(unit=33,file=’lia.dat’)
 
 write(33,*) 1,x0,x0t,ABS(x0t-x0)/epsilon
 
! ----- Calculate:
 
 do i=2,NSTEPS
 
  x1  = r * x0  * (1.0D0-x0 )
 
  x1t = r * x0t * (1.0D0-x0t)
 
  write(33,*)i,x1,x1t,ABS(x1t-x1)/epsilon
 
  x0  = x1; x0t = x1t
 
 enddo
 
 close(33)
 
end program logistic_map


 After running the program, the quantity [image: |Δxn |∕𝜖  ] is found at the fourth column
of the file lia.dat. The curves of figure 3.7 can be constructed by using the
commands:
                                                                          

                                                                          


   
> gfortran liapunov1.f90 -o l
 
> gnuplot
 
gnuplot> set logscale y
 
gnuplot> plot \
 
  "<echo 200 3.6 0.2 1e-15 |./l;cat lia.dat" u 1:4 w l


 The last line plots the stdout of the command "echo 200 3.6 0.2 1e-15
|./l;cat lia.dat", i.e. the contents of the file lia.dat produced after running
our program using the parameters NSTEPS [image: = 200  ], r [image: = 3.6  ], x0 [image: = 0.2  ] and
epsilon [image:     − 15
= 10   ]. The gnuplot command set logscale y, puts the y axis
in a logarithmic scale. Therefore an exponential function is shown as a
straight line and this is what we see in figure 3.7: The points [image: |Δxn |∕𝜖  ]
tend to lie on a straight line as [image: 𝜖  ] decreases. The slopes of these lines are
equal to the Liapunov exponent [image: λ  ]. Deviations from the straight line
behavior indicates corrections and systematic errors, as we point out in figure
3.7. A different initial condition results in a slightly different value of
[image: λ  ], and the true value can be estimated as the average over several such
choices. We estimate the error of our computation from the standard
error of the mean. The reader should perform such a computation as an
exercise.

   One can perform a fit of the points [image: |Δxn |∕𝜖  ] to the exponential function in
the following way: Since [image: |Δxn |∕𝜖 ∼ C exp (λn )  ] [image: ⇒  ln (|Δxn |∕𝜖) = λn + c  ], we can
make a fit to a straight line instead. Using gnuplot, the relevant commands
are:
                                                                          

                                                                          


   
gnuplot> fit [5:53] a*x+b \
 
         "<echo 500 3.6 0.2 1e-15 |./l;cat lia.dat"\
 
         using 1:(log($4)) via a,b
 
gnuplot> replot exp(a*x+b)


The command shown above fits the data to the function a*x+b by taking the 1st
column and the logarithm of the 4th column (using 1:(log($4))) of the
stdout of the command that we used for creating the previous plot. We
choose data for which [image: 5 ≤  n ≤ 53  ] ([5:53]) and the fitting parameters
are a,b (via a,b). The second line, adds the fitted function to the plot.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 3.8:  Plot  of  the  sum  [image: (1∕n) ∑N+n −1ln|f′(x )|
       k=N         k ] as  a  function  of  [image: n  ]
for   the   logistic   map   with   [image: r = 3.8  ],   [image: N = 2000  ]   for   different   initial   conditions
[image: x0 = 0.20,0.35,0.50,0.75,0.90  ]. The different curves converge in the limit [image: n → ∞ ] to
[image: λ = 0.4325(10)  ]. 



                                                                          

                                                                          
   


   Now we are going to use equation  (3.35)  for calculating [image: λ  ]. This equation is
approximately correct when (a) we have already reached the steady state and (b)
in the large [image: n  ] limit. For this reason we should study if we obtain a satisfactory
convergence when we (a) “throw away” a number of NTRANS steps, (b) calculate
the sum  (3.35)  for increasing NSTEPS= [image: n  ] (c) calculate the sum  (3.35)  for
many values of the initial point [image: x0   ]. This has to be carefully repeated
for all values of [image: r  ] since each factor will contribute differently to the
quality of the convergence: In regions that manifest chaotic behavior (large
[image: λ  ]) convergence will be slower. The program can be found in the file
liapunov2.f90:
                                                                          

                                                                          


   
!===========================================================
 
!Discrete Logistic Map:
 
!Liapunov exponent from sum_i ln|f’(x_i)|
 
! NTRANS: number of discarded iteration in order to discard
 
!         transient behavior
 
! NSTEPS: number of terms in the sum
 
!===========================================================
 
program logistic_map
 
 implicit none
 
 integer :: NTRANS,NSTEPS,i
 
 real(8) :: r,x0,x1,sum
 

 
! ----- Input:
 
 print *,’# Enter NTRANS,NSTEPS, r, x0:’
 
 read  *,NTRANS,NSTEPS,r,x0
 
 print *,’# NTRANS  = ’,NTRANS
 
 print *,’# NSTEPS  = ’,NSTEPS
 
 print *,’# r       = ’,r
 
 print *,’# x0      = ’,x0
 

 
 do i=1,NTRANS
 
  x1  = r * x0  * (1.0D0-x0 )
 
  x0  = x1
 
 enddo
 
 sum = log(ABS(r*(1.0D0-2.0D0*x0)))
 
! ----- Initialize:
 
 open(unit=33,file=’lia.dat’)
 
 write(33,*) 1,x0,sum
 
! ----- Calculate:
 
 do i=2,NSTEPS
 
  x1  = r * x0  * (1.0D0-x0 )
 
  sum = sum + log(ABS(r*(1.0D0-2.0D0*x1)))
 
  write(33,*)i,x1,sum/i
 
  x0  = x1
 
 enddo
 
 close(33)
                                                                          

                                                                          
 
end program logistic_map
 



 After NTRANS steps, the program calculates NSTEPS times the sum of the terms
[image: ln |f′(xk )| = ln|r(1 − 2xk)| ]. At each step the sum divided by the number
of steps i is printed to the file lia.dat. Figure 3.6 shows the results
for [image: r = 3.8  ]. This is a point where the system exhibits strong chaotic
behavior and convergence is achieved after we compute a large number
of steps. Using NTRANS [image: = 2000  ] and NSTEPS [image: ≈ 70000  ] the achieved
accuracy is about [image: 0.2  ]% with [image: λ =  0.4325 ± 0.0010 ≡ 0.4325(10)  ]. The
main contribution to the error comes from the different paths followed by
each initial point chosen. The plot can be constructed with the gnuplot
commands:
                                                                          

                                                                          


   
> gfortran liapunov2.f90 -o l
 
> gnuplot
 
gnuplot> plot \
 
 "<echo 2000 70000 3.8 0.20 |./l;cat lia.dat" u 1:3 w l,\
 
 "<echo 2000 70000 3.8 0.35 |./l;cat lia.dat" u 1:3 w l,\
 
 "<echo 2000 70000 3.8 0.50 |./l;cat lia.dat" u 1:3 w l,\
 
 "<echo 2000 70000 3.8 0.75 |./l;cat lia.dat" u 1:3 w l,\
 
 "<echo 2000 70000 3.8 0.90 |./l;cat lia.dat" u 1:3 w l


 The plot command runs the program using the parameters NTRANS [image: = 2000  ],
NSTEPS [image: = 70000  ], r [image: = 3.8  ] and x0 [image: =  0.20,0.35,0.50,0.75,0.90  ] and plots the
results from the contents of the file lia.dat.

   In order to determine the regions of chaotic behavior we have to study the
dependence of the Liapunov exponent [image: λ  ] on the value of [image: r  ]. Using our experience
coming from the careful computation of [image: λ  ] before, we will run the program for
several values of [image: r  ] using the parameters NTRANS [image: = 2000  ], NSTEPS [image: = 60000  ]
from the initial point x0 [image: =  0.2  ]. This calculation gives accuracy of the order of
[image: 1  ]%. If we wish to measure [image: λ  ] carefully and estimate the error of the results, we
have to follow the steps described in figures 3.7 and 3.8. The program can be
found in the file liapunov3.f90 and it is a simple modification of the
previous program so that it can perform the calculation for many values of
[image: r  ].
                                                                          

                                                                          


   
!===========================================================
 
!Discrete Logistic Map:
 
!Liapunov exponent from sum_i ln|f’(x_i)|
 
!Calculation for r in [rmin,rmax] with RSTEPS steps
 
! RSTEPS: values or r studied: r=rmin+(rmax-rmin)/RSTEPS
 
! NTRANS: number of discarded iteration in order to discard
 
!         transient behavior
 
! NSTEPS: number of terms in the sum
 
! xstart: value of initial x0 for every r
 
!===========================================================
 
program logistic_map
 
 implicit none
 
 real(8),parameter :: rmin   = 2.5D0
 
 real(8),parameter :: rmax   = 4.0D0
 
 real(8),parameter :: xstart = 0.2D0
 
 integer,parameter :: RSTEPS = 1000
 
 integer,parameter :: NSTEPS = 60000
 
 integer,parameter :: NTRANS = 2000
 
 integer :: i,ir
 
 real(8) :: r,x0,x1,sum,dr
 

 
 open(unit=33,file=’lia.dat’)
 
 dr = (rmax-rmin)/(RSTEPS-1)
 
 do ir=0,RSTEPS-1
 
  r = rmin+ir*dr
 
  x0= xstart
 
  do i=1,NTRANS
 
   x1  = r * x0  * (1.0D0-x0 )
 
   x0  = x1
 
  enddo
 
  sum = log(ABS(r*(1.0D0-2.0D0*x0)))
 
! ----- Calculate:
 
  do i=2,NSTEPS
 
   x1  = r * x0  * (1.0D0-x0 )
 
   sum = sum + log(ABS(r*(1.0D0-2.0D0*x1)))
 
   x0  = x1
                                                                          

                                                                          
 
  enddo
 
  write(33,*)r,sum/NSTEPS
 
 enddo !do ir=0,RSTEPS-1
 
 close(33)
 
end program logistic_map


 The program can be compiled and run using the commands:
                                                                          

                                                                          


   
> gfortran liapunov3.f90 -o l
 
> ./l &


 The character & makes the program ./l to run in the background. This is
recommended for programs that run for a long time, so that the shell returns the
prompt to the user and the program continues to run even after the shell is
terminated. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 3.9: The Liapunov exponent [image: λ  ] of the logistic map calculated via equation
(3.35) . Note the chaotic behavior that manifests for the values of [image: r  ] where [image: λ > 0  ] and
the windows of stable [image: k  ]-cycles where [image: λ < 0  ]. Compare this plot with the bifurcation
diagram of figure 3.4. At the points where [image: λ = 0  ] we have onset of chaos (or “edge of
chaos”) with manifestation of weak chaos (i.e. [image: |Δxn| ∼ |Δx0|nω  ]). At these points we have
transitions from stable [image: k  ]-cycles to strong chaos. We observe the onset of chaos for the
first time when [image: r = rc ≈ 3.5699  ], at which point [image: λ = 0  ] (for smaller [image: r  ] the plot seems to
touch the [image: λ = 0  ] line, but in fact [image: λ  ] takes negative values with [image: |λ| ] very small). 



                                                                          

                                                                          
   


   The data are saved in the file lia.dat and we can make the plot shown in
figure 3.7 using gnuplot:
                                                                          

                                                                          


   
gnuplot> plot  "lia.dat"  with lines notitle ,0 notitle


 Now we can compare figure 3.9 with the bifurcation diagram shown in figure 3.4.
The intervals with [image: λ < 0  ] correspond to stable [image: k  ]-cycles. The intervals where
[image: λ >  0  ] correspond to manifestation of strong chaos. These intervals are separated
by points with [image: λ =  0  ] where the system exhibits weak chaos. This means
that neighboring trajectories diverge from each other with a power law
[image: |Δxn | ∼ |Δx0 |nω  ] instead of an exponential, where [image: ω = 1∕(1 − q)  ] is
a positive exponent that needs to be determined. The parameter [image: q  ] is
the one usually used in the literature. Strong chaos is obtained in the
[image: q →  1  ] limit. For larger [image: r  ], switching between chaotic and stable periodic
trajectories is observed each time [image: λ  ] changes sign. The critical values
of [image: r  ] can be computed with relatively high accuracy by restricting the
calculation to a small enough neighborhood of the critical point. You can do
this using the program listed above by setting the parameters rmin and
rmax.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 3.10: The distribution functions [image: p(x)  ] of [image: x  ] of the logistic map for [image: r = 3.59  ]
(left) and [image: 3.8  ] (right). The chaotic behavior appears to be weaker for [image: r = 3.59  ], and this
is reflected on the value of the entropy. One sees that there exist intervals of [image: x  ] with
[image: p(x) = 0  ] which become smaller and vanish as [image: r  ] gets close to 4. This distribution is very
hard to be distinguished from a truly random distribution. 



                                                                          

                                                                          
   


   We can also study the chaotic properties of the trajectories of the logistic map
by computing the distribution [image: p (x )  ] of the values of [image: x  ] in the interval [image: (0,1)  ].
After the transitional period, the distribution [image: p (x )  ] for the [image: k  ] cycles will have
support only at the points of the [image: k  ] cycles, whereas for the chaotic regimes it will
have support on subintervals of [image: (0,1)  ]. The distribution function [image: p(x)  ] is
independent for most of the initial points of the trajectories. If one obtains a large
number of points from many trajectories of the logistic map, it will be
practically impossible to understand that these are produced by a deterministic
rule. For this reason, chaotic systems can be used for the production of
pseudorandom numbers, as we will see in chapter 11. By measuring the
entropy, which is a measure of disorder in a system, we can quantify the
“randomness” of the distribution. As we will see in chapter 12, it is given by the
equation


   	
   
[image:        ∑
S = −     pk ln pk,
        k
]
	(3.37)



where [image: p
 k  ] is the probability of observing the state [image: k  ]. In our case, we can make
an approximate calculation of [image: S  ] by dividing the interval [image: (0,1)  ] to [image: N  ]
subintervals of width [image: Δx  ]. For given [image: r  ] we obtain a large number [image: M  ] of values
[image: xn  ] of the logistic map and we compute the histogram [image: hk  ] of their distribution in
the intervals [image: (xk,xk + Δx )  ]. The probability density is obtained from the limit
of [image: p  = h ∕(M  Δx )
 k    k  ] as [image: M  ] becomes large and [image: Δx  ] small (large [image: N  ]).
Indeed, [image: ∑N
  k=1pk Δx =  1  ] converges to [image: ∫ 1
 0 p(x)dx =  1  ]. We will define
[image:        ∑
S =  −   Nk=1 pk lnpk Δx  ].


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 3.11: The distribution [image: p(x)  ] of [image: x  ] for the logistic map for [image: r = 4  ]. We observe
strong chaotic behavior, [image: p(x)  ] has support over the whole interval [image: (0,1)  ] and the entropy
is large. The solid line is the analytic form of the distribution [image: p(x) = π−1x−1∕2(1− x)−1∕2  ]
which is known for [image: r = 4  ]  [30]. This is the beta distribution for [image: a = 1∕2  ], [image: b = 1∕2  ]. 



                                                                          

                                                                          
   


   The program listed below calculates [image: pk  ] for chosen values of [image: r  ], and then the
entropy [image: S  ] is calculated using  (3.37) . It is a simple modification of the
program in liapunov3.f90 where we add the parameter NHIST counting the
number of intervals [image: N  ] for the histograms. The probability density is
calculated in the array p(NHIST). The program can be found in the file
entropy.f90:
                                                                          

                                                                          


   
!===========================================================
 
!Discrete Logistic Map:
 
!Entropy calculation from S=-sum_i p_i ln p_i
 
!Calculation for r in [rmin,rmax] with RSTEPS steps
 
! RSTEPS: values or r studied: r=rmin+(rmax-rmin)/RSTEPS
 
! NHIST : number of histogram bins for calculation of p_i
 
! NSTEPS: number of values of x in the histograms
 
! NTRANS: number of discarted iteration in order to discard
 
!         transient behavior
 
! xstart: value of initial x0 for every r
 
!===========================================================
 
program logistic_map
 
 implicit none
 
 real(8),parameter :: rmin   = 2.5D0
 
 real(8),parameter :: rmax   = 4.0D0
 
 real(8),parameter :: xstart = 0.2D0
 
 integer,parameter :: RSTEPS = 1000
 
 integer,parameter :: NHIST  = 10000
 
 integer,parameter :: NTRANS = 2000
 
 integer,parameter :: NSTEPS = 5000000
 
 real(8),parameter :: xmin=0.0D0,xmax=1.0D0
 
 integer :: i,ir,isum,n
 
 real(8) :: r,x0,x1,sum,dr,dx
 
 real(8) :: p(NHIST),S
 

 
 open(unit=33,file=’entropy.dat’)
 
 p  = 0.0D0
 
 dr = (rmax-rmin)/(RSTEPS-1)
 
 dx = (xmax-xmin)/(NHIST -1)
 
 do ir=0,RSTEPS-1
 
  r = rmin+ir*dr
 
  x0= xstart
 
  do i=1,NTRANS
 
   x1  = r * x0  * (1.0D0-x0 )
 
   x0  = x1
 
  enddo
                                                                          

                                                                          
 
!make histogram:
 
  n=INT(x0/dx)+1;p(n)=p(n)+1.0D0
 
  do i=2,NSTEPS
 
   x1  = r * x0  * (1.0D0-x0 )
 
   n   = INT(x1/dx)+1
 
   p(n)=p(n)+1.0D0
 
   x0  = x1
 
  enddo
 
!p(k) is now histogram of x-values.
 
!Normalize so that sum_k p(k)*dx=1
 
!to get probability distribution:
 
  p    = p/NSTEPS/dx
 
!sum all non zero terms: p(n)*log(p(n))*dx
 
  S    = -SUM(p*log(p),MASK=p.gt.0.0D0)*dx
 
  write(33,*)r,S
 
 enddo !do ir=0,RSTEPS-1
 
 close(33)
 
!print the last probability distribution:
 
 open(unit=34,file=’entropy_hist.dat’)
 
 do n=1,NHIST
 
  x0 = xmin +(n-1)*dx + 0.5D0*dx
 
  write(34,*) r,x0,p(n)
 
 enddo
 
 close(34)
 
end program logistic_map





   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 3.12: The entropy [image: S = − ∑  p lnp Δx
        k k   k  ] for the logistic map as a function of
[image: r  ]. The vertical line is [image: rc ≈ 3.56994567  ] which marks the beginning of chaos and the
horizontal is the corresponding entropy. The entropy is low for small values of [image: r  ], where
we have the stable [image: 2n  ] cycles, and large in the chaotic regimes. [image: S  ] drops suddenly when
we pass to a (temporary) periodic behavior interval. We clearly observe the 3-cycle for
[image: r = 1+ √8-≈ 3.8284  ] and the subsequent bifurcations that we observed in the bifurcation
diagram (figure 3.4) and the Liapunov exponent diagram (figure 3.9). 



                                                                          

                                                                          
   


   For the calculation of the distribution functions and the entropy we have to
choose the parameters which control the systematic error. The parameter NTRANS
should be large enough so that the transitional behavior will not contaminate our
results. Our measurements must be checked for being independent of its value.
The same should be done for the initial point xstart. The parameter
NHIST controls the partitioning of the interval [image: (0,1)  ] and the width [image: Δx  ],
so it should be large enough. The parameter NSTEPS is the number of
“measurements” for each value of [image: r  ] and it should be large enough in
order to reduce the “noise” in [image: p
  k  ]. It is obvious that NSTEPS should be
larger when [image: Δx  ] becomes smaller. Appropriate choices lead to the plots
shown in figures 3.10 and 3.11 for [image: r = 3.59  ], [image: 3.58  ] and [image: 4  ]. We see that
stronger chaotic behavior means a wider distribution of the values of
[image: x  ].

   The entropy is shown in figure 3.12. The stable periodic trajectories lead to
small entropy, whereas the chaotic ones lead to large entropy. There is a sudden
increase in the value of the entropy at the beginning of chaos at [image: r = rc  ], which
increases even further as the chaotic behavior becomes stronger. During the
intermissions of the chaotic behavior there are sudden drops in the value of the
entropy. It is quite instructive to compare the entropy diagrams with the
corresponding bifurcation diagrams (see figure 3.4) and the Liapunov
exponent diagrams (see figure 3.9). The entropy is increasing until [image: r  ]
reaches its maximum value 4, but this is not done smoothly. By magnifying
the corresponding areas in the plot, we can see an infinite number of
sudden drops in the entropy in intervals of [image: r  ] that become more and more
narrow.
                                                                          

                                                                          


   3.7    Problems

Several of the programs that you need to write for solving the problems of this
chapter can be found in the Problems directory of the accompanying software of
this chapter.


      

      	Confirm that the trajectories of the logistic map for [image: r < 1  ] are falling off
      exponentially for large enough [image: n  ].
           
           	Choose [image: r = 0.5  ] and plot the trajectories for [image: x0 =  0.1 − 0.9  ] with
           step [image: 0.1  ] for [image: n =  1,...,1000  ]. Put the [image: y  ] axis in a logarithmic
           scale. From the resulting curves discuss whether you obtain an
           exponential falloff.
           

           	Fit the points [image: xn  ] for [image: n > 20  ] to the function [image: ce−ax  ] and determine
           the fitting parameters [image: a  ] and [image: c  ]. How do these parameters depend on
           the initial point [image: x
 0   ]? You can use the following gnuplot commands for
           your calculation:
                                                                          

                                                                          
           
           gnuplot> !gfortran logistic.f90 -o l
            
gnuplot> a=0.7;c=0.4;
            
gnuplot> fit [10:] c*exp(-a*x) \
            
 "<echo 1000 0.5 0.5|./l;cat log.dat" via a,c
            
gnuplot> plot c*exp(-a*x),\
            
 "<echo 1000 0.5 0.5|./l;cat log.dat" w l


            As you can see, we set NSTEPS = 1000, r = 0.5, x0 = 0.5. By
           setting the limits [10:] to the fit command, the fit includes
           only the points [image: xn ≥  10  ], therefore avoiding the transitional
           period and the deviation from the exponential falloff for small
           [image: n  ].
           


           	Repeat for [image: r = 0.3 − 0.9  ] with step [image: 0.1  ] and for [image: r = 0.99,0.999  ]. As
           you will be approaching [image: r = 1  ], you will need to discard more
           points from near the origin. You might also need to increase
           NSTEPS. You should always check graphically whether the fitted
           exponential function is a good fit to the points [image: xn  ] for large
           [image: n  ]. Construct a table for the values of [image: a  ] as a function of
           [image: r  ].


      The solutions of the equation  (3.3)  is [image: e(r−1)x  ]. How is this related to the
      values that you computed in your table?
      


      	Consider the logistic map for [image: r = 2  ]. Choose NSTEPS=100 and calculate the
      corresponding trajectories for x0=0.2, 0.3, 0.5, 0.7, 0.9. Plot
      them on the same graph. Calculate the fixed point [image: x ∗2   ] and compare
      your result to the known value [image: 1 − 1∕r  ]. Repeat for x0= [image: 10 −α  ] for
      [image: α = − 1,− 2,− 5,− 10,− 20,− 25  ]. What do you conclude about the point
      [image:  ∗
x1 = 0  ]?
      

      	Consider the logistic map for [image: r = 2.9,2.99,2.999  ]. Calculate the stable
      point [image: x∗
 2   ] and compare your result to the known value [image: 1 − 1∕r  ].
      How large should NSTEPS be chosen each time? You may choose
      x0=0.3.
                                                                          

                                                                          
      

      	Consider the logistic map for [image: r = 3.2  ]. Take x0=0.3, 0.5, 0.9 and
      NSTEPS=300 and plot the resulting trajectories. Calculate the fixed points
      [image: x∗3   ] and [image: x∗4   ] by using the command tail log.dat. Increase NSTEPS and
      repeat so that you make sure that the trajectory has converged to the
      2-cycle. Compare their values to the ones given by equation  (3.18) . Make
      the following plots:
                                                                          

                                                                          
      
      gnuplot> plot   \
       
 "<echo 300 3.2 0.3|./l;awk ’NR%2==0’ log.dat"  w l
       
gnuplot> replot \
       
 "<echo 300 3.2 0.3|./l;awk ’NR%2==1’ log.dat"  w l


       What do you observe?
      


      	Repeat the previous problem for [image: r = 3.4494  ]. How big should NSTEPS be
      chosen so that you obtain [image: x∗
 3   ] and [image: x ∗
  4   ] with an accuracy of 6 significant
      digits?
      

      	Repeat the previous problem for [image: r = 3.5  ] and [image: 3.55  ]. Choose NSTEPS =
      1000, x0 = 0.5. Show that the trajectories approach a 4-cycle
      and an 8-cycle respectively. Calculate the fixed points [image: x ∗
  5   ]-[image: x∗
 8   ] and
      [image: x∗
 9   ]-[image: x ∗
  16   ].
      

      	Plot the functions [image: f (x )  ], [image:   (2)
f   (x)  ], [image:  (4)
f  (x)  ], [image: x  ] for given [image: r  ] on the same
      graph. Use the commands:
                                                                          

                                                                          
      
      gnuplot> set samples 1000
       
gnuplot> f(x) = r*x*(1-x)
       
gnuplot> r=1;plot [0:1] x,f(x),f(f(x)),f(f(f(f(x))))


       The command r=1 sets the value of [image: r  ]. Take [image: r = 2.5  ], [image: 3  ], [image: 3.2  ], [image:    √ --
1 +  6  ],
      [image: 3.5  ]. Determine the fixed points and the [image: k  ]-cycles from the intersections of
      the plots with the diagonal [image: y = x  ].
      


      	Construct the cobweb plots of figures 3.2 and 3.4 for [image: r = 2.8,3.3  ] and [image: 3.5  ].
      Repeat by dropping from the plot an increasing number of initial points, so
      that in the end only the [image: k  ]-cycles will remain. Do the same for
      [image: r = 3.55  ].
      

      	Construct the bifurcation diagrams shown in figure 3.4.
      

      	Construct the bifurcation diagram of the logistic map for [image: 3.840 < r < 3.851  ]
      and for [image: 0.458 <  x < 0.523  ]. Compute the first four bifurcation points with
      an accuracy of 5 significant digits by magnifying the appropriate parts of the
      plots. Take NTRANS=15000.
      

      	Construct the bifurcation diagram of the logistic map for [image: 2.9 < r < 3.57  ].
      Compute graphically the bifurcation points [image:  (n)
rc  ] for [image: n = 2,  ] [image: 3,  ] [image: 4,  ] [image: 5,  ]
      [image: 6,  ] [image: 7,  ] [image: 8  ]. Make sure that your results are stable against variations of the
      parameters NTRANS, NSTEPS as well as from the choice of branching
      point. From the known values of [image: r(nc)  ] for [image: n = 2,3  ], and from the
      dependence of your results on the choices of NTRANS, NSTEPS, estimate the
      accuracy achieved by this graphical method. Compute the ratios
      [image:   (n)    (n−1)   (n+1)    (n)
(rc  − rc   )∕(rc    −  rc )  ] and compare your results to equation  (3.20)
      .
      

      	Choose the values of [image: ρ  ] in equation  (3.24)  so that you obtain only one
      energy level. Compute the resulting value of the energy. When do we have
      three energy levels?
                                                                          

                                                                          
      

      	 Consider the polynomial [image:         3     2
g(x) = x −  2x −  11x + 12  ]. Find the
      roots obtained by the Newton-Raphson method when you choose
      [image: x0 = 2.35287527,  ] [image: 2.35284172,  ] [image: 2.35283735,  ] [image: 2.352836327,  ] [image: 2.352836323  ].
      What do you conclude concerning the basins of attraction of each root of the
      polynomial? Make a plot of the polynomial in a neighborhood of its roots
      and try other initial points that will converge to each one of the roots.
      
      

      	Use the Newton-Raphson method in order to compute the 4-cycle
      [image: x∗5,...,x∗8   ] of the logistic map. Use appropriate areas of the bifurcation
      diagram so that you can choose the initial points correctly. Check that
      your result for [image: r(4)
 c  ] is the same for all [image: x∗
 α  ]. Tune the parameters
      chosen in your calculation on order to improve the accuracy of your
      measurements.
      

      	Repeat the previous problem for the 8-cycle [image:  ∗      ∗
x9,...,x16   ] and [image:  (5)
rc  ].
      

      	Repeat the previous problem for the 16-cycle [image: x∗ ,...,x∗
 17      32   ] and [image: r(c6)  ].
      

      	 Calculate the critical points [image: r(nc)  ] for [image: n = 3,...,17  ] of the logistic map
      using the Newton-Raphson method. In order to achieve that, you should
      determine the bifurcation points graphically in the bifurcation diagram first
      and then choose the initial points in the Newton-Raphson method
      appropriately. The program in bifurcationPoints.f90 should read
      the parameters eps, epsx, epsr from the stdin so that they can
      be tuned for increasing [image: n  ]. If these parameters are too small the
      convergence will be unstable and if they are too large you will have large
      systematic errors. Using this method, try to reproduce table 3.1
      
      






                                                                          

                                                                          
 	
	
	
	

	[image: n  ]	[image:  (n)
rc  ]              	[image: n  ]	[image:  (n)
rc  ]                    

	
	
	
	

	  2	3.0000000000  	 10	3.56994317604     
	 3	3.4494897429 	 11	3.569945137342

	  4	3.544090360   	 12	3.5699455573912  
	 5	3.564407266 	 13	3.569945647353

	  6	3.5687594195  	 14	3.5699456666199  

	  7	3.5696916098  	 15	3.5699456707464  

	  8	3.56989125938	 16	3.56994567163008

	  9	3.56993401837	 17	3.5699456718193  

	
	
	
	

	           [image: r =  3.56994567 ...
 c  ]


	
	
	
	

	   




      
 Table 3.1: The values of [image: r(nc)  ] for the logistic map calculated for problem 17.
      [image:  (∞ )
rc  ≡ rc  ] is taken from the bibliography. 

      


      

      

      	Calculate the ratios [image: Δr (n)∕Δr (n+1)   ] of equation  (3.20)  using the results of
      table 3.1. Calculate Feigenbaum’s constant and comment on the accuracy
      achieved by your calculation.
      

      	Estimate Feigenbaum’s constant [image: δ  ] and the critical value [image: rc  ] by
      assuming that for large enough [image: n  ], [image:  (n)
rc  ≈  rc − C δ−n  ]. This behavior
      is a result of equation  (3.20) . Fit the results of table 3.1 to this
      function and calculate [image: δ  ] and [image: r
 c  ]. This hypothesis is confirmed in
      figure 3.13 where we can observe the exponential convergence of
      [image:  (n)
rc  ] to [image: rc  ]. Construct the same plot using the parameters of your
      calculation.
Hint: You can use the following gnuplot commands:
                                                                          

                                                                          
      
      gnuplot> nmin=2;nmax=17
       
gnuplot> r(x)= rc-c*d**(-x)
       
gnuplot> fit [nmin:nmax] r(x)  "rcrit" u 1:2 via rc,c,d
       
gnuplot> plot "rcrit", r(x)
       
gnuplot> print rc,d


       The file rcrit contains the values of table 3.1. You should vary the
      parameters nmin, nmax and repeat until you obtain a stable fit.
      






[image: pict]

 
Figure 3.13:  Test  of  the  relation  [image: r(cn)≈ rc − C δ−n  ]  discussed  in  problem  17.  The
parameters  used  in  the  plot  are  approximately  [image: r = 3.5699457
 c  ],  [image: δ = 4.669196  ]  and
[image: C = 12.292  ]. 



      


      

      	Use the Newton-Raphson method to calculate the first three bifurcation
      points after the appearance of the 3-cycle for [image:         √--
r = 1 +  8  ]. Choose one
      bifurcation point of the 3-cycle, one of the 6-cycle and one of the 12-cycle
      and magnify the bifurcation diagram in their neighborhood.
      

      	Consider the map describing the evolution of a population
      	
      
      [image:                    r(1−xn)
xn+1 = p(xn ) = xne      .
      ]
	(3.38)


      
           

           	Plot the functions [image: x  ], [image: p(x )  ], [image: p(2)(x)  ], [image: p(4)(x)  ] for [image: r = 1.8,2  ],
           [image: 2.6  ], [image: 2.67  ], [image: 2.689  ] for [image: 0 < x < 8  ]. For which values of [image: r  ] do you
           expect to obtain stable [image: k  ]-cycles?
           

           	For the same values of [image: r  ] plot the trajectories with initial points
           [image: x0 = 0.2,0.5,0.7  ]. For each [image: r  ] make a separate plot.
           

           	Use the Newton-Raphson method in order to determine the points
           [image:  (n)
rc  ] for [image: n = 3,4,5  ] as well as the first two bifurcation points of
           the 3-cycle.
           

           	Construct the bifurcation diagram for [image: 1.8 < r < 4  ]. Determine
           the point marking the onset of chaos as well as the point where
           the 3-cycle starts. Magnify the diagram around a branch that you
           will choose.
           

           	Estimate  Feigenbaum’s  constant  [image: δ  ] as  in  problem  17.  Is  your
           result compatible with the expectation of universality for the value
           of [image: δ  ]? Is the value of [image: rc  ] the same as that of the logistic map?


      

      	Consider the sine map:
      	
      
      [image: xn+1 = s(xn) = r sin(πxn ).
      ]
	(3.39)


      
           

           	Plot  the  functions  [image: x  ],  [image: s(x)  ],  [image: s(2)(x )  ],  [image: s(4)(x)  ],  [image: s(8)(x)  ]  for
           [image: r = 0.65  ], [image: 0.75  ], [image: 0.84  ], [image: 0.86  ], [image: 0.88  ]. Which values of [image: r  ] are
           expected to lead to stable [image: k  ]-cycles?
           

           	For the same values of [image: r  ], plot the trajectories with initial points
           [image: x0 = 0.2,0.5,0.7  ]. Make one plot for each [image: r  ].
           

           	Use the Newton-Raphson method in order to determine the points
           [image:  (n)
rc  ] for [image: n = 3,4,5  ] as well as the first two bifurcation points of
           the 3-cycle.
           

           	Construct the bifurcation diagram for [image: 0.6 <  r < 1  ]. Within which
           limits do the values of [image: x  ] lie in? Repeat for [image: 0.6 < r < 2  ]. What
           do you observe? Determine the point marking the onset of chaos
           as well as the point where the 3-cycle starts. Magnify the diagram
           around a branch that you will choose.


      

      	Consider the map:
      	
      
      [image:               2
xn+1 = 1 − rx n.
      ]
	(3.40)


                                                                          

                                                                          
      
           

           	Construct the bifurcation diagram for [image: 0 < r < 2  ]. Within which
           limits do the values of [image: x  ] lie in? Determine the point marking
           the onset of chaos as well as the point where the 3-cycle starts.
           Magnify the diagram around a branch that you will choose.
           

           	Use the Newton-Raphson method in order to determine the points
           [image:  (n)
rc  ] for [image: n = 3,4,5  ] as well as the first two bifurcation points of
           the 3-cycle.


      

      	Consider the tent map: 
      	
      
      [image:                            {
                              rxn        0 ≤ xn ≤ 12
xn+1 = rmin {xn, 1 − xn} =    r(1 − xn)  1 < xn ≤ 1  .
                                         2
      ]
	(3.41)


      
      Construct the bifurcation diagram for [image: 0 < r < 2  ]. Within which limits do
      the values of [image: x  ] lie in? On the same graph, plot the functions [image: r∕2  ],
      [image: r − r2∕2  ].
      
Magnify the diagram in the area [image: 1.407 < r < 1.416  ] and [image: 0.580 < x < 0.588  ].
      At which point do the two disconnected intervals within which [image: xn  ]
      take their values merge into one? Magnify the areas [image: 1.0 < r < 1.1  ],
      [image: 0.4998 < x < 0.5004  ] and [image: 1.00 < r < 1.03  ], [image: 0.4999998 <  x < 0.5000003  ]
      and determine the merging points of two disconnected intervals within
      which [image: xn  ] take their values.
      


      	Consider the Gauss map (or mouse map):
                                                                          

                                                                          
      	
      
      [image: x    =  e−rx2n + q.
 n+1
      ]
	(3.42)


      
      Construct the bifurcation diagram for [image: − 1 < q <  1  ] and [image: r = 4.5,  ] [image: 4.9,  ]
      [image: 7.5  ]. Make your program to take as the initial point of the new
      trajectory to be the last one of the previous trajectory and choose
      [image: x0 = 0  ] for [image: q = − 1  ]. Repeat for [image: x0 = 0.7,0.5,− 0.7  ]. What do you
      observe? Note that as [image: q  ] is increased, we obtain bifurcations and
      “anti-bifurcations”.
      


      	Consider the circle map:
      	
      
      [image: xn+1 =  [xn + r − q sin(2πxn )]  mod1.
      ]
	(3.43)


      
      (Make sure that your program keeps the values of [image: xn  ] so that [image: 0 ≤ xn <  1  ]).
      Construct the bifurcation diagram for [image: 0 < q < 2  ] and [image: r = 1∕3  ].
                                                                          

                                                                          
      


      	Use the program in liapunov.f90 in order to compute the distance between
      two trajectories of the logistic map for [image: r = 3.6  ] that originally are at a
      distance [image: Δx0 =  10−15   ]. Choose [image: x0 = 0.1,  ] [image: 0.2,0.3,  ] [image: 0.4,  ] [image: 0.5,0.6,  ]
      [image: 0.7,0.8,  ] [image: 0.9,  ] [image: 0.99,0.999  ] and calculate the Liapunov exponent by fitting
      to a straight line appropriately. Compute the mean value and the standard
      error of the mean.
      

      	Calculate the Liapunov exponent for [image: r = 3.58,  ] [image: 3.60,  ] [image: 3.65,  ] [image: 3.70,  ] [image: 3.80  ]
      for the logistic map. Use both ways mentioned in the text. Choose at least 5
      different initial points and calculate the mean and the standard error of the
      mean of your results. Compare the values of [image: λ  ] that you obtain with each
      method and comment.
      

      	Compute the critical value [image: rc  ] numerically as the limit [image: lim rc(n)
n→∞  ] for the
      logistic map with an accuracy of nine significant digits. Use the
      calculation of the Liapunov exponent [image: λ  ] given by equation  (3.35)
      .
      

      	Compute the values of [image: r  ] of the logistic map numerically for which
      we (a) enter a stable 3-cycle (b) reenter into the chaotic behavior.
      Do the calculation by computing the Liapunov exponent [image: λ  ] and
      compare your results with the ones obtained from the bifurcation
      diagram.
      

      	Calculate the Liapunov exponent using equation  (3.35)  for the following
      maps: 
      
      [image:               r(1−xn)
xn+1   =  xne       ,    1.8 < r < 4
xn+1   =  r sin (πxn),     0.6 < r <  1
                 2
xn+1   =  1 − rx n,    0 < r < 2
xn+1   =  e− rx2n + q,     r = 7.5,− 1 < q < 1
          [                     ]
xn+1   =    xn + 1-− q sin(2πxn )    mod1,   0 <  q < 2,    (3.44)
                 3
      ]

      
and construct the diagrams similar to the ones in figure 3.9. Compare your
      plots with the respective bifurcation diagrams (you may put both graphs on
      the same plot). Use two different initial points [image: x0 = 0,0.2  ] for the Gauss
      map ([image: xn+1 =  ] [image: e−rx2n + q  ]) and observe the differences. For the circle map
      ([image: xn+1 =  ] [image: [xn + 1 ∕3 − qsin(2πxn )]  mod1  ]) study carefully the values
      [image: 0 < q < 0.15  ].
      

      	Reproduce the plots in figures 3.10, 3.11 and 3.12. Compute the function
      [image: p(x)  ] for [image: r = 3.68  ], [image: 3.80  ], [image: 3.93  ] and [image: 3.98  ]. Determine the points where
      you have stronger chaos by observing [image: p(x)  ] and the corresponding values of
      the entropy. Compute the entropy for [image: r ∈ (3.95,4.00)  ] by taking
      RSTEPS=2000 and estimate the values of [image: r  ] where we enter to and exit from
      chaos. Compare your results with the computation of the Liapunov
      exponent.
      

      	 Consider the Hénon map: 
      
      [image:                       2
xn+1   =  yn + 1 − ax n
 y     =  bx                               (3.45)
  n+1        n
      ]

      

                                                                          

                                                                          
           
           	Construct  the  two  bifurcation  diagrams  for  [image: xn  ]  and  [image: yn  ]  for
           [image: b = 0.3  ], [image: 1.0 < a <  1.5  ]. Check if the values [image: a = 1.01,1.4  ] that
           we will use below correspond to stable periodic trajectories or
           chaotic behavior.
           

           	Write a program in a file attractor.f90 which will take NINIT
           = NL [image: × ] NL initial conditions [image: (x0 (i),y0(i))  ] [image: i = 1,...,  ]NL on a
           NL[image: × ]NL lattice of the square [image: xm  ≤ x0 ≤  xM  ], [image: ym ≤ y0 ≤  yM  ].
           Each of the points [image: (x0(i),y0(i))  ] will evolve according to equation
           (3.45)    for  [image: n =  ]  NSTEPS steps.  The  program  will  print  the
           points  [image: (xn(i),yn(i))  ]  to  the  stdout.  Choose  [image: xm  = ym =  0.6  ],
           [image: xM =  yM =  0.8  ], NL[image: =  200  ].
           

           	Choose [image: a =  1.01  ], [image: b = 0.3  ] and plot the points [image: (xn (i),yn(i))  ] for
           [image: n = 0,  ] [image: 1,  ] [image: 2,  ] [image: 3,  ] [image: 10,  ] [image: 20,  ] [image: 30,  ] [image: 40,  ] [image: 60,  ] [image: 1000  ] on the same
           diagram.
           

           	Choose [image: a = 1.4  ], [image: b = 0.3  ] and plot the points [image: (xn (i),yn(i))  ] for
           [image: n = 0,...,7  ] on the same diagram.
           

           	Choose [image: a = 1.4  ], [image: b = 0.3  ] and plot the points [image: (xn(i),yn(i))  ] for
           [image: n = 999  ] on the same diagram. Observe the Hénon strange
           attractor and its fractal properties. It is characterized by a
           Hausdorff12 
           dimension [image: dH  = 1.261 ± 0.003  ]. Then magnify the regions
           	
           
           [image: {(x,y)|  − 1.290 < x < − 1.270,  0.378 < y < 0.384 },
{(x,y)|  1.150 <  x < − 1.130,   0.366 < y < 0.372 },
{(x,y)|   0.108 < x <  0.114,   0.238 < y < 0.241 },
{(x,y)|   0.300 < x <  0.320,   0.204 < y < 0.213 },
{(x,y)|   1.076 < x <  1.084,   0.090 < y < 0.096 },

{(x,y)|   1.216 < x <  1.226,   0.032 < y < 0.034 }.
           ]



           
           



      

      	Consider the Duffing map: 
      
      [image: x      =  y
  n+1       n             3
yn+1   =  − bxn + ayn − yn.                  (3.46)
      ]

      

           
           	Construct  the  two  bifurcation  diagrams  for  [image: xn  ]  and  [image: yn  ]  for
           [image: b = 0.3  ], [image: 0 < a < 2.78  ]. Choose four different initial conditions
           [image: (x0,y0) =  ] [image:      √ --    √ --
(±1 ∕  2,±1 ∕  2)  ]. What do you observe?
           

           	Use the program attractor.f90 from problem 33 in order to
           study the attractor of the map for [image: b = 0.3  ], [image: a = 2.75  ].


      

      	Consider the Tinkerbell map: 
                                                                          

                                                                          
      
      [image: xn+1  =   x2 − y2 + axn + byn
           n    n
yn+1  =   2xnyn + cxn + dyn.                  (3.47)
      ]

      

           
           	Choose  [image: a = 0.9  ],  [image: b = − 0.6013  ],  [image: c = 2.0  ],  [image: d = 0.50  ].  Plot  a
           trajectory  on  the  plane  by  plotting  the  points  [image: (xn,yn)  ]  for
           [image: n = 0,...,10000  ] with [image: (x0,y0) = (− 0.72, − 0.64)  ].
           

           	Use the program attractor.f90 from problem 33 in order to
           study the attractor of the map for the values of the parameters
           [image: a  ], [image: b  ], [image: c  ], [image: d  ] given above. Choose [image: xm  = − 0.68  ], [image: xM =  − 0.76  ],
           [image: y  = − 0.60
 m  ], [image: y   = − 0.68
 M  ], [image: n = 10000  ].
           

           	Repeat the previous question by taking [image: d = 0.27  ].


      


                                                                          

                                                                          
   


Chapter 4
Motion of a Particle

In this chapter we will study the numerical solution of classical equations of
motion of one dimensional mechanical systems, e.g. a point particle moving on the
line, the simple pendulum etc. We will make an introduction to the numerical
integration of ordinary differential equations with initial conditions and in
particular to the Euler and Runge-Kutta methods. We study in detail the
examples of the damped harmonic oscillator and of the damped pendulum under
the influence of an external periodic force. The latter system is nonlinear and
exhibits interesting chaotic behavior.


   4.1    Numerical Integration of Newton’s Equations

Consider the problem of the solution of the dynamical equations of motion of one
particle under the influence of a dynamical field given by Newton’s law. The
equations can be written in the form


   	
   
[image: d2⃗x-
dt2 =  ⃗a(t,⃗x,⃗v),
]
	(4.1)



where


   	
   
[image:             ⃗
⃗a(t,⃗x,⃗v) ≡  F-    ⃗v =  d⃗x.
            m          dt
]
	(4.2)



From the numerical analysis point of view, the problems that we will discuss are
initial value problems for ordinary differential equations where the initial
conditions


   	
   
[image: ⃗x(t0) = ⃗x0     ⃗v(t0) = ⃗v0,
]
	(4.3)



determine a unique solution [image: ⃗x(t)  ]. The equations  (4.1)  are of second order with
respect to time and it is convenient to write them as a system of twice as many
first order equations:


   	
   
[image: d⃗x-=  ⃗v     d⃗v-= ⃗a(t,⃗x,⃗v ).
dt          dt
]
	(4.4)



In particular, we will be interested in the study of the motion of a particle
moving on a line (1 dimension), therefore the above equations become
                                                                          

                                                                          


   
[image:    dx             dv
   ---=  v        --- = a(t,x,v)  1-dimension
   dt              dt
x(t0) = x0        v(t0) = v0.                           (4.5)
]


When the particle moves on the plane (2 dimensions) the equations of motion
become 
   
[image:    dx-             dvx-
   dt = vx          dt = ax (t,x, vx,y,vy)  2-dimensions
   dy              dv
   ---= vy         --y-= ay(t,x,vx, y,vy)
   dt               dt
x (t0) = x0         vx(t0) = v0x
 y(t0) = y0        vy(t0) = v0y,                              (4.6)
]






   4.2    Prelude: Euler Methods

As a first attempt to tackle the problem, we will study a simple pendulum of
length [image: l  ] in a homogeneous gravitational field [image: g  ] (figure 4.1). 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.1: A simple pendulum of length [image: l  ] in a homogeneous gravitational field [image: g  ].



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.2:  Convergence  of  Euler’s  method  for  a  simple  pendulum  with  period
[image:            2
T ≈ 1.987(ω  = 10.0)  ] for  several  values  of  the  time  step  [image: Δt  ] which  is  determined
by  the  number  of  integration  steps  Nt= [image: 50− 100,000  ].  The  solution  is  given  for
[image: 𝜃0 = 0.2  ], [image: ω0 = 0.0  ] and we compare it with the known solution for small angles with
[image: α(t) ≈ − (g∕l)𝜃  ].



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.3:  Convergence of the Euler-Cromer method, similarly to figure 4.2. We
observe a faster convergence compared to Euler’s method.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.4: Convergence of the Euler-Verlet method, similarly to figure 4.2. We observe
a faster convergence than Euler’s method, but the roundoff errors make the results useless
for Nt[image: ≳ 50,000  ] (note what happens when Nt[image: = 100,000  ]. Why?).



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.5: Convergence of Euler’s method for the simple pendulum like in figure 4.2
for [image: 𝜃0 = 3.0  ], [image: ω0 = 0.0  ]. The behavior of the angular velocity is shown and we notice
unstable behavior for Nt[image: ≲ 1,000  ].



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.6: Convergence of Euler-Cromer’s method, like in figure 4.5. We observe a
faster convergence than for Euler’s method.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.7: Convergence of the Euler-Verlet method, similarly to figure 4.5. We observe
a faster convergence compared to Euler’s method but that the roundoff errors make the
results unstable for Nt[image: ≳ 18,000  ].



                                                                          

                                                                          
   


   The equations of motion are given by the differential equations 

   
[image: d2𝜃        g
--2- =   − -sin 𝜃
dt         l
 d𝜃- =   ω,                              (4.7)
 dt
]


which can be rewritten as a first order system of differential equations

   
[image:  d𝜃- =   ω
 dt
dω-        g-
 dt  =   − l sin𝜃    ,                      (4.8)
]


The equations above need to be written in a discrete form
appropriate for a numerical solution with the aid of a computer. We
split the interval of time of integration [image: [ti,tf]  ] to [image: N  − 1  ] equal
intervals1 
of width [image: Δt  ≡ h  ], where [image: h = (tf − ti)∕(N −  1)  ]. The derivatives are
approximated by the relations [image: (xn+1 −  xn)∕Δt ≈  x′n  ], so that 
                                                                          

                                                                          
   
[image: ωn+1  =   ωn + αnΔt

𝜃n+1  =   𝜃n + ωnΔt.                       (4.9)
]


where [image: α = − (g∕l)sin𝜃  ] is the angular acceleration. This is the so-called
Euler method. The error at each step is estimated to be of order [image: (Δt )2   ].
This is most easily seen by Taylor expanding around the point [image: tn  ]
and neglecting all terms starting from the second derivative and
beyond2 .
What we are mostly interested in is in the total error of the estimate of the
functions we integrate for at time [image: t
 f  ]! We expect that errors accumulate in an
additive way at each integration step, and since the number of steps is
[image: N  ∝ 1∕ Δt  ] the total error should be [image:        2
∝ (Δt ) × (1∕Δt ) = Δt  ]. This is indeed
what happens, and we say that Euler’s method is a first order method. Its range
of applicability is limited and we only study it for academic reasons. Euler’s
method is asymmetric because it uses information only from the beginning of the
integration interval [image: (t,t + Δt )  ]. It can be put in a more balanced form by using
the velocity at the end of the interval [image: (t,t + Δt)  ]. This way we obtain the
Euler-Cromer method with a slightly improved behavior, but which is still of first
order 
   
[image: ωn+1  =   ωn + αnΔt
𝜃n+1  =   𝜃n + ωn+1Δt.                    (4.10)
                                                                          

                                                                          
]



   An improved algorithm is the Euler–Verlet method which is of second order and gives
total error3 
[image: ∼ (Δt )2   ]. This is given by the equations 

   
[image:                              2
𝜃n+1  =  2 𝜃n − 𝜃n−1 + αn (Δt )
          𝜃n+1 −-𝜃n−1-
 ωn   =      2 Δt    .                        (4.11)
]



   The price that we have to pay is that we have to use a two step relation in
order to advance the solution to the next step. This implies that we have to
carefully determine the initial conditions of the problem which are given only at
one given time [image: ti  ]. We make one Euler time step backwards in order to define the
value of [image: 𝜃0   ]. If the initial conditions are [image: 𝜃1 = 𝜃 (ti)  ], [image: ω1 = ω(ti)  ], then we
define


   	
   
[image:                   1       2
𝜃0 = 𝜃1 − ω1Δt  + -α1 (Δt) .
                  2
]
	(4.12)


                                                                          

                                                                          

It is important that at this step the error introduced is not larger than [image:      2
𝒪 (Δt )  ],
otherwise it will spoil and eventually dominate the [image: 𝒪(Δt2 )  ] total error of the
method introduced by the intermediate steps. At the last step we also have to
take


   	
   
[image: ωN  =  𝜃N-−-𝜃N-−1.
          Δt
]
	(4.13)



Even though the method has smaller total error than the Euler method, it
becomes unstable for small enough [image: Δt  ] due to roundoff errors. In particular, the
second equation in  (4.11)  gives the angular velocity as the ratio of two small
numbers. The problem is that the numerator is the result of the subtraction of
two almost equal numbers. For small enough [image: Δt  ], this difference has to be
computed from the last digits of the finite representation of the numbers [image: 𝜃n+1   ]
and [image: 𝜃n  ] in the computer memory. The accuracy in the determination of
[image: (𝜃n+1 − 𝜃n)  ] decreases until it eventually becomes exactly zero. For the first
equation of  (4.11) , the term [image: α  Δt2
  n   ] is smaller by a factor [image: Δt  ] compared to the
term [image: αnΔt  ] in Euler’s method. At some point, by decreasing [image: Δt  ], we obtain
[image:      2
αn Δt  ≪  2𝜃n − 𝜃n−1   ] and the accuracy of the method vanishes due to the finite
representation of real number in the memory of the computer. When the
numbers [image: αn Δt2   ] and [image: 2𝜃n − 𝜃n−1   ] differ from each other by more that
approximately seven orders of magnitude, adding the first one to the
second is equivalent to adding zero and the contribution of the acceleration
vanishes4 .
                                                                          

                                                                          

   Writing programs that implement the methods discussed so far is quite simple.
We will write a program that compares the results from all three methods
Euler, Euler–Cromer and Euler–Verlet. The main program is mainly a
user interface, and the computation is carried out by three subroutines
euler, euler_cromer and euler_verlet. The user must provide the
function accel(x) which gives the angular acceleration as a function of
x. The variable x in our problem corresponds to the angle [image: theta  ]. For
starters we take accel(x)= -10.0 * sin(x), the acceleration of the simple
pendulum.

   The data structure is very simple: Three real arrays REAL T(P), X(P) and
V(P) store the times [image: tn  ], the angles [image: 𝜃n  ] and the angular velocities [image: ωn  ] for
[image: n =  1,...,Nt ]. The user determines the time interval for the integration from
[image: ti = 0  ] to [image: tf = Tfi ] and the number of discrete times Nt. The latter should be
less than P, the size of the arrays. She also provides the initial conditions
[image: 𝜃  = Xin
 0 ] and [image: ω  =  Vin
  0 ]. After this, we call the main integration routines which
take as input the initial conditions, the time interval of the integration and the
number of discrete times Xin,Vin,Tfi,Nt. The output of the routines is the
arrays T,X,V which store the results for the time, position and velocity
respectively. The results are printed to the files euler.dat, euler_cromer.dat
and euler_verlet.dat.

   After setting the initial conditions and computing the time step
[image: Δt  ≡ h = Tfi ∕(Nt − 1)  ], the integration in each of the subroutines is performed
in do loops which advance the solution for time [image: Δt  ]. The results are stored at
each step in the arrays T,X,V. For example, the central part of the program for
Euler’s method is:
                                                                          

                                                                          


   
 T(1) = 0.0
 
 X(1) = Xin
 
 V(1) = Vin
 
 h    = Tfi/(Nt-1)
 
 do i = 2,Nt
 
  T(i) = T(i-1)+h
 
  X(i) = X(i-1)+V(i-1)*h
 
  V(i) = V(i-1)+accel(X(i-1))*h
 
 enddo


 Some care has to be taken in the case of the Euler–Verlet method where one has
to initialize the first two steps, as well as take special care for the last step for the
velocity:
                                                                          

                                                                          


   
 T(1)    = 0.0
 
 X(1)    = Xin
 
 V(1)    = Vin
 
 X0      =     X(1)   - V(1) * h + accel(X(1))  *h*h/2.0
 
 T(2)    = h
 
 X(2)    = 2.0*X(1)   - X0       + accel(X(1))  *h*h
 
 do i    = 3,Nt
 
  ..............
 
 enddo
 
 V(Nt)= (X(Nt)-X(Nt-1))/h


 The full program can be found in the file euler.f90 and is listed below:
                                                                          

                                                                          


   
!=========================================================
 
!Program to integrate equations of motion for accelerations
 
!which are functions of x with the method of Euler,
 
!Euler-Cromer and Euler-Verlet.
 
!The user sets initial conditions and the subroutines return
 
!X(t) and V(t)=dX(t)/dt in arrays T(1..Nt),X(1..Nt),V(1..Nt)
 
!The user provides number of times Nt and the final
 
!time Tfi. Initial time is assumed to be t_i=0 and the
 
!integration step h = Tfi/(Nt-1)
 
!The user programs a real function accel(x) which gives the
 
!acceleration  dV(t)/dt as function of X.
 
!NOTE: T(1) = 0 T(Nt) = Tfi
 
!=========================================================
 
program diff_eq_euler
 
 implicit none
 
 integer,parameter:: P=110000 ! The size of the arrays
 
 real,dimension(P):: T,X,V    ! time t,x(t),v(t)=dx/dt
 
 real     :: Xin,Vin,Tfi      ! initial conditions
 
 integer  :: Nt,i
 
!The user provides initial conditions X_0,V_0 final time t_f
 
!and Nt:
 
 print *,’Enter X_0,V_0,t_f,Nt (t_i=0):’
 
 read(5,*)Xin,Vin,Tfi,Nt
 
!This check is necessary in order to avoid memory
 
!access violations:
 
 if(Nt .ge. P )then
 
  print *,’Nt must be strictly less than P. Nt,P= ’,Nt,P
 
  stop
 
 endif
 
!Xin= X(1), Vin=V(1), T(1)=0 and the routine gives evolution in
 
!T(2..Nt), X(2..Nt), V(2..Nt) which we print in a file
 
 call euler(Xin,Vin,Tfi,Nt,T,X,V)
 
 open(unit=20,file="euler.dat")
 
 do i=1,Nt
 
!Each line in data file has time, position, velocity:
 
  write(20,*) T(i),X(i),V(i)
                                                                          

                                                                          
 
 enddo
 
 close(20) !we close the unit to be reused below
 
!------------------------------------
 
!We repeat everything for each method
 
 call euler_cromer(Xin,Vin,Tfi,Nt,T,X,V)
 
 open(unit=20,file="euler_cromer.dat")
 
 do i=1,Nt
 
  write(20,*) T(i),X(i),V(i)
 
 enddo
 
 close(20)
 
!------------------------------------
 
 call euler_verlet(Xin,Vin,Tfi,Nt,T,X,V)
 
 open(unit=20,file="euler_verlet.dat")
 
 do i=1,Nt
 
  write(20,*) T(i),X(i),V(i)
 
 enddo
 
 close(20)
 
!------------------------------------
 
end program diff_eq_euler
 
!=========================================================
 
!Function which returns the value of acceleration at
 
!position x used in the integration subroutines
 
!euler, euler_cromer and euler_verlet
 
!=========================================================
 
real function accel(x)
 
 implicit none
 
 real x
 
 accel = -10.0*sin(x)
 
end function accel
 
!=========================================================
 
!Driver routine for integrating equations of motion
 
!using the Euler method
 
!Input:
 
!Xin=X(1), Vin=V(1) -- initial condition at t=0,
 
!Tfi the final time and Nt the number of times
 
!Output:
 
!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which
 
!gives x(t_k)=X(k), dx/dt(t_k)=V(k), t_k=T(k) k=1..Nt
 
!where for k=1 we have the initial condition.
 
!=========================================================
 
subroutine euler(Xin,Vin,Tfi,Nt,T,X,V)
                                                                          

                                                                          
 
 implicit none
 
 integer :: Nt
 
 real,dimension(Nt) :: T,X,V    !time t,x(t),v(t)=dx/dt
 
 real    :: Xin,Vin,Tfi
 
 integer :: i
 
 real    :: h,accel     !**declare the function accel**
 
!Initial conditions set here:
 
 T(1) = 0.0
 
 X(1) = Xin
 
 V(1) = Vin
 
!h is the time step Dt
 
 h    = Tfi/(Nt-1)
 
 do i = 2,Nt
 
  T(i) = T(i-1)+h          ! time advances by Dt=h
 
  X(i) = X(i-1)+V(i-1)*h   ! advancement of position
 
  V(i) = V(i-1)+accel(X(i-1))*h !and velocity.
 
 enddo
 

 
end subroutine euler
 
!=========================================================
 
!Driver routine for integrating equations of motion
 
!using the Euler-Cromer method
 
!Input:
 
!Xin=X(1), Vin=V(1) -- initial condition at t=0,
 
!Tfi the final time and Nt the number of times
 
!Output:
 
!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which
 
!gives x(t_i)=X(i), dx/dt(t_i)=V(i), t_i=T(i) i=1..Nt
 
!where for i=1 we have the initial condition.
 
!=========================================================
 
subroutine euler_cromer(Xin,Vin,Tfi,Nt,T,X,V)
 
 implicit none
 
 integer :: Nt
 
 real,dimension(Nt):: T,X,V !time t,x(t),v(t)=dx/dt
 
 real    :: Xin,Vin,Tfi
 
 integer :: i
 
 real    :: h,accel
 

 
 T(1) = 0.0
 
 X(1) = Xin
 
 V(1) = Vin
                                                                          

                                                                          
 
 h    = Tfi/(Nt-1)
 
 do i = 2,Nt
 
  T(i) = T(i-1)+h
 
  V(i) = V(i-1)+accel(X(i-1))*h
 
  !here is the difference compared to Euler
 
  X(i) = X(i-1)+V(i)*h
 
 enddo
 

 
end subroutine euler_cromer
 
!=========================================================
 
!Driver routine for integrating equations of motion
 
!using the Euler - Verlet method
 
!Input:
 
!Xin=X(1), Vin=V(1) -- initial condition at t=0,
 
!Tfi the final time and Nt the number of times
 
!Output:
 
!The arrays T(1..Nt), X(1..Nt), V(1..Nt) which
 
!gives x(t_i)=X(i), dx/dt(t_i)=V(i), t_i=T(i) i=1..Nt
 
!where for i=1 we have the initial condition.
 
!=========================================================
 
subroutine euler_verlet(Xin,Vin,Tfi,Nt,T,X,V)
 
 implicit none
 
 integer :: Nt
 
 real,dimension(Nt):: T,X,V !time t,x(t),v(t)=dx/dt
 
 real    :: Xin,Vin,Tfi
 
 integer :: i
 
 real    :: h,h2,X0,o2h
 
 real    :: accel
 
!Initial conditions set here:
 
 T(1)    = 0.0
 
 X(1)    = Xin
 
 V(1)    = Vin
 
 h       = Tfi/(Nt-1)   ! time step
 
 h2      = h*h             ! time step squared
 
 o2h     = 0.5/h           ! h/2
 
!We have to initialize one more step: X0 corresponds to ’X(0)’
 
 X0      =     X(1)   - V(1) * h + accel(X(1))  *h2/2.0
 
 T(2)    = h
 
 X(2)    = 2.0*X(1)   - X0       + accel(X(1))  *h2
 
!Now i starts from 3:
 
 do i    = 3,Nt
                                                                          

                                                                          
 
  T(i)   = T(i-1)+h
 
  X(i)   = 2.0*X(i-1) - X(i-2)   + accel(X(i-1))*h2
 
  V(i-1) = o2h * (X(i)-X(i-2))
 
 enddo
 
!Notice that we have one more step for the velocity:
 
 V(Nt)= (X(Nt)-X(Nt-1))/h
 
end subroutine euler_verlet


 Compiling the running the program can be done with the commands:
                                                                          

                                                                          


   
> gfortran euler.f90 -o euler
 
> ./euler
 
 Enter X_0,V_0,t_f,Nt (t_i=0):
 
0.2 0.0 6.0 1000
 
> ls  euler*.dat
 
euler_cromer.dat  euler.dat  euler_verlet.dat
 
> head -n 5 euler.dat
 
   0.000000      0.2000000       0.000000
 
  6.0060062E-03  0.2000000     -1.1932093E-02
 
  1.2012012E-02  0.1999283     -2.3864185E-02
 
  1.8018018E-02  0.1997850     -3.5792060E-02
 
  2.4024025E-02  0.1995700     -4.7711499E-02


 The last command shows the first 5 lines of the file euler.dat. We see the data
for the time, the position and the velocity stored in 3 columns. We can graph the
results using gnuplot:
                                                                          

                                                                          


   
gnuplot> plot "euler.dat" using 1:2 with lines
 
gnuplot> plot "euler.dat" using 1:3 with lines


 These commands result in plotting the positions and the velocities as a function
of time respectively. We can add the results of all methods to the last plot with
the commands:
                                                                          

                                                                          


   
gnuplot> replot "euler_cromer.dat" using 1:3 with lines
 
gnuplot> replot "euler_verlet.dat" using 1:3 with lines


 The results can be seen in figures 4.2–4.7. Euler’s method is unstable unless we
take a quite small time step. The Euler–Cromer method behaves impressively
better. The results converge and remain constant for Nt[image: ∼ 100, 000  ]. The
Euler–Verlet method converges much faster, but roundoff errors kick in soon. This
is more obvious in figure 4.7 where the initial angular position is large. For small
angles we can compare with the solution one obtains for the harmonic pendulum
([image: sin(𝜃) ≈ 𝜃  ]): 

   
[image:             g        2
α(𝜃)  =   − l𝜃 ≡ − Ω  𝜃

 𝜃(t)  =   𝜃0cos(Ωt) + (ω0∕Ω )sin(Ωt)
ω (t)  =   ω0cos(Ωt ) − (𝜃0Ω )sin(Ωt).            (4.14)
]


In figures 4.2–4.4 we observe that the results agree with the above formulas for the
values of [image: Δt  ] where the methods converge. This way we can check our program
for bugs. The plot of the functions above can be done with the following gnuplot
commands5 :
                                                                          

                                                                          
   
gnuplot> set dummy t
 
gnuplot> omega2  = 10
 
gnuplot> X0      = 0.2
 
gnuplot> V0      = 0.0
 
gnuplot> omega   = sqrt(omega2)
 
gnuplot> x(t)    = X0 * cos(omega * t) +(V0/omega)*sin(omega*t)
 
gnuplot> v(t)    = V0 * cos(omega * t) -(omega*X0)*sin(omega*t)
 
gnuplot> plot x(t), v(t)


 The results should not be compared only graphically since subtle differences can
remain unnoticed. It is more desirable to plot the differences of the theoretical
values from the numerically computed ones which can be done using the
commands:
                                                                          

                                                                          


   
gnuplot> plot "euler.dat" using 1:($2-x($1)) with lines
 
gnuplot> plot "euler.dat" using 1:($3-v($1)) with lines


 The command using 1:($2-x($1)) puts the values found in the
first column on the [image: x  ] axis and the value found in the second column
minus the value of the function x(t) for [image: t  ] equal to the value found in
the first column on the [image: y  ] axis. This way, we can make the plots shown
in6 
figures 4.11-4.14.


   4.3    Runge–Kutta Methods

Euler’s method is a one step finite difference method of first order. First
order means that the total error introduced by the discretization of the
integration interval [image: [ti,tf]  ] by [image: N  ] discrete times is of order [image: ∼  𝒪 (h )  ], where
[image: h ≡  Δt = (tf − ti)∕N  ] is the time step of the integration. In this section we will
discuss a generalization of this approach where the total error will be of higher
order in [image: h  ]. This is the class of Runge-Kutta methods which are one step
algorithms where the total discretization error is of order [image:       p
∼ 𝒪 (h )  ]. The
local error introduced at each step is of order [image:        p+1
∼  𝒪 (h    )  ] leading after
[image: N  = (tf − ti)∕Δt  ] steps to a maximum error of order


   	
   
[image:                              tf − ti              1
∼ 𝒪 (hp+1) × N  = 𝒪 (hp+1) × -------∼ 𝒪 (hp+1) × --=  𝒪 (hp ).
                               Δt                h
]
	(4.15)



In such a case we say that we have a Runge-Kutta method of [image: pth  ] order.
The price one has to pay for the increased accuracy is the evaluation of
the derivatives of the functions in more than one points in the interval
[image: (t,t + Δt )  ].

   Let’s consider for simplicity the problem with only one unknown function
[image: x (t)  ] which evolves in time according to the differential equation:


   	
   
[image: dx-=  f(t,x).
dt
]
	(4.16)






                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.8: The geometry of the step of the Runge-Kutta method of [image: 1st  ] order given
by equation  (4.17) .



                                                                          

                                                                          
   


   Consider the first order method first. The most naive approach would be to
take the derivative to be given by the finite difference


   	
   
[image: dx-   xn+1-−--xn
 dt ≈     Δt     = f (tn,xn ) ⇒ xn+1 = xn +  hf(tn,xn).
]
	(4.17)



By Taylor expanding, we see that the error at each step is [image: 𝒪 (h2)  ], therefore the
error after integrating from [image: t →  t
i    f  ] is [image: 𝒪 (h)  ]. Indeed,


   	
   
[image:                           dx
xn+1 = x (tn + h) = xn + h ---(xn ) + 𝒪 (h2) = xn + hf (tn,xn) + 𝒪 (h2 ).
                          dt
]
	(4.18)



The geometry of the step is shown in figure 4.8. We start from point 1 and by
linearly extrapolating in the direction of the derivative [image: k1 ≡ f(tn,xn)  ] we
determine the point [image: xn+1   ].


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.9: The geometry of an integration step of the 2nd order Runge-Kutta method
given by equation  (4.19) .



                                                                          

                                                                          
   


   We can improve the method above by introducing an intermediate
point 2. This process is depicted in figure 4.9. We take the point 2 in the
middle of the interval [image: (tn,tn+1)  ] by making a linear extrapolation from
[image: x
  n  ] in the direction of the derivative [image: k ≡  f(t ,x )
 1      n  n  ]. Then we use the
slope at point 2 as an estimator of the derivative within this interval, i.e.
[image: k2 ≡ f (tn+1∕2,xn+1∕2) = f(tn + h∕2,xn +  (h ∕2)k1)  ]. We use [image: k2   ] to linearly
extrapolate from [image: xn  ] to [image: xn+1   ]. Summarizing, we have that 

   
[image:    k1  =  f (tn,xn )
                 h       h
   k2  ≡  f (tn + --,xn + --k1)
                 2       2
xn+1   =  xn + hk2.                           (4.19)
]


For the procedure described above we have to evaluate [image: f  ] twice at each step,
thereby doubling the computational effort. The error at each step  (4.19)  becomes
[image:       3
∼ 𝒪 (h )  ], however, giving a total error of [image:       2           2
∼ 𝒪 (h ) ∼ 𝒪 (1∕N  )  ]. So for given
computational time,  (4.19)  is superior to  (4.17) .
   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.10: The geometry of an integration step of the Runge-Kutta method of 4th
order given by equation  (4.20) .



                                                                          

                                                                          
   


   We can further improve the accuracy gain by using the Runge–Kutta method of
4th order. In this case we have 4 evaluations of the derivative [image: f  ] per step, but the
total error becomes now [image:        4
∼  𝒪(h  )  ] and the method is superior to that of  (4.19)
7.
The process followed is explained geometrically in figure 4.10. We use 3
intermediate points for evolving the solution from [image: xn  ] to [image: xn+1   ]. Point 2 is
determined by linearly extrapolating from [image: xn  ] to the midpoint of the
interval [image: (tn,tn+1 = tn + h)  ] by using the direction given by the derivative
[image: k1 ≡ f (tn,xn )  ], i.e. [image: x2 = xn +  (h ∕2)k1   ]. We calculate the derivative
[image: k  ≡ f (t + h ∕2,x  + (h∕2)k )
 2      n         n         1  ] at the point 2 and we use it in order to determine
point 3, also located at the midpoint of the interval [image: (tn,tn+1)  ]. Then we calculate
the derivative [image: k3 ≡  f(tn + h ∕2,xn + (h∕2)k2)  ] at the point 3 and we use
it to linearly extrapolate to the end of the interval [image: (tn, tn+1 )  ], thereby
obtaining point 4, i.e. [image: x4 = xn +  hk3   ]. Then we calculate the derivative
[image: k  ≡ f (t + h, x +  hk )
 4      n       n     3  ] at the point 4, and we use all four derivative [image: k ,k ,k
 1  2  3   ]
and [image: k4   ] as estimators of the derivative of the function in the interval
[image: (tn,tn+1)  ]. If each derivative contributes with a particular weight in this
estimate, the discretization error can become [image: ∼ 𝒪 (h5)  ]. Such a choice is


   
[image:   k1  =   f(tn,xn)
                 h-      h-
  k2  =   f(tn + 2 ,xn + 2k1 )
                 h       h
  k3  =   f(tn + --,xn + -k2 )
                 2       2
  k4  =   f(tn + h,xn + hk3 )
               h
xn+1  =   xn + --(k1 + 2k2 + 2k3 + k4 ).           (4.20)
               6
]


We note that the second term of the last equation takes an average of the four
derivatives with weights [image: 1∕6  ], [image: 1∕3  ], [image: 1∕3  ] and [image: 1∕6  ] respectively. A generic small
change in these values will increase the discretization error to worse than
[image: h5   ].
   We remind to the reader the fact that by decreasing [image: h  ] the discretization
errors decrease, but that roundoff errors will start showing up for small enough
[image: h  ]. Therefore, a careful determination of [image: h  ] that minimizes the total error
should be made by studying the dependence of the results as a function of
[image: h  ].


   4.3.1    A Program for the 4th Order Runge–Kutta 

Consider the problem of the motion of a particle in one dimension. For
this, we have to integrate a system of two differential equations  (4.5)
for two unknown functions of time [image: x1(t) ≡ x(t)  ] and [image: x2 (t) ≡ v(t)  ] so
that


   	
   
[image: dx1-=  f1(t,x1,x2)    dx2- = f2(t,x1,x2)
 dt                    dt
                                                                          

                                                                          
]
	(4.21)




   In this case, equations  (4.20)  generalize to: 

   
[image:    k11  =   f1(tn,x1,n,x2,n )
   k21  =   f2(tn,x1,n,x2,n )

   k12  =   f1(tn + h-,x1,n + h-k11,x2,n + h-k21)
                   2         2           2
                   h-       h-          h-
   k22  =   f2(tn + 2 ,x1,n +  2k11,x2,n +  2k21)
                   h        h           h
   k13  =   f1(tn + --,x1,n + --k12,x2,n + --k22)
                   2         2           2
   k    =   f (t  + h-,x   + h-k  ,x   + h-k  )
    23       2 n   2   1,n    2 12  2,n    2 22
   k14  =   f1(tn + h,x1,n + hk13,x2,n + hk23)

   k24  =   f2(tn + h,x1,n + hk13,x1,n + hk23)
                  h-
x1,n+1  =   x1,n + 6 (k11 + 2k12 + 2k13 + k14)
                  h
x2,n+1  =   x1,n + --(k21 + 2k22 + 2k23 + k24).         (4.22)
                  6
]



   Programming this algorithm is quite simple. The main program is an interface
between the user and the driver routine of the integration. The user enters the
initial and final times [image: ti =  ] Ti and [image: tf =  ] Tf and the number of discrete time
points Nt. The initial conditions are [image: x1(ti) =  ] X10, [image: x2(ti) =  ] X20. The main data
structure consists of three real arrays T(P), X1(P), X2(P) which store the times
[image: ti ≡ t1,t2,...,tNt ≡ tf  ] and the corresponding values of the functions [image: x1(tk)  ]
and [image: x (t)
 2 k  ], [image: k = 1, ...,Nt ]. The main program calls the driver routine
RK(T,X1,X2,Ti,Tf,X10,X20,Nt) which “drives” the heart of the program, the
subroutine RKSTEP(t,x1,x2,dt) which performs one integration step using
                                                                          

                                                                          
equations  (4.22) . RKSTEP evolves the functions x1, x2 at time t by one step [image: h =  ]
dt. The routine RK stores the calculated values in the arrays T, X1 and X2 at each
step. When RK returns the control to the main program, all the results
are stored in T, X1 and X2, which are subsequently printed in the file
rk.dat. The full program is listed below and can be found in the file
rk.f90:
                                                                          

                                                                          


   
!========================================================
 
!Program to solve a 2 ODE system using Runge-Kutta Method
 
!User must supply derivatives
 
!dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)
 
!as real functions
 
!Output is written in file rk.dat
 
!========================================================
 
program rk_solve
 
 implicit none
 
 integer, parameter :: P=110000
 
 real,dimension(P)  :: T,X1,X2
 
 real    :: Ti,Tf,X10,X20
 
 integer :: Nt
 
 integer :: i
 
!Input:
 
 print *,’Runge-Kutta Method for 2-ODEs Integration’
 
 print *,’Enter Nt,Ti,TF,X10,X20:’
 
 read  *, Nt,Ti,Tf,X10,X20
 
 print *,’Nt = ’,Nt
 
 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf
 
 print *,’           X1(Ti)=’,X10,’ X2(Ti)=’,X20
 
 if(Nt.gt.P) stop ’Nt>P’
 
!The Calculation:
 
 call RK(T,X1,X2,Ti,Tf,X10,X20,Nt)
 
!Output:
 
 open(unit=11,file=’rk.dat’)
 
 do i=1,Nt
 
  write(11,*)T(i),X1(i),X2(i)
 
 enddo
 
 close(11)
 

 
end program rk_solve
 
!========================================================
 
!The functions f1,f2(t,x1,x2) provided by the user
 
!========================================================
 
real function f1(t,x1,x2)
                                                                          

                                                                          
 
 implicit none
 
 real :: t,x1,x2
 
 f1=x2           !dx1/dt= v = x2
 
end function f1
 
!--------------------------------------------------------
 
real function f2(t,x1,x2)
 
 implicit none
 
 real :: t,x1,x2
 
 f2=-10.0D0*x1   !harmonic oscillator
 
end function f2
 
!========================================================
 
!RK(T,X1,X2,Ti,Tf,X10,X20,Nt) is the driver
 
!for the Runge-Kutta integration routine RKSTEP
 
!Input: Initial and final times Ti,Tf
 
!       Initial values at t=Ti  X10,X20
 
!       Number of steps of integration: Nt-1
 
!       Size of arrays T,X1,X2
 
!Output: real arrays T(Nt),X1(Nt),X2(Nt) where
 
!T(1) = Ti X1(1) = X10 X2(1) = X20
 
!          X1(k) = X1(at t=T(k)) X2(k) = X2(at t=T(k))
 
!T(Nt)=TF
 
!========================================================
 
subroutine RK(T,X1,X2,Ti,Tf,X10,X20,Nt)
 
 implicit none
 
 integer :: Nt
 
 real,dimension(Nt):: T,X1,X2
 
 real    :: Ti,Tf,X10,X20
 
 real    :: dt
 
 real    :: TS,X1S,X2S !values of time and X1,X2 at given step
 
 integer :: i
 
!Initialize variables:
 
 dt      = (Tf-Ti)/(Nt-1)
 
 T (1)   = Ti
 
 X1(1)   = X10
 
 X2(1)   = X20
 
 TS      = Ti
 
 X1S     = X10
 
 X2S     = X20
 
!Make RK steps: The arguments of RKSTEP
 
!are replaced with the new ones!
 
 do i=2,Nt
                                                                          

                                                                          
 
  call RKSTEP(TS,X1S,X2S,dt)
 
  T (i)  = TS
 
  X1(i)  = X1S
 
  X2(i)  = X2S
 
 enddo
 
end subroutine RK
 
!========================================================
 
!Subroutine RKSTEP(t,x1,x2,dt)
 
!Runge-Kutta Integration routine of ODE
 
!dx1/dt=f1(t,x1,x2) dx2/dt=f2(t,x1,x2)
 
!User must supply derivative functions:
 
!real function f1(t,x1,x2)
 
!real function f2(t,x1,x2)
 
!Given initial point (t,x1,x2) the routine advances it
 
!by time dt.
 
!Input : Inital time t    and function values x1,x2
 
!Output: Final  time t+dt and function values x1,x2
 
!Careful!: values of t,x1,x2 are overwritten...
 
!========================================================
 
subroutine RKSTEP(t,x1,x2,dt)
 
 implicit none
 
 real :: t,x1,x2,dt
 
 real :: f1,f2
 
 real :: k11,k12,k13,k14,k21,k22,k23,k24
 
 real :: h,h2,h6
 

 
 h  =dt      !h =dt, integration step
 
 h2 =0.5D0*h !h2=h/2
 
 h6 =h/6.0   !h6=h/6
 

 
 k11=f1(t,x1,x2)
 
 k21=f2(t,x1,x2)
 
 k12=f1(t+h2,x1+h2*k11,x2+h2*k21)
 
 k22=f2(t+h2,x1+h2*k11,x2+h2*k21)
 
 k13=f1(t+h2,x1+h2*k12,x2+h2*k22)
 
 k23=f2(t+h2,x1+h2*k12,x2+h2*k22)
 
 k14=f1(t+h ,x1+h *k13,x2+h *k23)
 
 k24=f2(t+h ,x1+h *k13,x2+h *k23)
 

 
 t  =t+h
 
 x1 =x1+h6*(k11+2.0D0*(k12+k13)+k14)
                                                                          

                                                                          
 
 x2 =x2+h6*(k21+2.0D0*(k22+k23)+k24)
 

 
end subroutine RKSTEP
 








   4.4    Comparison of the Methods

   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 4.11:  The  discrepancy  of  the  numerical  results  of  the  Euler  method  from
the  analytic  solution  for  the  simple  harmonic  oscillator.  The  parameters  chosen
are  [image: ω2 = 10  ],  [image: ti = 0  ],  [image: tf = 6  ],  [image: x(0) = 0.2  ],  [image: v(0) = 0  ]  and  the  number  of  steps  is
[image: N  = 50,500,5,000,50,000  ].  Observe  that  the  error  becomes  approximately  ten  times
smaller each time according to the expectation of being of order [image: ∼ 𝒪(Δt)  ].
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Figure 4.12:  Like in figure 4.11 for the Euler-Cromer method. The error becomes
approximately ten times smaller each time according to the expectation of being of order
[image: ∼ 𝒪(Δt)  ].
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Figure 4.13:  Like  in  figure  4.11  for  the  Euler-Verlet  method.  The  error  becomes
approximately 100 times smaller each time according to the expectation of being of order
[image: ∼ 𝒪(Δt2)  ].
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Figure 4.14: Like in figure 4.11 for the 4th order Runge–Kutta method. The error
becomes approximately [image:   −4
10  ]  times smaller each time according to the expectation of
being of order [image: ∼ 𝒪 (Δt4 )  ]. The roundoff errors become apparent for [image: 50,000  ] steps.
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Figure 4.15:  Like in figure 4.11 for the case of mechanical energy for the Euler method.
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Figure 4.16:  Like in figure 4.11 for the case of mechanical energy for the Euler–Cromer
method.
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Figure 4.17:  Like in figure 4.11 for the case of mechanical energy for the Euler–Verlet
method.
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Figure 4.18:  Like in figure 4.11 for the case of mechanical energy for the 4th order
Runge–Kutta method. Roundoff errors appear for large enough number of steps.



                                                                          

                                                                          
   


   In this section we will check our programs for correctness and accuracy w.r.t.
discretization and roundoff errors. The simplest test is to check the results against
a known analytic solution of a simple model. This will be done for the simple
harmonic oscillator. Our programs will need small changes which are summarized
below. First, we will need to use higher accuracy variables and we will change
all variables of type REAL to REAL(8). For this we need to change the
corresponding declarations in the beginning of each (sub)program. For each
numerical constant in the program we need to put an explicit exponent
with the letter D instead of an E. For example 0.5 [image: → ] 0.5D0, 1.2E-3
[image: → ] 1.2D-3 etc. Then we need to alter the functions that compute the
acceleration of the particle to give [image: a = − ω2x  ]. We will take [image: ω2 =  10  ]
([image: T ≈  1.987  ]). Therefore the relevant part of the program in euler.f90
becomes
                                                                          

                                                                          


   
real(8) function accel(x)
 
 implicit none
 
 real(8) :: x
 
 accel = -10.0D0*x
 
end function accel


 and that of the program in rk.f90 becomes
                                                                          

                                                                          


   
real(8) function f2(t,x1,x2)
 
 implicit none
 
 real(8) :: t,x1,x2
 
 f2=-10.0D0*x1
 
end function f2




   The programs are run for a given time interval [image: ti = 0  ] to [image: tf = 6  ] with the
initial conditions [image: x =  0.2
 0  ], [image: v =  0
 0  ]. The time step [image: Δt  ] is varied by
varying the number of steps Nt-1. The computed numerical solution is
compared to the well known solution for the simple harmonic oscillator


   
[image:  a(x)  =  − ω2x

xh(t)  =  x0 cos(ωt) + (v0∕ω)sin(ωt)
vh(t)  =  v0 cos(ωt) − (x0 ω)sin(ωt),            (4.23)
]


We study the deviation [image: δx(t) = |x (t) − xh(t)| ] and [image: δv(t) = |v (t) − vh(t)| ] as a
function of the time step [image: Δt  ]. The results are shown in figures 4.11–4.14. We
note that for the Euler method and the Euler–Cromer method, the errors
are of order [image: 𝒪 (Δt )  ] as expected. However, the latter has smaller errors
compared to the first one. For the Euler–Verlet method, the error turns out
to be of order [image:      2
𝒪 (Δt  )  ] whereas for the 4th order Runge–Kutta is of
order8 
                                                                          

                                                                          
[image:       4
𝒪 (Δt  )  ].
   Another way for checking the numerical results is by looking at a conserved
quantity, like the energy, momentum or angular momentum, and study its
deviation from its original value. In our case we study the mechanical
energy


   	
   
[image:      1        1
E  = --mv2 +  -m ω2x2
     2        2
]
	(4.24)



which is computed at each step. The deviation [image: δE  = |E − E0 | ] is shown in figures
4.15–4.18.


   4.5    The Forced Damped Oscillator

In this section we will study a simple harmonic oscillator subject to a damping
force proportional to its velocity and an external periodic driving force,
which for simplicity will be taken to have a sinusoidal dependence in
time,


   	
   
[image: d2x     dx
----+ γ ---+ ω20x =  a0sinωt,
dt2     dt
]
	(4.25)



where [image: F (t) = ma0 sin ωt  ] and [image: ω  ] is the angular frequency of the driving
force.

   Consider initially the system without the influence of the driving
force, i.e. with [image: a0 = 0  ]. The real solutions of the differential
equation9 
which are finite for [image: t → + ∞ ] are given by


   	
   
[image:                √ ------            √ ------
x0(t) = c1e −(γ+   γ2−4ω20)t∕2 + c2e−(γ−  γ2− 4ω20)t∕2,   γ2 − 4ω2 > 0,
                                                        0
]
	(4.26)





   	
   
[image:           −γt∕2     − γt∕2     2     2
x0(t) = c1e     + c2e     t,  γ  − 4ω0 = 0,
]
	(4.27)





   
[image:                      ( ∘ -----------  )
x0(t)  =   c1e−γt∕2 cos    − γ2 + 4ω20t∕2

                         (∘  -----------  )
            +c2e −γt∕2 sin     − γ2 + 4 ω20t∕2 ,  γ2 − 4ω20 < 0.(4.28)
]


In the last case, the solution oscillates with an amplitude decreasing exponentially
with time.
   In the [image: a0 > 0  ] case, the general solution is obtained from the sum of a special
solution [image: xs(t)  ] and the solution of the homogeneous equation [image: x0 (t)  ]. A special
solution can be obtained from the ansatz [image: xs(t) = A sinωt + B  cosωt  ],
which when substituted in  (4.25)  and solved for [image: A  ] and [image: B  ] we find
that


   	
   
[image:         a0 [(ω20 − ω2 )cosωt + γ ωsin ωt]
xs(t) = ---------2----2-2----2-2-------,
               (ω 0 − ω ) +  ω γ
]
	(4.29)


                                                                          

                                                                          

and


   	
   
[image: x(t) = x (t) + x (t).
        0       s
]
	(4.30)



The solution [image: x0 (t)  ] decreases exponentially with time and eventually only
[image: xs(t)  ] remains. The only case where this is not true, is when we have
resonance without damping for [image: ω  = ω0   ], [image: γ = 0  ]. In that case the solution
is


   	
   
[image: x(t) = c1cosωt + c2 sin ωt + -a0-(cosωt + 2(ωt )sin ωt) .
                            4ω2
]
	(4.31)



The first two terms are the same as that of the simple harmonic oscillator. The
last one increases the amplitude linearly with time, which is a result of the influx
of energy from the external force to the oscillator.

   Our program will be a simple modification of the program in rk.f90. The
main routines RK(T,X1,X2,T0,TF,X10,X20,Nt) and RKSTEP(t,x1,x2,dt) remain
as they are. We only change the user interface. The basic parameters [image: ω0   ], [image: ω  ],
[image: γ  ], [image: a0   ] are entered interactively by the user from the standard input stdin.
                                                                          

                                                                          
These parameters should be accessible also by the function f2(t,x1,x2), and one
way to be able to do this, is to store them in variables which are placed in a
common block. Such variables are accessible to all subprograms that declare a
common block with the same name using a COMMON declaration. Such a
declaration is shown in the following lines
                                                                          

                                                                          


   
 real(8) ::     omega_0,omega,gamma,a_0,omega_02,omega2
 
 common /params/omega_0,omega,gamma,a_0,omega_02,omega2


 which when written in a (sub)program, the (sub)program gains access to the
“memory position” params where the values of the variables are stored. Another
point that needs our attention is the function f2(t,x1,x2) which now takes the
velocity [image: v → ] x2 in its arguments:
                                                                          

                                                                          


   
real(8) function f2(t,x1,x2)
 
 implicit none
 
 real(8)        omega_0,omega,gamma,a_0,omega_02,omega2
 
 common /params/omega_0,omega,gamma,a_0,omega_02,omega2
 
 real(8) t,x1,x2,a
 
 a = a_0*cos(omega*t)
 
 f2=-omega_02*x1-gamma*x2+a
 
end function f2


 The main program found in the file dlo.f90 is listed below. The subroutines RK,
RKSTEP are the same as in rk.f90 and should also be included in the same
file.
                                                                          

                                                                          


   
!========================================================
 
!Program to solve Damped Linear Oscillator
 
!using 4th order Runge-Kutta Method
 
!Output is written in file dlo.dat
 
!========================================================
 
program dlo_solve
 
 implicit none
 
 integer, parameter  :: P=110000
 
 real(8),dimension(P):: T,X1,X2
 
 real(8) :: Ti,Tf,X10,X20
 
 real(8) :: Energy
 
 real(8) ::     omega_0,omega,gamma,a_0,omega_02,omega2
 
 common /params/omega_0,omega,gamma,a_0,omega_02,omega2
 
 integer :: Nt, i
 
!Input:
 
 print *,’Runge-Kutta Method for DLO Integration’
 
 print *,’Enter omega_0, omega, gamma, a_0:’
 
 read  *, omega_0,omega,gamma,a_0
 
 omega_02 = omega_0*omega_0
 
 omega2   = omega  *omega
 
 print *, ’omega_0= ’,omega_0,’ omega= ’, omega
 
 print *, ’gamma=   ’,gamma,  ’ a_0=   ’,a_0
 
 print *,’Enter Nt,Ti,TF,X10,X20:’
 
 read  *, Nt,Ti,Tf,X10,X20
 
 print *,’Nt = ’,Nt
 
 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf
 
 print *,’           X1(Ti)=’,X10,’ X2(Ti)=’,X20
 
 if(Nt.gt.P) stop ’Nt>P’
 
!The Calculation:
 
 call RK(T,X1,X2,Ti,Tf,X10,X20,Nt)
 
!Output:
 
 open(unit=11,file=’dlo.dat’)
 
 write(11,*)’# Damped Linear Oscillator - dlo’
 
 write(11,*)’# omega_0= ’,omega_0,’ omega= ’, omega,&
 
      ’ gamma= ’,gamma,’ a_0= ’,a_0
 
 do i=1,Nt
                                                                          

                                                                          
 
  Energy = 0.5D0*X2(i)*X2(i)+0.5D0*omega_02*X1(i)*X1(i)
 
  write(11,*)T(i),X1(i),X2(i),Energy
 
 enddo
 
 close(11)
 
end program dlo_solve
 
!========================================================
 
!The functions f1,f2(t,x1,x2) provided by the user
 
!========================================================
 
real(8) function f1(t,x1,x2)
 
 implicit none
 
 real(8) t,x1,x2
 
 f1=x2           !dx1/dt= v = x2
 
end function f1
 
!--------------------------------------------------------
 
real(8) function f2(t,x1,x2)
 
 implicit none
 
 real(8)        omega_0,omega,gamma,a_0,omega_02,omega2
 
 common /params/omega_0,omega,gamma,a_0,omega_02,omega2
 
 real(8) t,x1,x2,a
 
 a = a_0*cos(omega*t)
 
 f2=-omega_02*x1-gamma*x2+a
 
end function f2
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Figure 4.19:  The position as a function of time for the damped oscillator for several
values of [image: γ  ] and [image: ω0 = 3.145  ].
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Figure 4.20:  The phase space trajectory for the damped oscillator for several values
of [image: γ  ] and [image: ω0 = 3.145  ]. Note the attractor at [image: (x,v) = (0,0)  ] where all trajectories are
“attracted to” as [image: t → +∞ ].
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Figure 4.21:  The amplitude of oscillation for the damped oscillator for several values
of [image: γ  ] and [image: ω0 = 3.145  ]. Note the exponential damping of the amplitude with time.
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Figure 4.22:  The period of oscillation of the damped oscillator for several values of
[image: γ  ] and [image: ω0 = 3.145  ]. The axes are chosen so that equation  (4.28)  [image:       2    2   2
(2π∕T ) = 4ω0 − γ  ]
can be easily verified. The points in the plot are our measurements whereas the straight
line is the theoretical prediction, the diagonal [image: y = x  ]



                                                                          

                                                                          
   


   The results are shown in figures 4.19–4.22. Figure 4.19 shows the transition
from a damped motion for [image: γ > 2ω0   ] to an oscillating motion with damping
amplitude for [image: γ < 2 ω0   ]. The exponential decrease of the amplitude is shown in
figure 4.21, whereas the dependence of the period [image: T  ] from the damping coefficient
[image: γ  ] is shown in figure 4.22. Motivated by equation  (4.28) , written in the
form


   	
   
[image:       (    )
  2     2π-      2
4ω0 −   T    = γ ,
]
	(4.32)



we construct the plot in figure 4.22. The right hand side of the equation is put on
the horizontal axis, whereas the left hand side on the vertical. Equation  (4.32)
predicts that both quantities are equal and all measurements should lie on a
particular line, the diagonal [image: y = x  ]. The period [image: T  ] can be estimated from the
time between two consecutive extrema of [image: x(t)  ] or two consecutive zeros of the
velocity [image: v(t)  ] (see figure 4.19).

   Finally it is important to study the trajectory of the system in phase space. This can
be seen10 
in figure 4.20. A point in this space is a state of the system and a trajectory
describes the evolution of the system’s states in time. We see that all such
trajectories end up as [image: t →  +∞ ] to the point [image: (0,0)  ], independently of the
initial conditions. Such a point is an example of a system’s attractor.
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Figure 4.23:  The period of oscillation for the forced damped oscillator for different
initial conditions. We have chosen [image: ω0 = 3.145  ], [image: ω = 2.0  ], [image: γ = 0.5  ] and [image: a0 = 1.0  ]. We
note that after the transient behavior the system oscillates harmonically according to the
relation [image: x(t) = x0(ω)cos(ωt + δ)  ].
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Figure 4.24:  The oscillation amplitude [image: x (ω)
 0  ] as a function of [image: ω  ] for the forced
damped oscillator, where [image: ω0 = 3.145  ], [image: γ = 0.5  ] and [image: a0 = 1.0  ]. We observe a resonance
for [image: ω ≈ ω0  ]. The points of the plot are our measurements and the line is the theoretical
prediction given by equation  (4.33) .
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Figure 4.25:    A  phase  space  trajectory  of  the  forced  damped  oscillator  with
[image: ω0 = 3.145  ], [image: ω = 2.0  ], [image: γ = 0.5  ] and [image: a0 = 1.0  ]. The harmonic oscillation which is the
steady  state  of  the  system  is  an  ellipse,  which  is  an  attractor  of  all  the  phase  space
trajectories that correspond to different initial conditions.
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Figure 4.26:  The trajectory shown in figure 4.25 for [image: t > 100  ]. The trajectory is almost
on top of an ellipse corresponding to the steady state motion of the system. This ellipse
is an attractor of the system.



                                                                          

                                                                          
   


   Next, we add the external force and study the response of the system to it.
The system exhibits a transient behavior that depends on the initial conditions.
For large enough times it approaches a steady state that does not depend
on (almost all of) the initial conditions. This can be seen in figure 4.23.
This is easily understood for our system by looking at equations  (4.26) –
(4.28) . We see that the steady state [image: xs(t)  ] becomes dominant when
the exponentials have damped away. [image: xs(t)  ] can be written in the form


   
[image:  x (t)  =   x0(ω) cos(ωt +  δ(ω ))
                    a0                            ω γ
x0(ω)  =   ∘----2--------------,     tan δ(ω ) = -2----2-.  (4.33)
             (ω 0 − ω2 )2 + γ2ω2                ω  − ω0
]


These equations are verified in figure 4.24 where we study the dependence of the
amplitude [image: x0(ω)  ] on the angular frequency of the driving force. Finally we study
the trajectory of the system in phase space. As we can see in figure 4.20, this time
the attractor is an ellipse, which is a one dimensional curve instead of a zero
dimensional point. For large enough times, all trajectories approach their
attractor asymptotically.
   4.6    The Forced Damped Pendulum

In this section we will study a non-linear dynamical system which exhibits
interesting chaotic behavior. This is a simple model which, despite its
deterministic nature, the prediction of its future behavior becomes intractable
after a short period of time. Consider a simple pendulum in a constant
gravitational field whose motion is damped by a force proportional to its
velocity and it is under the influence of a vertical, harmonic external driving
force:


   	
                                                                          

                                                                          
   
[image:  2
d-𝜃-+ γd-𝜃+  ω20 sin 𝜃 = − 2A cosωt sin 𝜃.
dt2     dt
]
	(4.34)



In the equation above, [image: 𝜃  ] is the angle of the pendulum with the vertical axis, [image: γ  ]
is the damping coefficient, [image: ω20 = g∕L  ] is the pendulum’s natural angular
frequency, [image: ω  ] is the angular frequency of the driving force and [image: 2A  ] is
the amplitude of the external angular acceleration caused by the driving
force.

   In the absence of the driving force, the damping coefficient drives the system
to the point [image: (𝜃, ˙𝜃) = (0, 0)  ], which is an attractor for the system. This continues
to happen for small enough [image: A  ], but for [image: A >  Ac  ] the behavior of the system
becomes more complicated.

   The program that integrates the equations of motion of the system can be
obtained by making trivial changes to the program in the file dlo.f90.
This changes are listed in detail below, but we note that X1 [image: ↔  𝜃  ], X2
[image: ↔  ˙𝜃  ], a_0 [image: ↔  A  ]. The final program can be found in the file fdp.f90. It
is listed below, with the understanding that the commands in between
the dots are the same as in the programs found in the files dlo.f90,
rk.f90.
                                                                          

                                                                          


   
!========================================================
 
!Program to solve Forced Damped Pendulum
 
!using 4th order Runge-Kutta Method
 
!Output is written in file fdp.dat
 
!========================================================
 
program dlo_solve
 
 implicit none
 
 integer, parameter  :: P=1010000
 
 ................................
 
  Energy = 0.5D0*X2(i)*X2(i)+omega_02*(1.0D0-cos(X1(i)))
 
 ................................
 
end program dlo_solve
 
!--------------------------------------------------------
 
real(8) function f2(t,x1,x2)
 
 implicit none
 
 real(8)        omega_0,omega,gamma,a_0,omega_02,omega2
 
 common /params/omega_0,omega,gamma,a_0,omega_02,omega2
 
 real(8) t,x1,x2
 
 f2=-(omega_02+2.0D0*a_0*cos(omega*t))*sin(x1)-gamma*x2
 
end function f2
 
!========================================================
 
subroutine RKSTEP(t,x1,x2,dt)
 
 implicit none
 
 ................................
 
 real(8),parameter :: pi =3.14159265358979324D0
 
 real(8),parameter :: pi2=6.28318530717958648D0
 
 ................................
 
 x1 =x1+h6*(k11+2.0D0*(k12+k13)+k14)
 
 x2 =x2+h6*(k21+2.0D0*(k22+k23)+k24)
 
 if( x1 .gt.  pi) x1 = x1 - pi2
 
 if( x1 .lt. -pi) x1 = x1 + pi2
 
end subroutine RKSTEP




   The final lines in the program are added so that the angle is kept within the
interval [image: [− π,π]  ].
                                                                          

                                                                          

   In order to study the system’s properties we will set [image: ω0 =  1  ], [image: ω = 2  ], and
[image: γ =  0.2  ] unless we explicitly state otherwise. The natural period of the pendulum
is [image: T0 =  2π∕ω0 =  2π ≈ 6.28318530717958648  ] whereas that of the driving force is
[image: T  = 2π∕ω  = π ≈ 3.14159265358979324  ]. For [image: A <  Ac  ], with [image: Ac ≈  0.18  ], the
point [image: (𝜃, ˙𝜃) = (0,0)  ] is an attractor, which means that the pendulum eventually
stops at its stable equilibrium point. For [image: Ac < A  < 0.71  ] the attractor is a
closed curve, which means that the pendulum at its steady state oscillates
indefinitely without circling through its unstable equilibrium point at [image: 𝜃 = ± π  ].
The period of motion is found to be twice that of the driving force. For
[image: 0.72 < A  < 0.79  ] the attractor is an open curve, because at its steady state the
pendulum crosses the [image: 𝜃 = ± π  ] point. The period of the motion becomes
equal to that of the driving force. For [image: 0.79 < A ≲  1.033  ] we have period
doubling for critical values of [image: A  ], but the trajectory is still periodic. For
even larger values of [image: A  ] the system enters into a chaotic regime where
the trajectories are non periodic. For [image: A  ≈ 3.1  ] we find the system in a
periodic steady state again, whereas for [image: A ≈  3.8  ] – [image: 4.448  ] we have period
doubling. For [image: A ≈  4.4489  ] we enter into a chaotic regime again etc. These
results can be seen in figures 4.27–4.29. The reader should construct the
bifurcation diagram of the system by solving problem 20 of this chapter.
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Figure 4.27:  A phase space trajectory of the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0  ], [image: ω = 2.0  ], [image: γ = 0.2  ] and [image: A = 0.60,0.72,0.85,1.02  ]. We observe the
phenomenon of period doubling.
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Figure 4.28:  A phase space trajectory of the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0  ], [image: ω = 2.0  ], [image: γ = 0.2  ] and [image: A = 1.031,1.033,1.04,1.4  ]. We observe the
chaotic behavior of the system.
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Figure 4.29:  A phase space trajectory of the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0  ], [image: ω = 2.0  ], [image: γ = 0.2  ] and [image: A = 1.568,3.8,4.44,4.5  ]. We observe the
system exiting and reentering regimes of chaotic behavior.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 4.30:  A Poincaré diagram for the forced damped pendulum in its chaotic
regime. The parameters chosen are [image: ω0 = 1.0  ], [image: ω = 2.0  ], [image: γ = 0.2  ] and [image: A = 1.4,4.5  ]. 



                                                                          

                                                                          
   


   We can also use the so called Poincaré diagrams in order to study the chaotic
behavior of a system. These are obtained by placing a point in phase
space when the time is an integer multiple of the period of the driving
force. Then, if for example the period of the motion is equal to that of
the period of the driving force, the Poincaré diagram consists of only
one point. If the period of the motion is an [image: n  ]–multiple of the period of
the driving force then the Poincaré diagram consists of only [image: n  ] points.
Therefore, in the period doubling regime, the points of the Poincaré diagram
double at each period doubling point. In the chaotic regime, the Poincaré
diagram consists of an infinite number of points which belong to sets that
have interesting fractal structure. One way to construct the Poincaré
diagram numerically, is to process the data of the output file fdp.dat using
awk11 :
                                                                          

                                                                          


   
awk -v o=$omega -v nt=$Nt -v tf=$TF \
 
 ’BEGIN{T=6.283185307179/o;dt=tf/nt;} $1%T<dt{print $2,$3}’\
 
 fdp.dat


 where $omega, $Nt, $TF are the values of the angular frequency [image: ω  ],
the number of points of time and the final time [image: tf  ]. We calculate
the period T and the time step dt in the program. Then we print
those lines of the file where the time is an integer multiple of the
period12 .
This is accomplished by the modulo operation $1 % T. The value of the
expression $1 % T < dt is true when the remainder of the division of the first
column ($1) of the file fdp.dat with the period T is smaller than dt. The results
in the chaotic regime are displayed in figure 4.30.

   We close this section by discussing another concept that helps us in
the analysis of the dynamical properties of the pendulum. This is the
concept of the basin of attraction which is the set of initial conditions in
phase space that lead the system to a specific attractor. Take for example
the case for [image: A  > 0.79  ] in the regime where the pendulum at its steady
state has a circular trajectory with a positive or negative direction. By
taking a large sample of initial conditions and recording the direction of
the resulting motion after the transient behavior, we obtain figure 4.31.
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Figure 4.31:  Basin of attraction for the forced damped pendulum. The parameters
chosen are [image: ω0 = 1.0  ], [image: ω = 2.0  ], [image: γ = 0.2  ] and [image: A = 0.85,1.4  ].



                                                                          

                                                                          
   


   4.7    Appendix: On the Euler–Verlet Method

Equations  (4.11)  can be obtained from the Taylor expansion 

   
[image:                           ′     (Δt-)2 ′′     (Δt-)3 ′′′            4
𝜃(t + Δt ) =  𝜃(t) + (Δt)𝜃 (t) +   2!  𝜃 (t) +  3!  𝜃 (t) + 𝒪 ((Δt ) )
                                     2            3
𝜃(t − Δt ) =  𝜃(t) − (Δt)𝜃′(t) + (Δt-)-𝜃′′(t) − (Δt-)-𝜃′′′(t) + 𝒪 ((Δt )4).
                                  2!           3!
]


By adding and subtracting the above equations we obtain 
   
[image: 𝜃(t + Δt) + 𝜃(t − Δt)  =   2𝜃(t) + (Δt )2𝜃′′(t) + 𝒪 ((Δt)4)
                                 ′            3
𝜃(t + Δt) − 𝜃(t − Δt)  =   2(Δt)𝜃 (t) + 𝒪 ((Δt) )          (4.35)
]


which give equations  (4.11)  
   
[image:                                        2              4
𝜃 (t + Δt ) =   2𝜃(t) − 𝜃(t − Δt ) + (Δt ) α(t) + 𝒪((Δt ) )
               𝜃(t + Δt ) − 𝜃(t − Δt)         2
      ω(t) =   --------2(Δt-)------- + 𝒪 ((Δt ))           (4.36)
]


From the first equation and equations  (4.9)  we obtain:
   	
   
[image: 𝜃(t + Δt ) = 𝜃(t) + ω (t)(Δt ) + 𝒪 ((Δt )2)
]
	(4.37)




   When we perform a numerical integration, we are interested in the total error
accumulated after [image: N  − 1  ] integration steps. In this method, these errors must be
studied carefully: 

      
      	The error in the velocity [image: ω (t)  ] does not accumulate because it is given
      by the difference of the positions [image: 𝜃(t + Δt ) − 𝜃(t − Δt )  ].
      

      	The accumulation of the errors for the position is estimated as
      follows: Assume that [image: δ𝜃(t)  ] is the total accumulated error from the
      integration from time [image: t0   ] to [image: t  ]. Then according to the expansions
      (4.36)  the error for the first step is [image:                      4
δ𝜃(t0 + Δt ) = 𝒪 ((Δt) )  ].
      Then13 
      
                                                                          

                                                                          
      
      [image:  𝜃(t0 + 2Δt )  =  2𝜃 (t0 + Δt ) − 𝜃(t0) + Δt2α (t0 + Δt ) + 𝒪 ((Δt)4) ⇒
                                                4
δ𝜃(t0 + 2Δt )  =  2δ𝜃 (t0 + Δt ) − δ𝜃(t0) + 𝒪 ((Δt ) )
              =  2𝒪 ((Δt )4) − 0 + 𝒪 ((Δt)4)
                          4
              =  3𝒪 ((Δt )).
      ]

      
For the next steps we obtain 
      
      [image:   𝜃(t0 + 3Δt )  =  2𝜃(t0 + 2Δt ) − 𝜃(t0 + Δt) + Δt2 α(t0 + 2Δt ) + 𝒪 ((Δt )4) ⇒
                                                       4
δ 𝜃(t0 + 3Δt )  =  2δ𝜃 (t0 + 2Δt ) − δ𝜃(t0 + Δt) + 𝒪 ((Δt) )
               =  6𝒪 ((Δt )4) − 𝒪 ((Δt)4) + 𝒪 ((Δt )4)
                          4
               =  6𝒪 ((Δt )),
      ]

      

      
      [image:                                                   2                     4
  𝜃(t0 + 4Δt )  =  2𝜃(t0 + 3Δt ) − 𝜃(t0 + 2Δt) + Δt α(t0 + 3 Δt) + 𝒪 ((Δt ) ) ⇒
δ 𝜃(t0 + 4Δt )  =  2δ𝜃 (t0 + 3Δt ) − δ𝜃(t0 + 2Δt ) + 𝒪 ((Δt )4)
                            4           4           4
               =  12𝒪 ((Δt ) ) − 3𝒪 ((Δt )) + 𝒪 ((Δt) )
               =  10𝒪 ((Δt )4).
      ]

      
Then, inductively, if [image:                       (n−1)n-      4
δ𝜃(t0 + (n − 1)Δt) =    2  𝒪 ((Δt) )  ], we obtain
      
      
      [image:                                                               2
  𝜃(t0 + nΔt )  =  2 𝜃(t0 + (n − 1)Δt ) − 𝜃(t0 + (n − 2)Δt) + Δt α(t0 + (n − 1 )Δt )
                  + 𝒪 ((Δt)4) ⇒
                                                                    4
δ 𝜃(t0 + nΔt )  =  2 δ𝜃(t0 + (n − 1)Δt ) − δ𝜃 (t0 + (n − 2)Δt ) + 𝒪 ((Δt) )
                    (n − 1)n       4    (n − 2)(n − 1)        4          4
               =  2 ---2----𝒪 ((Δt )) − -------2------𝒪 ((Δt ) ) + 𝒪 ((Δt) )

               =   n(n-+-1)𝒪 ((Δt)4).
                      2
      ]

      
Finally
      	
      
      [image: δ𝜃(t0 + n Δt) = n-(n +-1)𝒪 ((Δt)4) ∼-1--𝒪 ((Δt)4) ∼ 𝒪 ((Δt)2).
                   2                Δt2
                                                                          

                                                                          
      ]
	(4.38)


      
      



Therefore the total error is [image: 𝒪 ((Δt)2)  ].

   We also mention the Velocity Verlet method or the Leapfrog method. In this
case we use the velocity explicitly: 

   
[image:                        1-     2
𝜃n+1  =   𝜃n + ωnΔt  + 2αn Δt
               1
ωn+12  =   ωn + --αnΔt
               2
ωn+1  =   ωn+ 1+  1αn+1 Δt.                   (4.39)
              2   2
]


The last step uses the acceleration [image: αn+1   ] which should depend only on the
position [image: 𝜃
 n+1   ] and not on the velocity.
   The Verlet methods are popular in molecular dynamics simulations of many
body systems. One of their advantages is that the constraints of the system of
particles are easily encoded in the algorithm.


   4.8    Appendix: 2nd order Runge–Kutta  Method

In this appendix we will show how the choice of the intermediate point 2 in
equation  (4.17)  reduces the error by a power of [image: h  ]. This choice is special, since
by choosing another point (e.g. [image: t = tn + 0.4h  ]) the result would have not been the
same. Indeed, from the relation


   	
                                                                          

                                                                          
   
[image: dx                         ∫  tn+1
---= f (t,x) ⇒  xn+1 = xn +        f(t,x)dx.
dt                           tn
]
	(4.40)



By Taylor expanding around the point [image: (tn+1 ∕2,xn+1 ∕2)  ] we obtain


   	
   
[image:                                        df
f (t,x) = f (tn+1∕2,xn+1∕2) + (t − tn+1∕2)-(tn+1∕2) + 𝒪 (h2).
                                       dt
]
	(4.41)



Therefore 

   
[image: ∫ tn+1
      f(t,x)dx
 tn
                                df        (t − t    )2||tn+1
=  f(tn+1∕2,xn+1∕2)(tn+1 − tn) + --(tn+1∕2)------n+1∕2--||
                                dt              2      tn
  + 𝒪 (h2 )(t    − t )
           n+1    n              {               2               2}
=  f(t     ,x     )h +  df-(t    )   (tn+1-−-tn+1∕2)-−  (tn −-tn+1∕2)
      n+1∕2  n+1∕2     dt  n+1∕2          2                2
        2
  + 𝒪 (h  )h                      {            }
                       df--         h2-  (−-h)2         3
=  f(tn+1∕2,xn+1∕2)h +  dt(tn+1∕2)   2  −   2     +  𝒪(h )
                           3
=  f(tn+1∕2,xn+1∕2)h + 𝒪 (h ).                                  (4.42)
]


Note that for the vanishing of the [image: 𝒪 (h)  ] term it is necessary to place the
intermediate point at time [image: tn+1∕2   ].
   This is not a unique choice. This can be most easily seen by a different
analysis of the Taylor expansion. Expanding around the point [image: (tn,xn)  ] we obtain


   
[image:                          dxn    1            d2xn
xn+1  =   xn + (tn+1 − tn)--- + --(tn+1 − tn)2---2-+ 𝒪 (h3)
                       2  dt    2             dt
      =   x  + hf  + h--dfn + 𝒪 (h3)
           n     n    2 dt
                     h2 ( ∂fn    ∂fn dxn)        3
      =   xn + hfn + ---  ----+  --------  + 𝒪 (h )
                      2 (  ∂t    ∂x  dt)
                     h2-  ∂fn-   ∂fn-          3
      =   xn + hfn +  2    ∂t +  ∂x fn   + 𝒪 (h ),          (4.43)
]


where we have set [image: fn ≡ f(tn,xn)  ], [image: dxdnt ≡  dxdt(xn )  ] etc. We define 
                                                                          

                                                                          
   
[image:   k1  =   f(tn,xn) = fn
  k2  =   f(tn + ah,xn + bhk1)

xn+1  =   xn + h(c1k1 + c2k2).                 (4.44)
]


and we will determine the conditions so that the terms [image: 𝒪 (h2)  ] of the last
equation in the error are identical with those of equation  (4.43) . By expanding
[image: k2   ] we obtain 
   
[image: k2 =   f(tn + ah,xn +  bhk1)
                            ∂f-                     2
   =   f(tn,xn + bhk1 ) + ha ∂t (tn,xn + bhk1) + 𝒪 (h )
                       ∂f             ∂f               2
   =   f(tn,xn ) + hbk1---(tn,xn ) + ha---(tn,xn) + 𝒪 (h  )
              {        ∂x     }       ∂t
   =   f  + h  a ∂fn-+ bk  ∂fn-  + 𝒪 (h2)
        n         ∂t     1 ∂x
              {  ∂f        ∂f }
   =   fn + h  a --n-+ bfn --n-  + 𝒪 (h2)                  (4.45)
                  ∂t       ∂x
]


Substituting in  (4.44)  we obtain 
                                                                          

                                                                          
   
[image: xn+1  =   xn + h(c1k1 + c2k2)
                {                  (                )         }
      =   xn + h  c1fn + c2fn + c2h  a∂fn- + bfn∂fn-  + 𝒪 (h2)
                                       ∂t        ∂x
                             h2 (       ∂fn            ∂fn)
      =   xn + h(c1 + c2)fn + ---  (2c2a)----+  (2c2b)fn ----
                              2          ∂t            ∂x
            + 𝒪 (h3 ).                                           (4.46)
]


All we need is to choose 
   
[image: c1 + c2  =  1
  2c2a   =  1

   2c2b  =  1.                        (4.47)
]


The choice [image: c1 = 0  ], [image: c2 = 1  ], [image: a = b = 1∕2  ] leads to equation  (4.19) . Some other
choices in the bibliography are [image: c =  1∕2
 2  ] and [image: c =  3∕4
 2  ].
                                                                          

                                                                          
   4.9    Problems


      

      	Prove that the total error in the Euler–Cromer method is of order [image: Δt  ].
      

      	Reproduce the results in figures 4.11–4.18
      

      	Improve your programs so that there is no accumulation of roundoff
      error  in  the  calculation  of  time  when  h is  very  small  for  the
      methods Euler, Euler-Cromer, Euler-Verlet and Runge-Kutta. Repeat
      the analysis of the previous problem.
      

      	Make  the  appropriate  changes  in  your  programs  of  the  Euler,
      Euler-Cromer,  Euler-Verlet  and  Runge-Kutta  methods  so  that  all
      floating variables change from REAL[image: → ]REAL(8). Repeat the analysis
      of the previous problem.
      

      	Compare the results obtained from the Euler, Euler-Cromer, Euler-Verlet,
      Runge-Kutta methods for the following systems where the analytic solution
      is known:
           
           	Particle falling in a constant gravitational field. Consider the case
           [image: v(0) = 0  ], [image: m =  1  ], [image: g = 10  ].
           

           	Particle falling in a constant gravitational field moving in a fluid
           from which exerts a force [image: F =  − kv  ] on the particle. Consider the
           case [image: v (0 ) = 0  ], [image: m  = 1  ], [image: g = 10  ] [image: k = 0.1,1.0,2.0  ]. Calculate the
           limiting velocity of the particle numerically and compare the value
           obtained to the theoretical expectation.
           

           	Repeat  for  the  case  of  a  force  of  resistance  of  magnitude
           [image:         2
|F | = kv   ].


      

      	Consider the damped harmonic oscillator
                                                                          

                                                                          
      	
      
      [image: d2x     dx
--2-+ γ ---+ ω20x = 0.
dt      dt
      ]
	(4.48)


      
      Take [image: ω0 =  3.145  ], [image: γ = 0.5  ] and calculate its mechanical energy as a
      function of time. Is it monotonic? Why? (show that [image: d(E ∕m )∕dt = − γv2   ]).
      Repeat for [image: γ = 4,5,6, 7,8  ]. When is the system oscillating and when it’s
      not? Calculate numerically the critical value of [image: γ  ] for which the system
      passes from a non oscillating to an oscillating regime. Compare your results
      with the theoretical expectations.
      


      	Reproduce the results of figures 4.19–4.22.
      

      	Reproduce the results of figures 4.23–4.26. Calculate the phase [image: δ(ω )  ]
      numerically and compare with equation  (4.33) .
      

      	Consider a simple model for a swing. Take the damped harmonic oscillator
      and a driving force which periodically exerts a momentary push with
      angular frequency [image: ω  ]. Define “momentary” to be an impulse given by the
      acceleration [image: a0   ] by an appropriately small time interval [image: Δt  ]. The
      acceleration is [image: 0  ] for all other times. Calculate the amplitude [image: x0(ω)  ] for
      [image: ω0 = 3.145  ] and [image: γ = 0.5  ].
      

      	Consider a “half sine” driving force on a damped harmonic oscillator
                                                                          

                                                                          
      
      [image:        (
       {  a0cos ωt  cosωt >  0
a(t) =    0         cosωt ≤  0
       (
      ]
 Study the transient behavior of the system for several initial conditions and
      calculate its steady state motion for [image: ω  = 3.145
 0  ] and [image: γ = 0.5  ]. Calculate
      the amplitude [image: x0(ω )  ].
      

      	Consider the driving force on a damped oscillator given by
      
      [image:        1-   1-       -2-          -2--
a(t) = π +  2 cos ω + 3π cos 2ωt − 15π cos 4ωt
      ]
 Study the transient behavior of the system for several initial conditions and
      calculate its steady state motion for [image: ω0 = 3.145  ] and [image: γ = 0.5  ]. Calculate
      the amplitude [image: x0(ω )  ]. Compare your results with those of the previous
      problem and comment about.
      

      	Write a program that simulates [image: N  ] identical, independent harmonic
      oscillators. Take [image: N  = 20  ] and choose random initial conditions for each one
      of them. Study their trajectories in phase space and check whether they
      cross each other. Comment on your results.
      

      	Place the [image: N =  20  ] harmonic oscillators of the previous problem in a
      small square in phase space whose center is at the origin of the
      axes. Consider the evolution of the system in time. Does the shape
      of the rectangle change in time? Does the area change in time?
                                                                          

                                                                          
      Explain...
      

      	Repeat the previous problem when each oscillator is damped with [image: γ = 0.5  ].
      Take [image: ω0 =  3.145  ].
      

      	Consider the forced damped oscillator with [image: ω = 2  ], [image: ω0 =  1.0  ], [image: γ =  0.2  ].
      Study the transient behavior of the system in the plots of [image: 𝜃(t)  ], [image: 𝜃˙(t)  ] for
      [image: A =  0.1,0.5,0.79,0.85,1.03,1.4  ].
      

      	Consider the forced damped pendulum with [image: ω = 2  ], [image: ω  = 1.0
  0  ], [image: γ = 0.2  ]
      and study the phase space trajectories for [image: A  =  ] 0.1, 0.19, 0.21, 0.25, 0.5,
      0.71, 0.79, 0.85, 1.02, 1.031, 1.033, 1.05, 1.08, 1.1, 1.4, 1.8, 3.1, 3.5, 3.8, 4.2,
      4.42, 4.44, 4.445, 4.447, 4.4488. Consider both the transient behavior and
      the steady state motion.
      

      	Reproduce the results in figures 4.30.
      

      	Reproduce the results in figures 4.31.
      

      	Consider the forced damped oscillator with
      
      [image: ω0 = 1,  ω  = 2,  γ =  0.2
      ]
 After the transient behavior, the motion of the system for [image: A =  0.60  ],
      [image: A =  0.75  ] and [image: A  = 0.85  ] is periodic. Measure the period of the
      motion with an accuracy of three significant digits and compare it
      with the natural period of the pendulum and with the period of the
      driving force. Take as initial conditions the following pairs: [image: (𝜃0, ˙𝜃0) =  ]
      [image: (3.1, 0.0)  ], [image: (2.5,0.0)  ], [image: (2.0,0.0)  ], [image: (1.0, 0.0)  ], [image: (0.2,0.0)  ], [image: (0.0,1.0)  ],
      [image: (0.0, 3.0)  ], [image: (0.0,6.0)  ]. Check if the period is independent of the initial
      conditions.
                                                                          

                                                                          
      

      	 Consider the forced damped pendulum with
      
      [image: ω0 = 1,  ω  = 2,  γ =  0.2
      ]
 Study the motion of the pendulum when the amplitude [image: A  ] takes values in
      the interval [image: [0.2,5.0]  ]. Consider specific discrete values of [image: A  ] by splitting
      the interval above in subintervals of width equal to [image: δA =  0.002  ].
      For each value of [image: A  ], record in a file the value of [image: A  ], the angular
      position and the angular velocity of the pendulum when [image: tk = k π  ] with
      [image: k = ktrans,ktrans + 1,ktrans + 2,...,kmax  ]:
      
      [image: A     𝜃(t )    ˙𝜃(t )
         k        k
      ]
 The choice of [image: ktrans  ] is made so that the transient behavior will be
      discarded and study only the steady state of the pendulum. You
      may take [image: kmax = 500  ], [image: ktrans = 400  ], [image: ti = 0  ], [image: tf = 500 π  ], and
      split the intervals [image: [tk,tk + π]  ] to 50 subintervals. Choose [image: 𝜃0 = 3.1  ],
      [image: ˙
𝜃0 = 0  ].
      
           

           	Construct   the   bifurcation   diagram   by   plotting   the   points
           [image: (A,𝜃(tk))  ].
           

           	Repeat by plotting the points [image: (A, 𝜃˙(tk))  ].
                                                                          

                                                                          
           

           	Check whether your results depend on the choice of [image: 𝜃0   ], [image: 𝜃˙0   ].
           Repeat your analysis for [image: 𝜃0 = 0  ], [image: 𝜃˙0 = 1  ].
           

           	Study  the  onset  of  chaos:  Take  [image: A ∈ [1.0000,1.0400]  ]  with
           [image: δA =  0.0001  ] and [image: A ∈ [4.4300,4.4500]  ] with [image: δA = 0.0001  ] and
           compute with the given accuracy the value [image: Ac  ] where the system
           enters into the chaotic behavior regime.
           

           	The plot the points [image: (𝜃(tk),𝜃˙(tk))  ] for [image: A =  1.034,  ] [image: 1.040,  ] [image: 1.080,  ]
           [image: 1.400,  ] [image: 4.450,  ] [image: 4.600  ]. Put 2000 points for each value of [image: A  ] and
           commend on the strength of the chaotic behavior of the pendulum.


      


                                                                          

                                                                          

                                                                          

                                                                          


   


Chapter 5
Planar Motion

In this chapter we will study the motion of a particle moving on the plane under
the influence of a dynamical field. Special emphasis will be given to the study of
the motion in a central field, like in the problem of planetary motion and
scattering. We also study the motion of two or more interacting particles moving
on the plane, which requires the solution of a larger number of dynamical
equations. These problems can be solved numerically by using Runge–Kutta
integration methods, therefore this chapter extends and applies the numerical
methods studied in the previous chapter.


   5.1    Runge–Kutta  for Planar Motion

In two dimensions, the initial value problem that we are interested in, is solving
the system of equations  (4.6)  

   
[image: dx-=  v         dvx-=  a (t,x, v ,y,v )
dt     x         dt     x      x    y
dy              dvy
dt-=  vy        -dt-=  ay(t,x, vx,y,vy).             (5.1)
]



   The 4th order Runge-Kutta method can be programmed by making small
modifications of the program in the file rk.f90. In order to facilitate the study of
many different dynamical fields, for each field we put the code of the respective
acceleration in a different file. The code which is common for all the forces,
namely the user interface and the implementation of the Runge–Kutta method,
will be put in the file rk2.f90. The program that computes the acceleration will
be put in a file named rk_XXX.f90, where XXX is a string of characters that
identifies the force. For example, the file rk2_hoc.f90 contains the program
computing the acceleration of the simple harmonic oscillator, the file
rk2_g.f90 the acceleration of a constant gravitational field [image: ⃗g = − gˆy  ]
                                                                          

                                                                          
etc.

   Different force fields will require the use of one or more coupling constants
which need to be accessible to the code in the main program and some
subroutines. For this reason, we will provide two variables k1, k2 in a common
block:
                                                                          

                                                                          


   
 real(8) ::        k1,k2
 
 common /couplings/k1,k2


 This common block will be accessed by the acceleration functions f3 and f4, the
function energy and the main program where the user will enter the values of k1
and k2. The initial conditions are stored in the variables X10 [image: ↔  x0   ], X20
[image: ↔  y0   ], V10 [image: ↔  vx0   ], V20 [image: ↔  vy0   ], and the values of the functions of
time will be stored in the arrays X1(P) [image: ↔  x(t)  ], X2(P) [image: ↔  y(t)  ], V1(P)
[image: ↔  vx(t)  ], V2(P) [image: ↔  vy(t)  ]. The integration is performed by a call to the
subroutine
                                                                          

                                                                          


   
 call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)


 The results are written to the file rk2.dat. Each line in this file contains the
time, position, velocity and the total mechanical energy, where the energy is
calculated by the function energy(t,x1,x2,v1,v2):
                                                                          

                                                                          


   
 open(unit=11,file=’rk2.dat’)
 
 do i=1,Nt
 
  write(11,*)T(i),X1(i),X2(i),V1(i),V2(i),&
 
      energy(T(i),X1(i),X2(i),V1(i),V2(i))
 
 enddo


 The code for the function energy, which is different for each force field, is
written in the same file with the acceleration. The code for the subroutine
RKSTEP(t,x1,x2,x3,x4,dt) should be extended in order to integrate four instead
of two functions. The full code is listed below:
                                                                          

                                                                          


   
!========================================================
 
!Program to solve a 4 ODE system using Runge-Kutta Method
 
!User must supply derivatives
 
!dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
 
!dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)
 
!as real(8) functions
 
!Output is written in file rk2.dat
 
!========================================================
 
program rk2_solve
 
 implicit none
 
 integer,parameter   :: P=1010000
 
 real(8),dimension(P):: T,X1,X2,V1,V2
 
 real(8) :: Ti,Tf,X10,X20,V10,V20
 
 integer :: Nt, i
 
 real(8) ::        k1,k2
 
 common /couplings/k1,k2
 
 real(8) :: energy,E0,EF,DE
 
!Input:
 
 print *,’Runge-Kutta Method for 4-ODEs Integration’
 
 print *,’Enter coupling constants:’
 
 read  *, k1,k2
 
 print *,’k1= ’,k1,’ k2= ’,k2
 
 print *,’Enter Nt,Ti,Tf,X10,X20,V10,V20:’
 
 read  *,       Nt,Ti,TF,X10,X20,V10,V20
 
 print *,’Nt = ’,Nt
 
 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf
 
 print *,’           X1(Ti)=’,X10,’ X2(Ti)=’,X20
 
 print *,’           V1(Ti)=’,V10,’ V2(Ti)=’,V20
 
!The Calculation:
 
 call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)
 
!Output:
 
 open(unit=11,file=’rk2.dat’)
 
 do i=1,Nt
 
  write(11,*)T(i),X1(i),X2(i),V1(i),V2(i),&
 
      energy(T(i),X1(i),X2(i),V1(i),V2(i))
 
 enddo
                                                                          

                                                                          
 
 close(11)
 
!Rutherford scattering angles:
 
 print *,’v-angle: ’,atan2(V2(Nt),V1(Nt))
 
 print *,’b-angle: ’,2.0D0*atan(k1/(V10*V10*X20))
 
 E0 = energy(Ti   ,X10   ,X20   ,V10   ,V20   )
 
 EF = energy(T(Nt),X1(Nt),X2(Nt),V1(Nt),V2(Nt))
 
 DE = ABS(0.5D0*(EF-E0)/(EF+E0))
 
 print *,’E0,EF, DE/E= ’,E0,EF,DE
 
end program rk2_solve
 
!========================================================
 
!The velocity functions f1,f2(t,x1,x2,v1,v2)
 
!========================================================
 
real(8) function f1(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 f1=v1           !dx1/dt= v1
 
end function f1
 
!--------------------------------------------------------
 
real(8) function f2(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 f2=v2           !dx2/dt= v2
 
end function f2
 
!========================================================
 
!RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt) is the driver
 
!for the Runge-Kutta integration routine RKSTEP
 
!Input: Initial and final times Ti,Tf
 
!       Initial values at t=Ti  X10,X20,V10,V20
 
!       Number of steps of integration: Nt-1
 
!       Size of arrays T,X1,X2,V1,V2
 
!Output: real arrays T(Nt),X1(Nt),X2(Nt),
 
!                          V1(Nt),V2(Nt) where
 
!T(1) = Ti X1(1) = X10 X2(1) = X20 V1(1) = V10 V2(1) = V20
 
!          X1(k) = X1(at t=T(k)) X2(k) = X2(at t=T(k))
 
!          V1(k) = V1(at t=T(k)) V2(k) = V2(at t=T(k))
 
!T(Nt)= Tf
 
!========================================================
 
subroutine RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)
 
 implicit none
 
 integer :: Nt
 
 real(8),dimension(Nt)::T,X1,X2,V1,V2
                                                                          

                                                                          
 
 real(8) :: Ti ,Tf
 
 real(8) :: X10,X20
 
 real(8) :: V10,V20
 
 real(8) :: dt
 
 real(8) :: TS,X1S,X2S !values of time and X1,X2 at given step
 
 real(8) ::    V1S,V2S
 
 integer :: i
 
!Initialize variables:
 
 dt     = (Tf-Ti)/(Nt-1)
 
 T (1)  = Ti
 
 X1(1)  = X10; X2(1) = X20
 
 V1(1)  = V10; V2(1) = V20
 
 TS     = Ti
 
 X1S    = X10; X2S   = X20
 
 V1S    = V10; V2S   = V20
 
!Make RK steps: The arguments of RKSTEP are
 
!replaced with the new ones
 
 do i=2,Nt
 
  call RKSTEP(TS,X1S,X2S,V1S,V2S,dt)
 
  T(i)  = TS
 
  X1(i) = X1S; X2(i) = X2S
 
  V1(i) = V1S; V2(i) = V2S
 
 enddo
 
end subroutine RK
 
!========================================================
 
!Subroutine RKSTEP(t,x1,x2,dt)
 
!Runge-Kutta Integration routine of ODE
 
!dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
 
!dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)
 
!User must supply derivative functions:
 
!real function f1(t,x1,x2,x3,x4)
 
!real function f2(t,x1,x2,x3,x4)
 
!real function f3(t,x1,x2,x3,x4)
 
!real function f4(t,x1,x2,x3,x4)
 
!Given initial point (t,x1,x2) the routine advances it
 
!by time dt.
 
!Input : Inital time t    and function values x1,x2,x3,x4
 
!Output: Final  time t+dt and function values x1,x2,x3,x4
 
!Careful!: values of t,x1,x2,x3,x4 are overwritten...
 
!========================================================
 
subroutine RKSTEP(t,x1,x2,x3,x4,dt)
                                                                          

                                                                          
 
 implicit none
 
 real(8) :: t,x1,x2,x3,x4,dt
 
 real(8) :: f1,f2,f3,f4
 
 real(8) :: k11,k12,k13,k14,k21,k22,k23,k24
 
 real(8) :: k31,k32,k33,k34,k41,k42,k43,k44
 
 real(8) :: h,h2,h6
 

 
 h =dt       !h =dt, integration step
 
 h2=0.5D0*h  !h2=h/2
 
 h6=h/6.0D0  !h6=h/6
 

 
 k11=f1(t,x1,x2,x3,x4)
 
 k21=f2(t,x1,x2,x3,x4)
 
 k31=f3(t,x1,x2,x3,x4)
 
 k41=f4(t,x1,x2,x3,x4)
 

 
 k12=f1(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)
 
 k22=f2(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)
 
 k32=f3(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)
 
 k42=f4(t+h2,x1+h2*k11,x2+h2*k21,x3+h2*k31,x4+h2*k41)
 

 
 k13=f1(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)
 
 k23=f2(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)
 
 k33=f3(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)
 
 k43=f4(t+h2,x1+h2*k12,x2+h2*k22,x3+h2*k32,x4+h2*k42)
 

 
 k14=f1(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)
 
 k24=f2(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)
 
 k34=f3(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)
 
 k44=f4(t+h ,x1+h *k13,x2+h *k23,x3+h *k33,x4+h *k43)
 

 
 t =t+h
 
 x1=x1+h6*(k11+2.0D0*(k12+k13)+k14)
 
 x2=x2+h6*(k21+2.0D0*(k22+k23)+k24)
 
 x3=x3+h6*(k31+2.0D0*(k32+k33)+k34)
 
 x4=x4+h6*(k41+2.0D0*(k42+k43)+k44)
 

 
end subroutine RKSTEP



                                                                          

                                                                          


   5.2    Projectile Motion

Consider a particle in the constant gravitational field near the surface of the earth
which moves with constant acceleration [image: ⃗g = − gˆy  ] so that


   	
   
[image:                                           1  2
x(t)  =  x0 + v0xt ,  y(t)  =  y0 + v0yt − 2gt
vx(t) =  v0x       ,  vy(t) =  v0y − gt
ax(t) =  0         ,  ay(t) =  − g
]
	(5.2)



The particle moves on a parabolic trajectory that depends on the initial
conditions 

   
[image:              (    )
(y − y0)  =     v0y  (x − x0) − 1-g- (x −  x0)2
               v0x             2v20x
                             tan2 𝜃
         =   tan𝜃 (x − x0 ) − -----(x − x0)2,           (5.3)
                             4hmax
]


where [image: tan 𝜃 = v0y∕v0x  ] is the direction of the initial velocity and [image: hmax   ] is the
maximum height of the trajectory. 
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[image: pict] [image: pict]


 
Figure 5.1: Plots of [image: x(t)  ], [image: y(t)  ], [image: vx(t)  ], [image: vy(t)  ] for a projectile fired in a constant
gravitational field [image: ⃗g = − 10.0ˆy  ] with initial velocity [image: ⃗v0 = ˆx + ˆy  ].
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Figure 5.2:  (Left)  The  parabolic  trajectory  of  a  projectile  fired  in  a  constant
gravitational field [image: ⃗g = − 10.0ˆy  ] with initial velocity [image: ⃗v0 = ˆx+ ˆy  ]. (Right) The deviation of
the projectile’s energy from its initial value is due to numerical errors.



                                                                          

                                                                          
   


   The acceleration [image: ax(t) = 0  ] [image: ay(t) = − g  ] ([image: ax ↔ ] f3 , [image: ay ↔ ] f4) and the
mechanical energy is coded in the file rk2_g.f90:
                                                                          

                                                                          


   
!========================================================
 
!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided
 
!by the user
 
!========================================================
 
!Free fall in constant gravitational filed with
 
!g = -k2
 
real(8) function f3(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 f3=0.0D0    !dx3/dt=dv1/dt=a1
 
end function f3
 
!--------------------------------------------------------
 
real(8) function f4(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 f4=-k1   !dx4/dt=dv2/dt=a2
 
end function f4
 
!--------------------------------------------------------
 
real(8) function energy(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 energy = 0.5D0*(v1*v1+v2*v2) + k1*x2
 
end function energy


 In order to calculate a projectile’s trajectory you may use the following
commands:
                                                                          

                                                                          


   
> gfortran -O2 rk2.f90 rk2_g.f90 -o rk2
 
> ./rk2
 
 Runge-Kutta Method for 4-ODEs Integration
 
 Enter coupling constants:
 
10.0 0.0
 
 k1=    10.000000       k2=    0.000000
 
 Enter Nt,Ti,Tf,X10,X20,V10,V20:
 
20000 0.0 0.2 0.0 0.0 1.0 1.0
 
 Nt=        20000
 
 Time: Initial Ti =   0.000000     Final Tf=   0.200000
 
            X1(Ti)=   0.000000       X2(Ti)=   0.000000
 
            V1(Ti)=   1.000000       V2(Ti)=   1.000000


 The analysis of the results contained in the file rk2.dat can be done using
gnuplot:
                                                                          

                                                                          


   
gnuplot> set terminal x11 1
 
gnuplot> plot "rk2.dat" using 1:2 with lines title "x(t)"
 
gnuplot> set terminal x11 2
 
gnuplot> plot "rk2.dat" using 1:3 with lines title "y(t)"
 
gnuplot> set terminal x11 3
 
gnuplot> plot "rk2.dat" using 1:4 with lines title "vx(t)"
 
gnuplot> set terminal x11 4
 
gnuplot> plot "rk2.dat" using 1:5 with lines title "vy(t)"
 
gnuplot> set terminal x11 5
 
gnuplot> plot "rk2.dat" using 1:($6-1.0) w lines t "E(t)-(0)"
 
gnuplot> set terminal x11 6
 
gnuplot> set size square
 
gnuplot> set title "Trajectory"
 
gnuplot> plot "rk2.dat" using 2:3 with lines notit


 The results can be seen in figures 5.1 and 5.2. We note a small increase in
the mechanical energy which is due to the accumulation of numerical
errors.

   We can animate the trajectory by writing a script of gnuplot commands in a
file rk2_animate.gpl 
                                                                          

                                                                          


   
icount = icount+skip
 
plot  "<cat -n rk2.dat"  \
 
  using 3:($1<= icount ? $4: 1/0) with lines notitle
 
# pause 1
 
if(icount < nlines ) reread


 Before calling the script, the user must set the values of the variables
icount, skip and nlines. Each time gnuplot reads the script, it plots
icount number of lines from rk2.dat. Then the script is read again and a
new plot is made with skip lines more than the previous one, unless
icount < nlines. The plotted “file” "<cat -n rk2.dat" is the standard
output (stdout) of the command cat -n rk2.dat which prints to the
stdout the contents of the file rk2.dat line by line, together with the line
number. Therefore the plot command reads data which are the line number,
the time, the coordinate [image: x  ], the coordinate [image: y  ] etc. The keyword using
in
                                                                          

                                                                          


   
  using 3:($1<= icount ? $4: 1/0)


 instructs the plot command to use the 3rd column on the horizontal axis and if
the first column is less than icount ($1<= icount) put on the vertical axis the
value of the 4th column if the first column is less than icount. Otherwise ($1 >
icount) it prints an undefined number (1/0) which makes gnuplot print nothing
at all. You may also uncomment the command pause if you want to make
the animation slower. In order to run the script from gnuplot, issue the
commands
                                                                          

                                                                          


   
gnuplot> icount = 10
 
gnuplot> skip   = 200
 
gnuplot> nlines = 20000
 
gnuplot> load "rk2_animate.gpl"




   The scripts shown above can be found in the accompanying software. More
scripts can be found there that automate many of the boring procedures.
The usage of two of these is explained below. The first one is in the file
rk2_animate.csh:
                                                                          

                                                                          


   
> ./rk2_animate.csh -h
 
Usage: rk2_animate.csh -t [sleep time] -d [skip points] <file>
 
Default file is rk2.dat
 
Other options:
 
   -x: set lower value in xrange
 
   -X: set lower value in xrange
 
   -y: set lower value in yrange
 
   -Y: set lower value in yrange
 
   -r: automatic determination of x-y range
 
> ./rk2_animate.csh -r -d 500 rk2.dat


 The last line is a command that animates a trajectory read from the file
rk2.dat. Each animation frame contains 500 more points than the previous one.
The option -r calculates the plot range automatically. The option -h prints a
short help message.

   A more useful script is in the file rk2.csh.
                                                                          

                                                                          


   
> ./rk2.csh -h
 
Usage: rk2.csh -f <force> k1 k2 x10 x20 v10 v20 STEPS t0 tf
 
Other Options:
 
 -n Do not animate trajectory
 
Available forces (value of <force>):
 
1: ax=-k1             ay= -k2 y           Harmonic oscillator
 
2: ax= 0              ay= -k1             Free fall
 
3: ax= -k2     vx     ay= -k2    vy - k1  Free fall + \
 
                                          air resistance ~ v
 
4: ax= -k2 |v| vx     ay= -k2 |v|vy - k1  Free fall + \
 
                                          air resistance ~ v^2
 
5: ax= k1*x1/r^3      ay= k1*x2/r^3       Coulomb Force
 
....


 The option -h prints operating instructions. A menu of forces is available, and a
choice can be made using the option -f. The rest of the command line consists of
the parameters read by the program in rk2.f90, i.e. the coupling constants k1,
k2, the initial conditions x10, x20, v10, v20 and the integration parameters
STEPS, t0 and tf. For example, the commands
                                                                          

                                                                          


   
[literate={-}{{\texttt{-}}}1]
 
> rk2.csh -f 2 -- 10.0 0.0 0.0 0.0 1.0 1.0 20000 0.0 0.2
 
> rk2.csh -f 1 -- 16.0 1.0 0.0 1.0 1.0 0.0 20000 0.0 6.29
 
> rk2.csh -f 5 -- 10.0 0.0 -10 0.2 10. 0.0 20000 0.0 3.00


 compute the trajectory of a particle in the constant gravitational field discussed
above, the trajectory of an anisotropic harmonic oscillator (k1 = [image: ax =  − ω21x  ],
k2 = [image: ay = − ω2y
        2  ]) and the scattering of a particle in a Coulomb field –
try them! I hope that you will have enough curiosity to look “under the
hood” of the scripts and try to modify them or create new ones. Some
advise to the lazy guys: If you need to program your own force field follow
the recipe: Write the code of your acceleration field in a file named e.g.
rk2_myforce.f90 as we did with rk2_g.f90. Edit the file rk2.csh and modify
the line
                                                                          

                                                                          


   
set forcecode = (hoc g vg v2g cb)


 to
                                                                          

                                                                          


   
set forcecode = (hoc g vg v2g cb myforce)


 (the variable $forcecode may have more entries than the ones shown
above). Count the order of the string myforce, which is 6 in our case. In
order to access this force field from the command line, use the option -f
6:
                                                                          

                                                                          


   
> rk2.csh -f 6 -- .......




   Now, we will study the effect of the air resistance on the motion of the
projectile. For small velocities this is a force proportional to the velocity
[image: F⃗r =  − mk ⃗v  ], therefore 

   
[image: ax  =   − kvx
ay  =   − kvy − g.                        (5.4)
]


By taking 
   
[image:                v0x (       )
 x(t)  =   x0 + ---  1 − e−kt
                k(       ) (        )
 y(t)  =   y0 + 1- v0y + g-  1 − e−kt  − g-t
               k        k               k
vx(t)  =   v0xe−kt
          (      g )       g
vy(t)  =    v0y + -- e− kt − --,                        (5.5)
                 k         k
]


we obtain the motion of a particle with terminal velocity [image: vy(+∞  ) = − g ∕k  ]
                                                                          

                                                                          
([image: x(+ ∞ ) =  ] const., [image: y(+ ∞ ) ∼ t  ]).
   The acceleration caused by the air resistance is programmed in the file (k1
[image: ↔  g  ], k2 [image: ↔ k  ] ) rk2_vg.f90:
                                                                          

                                                                          


   
!========================================================
 
!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided
 
!by the user
 
!========================================================
 
!Free fall in constant gravitational filed with
 
!ax = -k2 vx    ay = -k2 vy - k1
 
real(8) function f3(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 f3=-k2*v1   !dx3/dt=dv1/dt=a1
 
end function f3
 
!--------------------------------------------------------
 
real(8) function f4(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 f4=-k2*v2-k1   !dx4/dt=dv2/dt=a2
 
end function f4




   The results are shown in figure 5.3 where we see the effect of an increasing air
resistance on the particle trajectory. The effect of a resistance force of the form
[image: F⃗r =  − mkv2 ˆv  ] is shown in figure 5.4. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

                                
Figure 5.3:                                          
The trajectory of a projectile moving in a constant gravitational field [image: ⃗g = − 10ˆy  ] with air
resistance causing acceleration [image: ⃗ar = − k⃗v  ] for [image: k = 0,0.2,1,5,10,20,30  ]. The left plot has
[image: ⃗v(0) = ˆx + ˆy  ] and the right plot has [image: ⃗v(0) = 5ˆx + 5ˆy  ].



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

         
Figure 5.4:                        The            trajectory            of            a
projectile moving in a constant gravitational field [image: ⃗g = − 10yˆ  ] with air resistance causing
acceleration [image: ⃗ar = − kv2ˆv  ] for [image: k = 0,0.2,1,5,10,20,30  ]. The left plot has [image: ⃗v(0) = ˆx+ ˆy  ]
and the right plot has [image: ⃗v(0) = 5ˆx +5yˆ  ].



                                                                          

                                                                          
   


   5.3    Planetary Motion

Consider the simple planetary model of a “sun” of mass [image: M  ] and a planet “earth”
at distance [image: r  ] from the sun and mass [image: m  ] such that [image: m  ≪  M  ]. According to
Newton’s law of gravity, the earth’s acceleration is


   	
   
[image:            GM        GM
⃗a = ⃗g = − --2-ˆr = − --3--⃗r,
            r         r
]
	(5.6)



where [image:              − 11--m3----
G = 6.67 × 10    kgr⋅sec2   ], [image:               30
M  = 1.99 × 10  kgr  ], [image:               24
m  = 5.99 × 10  kgr  ].
When the hypothesis [image: m ≪  M  ] is not valid, the two body problem is reduced to
that of the one body problem with the mass replaced by the reduced mass
[image: μ  ]


   
[image: 1-= -1 + -1-.
μ   m    M  ]

The force of gravity is a central force. This implies conservation of the angular
momentum [image: ⃗
L = ⃗r × ⃗p  ] with respect to the center of the force, which in turn
implies that the motion is confined on one plane. We choose the [image: z  ] axis so
                                                                          

                                                                          
that
   	
   
[image: ⃗L = Lz ˆk = m (xvy − yvx)ˆk.
]
	(5.7)



The force of gravity is conservative and the mechanical energy


   	
   
[image: E  = 1-mv2 −  GmM----
     2          r
]
	(5.8)



is conserved. If we choose the origin of the coordinate axes to be the center of the
force, the equations of motion  (5.6)  become 

   
[image:           GM
ax  =   − --3-x
           r
a   =   − GM--y,                         (5.9)
 y         r3
]


where [image: r2 = x2 + y2   ]. This is a system of two coupled differential equations for the
functions [image: x(t)  ], [image: y(t)  ]. The trajectories are conic sections which are either an
ellipse (bound states - “planet”), a parabola (e.g. escape to infinity when the
particle starts moving with speed equal to the escape velocity) or a hyperbola
(e.g. scattering).
   Kepler’s third law of planetary motion states that the orbital period [image: T  ] of a
planet satisfies the equation


   	
   
[image:   2    4π2  3
T   = GM---a ,
]
	(5.10)



where [image: a  ] is the semi-major axis of the elliptical trajectory. The eccentricity is a
measure of the deviation of the trajectory from being circular


   	
   
[image:     ∘ ------2
e =   1 −  b-,
           a2
]
	(5.11)



where [image: b  ] is the semi-minor axis. The eccentricity is 0 for the circle and tends to 1
as the ellipse becomes more and more elongated. The foci [image: F1   ] and [image: F2   ] are
located at a distance [image: ea  ] from the center of the ellipse. They have the property
that for every point on the ellipse


   	
   
[image: PF1 + P F2 =  2a.
]
	(5.12)




   The acceleration given to the particle by Newton’s force of gravity is
programmed in the file rk2_cb.f90:
                                                                          

                                                                          


   
!========================================================
 
!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided
 
!by the user
 
!========================================================
 
!Motion in Coulombic potential:
 
!ax= k1*x1/r^3 ay= k1*x2/r^3
 
real(8) function f3(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 real(8) :: r2,r3
 
 r2=x1*x1+x2*x2
 
 r3=r2*sqrt(r2)
 
 if(r3.gt.0.0D0)then
 
  f3=k1*x1/r3              !dx3/dt=dv1/dt=a1
 
 else
 
  f3=0.0D0
 
 endif
 
end function f3
 
!--------------------------------------------------------
 
real(8) function f4(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 real(8) :: r2,r3
 
 r2=x1*x1+x2*x2
 
 r3=r2*sqrt(r2)
 
 if(r3.gt.0.0D0)then
 
  f4=k1*x2/r3              !dx4/dt=dv2/dt=a2
 
 else
 
  f4=0.0D0
 
 endif
 
end function f4
 
!--------------------------------------------------------
                                                                          

                                                                          
 
real(8) function energy(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 real(8) :: r
 
 r=sqrt(x1*x1+x2*x2)
 
 if( r .gt. 0.0D0)then
 
  energy = 0.5D0*(v1*v1+v2*v2) + k1/r
 
 else
 
  energy = 0.0D0
 
 endif
 
end function energy
 



 We set k1= [image: − GM  ] and take special care to avoid hitting the center of the
force, the singular point at [image: (0,0 )  ]. The same code can be used for the
electrostatic Coulomb field with k1= [image: qQ ∕4π 𝜖0m  ].

   At first we study trajectories which are bounded. We set [image: GM   = 10  ],
[image: x (0 ) = 1.0  ], [image: y(0) = 0  ], [image: v0x = 0  ] and vary [image: v0y  ]. We measure the period [image: T  ] and
the length of the semi axes of the resulting ellipse. The results can be found in
table 5.1. 

                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	

	[image: v0x  ]	[image: T ∕2  ] 	[image: 2a  ]   

	
	
	

	3.2   	1.030  	2.049  
	3.4 	1.281 	2.370

	3.6   	1.682  	2.841  
	3.8 	2.396 	3.597

	4.0   	3.927  	5.000  
	4.1 	5.514 	6.270

	4.2   	8.665  	8.475  

	4.3   	16.931	13.245

	4.3   	28.088	18.561

	4.38  	42.652	24.522

	4.40  	61.359	31.250

	4.42  	99.526	43.141

	
	
	

	    





 Table 5.1:  The results for the period [image: T  ] and the length of the semi-major axis [image: a  ] of
the trajectory of planetary motion for [image: GM   = 10  ], [image: x(0) = 1.0  ], [image: y(0) = 0  ], [image: v0y = 0  ].

                                                                          

                                                                          
   


   

   Some of the trajectories are shown in figure 5.5. There we can see the
dependence of the size of the ellipse on the period. Figure 5.6 confirms Kepler’s
third law of planetary motion given by equation  (5.10) . 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.5:  Planetary trajectories for [image: GM  = 10  ], [image: x(0) = 1.0  ], [image: y(0) = 0  ], [image: v  = 0
 0y  ]
and [image: v0x =  ] 3.6, 3.8, 4.0, 4.1, 4.3. The numbers are the corresponding half periods.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.6:  Kepler’s third law of planetary motion for [image: GM  = 10  ]. The points are the
measurements taken from table 5.1. The solid line is the known analytic solution  (5.10) .



                                                                          

                                                                          
   


   In order to confirm Kepler’s third law of planetary motion numerically, we
take the logarithm of both sides of equation  (5.10)


   	
   
[image:                    (     )
       3       1     4 π2
lnT =  2-ln a + 2-ln  GM--- .
]
	(5.13)



Therefore, the points [image: (ln a,lnT )  ] lie on a straight line. Using a linear least
squares fit we calculate the slope and the intercept which should be equal to [image: 3
2   ]
and [image:          2
1∕2ln (4 π ∕GM  )  ] respectively. This is left as an exercise.

   In the case where the initial velocity of the particle becomes larger than the
escape velocity [image: ve  ], the particle escapes from the influence of the gravitational
field to infinity. The escape velocity corresponds to zero mechanical energy, which
gives


   	
   
[image: v2e =  2GM--.
        r
]
	(5.14)



When [image: GM   = 10  ], [image: x(0) = 1.0  ], [image: y(0) = 0  ], we obtain [image: ve ≈ 4.4721 ...  ]. The
numerical calculation of [image: ve  ] is left as an exercise. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.7:  The spiral orbit of a particle moving under the influence of a central force
[image:  ⃗       3
F = − k∕r ˆr  ].



                                                                          

                                                                          
   


   5.4    Scattering

In this section we consider scattering of particles from a central
potential1 .
We assume particles that follow unbounded trajectories that start from infinity
and move almost free from the influence of the force field towards its center.
When they approach the region of interaction they get deflected and get
off to infinity in a new direction. We say that the particles have been
scattered and that the angle between their original and final direction is the
scattering angle [image: 𝜃  ]. Scattering problems are interesting because we can
infer to the properties of the scattering potential from the distribution of
the scattering angle. This approach is heavily used in today’s particle
accelerators for the study of fundamental interactions between elementary
particles.

   First we will discuss scattering of small hard spheres of
radius [image: r1   ]  by other hard spheres or radius [image: R2   ]. The interaction
potential2 
is given by


   	
   
[image:        {
V (r ) =    0  r > R2 +  r1 ,
          ∞   r < R2 +  r1
]
	(5.15)



where [image: r  ] is the distance between the center of [image: r1   ] from the center of [image: R2   ].
                                                                          

                                                                          



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.8:  Scattering of hard spheres. The scattering angle is [image: 𝜃  ]. The cross sectional
area [image: σ  ] is shown to the right.



                                                                          

                                                                          
   


   Assume that the particles in the beam do not interact with each other and
that there is only one collision per scattering. Let [image: J  ] be the intensity of the
beam3 
and [image: A  ] its cross sectional area. Assume that the target has [image: n  ] particles per unit
area. The cross sectional area of the interaction is [image:               2
σ = π(r1 + R2)   ] where [image: r1   ]
and [image: R2   ] are the radii of the scattered particles and targets respectively (see figure
(5.8) ): All the spheres of the beam which lie outside this area are not
scattered by the particular target. The total interaction cross section is



   	
   
[image: Σ =  nA σ,
]
	(5.16)



where [image: nA  ] is the total number of target spheres which lie within the beam. On
the average, the scattering rate is 


   	
   
[image: N  = J Σ = J nA σ.
                                                                          

                                                                          
]
	(5.17)



The above equation is the definition of the total scattering cross section [image: σ  ]
of the interaction. The differential cross section [image: σ(𝜃)  ] is defined by the
relation


   	
   
[image: dN  = JnA σ (𝜃)dΩ,
]
	(5.18)



where [image: dN  ] is the number of particles per unit time scattered within the solid
angle [image: dΩ  ]. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.9:  Beam particles passing through the ring [image: 2πbdb  ] are scattered within the
solid angle [image: dΩ = 2πsin𝜃d𝜃  ].



                                                                          

                                                                          
   


   The total cross section is


   	
   
[image:       ∫            ∫                     ∫
σtot =   σ (𝜃)dΩ =    σ(𝜃) sin 𝜃d𝜃dϕ =  2π   σ (𝜃) sin 𝜃d𝜃.
        Ω
]
	(5.19)



In the last relation we used the cylindrical symmetry of the interaction with
respect to the axis of the collision. Therefore


   	
   
[image:          1     dN
σ(𝜃) = ---------------.
       nAJ  2π sin 𝜃d𝜃
]
	(5.20)



This relation can be used in experiments for the measurement of the
differential cross section by measuring the rate of detection of particles within
the space contained in between two cones defined by the angles [image: 𝜃  ] and
[image: 𝜃 + d𝜃  ]. This is the relation that we will use in the numerical calculation of
[image: σ (𝜃 )  ].

   Generally, in order to calculate the differential cross section we shoot a particle
at a target as shown in figure 5.9. The scattering angle [image: 𝜃  ] depends on the
impact parameter [image: b  ]. The part of the beam crossing the ring of radius
                                                                          

                                                                          
[image: b(𝜃)  ], thickness [image: db  ] and area [image: 2πbdb  ] is scattered in angles between [image: 𝜃  ]
and [image: 𝜃 + d𝜃  ]. Since there is only one particle at the target we have that
[image: nA  = 1  ]. The number of particles per unit time crossing the ring is [image: J 2πbdb  ],
therefore


   	
   
[image: 2πb(𝜃)db = − 2πσ (𝜃)sin 𝜃d𝜃
]
	(5.21)



(the [image: − ] sign is because as [image: b  ] increases, [image: 𝜃  ] decreases). From the potential we can
calculate [image: b(𝜃)  ] and from [image: b(𝜃)  ] we can calculate [image: σ(𝜃)  ]. Conversely, if we measure
[image: σ (𝜃 )  ], we can calculate [image: b(𝜃)  ].


   5.4.1    Rutherford Scattering

The scattering of a charged particle with charge [image: q  ] (“electron”) in a
Coulomb potential of a much heavier charge [image: Q  ] (“nucleus”) is called
Rutherford scattering. In this case, the interaction potential is given by



   	
   
[image:           1  Q
V (r) = -------,
        4π 𝜖0 r
]
	(5.22)



which accelerates the particle with acceleration


   	
   
[image:        qQ   ˆr      ⃗r
⃗a = 4π𝜖-m--r2 ≡ α r3.
        0
]
	(5.23)



The energy of the particle is [image: E =  1mv2
     2   ] and the magnitude of its angular
momentum is [image: l = mvb  ], where [image: v ≡ |⃗v| ]. The dependence of the impact parameter
on the scattering angle is  [38]


   	
   
[image:         α     𝜃
b(𝜃) = --2 cot-.
       v      2
]
	(5.24)



Using equation  (5.21)  we obtain


   	
                                                                          

                                                                          
   
[image:          2
σ(𝜃) = α---1-sin− 4 𝜃-.
        4 v4      2
]
	(5.25)






                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.10:    Rutherford  scattering  trajectories.  We  set  k1 [image: ≡  -qQ--= 1
   4π𝜖0m  ]  (see
code  in  the  file  rk2_cb.f90)  and  [image: b = 0.08,  ] [image: 0.015,  ] [image: 0.020,  ] [image: 0.035,  ] [image: 0.080,  ] [image: 0.120,  ]
[image: 0.200,  ] [image: 0.240,  ] [image: 0.320,  ] [image: 0.450,  ] [image: 0.600,  ] [image: 1.500  ]. The initial position of the particle is
at [image: x(0) = − 50  ] and its initial velocity is [image: v = 3  ] in the [image: x  ] direction. The number of
integration steps is 1000, the initial time is 0 and the final time is 30.



                                                                          

                                                                          
   


   Consider the scattering trajectories. The results for same charges are shown in
figure 5.10. A similar figure is obtained in the case of opposite charges. In the
latter case we have to take special care for small impact parameters [image: b < 0.2  ]
where the scattering angle is [image: ≈ 1  ]. A large number of integration steps
is needed in order to obtain the desired accuracy. A useful monitor of
the accuracy of the calculation is the measurement of the energy of the
particle which should be conserved. The results are shown in table 5.2.


                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	

	[image: b  ]    	[image: 𝜃n  ]      	[image: 𝜃a  ]       	[image: ΔE ∕E  ]  	Nt   

	
	
	
	
	

	[image: 0.008  ]	[image: 2.9975  ]	[image: 2.9978  ]	[image: 2.810 −9   ]  	[image: 5000  ]

	[image: 0.020  ]	[image: 2.7846  ]	[image: 2.7854  ]	[image: 2.710 −9   ]  	[image: 5000  ]

	[image: 0.030  ]	[image: 2.6131  ]	[image: 2.6142  ]	[image:      −9
2.510   ]  	[image: 5000  ]

	[image: 0.043  ]	[image: 2.4016  ]	[image: 2.4031  ]	[image: 2.310 −9   ]  	[image: 5000  ]

	[image: 0.056  ]	[image: 2.2061  ]	[image: 2.2079  ]	[image: 2.010 −9   ]  	[image: 5000  ]

	[image: 0.070  ]	[image: 2.0152  ]	[image: 2.0172  ]	[image: 1.710 −9   ]  	[image: 5000  ]

	[image: 0.089  ]	[image: 1.7887  ]	[image: 1.7909  ]	[image:      −9
1.410   ]  	[image: 5000  ]

	[image: 0.110  ]	[image: 1.5786  ]	[image: 1.5808  ]	[image:      −9
1.010   ]  	[image: 5000  ]

	[image: 0.130  ]	[image: 1.4122  ]	[image: 1.4144  ]	[image: 0.810 −9   ]  	[image: 5000  ]

	[image: 0.160  ]	[image: 1.2119  ]	[image: 1.2140  ]	[image: 0.510 −9   ]  	[image: 5000  ]

	[image: 0.200  ]	[image: 1.0123  ]	[image: 1.0142  ]	[image: 0.310 −9   ]  	[image: 5000  ]

	[image: 0.260  ]	[image: 0.8061  ]	[image: 0.8077  ]	[image:      −9
0.110   ]  	[image: 5000  ]

	[image: 0.360  ]	[image: 0.5975  ]	[image: 0.5987  ]	[image:      −11
2.910   ]	[image: 5000  ]

	[image: 0.560  ]	[image: 0.3909  ]	[image: 0.3917  ]	[image: 0.310 −11   ]	[image: 5000  ]

	[image: 1.160  ]	[image: 0.1905  ]	[image: 0.1910  ]	[image: 5.310 −14   ]	[image: 5000  ]

	
	
	
	
	

	      





 Table 5.2:  Scattering angles of Rutherford scattering. We set k1 [image: ≡ 4qπQ𝜖m-= 1
     0  ] (see
file rk2_cb.f90) and study the resulting trajectories for the values of [image: b  ] shown in column
1. [image: 𝜃n  ] is the numerically calculated scattering angle and [image: 𝜃a  ] is the one calculated from
equation   (5.24) . The ratio [image: ΔE ∕E  ] shows the change in the particle’s energy due to
numerical errors. The last column is the number of integration steps. The particle’s initial
position is at [image: x(0) = − 50  ] and initial velocity [image: ⃗v = 3ˆx  ].

                                                                          

                                                                          
   


   

   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	

	[image: b  ]    	[image: 𝜃n  ]      	[image: 𝜃a  ]       	[image: ΔE ∕E  ]  	 STEPS 

	
	
	
	
	

	[image: 0.020  ]	[image: 2.793  ]  	[image: 2.785  ]  	[image: 0.02  ]     	[image: 1000000  ]

	[image: 0.030  ]	[image: 2.620  ]  	[image: 2.614  ]  	[image:      −3
8.210   ]  	[image: 300000  ] 

	[image: 0.043  ]	[image: 2.405  ]  	[image: 2.403  ]  	[image:      −4
7.210   ]  	[image: 150000  ] 

	[image: 0.070  ]	[image: 2.019  ]  	[image: 2.017  ]  	[image: 3.210 −7   ]  	[image: 150000  ] 

	[image: 0.089  ]	[image: 1.793  ]  	[image: 1.791  ]  	[image: 8.210 −7   ]  	 [image: 60000  ]  

	[image: 0.110  ]	[image: 1.583  ]  	[image: 1.581  ]  	[image: 1.210 −6   ]  	 [image: 30000  ]  

	[image: 0.130  ]	[image: 1.417  ]  	[image: 1.414  ]  	[image:      −7
9.410   ]  	 [image: 20000  ]  

	[image: 0.160  ]	[image: 1.216  ]  	[image: 1.214  ]  	[image: 6.010 −5   ]  	 [image: 5000  ]  

	[image: 0.200  ]	[image: 1.016  ]  	[image: 1.014  ]  	[image: 4.110 −6   ]  	 [image: 5000  ]  

	[image: 0.260  ]	[image: 0.8093  ]	[image: 0.8077  ]	[image: 2.210 −7   ]  	 [image: 5000  ]  

	[image: 0.360  ]	[image: 0.6000  ]	[image: 0.5987  ]	[image:      −9
7.610   ]  	 [image: 5000  ]  

	[image: 0.560  ]	[image: 0.3926  ]	[image: 0.3917  ]	[image:      −10
1.210   ]	 [image: 5000  ]  

	[image: 1.160  ]	[image: 0.1913  ]	[image: 0.1910  ]	[image: 2.910 −13   ]	 [image: 5000  ]  

	
	
	
	
	

	      





 Table 5.3:  Rutherford scattering of opposite charges with [image: --qQ-- = − 1
4π𝜖0m  ]. The table is
similar to table 5.2. We observe the numerical difficulty for small impact parameters.

                                                                          

                                                                          
   


   

   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.11:  Differential cross section of the Rutherford scattering. The solid line is
the function  (5.25)  for [image: α = 1  ], [image: v = 3  ]. We set [image: -qQ--
4π𝜖0m = 1  ]. The particle’s initial position
is [image: x(0) = − 50  ] and its initial velocity is [image: ⃗v = 3ˆx  ]. We used 5000 integration steps, initial
time equal to 0 and final time equal to 30. The impact parameter varies between 0.02 and
1 with step equal to 0.0002.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.12:  Differential cross section of the Rutherford scattering like in figure 5.11.
The solid line is the function [image:        4
1∕(4 × 3)x  ] from which we can deduce the functional form
of [image: σ (𝜃)  ]. 



                                                                          

                                                                          
   


   We will now describe a method for calculating the cross section by
using equation  (5.20) . Alternatively we could have used equation  (5.21)
and perform a numerical calculation of the derivatives. This is left as an
exercise for the reader. Our calculation is more like an experiment. We
place a “detector” that “detects” particles scattered within angles [image: 𝜃  ]
and [image: 𝜃 + δ𝜃  ]. For this reason we split the interval [image: [0,π ]  ] in [image: Nb  ] bins
so that [image: δ𝜃 = π ∕Nb  ]. We perform “scattering experiments” by varying
[image: b ∈ [bm,bM ]  ] with step [image: δb  ]. Due to the symmetry of the problem we fix [image: ϕ  ]
to be a constant, therefore a given [image: 𝜃  ] corresponds to a cone with an
opening angle [image: 𝜃  ] and an apex at the center of scattering. For given [image: b  ] we
measure the scattering angle [image: 𝜃  ] and record the number of particles per unit
time [image: δN  ∝  bδb  ]. The latter is proportional to the area of the ring of
radius [image: b  ]. All we need now is the beam intensity [image: J  ] which is the total
number of particles per unit time [image: J ∝ ∑   bδb
       i  ] (note than in the ratio
[image: δN ∕J  ] the proportionality constant and [image: δb  ] cancel) and the solid angle
[image: 2π sin(𝜃)δ𝜃  ]. Finally we can easily use equation  (5.19)  in order to calculate the
total cross section [image: σtot  ]. The program that performs this calculation is in
the file scatter.f90 and it is a simple modification of the program in
rk2.f90:
                                                                          

                                                                          


   
!========================================================
 
!Program that computes scattering cross-section of a central
 
!force on the plane. The user should first check that the
 
!parameters used, lead to a free state in the end.
 
!  **  X20 is the impact parameter b  **
 
!A 4 ODE system is solved using Runge-Kutta Method
 
!User must supply derivatives
 
!dx1/dt=f1(t,x1,x2,x3,x4) dx2/dt=f2(t,x1,x2,x3,x4)
 
!dx3/dt=f3(t,x1,x2,x3,x4) dx4/dt=f4(t,x1,x2,x3,x4)
 
!as real(8) functions
 
!Output is written in file scatter.dat
 
!========================================================
 
program scatter_cross_section
 
 implicit none
 
 integer,parameter   :: P=1010000
 
 real(8),dimension(P):: T,X1,X2,V1,V2
 
 real(8) :: Ti,Tf,X10,X20,V10,V20
 
 real(8) :: X20F,dX20 !max impact parameter and step
 
 integer :: Nt
 
 integer :: i
 
 real(8) ::        k1,k2
 
 common /couplings/k1,k2
 
 integer, parameter :: Nbins=20
 
 integer :: index
 
 real(8) :: angle,bins(Nbins),Npart
 
 real(8),parameter :: PI     =3.14159265358979324D0
 
 real(8),parameter :: rad2deg=180.0D0/PI
 
 real(8),parameter :: dangle =PI/Nbins
 
 real(8) R,density,dOmega,sigma,sigmatot
 
!Input:
 
 print *,’Runge-Kutta Method for 4-ODEs Integration’
 
 print *,’Enter coupling constants:’
 
 read  *, k1,k2
 
 print *,’k1= ’,k1,’ k2= ’,k2
 
 print *,’Enter Nt,Ti,Tf,X10,X20,V10,V20:’
 
 read  *,       Nt,Ti,TF,X10,X20,V10,V20
                                                                          

                                                                          
 
 print *,’Enter final impact parameter X20F and step dX20:’
 
 read  *, X20F,dX20
 
 print *,’Nt = ’,Nt
 
 print *,’Time: Initial Ti =’,Ti,  ’ Final Tf=’,Tf
 
 print *,’           X1(Ti)=’,X10, ’ X2(Ti)=’,X20
 
 print *,’           V1(Ti)=’,V10, ’ V2(Ti)=’,V20
 
 print *,’Impact par X20F  =’,X20F,’ dX20  =’,dX20
 

 
 open(unit=11,file=’scatter.dat’)
 
 bins   = 0.0d0
 
!The Calculation:
 
 Npart  = 0.0D0
 
 X20    = X20 + dX20/2.0D0 !starts in middle of first interval
 
 do while (X20 .lt. X20F )
 
  call RK(T,X1,X2,V1,V2,Ti,Tf,X10,X20,V10,V20,Nt)
 
! Take absolute value due to symmetry:
 
  angle = DABS(atan2(V2(Nt),V1(Nt)))
 
!Output: The final angle. Check if almost constant
 
  write(11,*) ’@ ’, X20, angle,&
 
       DABS(atan2(V2(Nt-50),V1(Nt-50))),&
 
       k1/V10**2/tan(angle/2.0D0)
 
!Update histogram:
 
  index       = int(angle/dangle)+1
 
!Number of incoming particles per unit time
 
!is proportional to radius of ring
 
!of radius X20, the impact parameter:
 
  !db is cancelled from density
 
  bins(index) = bins(index) +  X20
 
  Npart       = Npart       +  X20 !<-- i.e. from here
 
  X20         = X20         + dX20
 
 enddo
 
!Print scattering cross section:
 
 R         = X20             !beam radius
 
 density   = Npart/(PI*R*R)  !beam flux density J
 
 sigmatot  = 0.0D0           !total cross section
 
 do i=1,Nbins
 
  angle    = (i-0.5D0)*dangle
 
  dOmega   = 2.0D0*PI*sin(angle)*dangle !d(Solid Angle)
 
  sigma    = bins(i)/(density*dOmega)
 
  if(sigma.gt.0.0D0) write(11,*) ’ds= ’,&
 
                     angle,angle*rad2deg,sigma
                                                                          

                                                                          
 
  sigmatot = sigmatot + sigma*dOmega
 
 enddo
 
 write(11,*) ’sigmatot= ’,sigmatot
 
 close(11)
 
end program scatter_cross_section




   The results are recorded in the file scatter.dat. An example session that
reproduces figures 5.11 and 5.12 is
                                                                          

                                                                          


   
> gfortran scatter.f90 rk2_cb.f90 -o scatter
 
> ./scatter
 
 Runge-Kutta Method for 4-ODEs Integration
 
 Enter coupling constants:
 
1.0 0.0
 
 k1=    1.00000       k2=    0.00000
 
 Enter Nt,Ti,Tf,X10,X20,V10,V20:
 
5000 0 30 -50 0.02 3 0
 
 Enter final impact parameter X20F and step dX20:
 
1 0.0002
 
 Nt=         5000
 
 Time: Initial T0 =   0.00000  Final TF= 30.00000
 
            X1(T0)= -50.00000    X2(T0)=  2.00000E-002
 
            V1(T0)=   3.00000    V2(T0)=  0.00000
 
 Impact par X20F  =   1.00000    dX20  =  2.00000E-004


 The results can be plotted with the gnuplot commands:
                                                                          

                                                                          


   
gnuplot> set log
 
gnuplot> plot [:1000] "<grep ds= scatter.dat" \
 
 u ((sin($2/2))**(-4)):($4) notit,\
 
          (1./(4.*3.**4))*x notit
 
gnuplot> unset log
 
gnuplot> set log y
 
gnuplot> plot [:] "<grep ds= scatter.dat" u 2:4 notit, \
 
 (1./(4.*3.**4))*(sin(x/2))**(-4) notit


 The results are in a very good agreement with the theoretical ones given by
(5.25) . The next step will be to study other central potentials whose solution is
not known analytically.


   5.4.2    More Scattering Potentials

Consider scattering from a force field


   	
   
[image:                        (
                       {  12 − r3  r ≤ a
⃗F =  f(r)ˆr,     f(r) =    r0    a   r > a .
                       (
]
	(5.26)



This is a very simple classical model of the scattering of a positron [image: e+   ] by the
hydrogen atom. The positron has positive charge [image: +  e  ] and the hydrogen atom
consists of a positively charged proton with charge [image: +  e  ] in an electron
cloud of opposite charge [image: −  e  ]. We set the scales so that [image: me+ =  1  ] and
                                                                          

                                                                          
[image:  2
e ∕4π 𝜖0 = 1  ]. We will perform a numerical calculation of [image: b(𝜃)  ], [image: σ(𝜃)  ] and
[image: σtot  ].

   The potential energy is given by


   	
   
[image:          dV (r)           1    r2     3
f(r) = − --dr-- ⇒ V (r) = r-+  2a2-− 2a-.
]
	(5.27)



where [image: V (r) = 0  ] for [image: r ≥ a  ]. The program containing the calculation of the
acceleration caused by this force can be found in the file rk_hy.f90:
                                                                          

                                                                          


   
!========================================================
 
!The acceleration functions f3,f4(t,x1,x2,v1,v2) provided
 
!by the user
 
!========================================================
 
!Motion in hydrogen atom + positron:
 
!f(r) = 1/r^2-r/k1^3
 
!ax= f(r)*x1/r ay= f(r)*x2/r
 
real(8) function f3(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 real(8) :: r2,r,fr
 
 r2=x1*x1+x2*x2
 
 r =sqrt(r2)
 
 if(r .le.k1    .and. r2.gt.0.0D0)then
 
  fr = 1/r2-r/k1**3
 
 else
 
  fr = 0.0D0
 
 endif
 

 
 if(fr.gt.0.0D0 .and. r .gt.0.0D0)then
 
  f3=fr*x1/r              !dx3/dt=dv1/dt=a1
 
 else
 
  f3=0.0D0
 
 endif
 
end function f3
 
!--------------------------------------------------------
 
real(8) function f4(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 real(8) :: r2,r,fr
 
 r2=x1*x1+x2*x2
 
 r =sqrt(r2)
                                                                          

                                                                          
 
 if(r .le.k1    .and. r2.gt.0.0D0)then
 
  fr = 1/r2-r/k1**3
 
 else
 
  fr = 0.0D0
 
 endif
 

 
 if(fr.gt.0.0D0 .and. r .gt.0.0D0)then
 
  f4=fr*x2/r              !dx3/dt=dv1/dt=a1
 
 else
 
  f4=0.0D0
 
 endif
 
end function f4
 
!--------------------------------------------------------
 
real(8) function energy(t,x1,x2,v1,v2)
 
 implicit none
 
 real(8) :: t,x1,x2,v1,v2
 
 real(8) ::         k1,k2
 
 common  /couplings/k1,k2
 
 real(8) :: r,Vr
 
 r=sqrt(x1*x1+x2*x2)
 
 if( r .le.k1   .and. r .gt.0.0D0)then
 
  Vr = 1/r + 0.5D0*r*r/k1**3 - 1.5D0 / k1
 
 else
 
  Vr = 0.0D0
 
 endif
 
 energy  = 0.5D0*(v1*v1+v2*v2) + Vr
 
end function energy




   The results are shown in figures 5.13–5.14. We find that [image: σtot = πa2   ] (see
problem 5.10). 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.13:  The impact parameter [image: b(𝜃)  ] for the potential given by equation  (5.27)
for different values of the initial velocity [image: v  ]. We set [image: a = 1  ], [image: x (0) = − 5  ] and made [image: 4000  ]
integration steps from [image: ti = 0  ] to [image: tf = 40  ].



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.14:  The function [image: σ(𝜃)  ] for the potential given by equation   (5.27)   for
different values of the initial velocity [image: v  ]. We set [image: a = 1  ], [image: x(0) = − 5  ] and the integration
is performed by making [image: 4000  ] steps from [image: ti = 0  ] to [image: tf = 40  ].



                                                                          

                                                                          
   


   Another interesting dynamical field is given by the Yukawa potential. This is a
phenomenological model of nuclear interactions:


   	
   
[image:          e−r∕a
V(r) = k -----.
           r
]
	(5.28)



This field can also be used as a model of the effective interaction of electrons in
metals (Thomas–Fermi) or as the Debye potential in a classic plasma. The
resulting force is


   	
   
[image:                                 (      )
⃗                         e−-r∕a      r-
F(r) = f(r)ˆr,     f(r) = k  r2   1 + a
]
	(5.29)



The program of the resulting acceleration can be found in the file rk2_yu.f90.
The results are shown in figures 5.15–5.16. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.15:  The function [image: b(𝜃)  ] for the Yukawa scattering for several values of the
initial velocity [image: v  ]. We set [image: a = 1  ], [image: k = 1  ], [image: x(0) = − 50  ] and the integration is performed
with [image: 5000  ] steps from [image: ti = 0  ] to [image: tf = 30  ]. The lines marked as cb are equation  (5.24)
of the Rutherford scattering.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.16:  The function [image: b(𝜃)  ] for the Yukawa scattering for several values of the
range  [image: a  ] of  the  force.  We  set  [image: v = 4.0  ],  [image: k = 1  ],  [image: x(0) = − 50  ]  and  the  integration  is
performed with [image: 5000  ] steps from [image: ti = 0  ] to [image: tf = 30  ]. 



                                                                          

                                                                          
   


   5.5    More Particles

In this section we will generalize the discussion of the previous paragraphs in the
case of a dynamical system with more degrees of freedom. The number of
dynamical equations that need to be solved depends on the number of degrees of
freedom and we have to write a program that implements the 4th order
Runge–Kutta method for an arbitrary number of equations NEQ. We will explain
how to allocate memory dynamically,  in which case the necessary memory storage
space, which depends on NEQ, is allocated at the time of running the program and
not at compilation time.

   Until now, memory has been allocated statically. This means that arrays have
sizes which are known at compile time. For example, in the program rk2.f90 the
integer parameter P had a given value which determined the size of all arrays
using the declarations:
                                                                          

                                                                          


   
 integer,parameter   :: P=1010000
 
 real(8),dimension(P):: T,X1,X2,V1,V2


 Changing P after compilation is impossible and if this becomes necessary we have
to edit the file, change the value of P and recompile. Dynamical memory allocation
allows us to read in Nt and NEQ at execution time and then ask from the
operating system to allocate the necessary memory. All we have to do is to
declare the shape of the arrays (i.e. how many indices they take) and give
them the allocatable attribute. The needed memory can be asked for at
execution time by calling the function ALLOCATE. Here is an example:

                                                                          

                                                                          


   
 integer Nt,NEQ
 
 real(8),allocatable :: T (:)   ! Rank-1 array
 
 real(8),allocatable :: X (:,:) ! Rank-2 array
 
 real(8),allocatable :: X0(:)   ! Rank-1 array
 

 
 read *,Nt
 
 call finit(NEQ)
 
 allocate(X0(NEQ))
 
 allocate(T(Nt))
 
 allocate(X(Nt,NEQ))
 
 ...
 
 (compute with X0,T,X)
 
 ...
 
 deallocate(X0)
 
 deallocate(X )
 
 deallocate(T )
 
 (X0,T,X are not usable anymore)
 
 ...
 
....................
 
subroutine finit(NEQ)
 
 NEQ = 4
 
end subroutine finit


 In this program the arrays have the allocatable attribute and for each : they
have an extra index. Therefore the arrays T,X0 are rank-1 arrays and
have only one index, whereas the array X is a rank-2 array and has two
indices. The user enters the value of Nt and the subroutine finit sets the
value of NEQ. The calls to the function ALLOCATE allocate the necessary
memory4 .
If memory allocation is successful, then the arrays can be used in the same way as
the statically allocated ones. When allocatable arrays are not necessary anymore
                                                                          

                                                                          
we should make a call to the function DEALLOCATE which returns the unused
memory back to the system. Otherwise our program might suffer from “memory
leaks” if e.g. the memory is repeatedly asked in a loop that calls a function that
allocates memory without deallocating it in the end. Dynamical memory
allocation is very convenient but for high performance computing static
allocation might be preferable so that the compiler performs a more efficient
optimization.

   The main program will be written in the file rkA.f90, whereas the
force-dependent part of the code will be written in files with names of the form
rkA_XXX.f90. In the latter, the user must program a subroutine f(t,X,dXdt)
which takes as input the time t and the values of the functions X(NEQ) and
outputs the values of their derivatives dXdt(NEQ) at time t. The function
finit(NEQ) sets the number of functions in f and it is called once during the
initialization phase of the program.

   The program in the file rkA.f905 
is listed below:
                                                                          

                                                                          


   
!========================================================
 
!Program to solve an ODE system using the
 
!4th order Runge-Kutta Method
 
!NEQ: Number of equations
 
!User supplies two subroutines:
 
!f(t,x,xdot): with real(8) :: t,x(NEQ),xdot(NEQ) which
 
!given the time t and current values of functions x(NEQ)
 
!it returns the values of derivatives: xdot = dx/dt
 
!The values of two coupling constants k1,k2 may be used
 
!in f which are read in the main program and stored in
 
!common /couplings/k1,k2
 
!finit(NEQ) : sets the value of NEQ
 
!
 
!User Interface:
 
!k1,k2: real(8) coupling constants
 
!Nt,Ti,Tf: Nt-1 integration steps, initial/final time
 
!X0: real(8),dimension(NEQ): initial conditions
 
!Output:
 
!rkA.dat with Nt lines consisting of: T(Nt),X(Nt,NEQ)
 
!========================================================
 
program rk2_solve
 
 implicit none
 
 real(8),allocatable :: T (:)
 
 real(8),allocatable :: X (:,:)
 
 real(8),allocatable :: X0(:)
 
 real(8) :: Ti,Tf
 
 integer :: Nt, NEQ,i
 
 real(8) ::        k1,k2
 
 common /couplings/k1,k2
 
!We need explicit interface, since energy has
 
!assumed-shape arrays as arguments.
 
 INTERFACE
 
  real(8) function energy(t_intrf,x_intrf)
 
   implicit none
 
   real(8) :: t_intrf,x_intrf(:)
 
  end function energy
                                                                          

                                                                          
 
 END INTERFACE
 
!Input:
 
 print *,’Runge-Kutta Method for ODE Integration.’
 
!Get the number of equations:
 
 call finit(NEQ);allocate(X0(NEQ))
 
 print *,’NEQ= ’,NEQ
 
 print *,’Enter coupling constants:’
 
 read  *, k1,k2
 
 print *,’k1= ’,k1,’ k2= ’,k2
 
 print *,’Enter Nt,Ti,Tf,X0:’
 
 read  *,       Nt,Ti,TF,X0
 
 print *,’Nt = ’,Nt
 
 print *,’Time: Initial Ti =’,Ti,’ Final Tf=’,Tf
 
 print ’(A,2000G28.16)’,’              X0 =’,X0
 
 allocate(T(Nt));allocate(X(Nt,NEQ))
 
!The Calculation:
 
 call RK(T,X,Ti,Tf,X0,Nt,NEQ)
 
!Output:
 
 open(unit=11,file=’rkA.dat’)
 
 do i=1,Nt
 
  write(11,’(2000G28.16)’)T(i),X(i,:),&
 
      energy(T(i),X(i,:))
 
 enddo
 
 close(11)
 
end program rk2_solve
 
!========================================================
 
!Driver of the RKSTEP routine
 
!========================================================
 
subroutine RK(T,X,Ti,Tf,X0,Nt,NEQ)
 
 implicit none
 
 integer :: Nt,NEQ
 
 real(8),dimension(Nt)    :: T
 
 real(8),dimension(Nt,NEQ):: X
 
 real(8),dimension(NEQ)   :: X0
 
 real(8) :: Ti ,Tf
 
 real(8) :: dt
 
 real(8) :: TS,XS(NEQ) !values of time and X at given step
 
 integer :: i
 
!Initialize variables:
 
 dt     = (Tf-Ti)/(Nt-1)
 
 T (1)  = Ti
                                                                          

                                                                          
 
 X (1,:)= X0
 
 TS     = Ti
 
 XS     = X0
 
!Make RK steps: The arguments of RKSTEP are
 
!replaced with the new ones
 
 do i=2,Nt
 
  call RKSTEP(TS,XS,dt,NEQ)
 
  T(i)  = TS
 
  X(i,:)= XS
 
 enddo
 
end subroutine RK
 
!========================================================
 
!Subroutine RKSTEP(t,X,dt)
 
!Runge-Kutta Integration routine of ODE
 
!========================================================
 
subroutine RKSTEP(t,x,dt,NEQ)
 
 implicit none
 
 integer :: NEQ
 
 real(8),dimension(NEQ) :: x
 
 real(8) :: t,dt,tt
 
 real(8),dimension(NEQ) :: k1,k2,k3,k4,xx
 
 real(8) :: h,h2,h6
 
!We need explicit interface, since f has assumed-shape
 
!arrays as arguments.
 
 INTERFACE
 
  subroutine f(t_intrf,x_intrf,xdot_intrf)
 
   implicit none
 
   real(8) :: t_intrf
 
   real(8),dimension(:):: x_intrf,xdot_intrf
 
  end subroutine f
 
 END INTERFACE
 

 
 h =dt       !h =dt, integration step
 
 h2=0.5D0*h  !h2=h/2
 
 h6=h/6.0D0  !h6=h/6
 

 
 call f(t ,x ,k1); xx = x + h2*k1; tt =t+h2
 
 call f(tt,xx,k2); xx = x + h2*k2; tt =t+h2
 
 call f(tt,xx,k3); xx = x + h *k3; tt =t+h
 
 call f(tt,xx,k4)
 

                                                                          

                                                                          
 
 t =t+h
 
 x =x +h6*(k1+2.0D0*(k2+k3)+k4)
 
end subroutine RKSTEP


 Note the use of array sections:
                                                                          

                                                                          


   
 write(11,’(2000G28.16)’)T(i),X(i,:)
 
 X(1,:)= X0
 
 X(i,:)= XS


 The expression X (1,:) refers to the first row of the array X. The arrays X0 and X
(1,:) are conformable and we can assign the entries in X (1,:) equal to the
entries in X0, i.e. X(1,1)=X0(1), X(1,2)=X0(2), ... , X(1,NEQ)=X0(NEQ) in
only one statement X(1,:)= X0. Similarly the statement write(...) X(i,:)
prints the whole i-th row of the array X whereas the statement X(i,:)= XS
assigns X(i,1)=XS(1), X(i,2)=XS(2), ... , X(i,NEQ)=XS(NEQ). Note the
vector operations:
                                                                          

                                                                          


   
xx = x + h2* k1
 
x  = x + h6*(k1+2.0D0*(k2+k3)+k4)


 which are equivalent to the following do loops
                                                                          

                                                                          


   
 do i=1,NEQ
 
  xx(i) = x(i) + h2* k1(i)
 
 enddo
 
 do i=1,NEQ
 
  x(i)  = x(i) + h6*(k1(i)+2.0D0*(k2(i)+k3(i))+k4(i))
 
 enddo





   A few words in order to explain what is an INTERFACE block. Up to
now we declared only the type of the functions in the calling program.
When the arguments of the function are arrays for which we only know
their shape and not their size (assumed-shape arrays), the compiler needs
more information. We need to declare the arguments, their types and,
in case they are arrays, their shapes as well. Each program that calls
these functions should include an INTERFACE block which provides this
information. For the functions f and energy, the corresponding INTERFACE block
is
                                                                          

                                                                          


   
 INTERFACE
 
!-------------------------------------------
 
  subroutine f(t_intrf,x_intrf,xdot_intrf)
 
   implicit none
 
   real(8) :: t_intrf
 
   real(8),dimension(:):: x_intrf,xdot_intrf
 
  end subroutine f
 
!-------------------------------------------
 
  real(8) function energy(t_intrf,x_intrf)
 
   implicit none
 
   real(8) :: t_intrf,x_intrf(:)
 
  end function energy
 
!-------------------------------------------
 
 END INTERFACE


 You may create files like e.g. interfaces.inc with groups of INTERFACE blocks
and include them in all subprograms that use them with the statement include
"interfaces.inc".


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 5.17:  Three particles of equal mass interact via their mutual gravitational
attraction. The problem is solved numerically using the program in the files rkA.f90,
rkA_3pcb.f90. The same program can be used in order to study the motion of three equal
charges under the influence of their attractive or repulsive electrostatic force.



                                                                          

                                                                          
   


   Consider three particles of equal mass exerting a force of gravitational attraction on
each other6 
like the ones shown in figure 5.17. The forces exerting on each other are given
by


   	
   
[image: ⃗Fij = mk1-⃗rij,  i,j = 1,2,3,
       r3ij
]
	(5.30)



where [image: k1 = − Gm  ] and the equations of motion become ([image: i = 1,2,3  ])


   
[image:                             3
dxi-            dvix       ∑    xi-−-xj
 dt  =   vix     dt  =  k1         r3
                          j=1,j⁄=i    ij
                           ∑3
dyi  =   viy    dviy = k1       yi-−-yj,           (5.31)
 dt              dt       j=1,j⁄=i  r3ij
]


where [image: r2ij = (xi − xj)2 + (yi − yj)2   ]. The total energy of the system is
                                                                          

                                                                          
   	
   
[image:                        ∑3
E ∕m  = 1-(v2+ v2) +         k1.
        2   1   2    i,j=1,j<i rij
]
	(5.32)



The relations shown above are programmed in the file rkA_3pcb.f90 listed
below:
                                                                          

                                                                          


   
!===============================
 
!Sets number of equations
 
!===============================
 
subroutine finit(NEQ)
 
 NEQ = 12
 
end subroutine finit
 
!===============================
 
!Three particles of the same
 
!mass on the plane interacting
 
!via Coulombic force
 
!===============================
 
subroutine f(t,X,dXdt)
 
 implicit none
 
 real(8) ::        k1,k2
 
 common /couplings/k1,k2
 
 real(8) :: t,X(:),dXdt(:)
 
!-----------------------
 
 real(8) :: x11,x12,x21,x22,x31,x32
 
 real(8) :: v11,v12,v21,v22,v31,v32
 
 real(8) :: r12,r13,r23
 
!-----------------------
 
 x11 = X(1);x21 = X(5);x31 = X(9)
 
 x12 = X(2);x22 = X(6);x32 = X(10)
 
 v11 = X(3);v21 = X(7);v31 = X(11)
 
 v12 = X(4);v22 = X(8);v32 = X(12)
 
!-----------------------
 
 r12 = ((x11-x21)*(x11-x21)+(x12-x22)*(x12-x22))**(-1.5D0)
 
 r13 = ((x11-x31)*(x11-x31)+(x12-x32)*(x12-x32))**(-1.5D0)
 
 r23 = ((x21-x31)*(x21-x31)+(x22-x32)*(x22-x32))**(-1.5D0)
 
!--------------
 
 dXdt(1)  = v11
 
 dXdt(2)  = v12
 
 dXdt(3)  = k1*(x11-x21)*r12+k1*(x11-x31)*r13 ! a11=dv11/dt
 
 dXdt(4)  = k1*(x12-x22)*r12+k1*(x12-x32)*r13 ! a12=dv12/dt
 
!--------------
 
 dXdt(5)  = v21
                                                                          

                                                                          
 
 dXdt(6)  = v22
 
 dXdt(7)  = k1*(x21-x11)*r12+k1*(x21-x31)*r23 ! a21=dv21/dt
 
 dXdt(8)  = k1*(x22-x12)*r12+k1*(x22-x32)*r23 ! a22=dv22/dt
 
!--------------
 
 dXdt(9)  = v31
 
 dXdt(10) = v32
 
 dXdt(11) = k1*(x31-x11)*r13+k1*(x31-x21)*r23 ! a31=dv31/dt
 
 dXdt(12) = k1*(x32-x12)*r13+k1*(x32-x22)*r23 ! a32=dv32/dt
 
end subroutine f
 
!===============================
 
real(8) function energy(t,X)
 
 implicit none
 
 real(8) ::        k1,k2
 
 common /couplings/k1,k2
 
 real(8) :: t,X(:)
 
!-----------------------
 
 real(8) :: x11,x12,x21,x22,x31,x32
 
 real(8) :: v11,v12,v21,v22,v31,v32
 
 real(8) :: r12,r13,r23
 
!-----------------------
 
 x11 = X(1);x21 = X(5);x31 = X(9)
 
 x12 = X(2);x22 = X(6);x32 = X(10)
 
 v11 = X(3);v21 = X(7);v31 = X(11)
 
 v12 = X(4);v22 = X(8);v32 = X(12)
 
!-----------------------
 
 r12 = ((x11-x21)*(x11-x21)+(x12-x22)*(x12-x22))**(-0.5D0)
 
 r13 = ((x11-x31)*(x11-x31)+(x12-x32)*(x12-x32))**(-0.5D0)
 
 r23 = ((x21-x31)*(x21-x31)+(x22-x32)*(x22-x32))**(-0.5D0)
 
!-----------------------
 
 energy = 0.5D0*&
 
         (v11*v11+v12*v12+v21*v21+v22*v22+v31*v31+v32*v32)
 
 energy = energy + k1*(r12+r13+r23)
 
end function energy


 In order to run the program and see the results look at the commands in
the shell script in the file rkA_3pcb.csh. In order to run the script use
command
                                                                          

                                                                          


   
> rkA_3pcb.csh -0.5 4000 1.5 -1 0.1 1 0 1 -0.1 -1 0 0.05 1 0 -1


 which will run the program setting [image: k1 = − 0.5  ], [image: ⃗r1(0) = − ˆx + 0.1ˆy  ], [image: ⃗v1(0 ) = xˆ  ],
[image: ⃗r (0) = ˆx − 0.1ˆy
 2  ], [image: ⃗v (0) = − ˆx
 2  ], [image: ⃗r (0) = 0.05xˆ+  ˆy
 3  ], [image: ⃗v (0) = − ˆy
  3  ], Nt[image: =  4000  ]
and [image: tf = 1.5  ].
                                                                          

                                                                          


   5.6    Problems


      

      	Reproduce  the  results  shown  in  figures  5.3  and  5.4.  Compare  your
      results to the known analytic solution.
      

      	Write   a   program   for   the   force   on   a   charged   particle   in   a
      constant  magnetic  field  [image: B⃗ = B ˆk  ]  and  compute  its  trajectory  for
      [image: ⃗v(0) = v0xˆx + v0yˆy  ]. Set [image: x (0) = 1,y(0) = 0,v0y = 0  ] and calculate the
      resulting radius of the trajectory. Plot the relation between the radius
      and [image: v0x  ]. Compare your results to the known analytic solution. (assume
      non relativistic motion)
      

      	Consider                               the                               anisotropic
      harmonic oscillator [image:         2
ax = − ω1x  ], [image:          2
ay = − ω 2y  ]. Construct the Lissajous
      curves  by  setting  [image: x (0 ) = 0, y(0) = 1,vx(0) = 1,vy(0) = 0  ],  [image: tf = 2π  ],
      [image: ω22 = 1  ], [image: ω21 = 1,2,4,9,16,...  ]. What happens when [image: ω21 ⁄= nω22   ]?
      

      	Reproduce the results displayed in table 5.1 and figures 5.5 and 5.6.
      Plot [image: ln a  ] vs [image: ln T  ] and calculate the slope of the resulting straight
      line by using the linear least squares method. Is it what you expect?
      Calculate the intercept and compare your result with the expected one.
      

      	Calculate the angular momentum with respect to the center of the force
      at each integration step of the planetary motion and check whether it is
      conserved. Show analytically that conservation of angular momentum
      implies that the position vector sweeps areas at constant rate.
      

      	Calculate  the  escape  velocity  of  a  planet  [image: ve  ]  for  [image: GM   = 10.0  ],
      [image: y(0) = 0.0  ],  [image: x0 = x (0) = 1  ]  using  the  following  steps:  First  show
      that [image: v2 = − GM  (1∕a) + v2
 0                  e  ]. Then set [image: v (0) = 0
 x  ], [image: v (0) = v
 y       0   ]. Vary
      [image: vy(0) = v0   ] and measure the resulting semi-major axis [image: a  ]. Determine
      the intercept of the resulting straight line in order to calculate [image: ve  ].
                                                                          

                                                                          
      

      	Repeat the previous problem for [image: x0 = 0.5  ], [image: 1.0  ], [image: 1.5  ], [image: 2.0  ], [image: 2.5  ],
      [image: 3.0  ], [image: 3.5  ], [image: 4.0  ]. From the [image: ve = f (1∕x0)  ] plot confirm the relation
      (5.14) .
      

      	Check that for the bound trajectory of a planet with [image: GM   = 10.0  ],
      [image: x(0) = 1  ],  [image: y(0) = 0.0  ],  [image: vx(0) = 0  ]  ,  [image: vy(0 ) = 4  ]  you  obtain  that
      [image: F1P +  F2P =  2a  ] for each point [image: P  ] of the trajectory. The point [image: F1   ]
      is the center of the force. After determining the semi-major axis [image: a  ]
      numerically, the point [image: F
 2   ] will be taken symmetric to [image: F
  1   ] with respect
      to the center of the ellipse.
      

      	Consider the planetary motion studied in the previous problem. Apply
      a  momentary  push  in  the  tangential  direction  after  the  planet  has
      completed 1/4 of its elliptical orbit. How stable is the particle trajectory
      (i.e. what is the dependence of the trajectory on the magnitude and
      the duration of the push?)? Repeat the problem when the push is in
      the vertical direction.
      

      	 Consider  the  scattering  potential  of  the  positron-hydrogen  system
      given by equation   (5.26) . Plot the functions [image: f (r)  ] and [image: V (r)  ] for
      different values of [image: a  ]. Calculate the total cross section [image: σtot  ] numerically
      and show that it is equal to [image: πa2   ].
      

      	Consider the Morse potential of diatomic molecules:
      	
      
      [image: V (r) = D (exp (− 2αr ) − 2exp (− αr ))
      ]
	(5.33)


                                                                          

                                                                          
      
      where [image: D, α >  0  ]. Compute the solutions of the problem numerically in one
      dimension and compare them to the known analytic solutions when
      [image: E <  0  ]:


      	
      
      [image:             {      ∘ ------------     ∘  --------      }
       -1     D-−----D-(D-−-|E-|)-sin(αt---2|E|∕m--+-C-)
x (t) = α ln                     |E|                   ,
      ]
	(5.34)


      
      where the integration constant as a function of the initial position and
      energy is given by


      	
      
      [image:           [          αx0 ]
C = sin−1  ∘D--−-|E|e----- .
              D(D  − |E|)
      ]
	(5.35)


      
      We obtain a periodic motion with an energy dependent period
      [image:          ∘ --------
=  (π∕α )  2m ∕|E| ]. For [image: E >  0  ] we obtain


                                                                          

                                                                          
      	
      
      [image:             { ∘ -----------       ∘ ------           }
       -1     --D-(D-+--E)-cosh(αt--2E-∕m--+-C-) −-D-
x (t) = α  ln                     |E |
      ]
	(5.36)


      
      whereas for [image: E =  0  ]


      	
      
      [image:             {        2        }
x(t) = 1-ln  1-+  D-α-(t + C )2  .
       α     2     m
      ]
	(5.37)


      
      In these equations, the integration constant [image: C  ] is given by a different
      relation and not by equation  (5.35) . Compute the motion in phase space
      [image: (x, ˙x)  ] and study the transition from open to closed trajectories.
      


      	Consider the effective potential term [image: Veff(r) = l2∕2mr2   ] ([image: l ≡ |L⃗| ]) in the
      previous problem. Plot the function [image: V   (r) = V(r) + V   (r)
  tot              eff  ] for [image: D  = 20  ],
      [image: α = 1  ], [image: m  = 1  ], [image: l = 1  ], and of course for [image: r > 0  ]. Determine the
      equilibrium position and the ionization energy.
                                                                          

                                                                          
      Calculate the solutions [image: x(t)  ], [image: y(t)  ], [image: y(x)  ], [image: r(t)  ] on the plane for [image: E  > 0  ],
      [image: E =  0  ], and [image: E <  0  ] numerically. In the [image: E <  0  ] case consider the scattering
      problem and calculate the functions [image: b(𝜃)  ], [image: σ (𝜃)  ] and the total cross section
      [image: σtot  ].
      


      	Consider the potential of the molecular model given by the force
      [image: ⃗
F (r ) = f (r)ˆr  ] where [image:               13      7
f (r) = 24(2∕r  − 1 ∕r )  ]. Calculate the potential
      [image: V (r)  ] and plot the function [image: Vtot(r ) = V (r) + Veff(r)  ]. Determine the
      equilibrium position and the ionization energy.
      Consider the problem of scattering and calculate [image: b(𝜃)  ], [image: σ(𝜃)  ] and [image: σtot  ]
      numerically. How much do your results depend on the minimum scattering
      angle?
      


      	Compute the trajectories of a particle under the influence of a force
      [image: ⃗         3
F =  − k ∕r ˆr  ]. Determine appropriate initial conditions that give a spiral
      trajectory.
      

      	Compute the total cross section [image: σtot  ] for the Rutherford scattering both
      analytically and numerically. What happens to your numerical results as you
      vary the integration limits?
      

      	Write a program that computes the trajectory of a particle that
      moves on the plane in the static electric field of [image: N  ] static point
      charges.
      

      	Solve the three body problem described in the text in the case of three
      different electric charges by making the appropriate changes to the program
      in the file rkA_3cb.f90.
      

      	Two charged particles of equal mass and charge are moving on the [image: xy  ]
      plane in a constant magnetic field [image: ⃗B = B ˆz  ]. Solve the equations of motion
      using a 4th order Runge–Kutta Method. Plot the resulting trajectories for
      the initial conditions that you will choose.
      

      	 Three particles of equal mass [image: m  ] are connected by identical springs. The
      springs’ spring constant is equal to [image: k  ] and their equilibrium length is equal
                                                                          

                                                                          
      to [image: l  ]. The particles move without friction on a horizontal plane. Solve the
      equations of motion of the system numerically by using a 4th order
      Runge–Kutta Method. Plot the resulting trajectories for the initial
      conditions that you will choose. (Hint: Look in the files rkA_3hoc.f90,
      rkA_3hoc.csh.) 





[image: pict]

 
Figure 5.18:  Two identical particles are attached to thin weightless rods of length
[image: l  ] and they are connected by an ideal weightless spring with spring constant [image: k  ] and
equilibrium length [image: l  ]. The rods are hinged to the ceiling at points whose distance is [image: l  ].
(Problem 5.20).



      


      

      	 Two identical particles are attached to thin weightless rods of length [image: l  ]
      and they are connected by an ideal weightless spring with spring
      constant [image: k  ] and equilibrium length [image: l  ]. The rods are hinged to the
      ceiling at points whose distance is [image: l  ] (see figure 5.18). Compute
      the Lagrangian of the system and the equations of motion for the
      degrees of freedom [image: 𝜃1   ] and [image: 𝜃2   ]. Solve these equations numerically by
      using a 4th order Runge–Kutta method. Plot the positions of the
      particles in a Cartesian coordinate system and the resulting trajectory.
      Study the normal modes for small angles [image: 𝜃 ≲  0.1
 1  ] and compute the
      deviation of the solutions from the small oscillation approximation as
      the angles become larger. (Hint: Look in the files rk_cpend.f90,
      rk_cpend.csh)
      

      	 Repeat the previous problem when the hinges of the rods slide without
      friction on the [image: x  ] axis.
      

      	Repeat problem 5.20 by adding a third pendulum to the right at distance
      [image: l  ].


                                                                          

                                                                          

                                                                          

                                                                          


   


Chapter 6
Motion in Space
 In this chapter we will study the motion of a
particle in space (three dimensions). We will also discuss the case of the
relativistic motion, which is important if one wants to consider the motion of
particles moving with speeds comparable to the speed of light. This will be an
opportunity to use an adaptive stepsize Runge-Kutta method for the numerical
solution of the equations of motion. We will use the open source code
rksuite1  available
at the Netlib2 
repository. Netlib is an open source, high quality repository for numerical analysis
software. The software it contains is used by many researchers in their high
performance computing programs and it is a good investment of time to learn how
to use it.
The technical skill that you will exercise in this chapter is looking for solutions to
your numerical problems provided by software written by others. It is
important to be able to locate the optimal solution to your problem, find the
relevant functions, read the software’s documentation carefully and filter out
the necessary information in order to call and link the functions to your
program.


   6.1    Adaptive Stepsize Control for Runge–Kutta Methods

The three dimensional equation of motion of a particle is an initial value problem
given by the equations  (4.6)  

   
[image: dx               dv
--- = vx         --x-= ax(t,x,vx,y,vy, z,vz)
 dt              dt
dy- = v          dvz-= a (t,x,v ,y,v ,z, v)
 dt    y         dt     y      x    y     z
 dz              dvz
 dt-= vz         dt--= az(t,x,vx,y,vy,z,vz).           (6.1)
]



   For its numerical solution we will use an adaptive stepsize Runge–Kutta
algorithm for increased performance and accuracy. Adaptive stepsize is used in
cases where one needs to minimize computational effort for given accuracy goal.
The method frequently changes the time step during the integration process, so
that it is set to be large through smooth intervals and small when there
are abrupt changes in the values of the functions. This is achieved by
exercising error control either by monitoring a conserved quantity or by
computing the same solution using two different methods. In our case, two
Runge-Kutta methods are used, one of order [image: p  ] and one of order [image: p + 1  ],
and the difference of the results is used as an estimate of the truncation
error. If the error needs to be reduced, the step size is reduced and if it is
satisfactorily small the step size is increased. For the details we refer the
reader to  [31]. Our goal is not to analyze and understand the details of
the algorithm, but to learn how to find and use appropriate and high
quality code written by others. The link http://www.netlib.org/ode/
reads
                                                                          

                                                                          


   
lib  rksuite
 
alg  Runge-Kutta
 
for  initial value problem for first order ordinary differential
 
     equations. A suite of codes for solving IVPs in ODEs. A
 
     choice of RK methods, is available. Includes an error
 
     assessment facility and a sophisticated stiffness checker.
 
     Template programs and example results provided.
 
     Supersedes RKF45, DDERKF, D02PAF.
 
ref  RKSUITE, Softreport 92-S1, Dept of Math, SMU, Dallas, Texas
 
by   R.W. Brankin (NAG), I. Gladwell and L.F. Shampine (SMU)
 
lang Fortran
 
prec double


 There, we learn that the package provides code for Runge–Kutta methods, whose
source is open and written in the Fortran language. We also learn that the code is
written for double precision variables, which is suitable for our problem. Last, but
not least, we are also happy to learn that it is written by highly reputable people!
We download the files rksuite.f, rksuite.doc, details.doc, templates,
readme.

   In order to link the subroutines provided by the suite to our program we need
to read the documentation carefully. In the general case, documentation is
available on the web (html, pdf, ...), bundled files with names like README,
INSTALL, in whole directories with names like doc/, online help in man or info
pages and finally in good old fashioned printed manuals. Good quality software is
also well documented inside the source code files, something that is true for the
software at hand.

   In order to link the suite’s subroutines to our program we need the following
basic information: 

      
      	INPUT DATA: This is the necessary information that the program
      needs in order to perform the calculation. In our case, the minimal
      such information is the initial conditions, the integration time interval
      and the number of integration steps. The user should also provide the
      functions on the right hand side of  (6.1) . It might also be necessary to
      provide information about the desired accuracy goal, the scale of the
      problem, the hardware etc.
                                                                          

                                                                          
      

      	OUTPUT  DATA:  This  is  the  information  on  how  we  obtain  the
      results of the calculation for further analysis. Information whether the
      calculation was successful and error free could also be provided.
      

      	WORKSPACE: This is information on how we provide the necessary
      memory space used in the intermediate calculations. Such space needs
      to be provided by the user in programming languages where dynamical
      memory allocation is not possible, like in Fortran 77, and the size of
      workspace depends on the parameters of the calling program.


   It is easy to install the software. All the necessary code is in one file rksuite.f. The file
rksuite.doc3 
contains the documentation. There we read that we need to inform the program
about the hardware dependent accuracy of floating point numbers. We need to set
the values of three variables:
                                                                          

                                                                          


   
...
 
RKSUITE requires three environmental constants OUTCH, MCHEPS,
 
DWARF. When you use RKSUITE, you may need to know their
 
values. You can obtain them by calling the subroutine ENVIRN
 
in the suite:
 

 
  CALL ENVIRN(OUTCH,MCHPES,DWARF)
 

 
returns values
 

 
  OUTCH  - INTEGER
 
           Standard output channel on the machine being used.
 
  MCHEPS - DOUBLE PRECISION
 
           The unit of roundoff, that is, the largest
 
           positive number such that 1.0D0 + MCHEPS = 1.0D0.
 
  DWARF  - DOUBLE PRECISION
 
           The smallest positive number on the machine being
 
           used.
 
...
 
************************** Installation Details ************
 

 
 All machine-dependent aspects of the suite have been
 
 isolated in the subroutine ENVIRN in the rksuite.for file.
 
 Certain environmental parameters must be specified in this
 
 subroutine.  The values in the distribution version are
 
 those appropriate to the IEEE arithmetic standard.  They
 
 must be altered, if necessary, to values appropriate to the
 
 computing system you are using before calling the codes of
 
 the suite. If the IEEE arithmetic standard values are not
 
 appropriate for your system, appropriate values can often
 
 be obtained by calling routines named in the Comments of
 
 ENVIRN.
 
...


 The variables OUTCH, MCHEPS, DWARF are defined in the subroutine ENVIRN. They
are given generic default values but the programmer is free to change them by editing
ENVIRN. We should identify the routine in the file rksuite.f and read the comments
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...
 
      SUBROUTINE ENVIRN(OUTCH,MCHEPS,DWARF)
 
...
 
C  The following six statements are to be Commented out
 
C  after verification that the machine and installation
 
C  dependent quantities are specified correctly.
 
...
 
      WRITE(*,*) ’ Before using RKSUITE, you must verify that the  ’
 
      WRITE(*,*) ’ machine- and installation-dependent quantities  ’
 
      WRITE(*,*) ’ specified in the subroutine ENVIRN are correct, ’
 
      WRITE(*,*) ’ and then Comment these WRITE statements and the ’
 
      WRITE(*,*) ’ STOP statement out of ENVIRN.                   ’
 
      STOP
 
...
 
C  The following values are appropriate to IEEE
 
C  arithmetic with the typical standard output channel.
 
C
 
      OUTCH = 6
 
      MCHEPS = 1.11D-16
 
      DWARF = 2.23D-308


 All we need to do is to comment out the WRITE and STOP commands since we will
keep the default values of the OUTCH, MCHEPS, DWARF variables:
                                                                          

                                                                          


   
...
 
C     WRITE(*,*) ’ Before using RKSUITE, you must verify that the  ’
 
C     WRITE(*,*) ’ machine- and installation-dependent quantities  ’
 
C     WRITE(*,*) ’ specified in the subroutine ENVIRN are correct, ’
 
C     WRITE(*,*) ’ and then Comment these WRITE statements and the ’
 
C     WRITE(*,*) ’ STOP statement out of ENVIRN.                   ’
 
C     STOP
 
...




   In order to check whether the default values are satisfactory, we can use the
Fortran intrinsic functions EPSILON() and TINY(). In the file test_envirn.f90,
we write a small test program
                                                                          

                                                                          


   
program testme
 
 implicit none
 
 integer ::  OUTCH
 
 real(8) ::  DWARF, MCHEPS
 
 real(8) ::  x
 

 
 OUTCH   = 6 !This is pretty much a standard
 
 MCHEPS  = epsilon(x)/2.0D0
 
 DWARF   = tiny(x)
 
 write(6,101)OUTCH,MCHEPS,DWARF
 

 
101 format(I4,2E30.18)
 
end program testme


 We compile and run the above program as follows:
                                                                          

                                                                          


   
> gfortran test_envirn.f90  -o test_envirn
 
> ./test_envirn
 
   6      0.111022302462515654E-15      0.222507385850720138-307


 We conclude that our choices are satisfactory.

   Next we need to learn how to use the subroutines in the suite. By carefully
reading rksuite.doc we learn the following: The interface to the adaptive
stepsize Runge–Kutta algorithm is the routine UT (UT = “Usual Task”). The
routine can use a 2nd-3rd (RK23) order Runge-Kutta pair for error control
(METHOD=1), a 4th-5th (RK45) order pair (METHOD=2) or a 7th-8th (RK78) order
pair (METHOD=3). We will set METHOD=2 (RK45). The routine SETUP must be called
before UT for initialization. The user should provide a function F that calculates
the derivatives of the functions we integrate for, i.e. the right hand side of
6.1.

   The fastest way to learn how to use the above routines is “by example”. The
suite include a templates package which can be unpacked by executing the
commands in the file templates using the sh shell:
                                                                          

                                                                          


   
> sh templates
 
tmpl1.out
 
tmpl1a.f
 
...


 The file tmpl1a.f contains the solution of the simple harmonic oscillator and has
many explanatory comments in it. We encourage the reader to study it carefully,
run it and test its results.

   After we become wise enough, we write the driver for the integration routine
UT, which can be found in the file rk3.f90:
                                                                          

                                                                          


   
!========================================================
 
!Program to solve a 6 ODE system using Runge-Kutta Method
 
!Output is written in file rk3.dat
 
!========================================================
 
program rk3_solve
 
 include ’rk3.inc’
 
 real(8) :: T0,TF,X10,X20,X30,V10,V20,V30
 
 real(8) :: t,dt,tstep
 
 integer :: STEPS
 
 integer :: i
 
 real(8) :: energy
 
!Arrays/variables needed by rksuite:
 
 real(8) TOL,THRES(NEQ),WORK(LENWRK),Y(NEQ),YMAX(NEQ),&
 
      YP(NEQ),YSTART(NEQ),HSTART
 
 logical  ERRASS, MESSAGE
 
 integer  UFLAG
 
!.. External Subroutines ..
 
 EXTERNAL          F, SETUP, STAT, UT
 
!Input:
 
 print *,’Runge-Kutta Method for 6-ODEs Integration’
 
 print *,’Enter coupling constants k1,k2,k3,k4:’
 
 read  *, k1,k2,k3,k4
 
 print *,’k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3,’ k4= ’,k4
 
 print *,’Enter STEPS,T0,TF,X10,X20,X30,V10,V20,V30:’
 
 read  *, STEPS,T0,TF,X10,X20,X30,V10,V20,V30
 
 print *,’No. Steps= ’,STEPS
 
 print *,’Time: Initial T0 =’,T0,’ Final TF=’,TF
 
 print *,’           X1(T0)=’,X10,’ X2(T0)=’,X20,’ X3(T0)=’,X30
 
 print *,’           V1(T0)=’,V10,’ V2(T0)=’,V20,’ V3(T0)=’,V30
 
!Initial Conditions
 
 dt    = (TF-T0)/STEPS
 
 YSTART(1) = X10
 
 YSTART(2) = X20
 
 YSTART(3) = X30
 
 YSTART(4) = V10
 
 YSTART(5) = V20
                                                                          

                                                                          
 
 YSTART(6) = V30
 
!
 
!  Set error control parameters.
 
!
 
 TOL = 5.0D-6
 
 do i = 1, NEQ
 
  THRES(i) = 1.0D-10
 
 enddo
 
 MESSAGE = .TRUE.
 
 ERRASS  = .FALSE.
 
 HSTART  = 0.0D0
 
!Initialization:
 
 call SETUP(NEQ,T0,YSTART,TF,TOL,THRES,METHOD,’Usual Task’,&
 
      ERRASS,HSTART,WORK,LENWRK,MESSAGE)
 
 open(unit=11,file=’rk3.dat’)
 
 write(11,100) T0,YSTART(1),YSTART(2),YSTART(3),YSTART(4),&
 
      YSTART(5),YSTART(6),energy(T0,YSTART)
 
!Calculation:
 
 do i=1,STEPS
 
  t = T0 + i*dt
 
  call UT(F,t,tstep,Y,YP,YMAX,WORK,UFLAG)
 
  if(UFLAG.GT.2) exit !exit the loop: go after enddo
 
  write(11,100) tstep,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),&
 
       energy(tstep,Y)
 
 enddo
 
 close(11)
 
100 format(8E25.15)
 
end program rk3_solve


 All common parameters and variables are declared in an include file rk3.inc.
This is necessary in order for them to be accessible by the function F which
calculates the derivatives. The contents of this file are substituted in each line
containing the command include ’rk3.inc’.
                                                                          

                                                                          


   
!Basic definitions of variables for the suite rksuite
 
 implicit none
 
!NEQ is the number of equations, 6 in 3 dimensions
 
!METHOD=2 is for RK45.
 
 INTEGER            NEQ,  LENWRK,       METHOD
 
 PARAMETER         (NEQ=6,LENWRK=32*NEQ,METHOD=2)
 
 REAL *8           k1,k2,k3,k4 !force couplings
 
 COMMON /COUPLINGS/k1,k2,k3,k4


 The number of differential equations is set equal to NEQ=6. The integration
method is set by the choice METHOD=2. The variable LENWRK sets the size of the
workspace needed by the suite for the intermediate calculations.

   The main program starts with the user interface. The initial state of the
particle is stored in the array YSTART in the positions [image: 1 ...6  ]. The first three
positions are the coordinates of the initial position and the last three
the components of the initial velocity. Then we set some variables that
determine the behavior of the integration program (see the file rksuite.doc
for details) and call the subroutine SETUP. The main integration loop
is:
                                                                          

                                                                          


   
 do i=1,STEPS
 
  t = T0 + i*dt
 
  call UT(F,t,tstep,Y,YP,YMAX,WORK,UFLAG)
 
  if(UFLAG.GT.2) exit !exit the loop: go after enddo
 
  write(11,100) tstep,Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),&
 
       energy(tstep,Y)
 
 enddo


 The function F is the subroutine that calculates the derivatives and
it will be programmed by us later. The variable t stores the desired
moment of time at which we want to calculate the functions. Because
of the adaptive stepsize, it can be different than the one returned
by the subroutine UT. The actual value of time that the next step
lands5 
on is tstep. The array Y stores the values of the functions. We choose the data
structure to be such that [image: x  ]= Y(1), [image: y  ]= Y(2), [image: z  ]= Y(3) and [image: vx  ]= Y(4), [image: vy  ]=
Y(5), [image: vz  ]= Y(6) (the same sequence as in the array YSTART). The function
energy(t,Y) returns the value of the mechanical energy of the particle and its
code will be written in the same file as that of F. Finally, the variable UFLAG
indicates the error status of the calculation by UT and if UFLAG[image: > 2  ] we end the
calculation.

   Our test code will be on the study of the motion of a projectile in a
constant gravitational field, subject also to the influence of a dissipative force
[image:  ⃗
Fr =  − mk ⃗v  ]. The program is in the file rk3_g.f90. We choose the parameters k1
and k2 so that [image: ⃗g =  ] -k1 [image: ˆk  ] and [image: k =  ] k2.
                                                                          

                                                                          


   
!---------------------------------
 
subroutine F(T,Y,YP)
 
 include ’rk3.inc’
 
 real(8) :: t
 
 real(8) :: Y(*),YP(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3
 
 x1 = Y(1);v1 = Y(4)
 
 x2 = Y(2);v2 = Y(5)
 
 x3 = Y(3);v3 = Y(6)
 
!Velocities:   dx_i/dt = v_i
 
 YP(1) = v1
 
 YP(2) = v2
 
 YP(3) = v3
 
!Acceleration: dv_i/dt = a_i
 
 YP(4) = -k2*v1
 
 YP(5) = -k2*v2
 
 YP(6) = -k2*v3-k1
 
end subroutine F
 
!---------------------------------
 
real(8) function energy(T,Y)
 
 include ’rk3.inc’
 
 real(8) :: t,e
 
 real(8) :: Y(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3
 
 x1 = Y(1);v1 = Y(4)
 
 x2 = Y(2);v2 = Y(5)
 
 x3 = Y(3);v3 = Y(6)
 
!Kinetic Energy
 
 e = 0.5*(v1*v1+v2*v2+v3*v3)
 
!Potential Energy
 
 e = e + k1*x3
 
 energy = e
 
end function energy


 For convenience we “translated” the values in the array Y(NEQ) into user-friendly variable
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If the file rksuite.f is in the directory rksuite/, then the compilation, running
and visualization of the results can be done with the commands:
                                                                          

                                                                          


   
> gfortran rk3.f90 rk3_g.f90 rksuite/rksuite.f -o rk3
 
> ./rk3
 
 Runge-Kutta Method for 6-ODEs Integration
 
 Enter coupling constants k1,k2,k3,k4:
 
10 0 0 0
 
 k1=    10.0000       k2=   0.0000E+000  k3=
 
  0.0000E+000  k4=   0.0000E+000
 
 Enter STEPS,T0,TF,X10,X20,X30,V10,V20,V30:
 
10000 0 3 0 0 0 1 1 1
 
 No. Steps=        10000
 
 Time: Initial T0 =  0.0000E+000  Final TF=  3.0000
 
            X1(T0)=  0.0000E+000    X2(T0)=  0.0000E+000
 
            X3(T0)=  0.0000E+000
 
            V1(T0)=  1.0000         V2(T0)=   1.0000
 
            V3(T0)=  1.0000
 
> gnuplot
 
gnuplot> plot "rk3.dat"  using 1:2 with lines title "x1(t)"
 
gnuplot> plot "rk3.dat"  using 1:3 with lines title "x2(t)"
 
gnuplot> plot "rk3.dat"  using 1:4 with lines title "x3(t)"
 
gnuplot> plot "rk3.dat"  using 1:5 with lines title "v1(t)"
 
gnuplot> plot "rk3.dat"  using 1:6 with lines title "v2(t)"
 
gnuplot> plot "rk3.dat"  using 1:7 with lines title "v3(t)"
 
gnuplot> plot "rk3.dat"  using 1:8 with lines title "E(t)"
 
gnuplot> set title "trajectory"
 
gnuplot> splot "rk3.dat" using 2:3:4 with lines  notitle


 All the above commands can be executed together using the shell script in the file
rk3.csh. The script uses the animation script rk3_animate.csh. The following
command executes all the commands shown above:
                                                                          

                                                                          


   
./rk3.csh -f 1 -- 10 0. 0 0 0 0 0 1 1 1 10000 0 3





   6.2    Motion of a Particle in an EM Field

In this section we study the non-relativistic motion of a charged particle in an
electromagnetic (EM) field. The particle is under the influence of the Lorentz
force:


   	
   
[image: ⃗F =  q(E⃗ + ⃗v × ⃗B ).
]
	(6.2)



Consider the constant EM field of the form [image: E⃗ = Ex ˆx + Eyˆy + Ez ˆz  ], [image: ⃗B =  Bzˆ  ].
The components of the acceleration of the particle are: 

   
[image: ax  =  (qEx ∕m ) + (qB∕m )vy
ay  =  (qEy ∕m ) − (qB ∕m )vx

az  =  (qEz ∕m ).                              (6.3)
]


This field is programmed in the file rk3_B.f90. We set k1 [image: = qB ∕m  ], k2
[image: = qE  ∕m
     x  ], k3 [image: = qE  ∕m
     y  ] and k4 [image: =  qE ∕m
     z  ]:
                                                                          

                                                                          
   
!------------------------------------------------
 
!Particle in constant Magnetic and electric field
 
!q B/m = k1 z   q E/m = k2 x + k3 y + k4 z
 
subroutine F(T,Y,YP)
 
 include ’rk3.inc’
 
 real(8) :: t
 
 real(8) :: Y(*),YP(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3
 
 x1 = Y(1);v1 = Y(4)
 
 x2 = Y(2);v2 = Y(5)
 
 x3 = Y(3);v3 = Y(6)
 
!Velocities:   dx_i/dt = v_i
 
 YP(1) = v1
 
 YP(2) = v2
 
 YP(3) = v3
 
!Acceleration: dv_i/dt = a_i
 
 YP(4) = k2 + k1 * v2
 
 YP(5) = k3 - k1 * v1
 
 YP(6) = k4
 
end subroutine F
 
!---------------------------------
 
real(8) function energy(T,Y)
 
 include ’rk3.inc’
 
 real(8) :: t,e
 
 real(8) :: Y(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3
 
 x1 = Y(1);v1 = Y(4)
 
 x2 = Y(2);v2 = Y(5)
 
 x3 = Y(3);v3 = Y(6)
 
!Kinetic Energy
 
 e = 0.5*(v1*v1+v2*v2+v3*v3)
 
!Potential Energy
 
 e = e - k2*x1 - k3*x2 - k4*x3
 
 energy = e
 
end function energy


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 6.1:  The trajectory of a charged particle in a constant magnetic field [image: ⃗B = B ˆz  ],
where [image: qB∕m = 1.0  ], [image: ⃗v(0) = 1.0ˆy+ 0.1zˆ  ], [image: ⃗r(0) = 1.0ˆx  ]. The integration of the equations
of motion is performed using the RK45 method from [image: t0 = 0  ] to [image: tf = 40  ] with 1000 steps.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 6.2:    The  trajectory  of  a  charged  particle  in  a  constant  magnetic
field  [image: ⃗
B = B ˆz  ],  where  [image: qB∕m = 1.0  ]  and  a  constant  electric  field  [image: ⃗
E = Ex ˆx+ Eyˆy  ]
[image: qEx ∕m  = qEy∕m = 0.1  ].  [image: ⃗v(0) = 1.0ˆy +0.1ˆz  ],  [image: ⃗r(0) = 1.0xˆ  ].  The  integration  of  the
equations of motion is performed using the RK45 method from [image: t0 = 0  ] to [image: tf = 40  ] with
1000 steps. Each axis is on a different scale.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 6.3:  The trajectory of a charged particle in a magnetic field [image: B⃗= B  ˆy+ B ˆz
      y    z  ]
with  [image: qBy∕m = − 0.02y  ],  [image: qBz∕m  = 1+ 0.02z  ],  [image: ⃗v(0) = 1.0yˆ+ 0.1ˆz  ],  [image: ⃗r(0) = 1.0ˆx  ].  The
integration of the equations of motion is performed using the RK45 method from [image: t0 = 0  ]
to [image: tf = 500  ] with 10000 steps. Each axis is on a different scale.
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Figure 6.4:  The trajectory of a charged particle in a magnetic field [image: B⃗= B  ˆy+ B ˆz
      y    z  ]
with  [image: qBy∕m = 0.08z  ],  [image: qBz∕m = 1.4+ 0.08y  ],  [image: ⃗v(0) = 1.0yˆ+ 0.1ˆz  ],  [image: ⃗r(0) = 1.0ˆx  ].  The
integration of the equations of motion is performed using the RK45 method from [image: t0 = 0  ]
to [image: tf = 3000  ] with 40000 steps. Each axis is on a different scale.



                                                                          

                                                                          
   


   We can also study space-dependent fields in the same way. The fields must
satisfy Maxwell’s equations. We can study the confinement of a particle in
a region of space by a magnetic field by taking [image: B⃗ = By ˆy + Bzˆz  ] with
[image: qB  ∕m  = − k y
   y         2  ], [image: qB  ∕m =  k +  k z
   z       1    2  ] and [image: qB  ∕m  = k z
   y       3  ], [image: qB  ∕m  = k +  k y
   z       1    2  ].
Note that [image: ∇⃗ ⋅ ⃗B = 0  ]. You may also want to calculate the current density from
the equation [image: ⃗∇  × ⃗B =  μ0⃗j  ].

   The results are shown in figures 6.1–6.4.


   6.3    Relativistic Motion

Consider a particle of non zero rest mass moving with speed
comparable to the speed of light. In this case, it is necessary to
study its motion using the equations of motion given by special
relativity7 .
In the equations below we set [image: c = 1  ]. The particle’s rest mass is [image: m0  > 0  ], its
mass is [image:          √ -----2
m  = m0 ∕  1 − v   ] (where [image: v <  1  ]), its momentum is [image: ⃗p =  m⃗v  ] and its
energy is [image:          ∘  -2----2-
E = m  =    p + m 0   ]. Then the equations of motion in a dynamic field
[image: F⃗ ] are given by:


   	
   
[image: d⃗p-=  ⃗F.
dt
]
	(6.4)



In order to write a system of first order equations, we use the relations
                                                                          

                                                                          


   	
   
[image:      ⃗p    ⃗p         ⃗p
⃗v = -- =  -- = ∘--------2.
    m     E      p2 + m 0
]
	(6.5)



Using [image: ⃗v = d⃗r∕dt  ] we obtain 

   
[image: dx-     ---(px∕m0-)---      d(px∕m0-)-   Fx-
dt  =   ∘1--+-(p∕m--)2,         dt    =  m0
                   0
dy-     ---(py∕m0-)---      d(py∕m0-)   -Fy
dt  =   ∘ 1 + (p∕m  )2,         dt    = m0
                   0
dz- =   ∘--(pz∕m0-)---,     d(pz∕m0-) = -Fz ,          (6.6)
dt        1 + (p∕m0 )2          dt      m0
]


which is a system of first order differential equations for the functions [image: (x(t),  ]
[image: y(t),  ] [image: z(t),  ] [image: (px∕m0 )(t),  ] [image: (py∕m0 )(t),  ] [image: (pz∕m0 )(t))  ]. Given the initial conditions
[image: (x(0),  ] [image: y(0),  ] [image: z(0),  ] [image: (px∕m0 )(0),  ] [image: (py∕m0 )(0),  ] [image: (pz∕m0 )(0 ))  ] their solution is
unique and it can be computed numerically using the 4th-5th order Runge–Kutta
method according to the discussion of the previous section. By using the relations

                                                                          

                                                                          
   
[image: (px∕m0 ) = √--vx---      vx =  ∘--(px∕m0-)---
             1 − v2              1 + (p∕m0 )2
              v                   (p ∕m  )
(py∕m0 ) = √---y---      vy =  ∘----y---0----
             1 − v2              1 + (p∕m0 )2
              vz                  (pz∕m0 )
(pz∕m0 ) = √------2      vz =  ∘-------------,
             1 − v               1 + (p∕m0 )2
                                                        (6.7)
]


we can use the initial conditions [image: (x (0 )  ], [image: y(0)  ], [image: z(0)  ], [image: vx(0)  ], [image: vy(0)  ], [image: vz(0 ))  ]
instead. Similarly, from the solutions [image: (x(t)  ], [image: y(t)  ], [image: z (t)  ], [image: (px∕m0 )(t)  ],
[image: (py∕m0 )(t)  ], [image: (pz∕m0 )(t))  ] we can calculate [image: (x (t)  ], [image: y(t)  ], [image: z(t)  ], [image: vx(t)  ], [image: vy(t)  ],
[image: v (t))
 z  ]. We always have to check that
   	
   
[image:  2       2       2      2
v  = (vx)  + (vy) + (vz)  < 1.
]
	(6.8)



Since half of the functions that we integrate for are the momentum instead of
the velocity components, we need to make some modifications to the
program in the file rk3.f90. The main program can be found in the file
sr.f90:
                                                                          

                                                                          


   
!========================================================
 
!Program to solve a 6 ODE system using Runge-Kutta Method
 
!Output is written in file sr.dat
 
!Interface to be used with relativistic particles.
 
!========================================================
 
program sr_solve
 
 include ’sr.inc’
 
 real(8) :: T0,TF,X10,X20,X30,V10,V20,V30
 
 real(8) :: P10,P20,P30
 
 real(8) :: P1,P2,P3,V1,V2,V3
 
 real(8) :: t,dt,tstep
 
 integer :: STEPS
 
 integer :: i
 
 real(8) :: energy
 
!Arrays/variables needed by rksuite:
 
 real(8) :: TOL,THRES(NEQ), WORK(LENWRK), Y(NEQ), YMAX(NEQ),&
 
      YP(NEQ), YSTART(NEQ),HSTART
 
 logical :: ERRASS, MESSAGE
 
 integer :: UFLAG
 
!.. External Subroutines ..
 
 EXTERNAL          F, SETUP, STAT, UT
 
!Input:
 
 print *,’Runge-Kutta Method for 6-ODEs Integration’
 
 print *,’Special Relativistic Particle:’
 
 print *,’Enter coupling constants k1,k2,k3,k4:’
 
 read  *, k1,k2,k3,k4
 
 print *,’k1= ’,k1,’ k2= ’,k2,’ k3= ’,k3,’ k4= ’,k4
 
 print *,’Enter STEPS,T0,TF,X10,X20,X30,V10,V20,V30:’
 
 read  *, STEPS,T0,TF,X10,X20,X30,V10,V20,V30
 
 call momentum(V10,V20,V30,P10,P20,P30)
 
 print *,’No. Steps= ’,STEPS
 
 print *,’Time: Initial T0 =’,T0,’ Final TF=’,TF
 
 print *,’           X1(T0)=’,X10,’ X2(T0)=’,X20,’ X3(T0)=’,X30
 
 print *,’           V1(T0)=’,V10,’ V2(T0)=’,V20,’ V3(T0)=’,V30
 
 print *,’           P1(T0)=’,P10,’ P2(T0)=’,P20,’ P3(T0)=’,P30
 

                                                                          

                                                                          
 
!Initial Conditions
 
 dt    = (TF-T0)/STEPS
 
 YSTART(1) = X10
 
 YSTART(2) = X20
 
 YSTART(3) = X30
 
 YSTART(4) = P10
 
 YSTART(5) = P20
 
 YSTART(6) = P30
 
!
 
!  Set error control parameters.
 
!
 
 TOL = 5.0D-6
 
 do i = 1, NEQ
 
  THRES(i) = 1.0D-10
 
 enddo
 
 MESSAGE = .TRUE.
 
 ERRASS  = .FALSE.
 
 HSTART  = 0.0D0
 
!Initialization:
 
 call SETUP(NEQ,T0,YSTART,TF,TOL,THRES,METHOD,’Usual Task’,&
 
      ERRASS,HSTART,WORK,LENWRK,MESSAGE)
 
 open(unit=11,file=’sr.dat’)
 
 call velocity(YSTART(4),YSTART(5),YSTART(6),V1,V2,V3)
 
 write(11,100) T0,YSTART(1),YSTART(2),YSTART(3),&
 
      V1,V2,V3,&
 
      energy(T0,YSTART),&
 
      YSTART(4),YSTART(5),YSTART(6)
 
!Calculation:
 
 do i=1,STEPS
 
  t = T0 + i*dt
 
  call UT(F,t,tstep,Y,YP,YMAX,WORK,UFLAG)
 
  if(UFLAG.GT.2) exit
 
  call velocity(Y(4),Y(5),Y(6),V1,V2,V3)
 
  write(11,100) tstep,Y(1),Y(2),Y(3),&
 
       V1,V2,V3,&
 
       energy(tstep,Y),&
 
       Y(4),Y(5),Y(6)
 
 enddo
 
 close(11)
 
100 format(11E25.15)
 
end program sr_solve
                                                                          

                                                                          
 
!========================================================
 
!momentum -> velocity  transformation
 
!========================================================
 
subroutine velocity(p1,p2,p3,v1,v2,v3)
 
 implicit none
 
 real(8) :: v1,v2,v3,p1,p2,p3,v,p,vsq,psq
 

 
 psq = p1*p1+p2*p2+p3*p3
 

 
 v1  = p1/sqrt(1.0D0+psq)
 
 v2  = p2/sqrt(1.0D0+psq)
 
 v3  = p3/sqrt(1.0D0+psq)
 
end subroutine velocity
 
!========================================================
 
!velocity -> momentum transformation
 
!========================================================
 
subroutine momentum(v1,v2,v3,p1,p2,p3)
 
 implicit none
 
 real(8) :: v1,v2,v3,p1,p2,p3,v,p,vsq,psq
 

 
 vsq = v1*v1+v2*v2+v3*v3
 
 if(vsq .ge. 1.0D0 ) stop ’sub momentum: vsq >= 1’
 
 p1  = v1/sqrt(1.0D0-vsq)
 
 p2  = v2/sqrt(1.0D0-vsq)
 
 p3  = v3/sqrt(1.0D0-vsq)
 
end subroutine momentum


 The subroutines momentum and velocity compute the transformations  (6.7) . In
the subroutine momentum we check whether the condition  (6.8)  is satisfied. These
functions are also used in the subroutine F that computes the derivatives of the
functions.

   The test drive of the above program is the well known relativistic motion of a
charged particle in a constant EM field. The acceleration of the particle is
given by equations  (6.3) . The relativistic kinetic energy of the particle
is


   	
                                                                          

                                                                          
   
[image:     (             )       (                   )
      √---1---              ∘ -----------2
T =     1 − v2 − 1  m0  =     1 + (p∕m0 ) − 1  m0
]
	(6.9)



These relations are programmed in the file sr_B.f90. The contents of the file
sr_B.f90 are:
                                                                          

                                                                          


   
!========================================================
 
!  Particle in constant Magnetic and electric field
 
!  q B/m = k1 z   q E/m = k2 x + k3 y + k4 z
 
!========================================================
 
subroutine F(T,Y,YP)
 
 include ’sr.inc’
 
 real(8) :: t
 
 real(8) :: Y(*),YP(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3
 
 x1 = Y(1);p1 = Y(4)
 
 x2 = Y(2);p2 = Y(5)
 
 x3 = Y(3);p3 = Y(6)
 
 call velocity(p1,p2,p3,v1,v2,v3)
 
!now we can use all x1,x2,x3,p1,p2,p3,v1,v2,v3
 
 YP(1) = v1
 
 YP(2) = v2
 
 YP(3) = v3
 
!Acceleration:
 
 YP(4) = k2 + k1 * v2
 
 YP(5) = k3 - k1 * v1
 
 YP(6) = k4
 
end subroutine F
 
!========================================================
 
!Energy per unit rest mass
 
!========================================================
 
real(8) function energy(T,Y)
 
 include ’sr.inc’
 
 real(8) :: t,e
 
 real(8) :: Y(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3,psq
 
 x1 = Y(1);p1 = Y(4)
 
 x2 = Y(2);p2 = Y(5)
 
 x3 = Y(3);p3 = Y(6)
 
 psq= p1*p1+p2*p2+p3*p3
 
!Kinetic Energy/m_0
 
 e = sqrt(1.0D0+psq)-1.0D0
                                                                          

                                                                          
 
!Potential Energy/m_0
 
 e = e - k2*x1 - k3*x2 - k4*x3
 
 energy = e
 
end function energy


 The results are shown in figures 6.5–6.6. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 6.5:    The  trajectory  of  a  relativistic  charged  particle  in  a  magnetic  field
[image:  ⃗
B = Bz ˆz  ] with [image: qBz∕m0 = 10.0  ], [image: ⃗v(0) = 0.95ˆy+ 0.10ˆz  ], [image: ⃗r(0) = 1.0xˆ  ]. The integration is
performed by using the RK45 method from [image: t0 = 0  ] to [image: tf = 20  ] with 1000 steps. Each
axis is on a different scale.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 6.6:    Projection  of  the  trajectory  of  a  relativistic  charged  particle  in  a
magnetic field [image:  ⃗
B = Bz ˆz  ] with [image: qBz∕m0 = 10.0  ], on the [image: xy  ] plane. [image: ⃗v(0) = 0.95ˆy+ 0.10ˆz  ],
[image: ⃗r(0) = 1.0ˆx  ]. The integration is performed by using the RK45 method from [image: t0 = 0  ] to
[image: tf = 20  ] with 1000 steps. Each axis is on a different scale.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 6.7:    The  influence  of  an  additional  electric  field  [image: qE⃗∕m  = 1.0zˆ
     0  ] on  the
trajectory shown in figure 6.5. 



                                                                          

                                                                          
   


   Now we can study a more interesting problem. Consider a simple model of the
Van Allen radiation belt. Assume that the electrons are moving within the
Earth’s magnetic field which is modeled after a magnetic dipole field of the
form:


   	
   
[image:         (    )3 [            ]
B⃗ = B0   RE--   3 (dˆ⋅ ˆr)ˆr − ˆd ,
           r
]
	(6.10)



where [image: ⃗d = dˆd ] is the magnetic dipole moment of the Earth’s magnetic field and
[image: ⃗r = rrˆ  ]. The parameter values are approximately equal to [image: B0 =  3.5 × 10 −5T  ],
[image: r ∼ 2RE  ], where [image: RE  ] is the radius of the Earth. The typical energy of
the moving particles is [image: ∼ 1  ] MeV which corresponds to velocities of
magnitude [image:        ∘ --2----2-     √ ---------2
v ∕c =   E  − m 0∕E  ≈   1 − 0.512 ∕1 = 0.86  ]. We choose
the coordinate axes so that [image: ˆd = ˆz  ] and we measure distance in [image: RE  ]
units8 .
Then we obtain: 

   
[image:            3xz
Bx   =  B0 --5-
            r
By   =  B0 3yz-
           (r5        )
             3zz    1
Bz   =  B0   -r5-−  r3                     (6.11)
]


The magnetic dipole field is programmed in the file sr_Bd.f90:
                                                                          

                                                                          
   
!========================================================
 
!  Particle in Magnetic dipole field:
 
!  q B_1/m = k1 (3 x1 x3)/r^5
 
!  q B_2/m = k1 (3 x2 x3)/r^5
 
!  q B_3/m = k1[(3 x3 x3)/r^5-1/r^3]
 
!========================================================
 
subroutine F(T,Y,YP)
 
 include ’sr.inc’
 
 real(8) :: t
 
 real(8) :: Y(*),YP(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3
 
 real(8) :: B1,B2,B3
 
 real(8) :: r
 
 x1 = Y(1);p1 = Y(4)
 
 x2 = Y(2);p2 = Y(5)
 
 x3 = Y(3);p3 = Y(6)
 
 call velocity(p1,p2,p3,v1,v2,v3)
 
!now we can use all x1,x2,x3,p1,p2,p3,v1,v2,v3
 
 YP(1)  = v1
 
 YP(2)  = v2
 
 YP(3)  = v3
 
!Acceleration:
 
 r      = sqrt(x1*x1+x2*x2+x3*x3)
 
 if( r.gt.0.0D0)then
 
  B1    = k1*( 3.0D0*x1*x3)/r**5
 
  B2    = k1*( 3.0D0*x2*x3)/r**5
 
  B3    = k1*((3.0D0*x3*x3)/r**5-1/r**3)
 
  YP(4) = v2*B3-v3*B2
 
  YP(5) = v3*B1-v1*B3
 
  YP(6) = v1*B2-v2*B1
 
 else
 
  YP(4) = 0.0D0
 
  YP(5) = 0.0D0
 
  YP(6) = 0.0D0
 
 endif
 
end subroutine F
 
!========================================================
                                                                          

                                                                          
 
!Energy per unit rest mass
 
!========================================================
 
real(8) function energy(T,Y)
 
 include ’sr.inc’
 
 real(8) :: t,e
 
 real(8) :: Y(*)
 
 real(8) :: x1,x2,x3,v1,v2,v3,p1,p2,p3,psq
 
 x1 = Y(1);p1 = Y(4)
 
 x2 = Y(2);p2 = Y(5)
 
 x3 = Y(3);p3 = Y(6)
 
 psq= p1*p1+p2*p2+p3*p3
 
!Kinetic Energy/m_0
 
 e = sqrt(1.0D0+psq)-1.0D0
 
 energy = e
 
end function energy


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 6.8:  The trajectory of a charged particle in a magnetic dipole field given
by equation   (6.11) . We used [image: B0 = 1000  ], [image: ⃗r = 0.02ˆx+ 2.00ˆz  ], [image: ⃗v = − 0.99999ˆz  ]. The
integration was done from [image: t0 = 0  ] to [image: tf = 5  ] in 10000 steps.



                                                                          

                                                                          
   


   The results are shown in figure 6.8. The parameters have been exaggerated in
order to achieve an aesthetically pleasant result. In reality, the electrons are
moving in very thin spirals and the reader is encouraged to use more realistic
values for the parameters [image: ⃗v
 0   ], [image: B
  0   ], [image: ⃗r
 0   ]. The problem of why the effect is not seen
near the equator is left as an exercise.


   6.4    Problems


      

      	Compute the trajectory of a projectile moving in space in a constant
      gravitational  field  and  under  the  influence  of  an  air  resistance
      proportional to the square of its speed.
      

      	Two point charges are moving with non relativistic speeds in a constant
      magnetic field [image: B⃗ = B ˆz  ]. Assume that their interaction is given by the
      Coulomb force only. Write a program that computes their trajectory
      numerically using the RK45 method.
      

      	Write  a  program  that  computes  the  trajectory  of  the  anisotropic
      harmonic  oscillator  [image: F⃗ = − kxxxˆ  ]  [image: − kyy ˆy  ]  [image: − kzz ˆz  ].  Compute  the
      three  dimensional  Lissajous  curves  which  appear  for  appropriate
      values  of  the  angular  frequencies  [image:      ∘  ------
ωx =    kx∕m  ],  [image:      ∘ ------
ωy =   ky∕m  ],
      [image:      ∘ ------
ωz =   kz ∕m  ].
      

      	Two particles of mass [image: M  ] are at the fixed positions [image: ⃗r1 = aˆz  ] and
      [image: ⃗r =  − aˆz
 2  ]. A third particle of mass [image: m  ] interacts with them via a
      Newtonian gravitational force and moves at non relativistic speeds.
      Compute the particle’s trajectory and find initial conditions that result
      in a planar motion.
      

      	Solve problem 5.19 of page 758 using the RK45 method. Choose initial
      conditions so that the system executes only translational motion. Next,
      choose initial conditions so that the system executes small vibrations
                                                                          

                                                                          
      and its center of mass remains stationary. Find the normal modes of the
      system and choose appropriate initial conditions that put the system
      in each one of them.
      

      	Solve the previous problem by putting the system in a box [image: |x| ≤ L  ]
      and [image: |y| ≤ L  ].
Hint: Look in the file springL.f90.
      

      	Solve the problem 5.20 in page 759 by using the RK45 method.
      

      	Solve the problem 5.21 in page 759 by using the RK45 method.
      

      	The electric field of an electric dipole [image: ⃗p = pˆz  ] is given by: 
      
      [image:  ⃗
 E   =  E ρˆρ + Ezˆz
        --1--3p-sin-𝜃cos-𝜃
E ρ  =  4 π𝜖      r3
            0       2
Ez   =  --1--p(3-cos-𝜃-−-1)                  (6.12)
        4 π𝜖0      r3
      ]

      
where [image: ρ = ∘x2--+--y2 = rsin𝜃  ], [image: E   = E  cosϕ
  x     ρ  ], [image: E  = E  sinϕ
 y     ρ  ] and
      [image: (r,𝜃,ϕ)  ] are the polar coordinates of the point where the electric field is
      calculated. Calculate the trajectory of a test charge moving in this
      field at non relativistic speeds. Calculate the deviation between the
      relativistic and the non relativistic trajectories when the initial speed is
      [image: 0.01c,0.1c,0.5c,0.9c  ] respectively (ignore radiation effects).
      

      	Consider a linear charge distribution with constant linear charge density [image: λ  ].
      The electric field is given by
                                                                          

                                                                          
      
      [image:  ⃗          --1--2λ-
E  = E ρˆρ = 4π 𝜖0 ρ ˆρ
      ]
 Calculate the trajectories of two equal negative test charges that move at
      non relativistic speeds in this field. Consider only the electrostatic Coulomb
      forces and ignore anything else.
      

      	Consider a linear charge distribution on four straight lines parallel to the [image: z  ]
      axis. The linear charge density is [image: λ  ] and it is constant. The four straight
      lines intersect the [image: xy  ] plane at the points [image: (0,0)  ], [image: (0,a)  ], [image: (a,0)  ],
      [image: (a,a)  ]. Calculate the trajectory of a non relativistic charge in this
      field. Next, compute the relativistic trajectories (ignore all radiation
      effects).
      

      	Three particles of mass [image: m  ] interact via their Newtonian gravitational force.
      Compute their (non relativistic) trajectories in space.


                                                                          

                                                                          
   


Chapter 7
Electrostatics
 In this chapter we will study the electric field
generated by a static charge distribution. First we will compute the electric field
lines and the equipotential surfaces of the electric field generated by a static point
charge distribution on the plane. Then we will study the electric field generated
by a continuous charge distribution on the plane. This requires the numerical
solution of an elliptic boundary value problem which will be done using successive
over-relaxation (SOR) methods.
   7.1    Electrostatic Field of Point Charges

Consider [image: N  ] point charges [image: Q
  i  ] which are located at fixed positions on the plane
given by their position vectors [image: ⃗ri  ], [image: i = 1,...,N  ]. The electric field is given by
Coulomb’s law 


   	
   
[image:              N
⃗       -1---∑  ---Qi---
E (⃗r ) = 4π𝜖     |⃗r − ⃗r |2ρˆi
           0 i=1       i
]
	(7.1)



where [image: ˆρ =  (⃗r − ⃗r )∕|⃗r − ⃗r |
 i        i       i ] is the unit vector in the direction of [image: ⃗r − ⃗r
     i  ]. The
components of the field are 

   
[image:                     N
E  (x,y)  =   -1---∑   -------Qi(x-−-xi)--------
  x           4π𝜖0     ((x − xi)2 + (y − yi)2)3∕2
                   i=1
               1   ∑N         Qi(y − yi)
Ey (x,y)  =   -----    --------2----------2-3∕2,         (7.2)
              4π𝜖0 i=1 ((x − xi)  + (y − yi) )
]



   The electrostatic potential at [image: ⃗r  ] is


   	
   
[image:                     1  ∑N             Q
V (⃗r) = V(x, y) = -----    ------------i--------1∕2,
                  4π𝜖0 i=1 ((x −  xi)2 + (y − yi)2)
]
	(7.3)



and we have that


   	
   
[image: ⃗E (⃗r) = − ⃗∇V  (⃗r).
]
	(7.4)



                                                                          

                                                                          


   The electric field lines are the integral curves of the vector field [image: E⃗  ], i.e. the
curves whose tangent lines at each point are parallel to the electric field at that
point. The magnitude of the electric field is proportional to the density of the field
lines (the number of field lines per perpendicular area). This means that the
electric flux [image:       ∫  ⃗    ⃗
ΦE  =  𝒮 E ⋅ d A  ] through a surface [image: 𝒮 ] is proportional to the number
of field lines that cross the surface. Electric field lines of point charge distributions
start from positive charges (sources), end in negative charges (sinks) or extend to
infinity.


   The equipotential surfaces are the loci of the points of space where the
electrostatic potential takes fixed values. hey are closed surfaces. Equation  (7.4)
tells us that a strong electric field at a point is equivalent to a strong spatial variation
of the electric potential at this point, i.e. to dense equipotential surfaces. The
direction of the electric field is perpendicular to the equipotential surfaces at each
point1 ,
which is the direction of the strongest spatial variation of [image: V  ], and it
points in the direction of decreasing [image: V  ]. The planar cross sections of the
equipotential surfaces are closed curves which are called equipotential
lines.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 7.1: The electric field is tangent at each point of an electric field line and
perpendicular to an equipotential line. By approximating the continuous curve by the line
segment [image: Δl  ], we have that [image: Δy∕Δx = Ey ∕Ex  ].



                                                                          

                                                                          
   


   The computer cannot solve a problem in the continuum and we have to
consider a finite discretization of a field line. A continuous curve is approximated
by a large but finite number of small line segments. The basic idea is illustrated in
figure 7.1: The small line segment [image: Δl  ] is taken in the direction of the electric field
and we obtain


   	
   
[image: Δx  = Δl Ex-,    Δy  = Δl Ey-,
         E                 E
]
	(7.5)



where [image:            ∘ ---------
E ≡  |E⃗| =   E2x + E2y  ].

   In order to calculate the equipotential lines we use the property that they are
perpendicular to the electric field at each point. Therefore, if [image: (Δx, Δy )  ] is in the
tangential direction of a field line, then [image: (− Δy, Δx )  ] is in the perpendicular
direction since [image: (Δx, Δy ) ⋅ (− Δy, Δx ) = − Δx Δy + Δy Δx  = 0  ]. Therefore the
equations that give the equipotential lines are


   	
   
[image:            Ey               Ex
Δx  = − Δl ---,    Δy  = Δl ---.
           E                 E
]
	(7.6)


                                                                          

                                                                          


   The algorithm that will allow us to perform an approximate calculation of the
electric field lines and the equipotential lines is the following: Choose an initial
point that belongs to the (unique) line that you want to draw. The electric field
can be calculated from the known electric charge distribution and equation  (7.2) .
By using a small enough step [image: Δl  ] we move in the direction [image: (Δx, Δy )  ] to the new
position


   	
   
[image: x →  x + Δx,   y →  y + Δy,
]
	(7.7)



where we use equations  (7.5)  or  (7.6) . The procedure is repeated until the
drawing is finished. The programmer sets a criterion for that, e.g. when the field
line steps out of the drawing area or approaches a charge closer than a minimum
distance.


   7.2    The Program – Appetizer and ... Desert

The hurried, but slightly experienced reader may skip the details of this section
and go directly to section 7.4. There she can find the final form of the program
and brief usage instructions.

   In order to program the algorithm described in the previous section, we will
separate the algorithmic procedures into four different but well defined tasks:


      
      	Main program: The data structure, which is given by the position of
      the charges stored in the arrays X(P), Y(P) and the charges stored
                                                                          

                                                                          
      in the array Q(P), is defined. It also contains the user interface which
      consists of reading data entered by the user, like the number of charges
      N, their positions and magnitude. Then the calculation of a group of
      field or equipotential lines is performed by calling the routines eline
      or epotline respectively.
      

      	subroutine eline(xin,yin,X,Y,Q,N): Calculates the electric field line
      passing through the point xin,yin. On entry, the user inputs the point
      xin,yin and the data N, X(N), Y(N), Q(N). On exit, the subroutine
      prints to the stdout the coordinates of the approximate electric field
      line. The line extends up to a point that is either too close to one of the
      point charges or until the line leaves the drawing area2 .
      It calls the subroutines efield for the calculation of the electric field
      and mdist for the calculation of the minimum and maximum distance
      of a point on the field line from all the point charges.
      

      	subroutine epotline(xin,yin,X,Y,Q,N): Calculates the equipotential
      line  passing  through  the  point  xin,yin.  On  entry,  the  user  inputs
      the point xin,yin and the data N, X(N), Y(N), Q(N). On exit, the
      subroutine prints to the stdout the coordinates of the approximate
      equipotential line. The subroutine stops calculating an equipotential
      line when it comes back close enough to the original point3 
      xin,yin or when it leaves the drawing area. It calls the subroutines
      efield for the calculation of the electric field and mdist for the calculation
      of the minimum and maximum distance of a point on the equipotential
      line from all the point charges.
      

      	subroutine efield(x0,y0,X,Y,Q,N,Ex,Ey): Calculates the electric
      field Ex, Ey at position x0, y0. On entry, the user provides the number
      of charges N, the position of charges X(N), Y(N), the charges Q(N) and
      the position x0, y0. On exit, the routine provides the values Ex, Ey.
      

      	subroutine mdist(x0,y0,X,Y,N,rmin,rmax):
      Calculates the maximum and minimum distance of the point x0, y0
      from all charges located at X(N), Y(N). On entry, the user provides the
                                                                          

                                                                          
      number of charges N, the position of charges X(N), Y(N) and the point
      x0, y0. On exit, the routine provides the minimum and maximum
      distances rmin,rmax.


   In the main program, the variables N, X(N), Y(N) and Q(N) must
be set. These can be hard coded by the programmer or entered by the
user interactively. The first choice is coded in the program listed below,
which can be found in the file ELines.f90. This is version 1 of the main
program:
                                                                          

                                                                          


   
!****************************************************
 
program Electric_Fields
 
!****************************************************
 
 implicit none
 
 integer,parameter :: P=20     !max number of charges
 
 real,dimension(P) :: X,Y,Q
 
 integer           :: N
 
!-------------  SET CHARGE DISTRIBUTION ----
 
 N    =  2
 
 X(1) =  1.0
 
 Y(1) =  0.0
 
 Q(1) =  1.0
 
 X(2) = -1.0
 
 Y(2) =  0.0
 
 Q(2) = -1.0
 
!-------------  DRAWING LINES  -------------
 
 call eline(0.0, 0.5,X,Y,Q,N)
 
 call eline(0.0, 1.0,X,Y,Q,N)
 
 call eline(0.0, 1.5,X,Y,Q,N)
 
 call eline(0.0, 2.0,X,Y,Q,N)
 
 call eline(0.0,-0.5,X,Y,Q,N)
 
 call eline(0.0,-1.0,X,Y,Q,N)
 
 call eline(0.0,-1.5,X,Y,Q,N)
 
 call eline(0.0,-2.0,X,Y,Q,N)
 

 
end program Electric_Fields


 The commands
                                                                          

                                                                          


   
!-------------  SET CHARGE DISTRIBUTION ----
 
 N    =  2
 
 X(1) =  1.0
 
 Y(1) =  0.0
 
 Q(1) =  1.0
 
 X(2) = -1.0
 
 Y(2) =  0.0
 
 Q(2) = -1.0


 define two opposite charges Q(1)= -Q(2)= 1.0 located at [image: (1,0)  ] and [image: (− 1,0)  ]
respectively. The next lines call the subroutine eline in order to perform the
calculation of 8 field lines passing through the points [image: (0,±1 ∕2)  ], [image: (0,±1 )  ],
[image: (0,±3 ∕2)  ], [image: (0,±2 )  ]:
                                                                          

                                                                          


   
!-------------  DRAWING LINES  -------------
 
 call eline(0.0, 0.5,X,Y,Q,N)
 
 call eline(0.0, 1.0,X,Y,Q,N)
 
 call eline(0.0, 1.5,X,Y,Q,N)
 
 call eline(0.0, 2.0,X,Y,Q,N)
 
 call eline(0.0,-0.5,X,Y,Q,N)
 
 call eline(0.0,-1.0,X,Y,Q,N)
 
 call eline(0.0,-1.5,X,Y,Q,N)
 
 call eline(0.0,-2.0,X,Y,Q,N)


 These commands print the coordinates of the field lines to the stdout and the
user can analyze them further.

   The program for calculating the equipotential lines is quite similar. The calls
to the subroutine eline are substituted by calls to epotline.

   For the program to be complete, we must program the subroutines
eline, efield, mdist. This will be done later, and you can find the
full code in the file ELines.f90. For the moment, let’s copy the main
program4 
listed above into the file Elines.f90 and compile and run it with the
commands:
                                                                          

                                                                          


   
> gfortran ELines.f90 -o el
 
> ./el > el.out


 The stdout of the program is redirected to the file el.out. We can plot the
results with gnuplot:
                                                                          

                                                                          


   
gnuplot> plot "el.out" with dots


 The result is shown in figure 7.2. 
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Figure 7.2: Some electric field lines of the electric field of two opposite charges calculated
by the program ELines.f90 (version 1!).



                                                                          

                                                                          
   


   Let’s modify the program so that the user can enter the charge distribution, as
well as the number and position of the field lines that she wants to draw,
interactively. The part of the code that we need to change is:
                                                                          

                                                                          


   
!-------------  SET CHARGE DISTRIBUTION ----
 
 print *, ’# Enter number of charges:’
 
 read  *, N
 
 print *, ’# N= ’,N
 
 do i=1,N
 
  print *,’# Charge: ’,i
 
  print *,’# Position and charge: (X,Y,Q):’
 
  read  *,  X(i),Y(i),Q(i)
 
  print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)
 
 enddo


 The first line asks the user to enter the number of charges in the distribution.
It proceeds with reading it from the stdin and prints the result to the
stdout. The following loop reads the positions and charges and stores
them at the position i of the arrays X(i), Y(i), Q(i). The results are
printed to the stdout so that the user can check the values read by the
program.

   The drawing of the field lines is now done by modifying the code so
that:
                                                                          

                                                                          


   
!-------------  DRAWING LINES  -------------
 
 print *,’# How many lines to draw? ’
 
 read  *, draw
 
 do i=1,draw
 
  print *,’# Initial point (x0,y0): ’
 
  read  *, x0,y0
 
  call  eline(x0,y0,X,Y,Q,N)
 
 enddo


 As a test case, we run the program for one charge [image: q = 1.0  ] located at the origin
and we draw one field line passing through the point [image: (0.1,0.1)  ].
                                                                          

                                                                          


   
>  gfortran ELines.f90 -o el
 
> ./el
 
 # Enter number of charges:
 
1
 
 # N=            1
 
 # Charge:            1
 
 # Position and charge: (X,Y,Q):
 
0.0 0.0 1.0
 
 # (X,Y)=    0.000000       0.000000      Q=    1.000000
 
 # How many lines to draw?
 
1
 
 # Initial point (x0,y0):
 
0.1 0.1
 
  9.2928931E-02  9.2928931E-02
 
  8.5857861E-02  8.5857861E-02
 
  7.8786790E-02  7.8786790E-02
 
....


 For charge distributions with a large number of point charges, use an editor to
record the charges, their positions and the points where the field lines should go
through.
                                                                          

                                                                          


   
2                    N: Number of Charges
 
 1.0 0.0  1.0        (X,Y,Q): Position and charge
 
-1.0 0.0 -1.0        (X,Y,Q): Position and charge
 
8                    Number of lines to draw
 
0.0  0.5             x0,y0: Initial point of line
 
0.0  1.0             x0,y0: Initial point of line
 
0.0  1.5             x0,y0: Initial point of line
 
0.0  2.0             x0,y0: Initial point of line
 
0.0 -0.5             x0,y0: Initial point of line
 
0.0 -1.0             x0,y0: Initial point of line
 
0.0 -1.5             x0,y0: Initial point of line
 
0.0 -2.0             x0,y0: Initial point of line


 If the data listed above is written into a file, e.g. Input, then the command
                                                                          

                                                                          


   
./el < Input > el.out


 reads the data from the file Input and redirects the data printed to the stdout
to the file el.out. This way you can create a “library” of charge distributions and
the field lines of their respective electric fields. The complete code (version 2) is
listed below:
                                                                          

                                                                          


   
!****************************************************
 
program Electric_Fields
 
!****************************************************
 
 implicit none
 
 integer,parameter :: P=20     !max number of charges
 
 real,dimension(P) :: X,Y,Q
 
 integer           :: N
 
 integer           :: i,j,draw
 
 real              :: x0,y0
 
!-------------  SET CHARGE DISTRIBUTION ----
 
 print *, ’# Enter number of charges:’
 
 read  *, N
 
 print *, ’# N= ’,N
 
 do i=1,N
 
  print *,’# Charge: ’,i
 
  print *,’# Position and charge: (X,Y,Q):’
 
  read  *,  X(i),Y(i),Q(i)
 
  print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)
 
 enddo
 
!-------------  DRAWING LINES  -------------
 
 print *,’# How many lines to draw? ’
 
 read  *, draw
 
 do i=1,draw
 
  print *,’# Initial point (x0,y0): ’
 
  read  *, x0,y0
 
  call  eline(x0,y0,X,Y,Q,N)
 
 enddo
 
end program Electric_Fields




   If you did the exercises described above, you should have already realized that
in order to draw a nice representative picture of the electric field can be
time consuming. For field lines one can use simple physical intuition in
order to automate the procedure. For distances close enough to a point
charge the electric field is approximately isotropic. The number of field
lines crossing a small enough curve which contains only the charge is
proportional to the charge (Gauss’s law). Therefore we can draw a small
                                                                          

                                                                          
circle centered around each charge and choose initial points isotropically
distributed on the circle as initial points of the field lines. The code listed below
(version 3) implements the idea for charges that are equal in magnitude. For
charges different in magnitude, the program is left as an exercise to the
reader.
                                                                          

                                                                          


   
!****************************************************
 
program Electric_Fields
 
!****************************************************
 
 implicit none
 
 integer,parameter:: P=20      !max number of charges
 
 real,dimension(P):: X,Y,Q
 
 integer          :: N
 
 integer          :: i,j,nd
 
 real             :: x0,y0,theta
 
 real,parameter   :: PI= 3.14159265359
 
!-------------  SET CHARGE DISTRIBUTION ----
 
 print *, ’# Enter number of charges:’
 
 read  *, N
 
 print *, ’# N= ’,N
 
 do i=1,N
 
  print *,’# Charge: ’,i
 
  print *,’# Position and charge: (X,Y,Q):’
 
  read  *,  X(i),Y(i),Q(i)
 
  print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)
 
 enddo
 
!-------------  DRAWING LINES  -------------
 
!We draw 2*nd field lines around each charge
 
 nd    = 6
 
 do  i = 1,N
 
  do j = 1,(2*nd)
 
   theta = (PI/nd)*j
 
   x0    = X(i) + 0.1 * cos(theta)
 
   y0    = Y(i) + 0.1 * sin(theta)
 
   call  eline(x0,y0,X,Y,Q,N)
 
  enddo
 
 enddo
 
end program Electric_Fields


 We set the number of field lines around each charge to be equal to 12 (nd=6). The
initial points are taken on the circle whose center is (X(i),Y(i)) and its radius is
0.1. The 2*nd points are determined by the angle theta=(PI/nd)*j.
                                                                          

                                                                          

   We record the data of a charge distribution in a file, e.g. Input. Below, we list
the example of four equal charges [image: qi = ±1  ] located at the vertices of a
square:
                                                                          

                                                                          


   
4             N: Number of charges
 
 1  1  -1     (X,Y,Q): Position and charge
 
-1  1   1     (X,Y,Q): Position and charge
 
 1 -1   1     (X,Y,Q): Position and charge
 
-1 -1  -1     (X,Y,Q): Position and charge


 Then we give the commands:
                                                                          

                                                                          


   
> gfortran ELines.f90 -o el
 
> ./el < Input > el.out
 
> gnuplot
 
gnuplot> plot "el.out" with dots


 The results are shown in figures 7.3 and 7.4. The reader should determine the
charge distributions that generate those fields and reproduce the figures as an
exercise. 
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Figure 7.3: Field lines of a static charge distribution of point charges generated by the
program ELines.f90.
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Figure 7.4: Field lines of a static charge distribution of point charges generated by the
program ELines.f90.



                                                                          

                                                                          
   


   For the computation of the equipotential lines we can work in a similar way.
We will follow a quick and dirty way which will not produce an accurate picture of
the electric field and choose the initial points evenly spaced on an square
lattice. For a better choice see problem 5. The listed code is in the file
EPotential.f90:
                                                                          

                                                                          


   
!****************************************************
 
program Electric_Potential
 
!****************************************************
 
 implicit none
 
 integer,parameter :: P=20     !max number of charges
 
 real,dimension(P) :: X,Y,Q
 
 integer           :: N
 
 real,parameter    :: PI= 3.14159265359
 
 integer           :: i,j,nd
 
 real              :: x0,y0,rmin,rmax,L
 

 
 print *, ’# Enter number of charges:’
 
 read  *,   N
 
 print *, ’# N= ’,N
 
 do i=1,N
 
  print *,’# Charge: ’,i
 
  print *,’# Position and charge: (X,Y,Q):’
 
  read  *,  X(i),Y(i),Q(i)
 
  print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)
 
 enddo
 
!-------------  DRAWING LINES  -------------
 
!We draw lines passing through an equally
 
!spaced lattice of N=(2*nd+1)x(2*nd+1) points
 
!in the square -L<= x <= L, -L<= y <= L.
 
 nd    = 4
 
 L     = 1.0
 
 do  i = -nd,nd
 
  do j = -nd,nd
 
   x0  = i*(L/nd)
 
   y0  = j*(L/nd)
 
   print *,’# @ ’,i,j,L/nd,x0,y0
 
   call  mdist(x0,y0,X,Y,N,rmin,rmax)
 
!we avoid getting too close to a charge:
 
   if(rmin .gt. L/(nd*10) )&
 
        call  epotline(x0,y0,X,Y,Q,N)
 
  enddo
                                                                          

                                                                          
 
 enddo
 
end program Electric_Potential


 The first and second part of the code is identical to the previous one. In the third
part we call the subroutine epotline for drawing an equipotential line for each
initial point. The initial points are on a square lattice with (2*nd+1)*(2*nd+1)=
81 points (nd=4). The lattice extends within the limits set by the square [image: (1,1)  ],
[image: (− 1,1)  ], [image: (− 1, − 1 )  ], [image: (1,− 1)  ] (L=1.0). For each point (x0,y0) we calculate the
equipotential line that passes through it. We check that this point is not
too close to one of the charges by calling the subroutine mdist. The call
determines the minimum distance rmin of the point from all the charges which
should be larger than L/(nd*10). You can run the program with the
commands:
                                                                          

                                                                          


   
> gfortran EPotential.f90 -o ep
 
> ./ep < Input > ep.out
 
> gnuplot
 
gnuplot> plot "ep.out" with dots


 Some of the results are shown in figure 7.5. 
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Figure 7.5:  Equipotential  lines  of  the  electric  field  generated  by  a  point  charge
distribution on the plane calculated by the program in EPotential.f90. Beware: the
density of the lines is not correctly calculated and it is not proportional to the magnitude
of the electric field. See problem 7.5.



                                                                          

                                                                          
   


   7.3    The Program – Main Dish

In this section we look under the hood and give the details of the inner parts of
the program: The subroutines eline and epotline that calculate the field and
equipotential lines, the subroutine efield that calculates the electric field at a
point and the subroutine mdist that calculates the minimum and maximum
distances of a point from the point charges.

   The subroutine eline is called by the command:
                                                                          

                                                                          


   
      call  eline(x0,y0,X,Y,Q,N)


 The input to the routine is the initial point (x0,y0), the number of charges N,
the positions of the charges (X(N),Y(N)) and the charges Q(N). The
routine needs some parameters in order to draw the field line. These are
“hard coded”, i.e. set to fixed values by the programmer that cannot
be changed by the user that calls the routine in her program. One of
them is the step [image: Δl  ] of equation  (7.5)  which sets the discretization step
of the field line. It also sets the minimum distance of approaching to a
charge equal to [image: 2Δl  ]. The size of the drawing area of the curve is set
by the parameter max_dist=20.0. We should also provide a check in
the program that checks whether the electric field is zero, in which case
the result of the calculation in equation  (7.5)  becomes indeterminate.
By taking [image: Δl > 0  ], the motion is in the direction of the electric field,
which ends on a negative charge or outside the drawing area (why?). In
order to draw the line in both directions, set [image: Δl <  0  ] and repeat the
calculation.

   The code is listed below:
                                                                          

                                                                          


   
!****************************************************
 
subroutine eline(xin,yin,X,Y,Q,N)
 
!****************************************************
 
 implicit  none
 
 integer          :: N
 
 real,dimension(N):: X,Y,Q
 
 real             :: xin,yin,x0,y0
 
 real,parameter   :: step=0.01
 
 real,parameter   :: max_dist=20.0
 
 integer          :: i,direction
 
 real             :: rmin,rmax,r,dx,dy,dl
 
 real             :: Ex,Ey,E
 
 do direction = -1,1,2              !direction= +/- 1
 
  dl = direction * step
 
  x0 = xin
 
  y0 = yin
 
  dx = 0.0
 
  dy = 0.0
 
  call mdist(x0,y0,X,Y,N,rmin,rmax)
 
  do while(rmin .gt. (2.0*step) .and. rmax .lt. max_dist)
 
   print *,x0,y0
 
!  We evaluate the E-field at the midpoint: This reduces
 
!  systematic errors
 
   call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)
 
   E  = sqrt(Ex*Ex+Ey*Ey)
 
   if( E .le. 1.0e-10 ) exit
 
   dx = dl*Ex/E
 
   dy = dl*Ey/E
 
   x0 = x0 + dx
 
   y0 = y0 + dy
 
   call mdist(x0,y0,X,Y,N,rmin,rmax)
 
  enddo                    !do while()
 
 enddo                     !do direction = -1,1,2
 
end subroutine eline


 In the first part of the code we have the variable declarations. We only note the
declaration
                                                                          

                                                                          


   
 real,dimension(N):: X,Y,Q


 which declares the dimension of the arrays to be N instead of their true dimension
P. This is fine, as long as the programmer of the calling program has already
checked that N [image: ≤ ] P. The necessary memory for the arrays is allocated in the
calling program and the declaration does not provide new storage space. The
arrays X,Y, Q are passed to the subroutine “by reference”, i.e. the routine learns
about their position in the memory to which it can refer to, and not “by value”.
The parameters [image: Δl =  ] step and max_dist are fixed by the parameter
attribute:
                                                                          

                                                                          


   
 real,parameter   :: step=0.01
 
 real,parameter   :: max_dist=20.0


 Their values should be the result of a careful study by the programmer since they
determine the accuracy of the calculation.

   The outmost loop
                                                                          

                                                                          


   
 do direction = -1,1,2
 
  dl = direction * step
 
   ...
 
 enddo


 sets the direction of motion on the field line (i.e. the sign of [image: Δl  ]). The
command do direction = -1,1,2 executes the loop twice by setting the
variable direction to take values from [image: −  1  ] to [image: 1  ] with step equal to
[image: 2  ].

   The commands x0 = xin, y0 = yin define the initial point on the field line.
(x0, y0) is the current point on the field line which is printed to the stdout
with the command print. The variables (dx, dy) set the step (x0, y0)
[image: → ] (x0+dx, y0+dy). The drawing of the field line is done in the inner
loop
                                                                          

                                                                          


   
 call mdist(x0,y0,X,Y,N,rmin,rmax)
 
 do while(rmin .gt. (2.0*step) .and. rmax .lt. max_dist)
 
  ...
 
  call mdist(x0,y0,X,Y,N,rmin,rmax)
 
 enddo


 which is executed provided that the logical expression (rmin .gt. (2.0*step) .and.
rmax .lt. max_dist) is .TRUE. This happens as long as the current point is at a
distance greater than 2.0*step and the maximum distance from all charges is less than
max_dist5 .
The minimum and maximum distances are calculated by calling the subroutine
mdist.

   The electric field, needed in equation  (7.5) , is calculated by a call to
efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey). The first two arguments give
the point at which we want to calculate the electric field, which is chosen to be
the midpoint (x0+dx/2,y0+dy/2) instead of (x0,y0). This improves the stability
and the accuracy of the algorithm.

   Equation  (7.5)  is coded in the commands
                                                                          

                                                                          


   
   E  = sqrt(Ex*Ex+Ey*Ey)
 
   dx = dl*Ex/E
 
   dy = dl*Ey/E
 
   x0 = x0 + dx
 
   y0 = y0 + dy


 We also perform checks for the cases E=0.0 and dx=dy=0.0:
                                                                          

                                                                          


   
   if( E .le. 1.0e-10 ) exit


 When the magnitude of the electric field becomes too small we stop the
calculation by exiting the loop with the command exit. The reader can improve
the code by adding more checks of singular cases.

   The subroutine epotline is programmed in a similar way. The relevant code is
listed below:
                                                                          

                                                                          


   
!****************************************************
 
subroutine epotline(xin,yin,X,Y,Q,N)
 
!****************************************************
 
 implicit none
 
 integer           :: N
 
 real,dimension(N) :: X,Y,Q
 
 real              :: xin,yin,x0,y0
 
 real,parameter    :: step=0.02
 
 real,parameter    :: max_dist=20.0
 
 integer           :: i
 
 real              :: r,dx,dy,dl
 
 real              :: Ex,Ey,E
 

 
 dl = step
 
 x0 = xin
 
 y0 = yin
 
 dx = 0.0
 
 dy = 0.0
 
 r  = step                 !in order to start loop
 
 do while( r .gt. (0.9*dl) .and. r .lt. max_dist)
 
  print *,x0,y0
 
! We evaluate the E-field at the midpoint: This reduces
 
! systematic errors
 
  call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)
 
  E  = sqrt(Ex*Ex+Ey*Ey)
 
  if( E .le. 1.0e-10 ) exit
 
  dx =  dl*Ey/E
 
  dy = -dl*Ex/E
 
  x0 = x0 + dx
 
  y0 = y0 + dy
 
  r  = sqrt((x0-xin)**2+(y0-yin)**2)
 
 enddo                     !do while()
 
end subroutine epotline


 The differences are minor: The equipotential lines are closed curves, therefore we
only need to transverse them in one direction. The criterion for ending the
calculation is to approach the initial point close enough or leave the drawing
                                                                          

                                                                          
area:
                                                                          

                                                                          


   
 do while( r .gt. (0.9*dl) .and. r .lt. max_dist)
 
  ...
 
 enddo


 The values of dx, dy are calculated according to equation  (7.6) :
                                                                          

                                                                          


   
  dx =  dl*Ey/E
 
  dy = -dl*Ex/E




   The subroutine efield is an application of
equations6 
(7.2) :
                                                                          

                                                                          


   
!****************************************************
 
subroutine efield(x0,y0,X,Y,Q,N,Ex,Ey)
 
!****************************************************
 
 implicit none
 
 integer           :: N
 
 real,dimension(N) :: X,Y,Q
 
 real              :: x0,y0,dx,dy,Ex,Ey
 
 integer           :: i
 
 real              :: r3,xi,yi
 

 
 Ex  = 0.0
 
 Ey  = 0.0
 
 do i= 1,N
 
  xi = x0-X(i)
 
  yi = y0-Y(i)
 
  r3 = (xi*xi+yi*yi)**(-1.5)
 
  Ex = Ex + Q(i)*xi*r3
 
  Ey = Ey + Q(i)*yi*r3
 
 enddo
 
end subroutine efield




   Finally, the subroutine mdist calculates the minimum and maximum
distance rmin and rmax of a point (x0,y0) from all the point charges in the
distribution:
                                                                          

                                                                          


   
!****************************************************
 
subroutine mdist(x0,y0,X,Y,N,rmin,rmax)
 
!****************************************************
 
 implicit none
 
 integer           :: N
 
 real,dimension(N) :: X,Y
 
 real              :: x0,y0,rmin,rmax
 
 integer           :: i
 
 real              :: r
 

 
 rmax = 0.0
 
 rmin = 1000.0
 
 do i = 1,N
 
  r  = sqrt((x0-X(i))**2 + (y0-Y(i))**2)
 
  if(r.GT.rmax) rmax = r
 
  if(r.LT.rmin) rmin = r
 
 enddo
 
end subroutine mdist


 The initial value of rmin depends of the limits of the drawing area (why?).


   7.4    The Program - Conclusion

In this section we list the programs discussed in the previous sections and provide
short usage information for compiling, running and analyzing your results.
You can jump into this section without reading the previous ones and go
back to them if you need to clarify some points that you find hard to
understand.

   First we list the contents of the file ELines.f90:
                                                                          

                                                                          


   
!****************************************************
 
program Electric_Fields
 
!****************************************************
 
 implicit none
 
 integer,parameter:: P=20      !max number of charges
 
 real,dimension(P):: X,Y,Q
 
 integer          :: N
 
 integer          :: i,j,nd
 
 real             :: x0,y0,theta
 
 real,parameter   :: PI= 3.14159265359
 
!-------------  SET CHARGE DISTRIBUTION ----
 
 print *, ’# Enter number of charges:’
 
 read  *, N
 
 print *, ’# N= ’,N
 
 do i=1,N
 
  print *,’# Charge: ’,i
 
  print *,’# Position and charge: (X,Y,Q):’
 
  read  *,  X(i),Y(i),Q(i)
 
  print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)
 
 enddo
 
!-------------  DRAWING LINES  -------------
 
!We draw 2*nd field lines around each charge
 
 nd    = 6
 
 do  i = 1,N
 
  do j = 1,(2*nd)
 
   theta = (PI/nd)*j
 
   x0    = X(i) + 0.1 * cos(theta)
 
   y0    = Y(i) + 0.1 * sin(theta)
 
   call  eline(x0,y0,X,Y,Q,N)
 
  enddo
 
 enddo
 
end program Electric_Fields
 
!****************************************************
 
subroutine eline(xin,yin,X,Y,Q,N)
 
!****************************************************
 
 implicit  none
                                                                          

                                                                          
 
 integer          :: N
 
 real,dimension(N):: X,Y,Q
 
 real             :: xin,yin,x0,y0
 
 real,parameter   :: step=0.01
 
 real,parameter   :: max_dist=20.0
 
 integer          :: i,direction
 
 real             :: rmin,rmax,r,dx,dy,dl
 
 real             :: Ex,Ey,E
 
 do direction = -1,1,2              !direction= +/- 1
 
  dl = direction * step
 
  x0 = xin
 
  y0 = yin
 
  dx = 0.0
 
  dy = 0.0
 
  call mdist(x0,y0,X,Y,N,rmin,rmax)
 
  do while(rmin .gt. (2.0*step) .and. rmax .lt. max_dist)
 
   print *,x0,y0
 
!  We evaluate the E-field at the midpoint: This reduces
 
!  systematic errors
 
   call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)
 
   E  = sqrt(Ex*Ex+Ey*Ey)
 
   if( E .le. 1.0e-10 ) exit
 
   dx = dl*Ex/E
 
   dy = dl*Ey/E
 
   x0 = x0 + dx
 
   y0 = y0 + dy
 
   call mdist(x0,y0,X,Y,N,rmin,rmax)
 
  enddo                    !do while()
 
 enddo                     !do direction = -1,1,2
 
end subroutine eline
 
!****************************************************
 
subroutine efield(x0,y0,X,Y,Q,N,Ex,Ey)
 
!****************************************************
 
 implicit none
 
 integer           :: N
 
 real,dimension(N) :: X,Y,Q
 
 real              :: x0,y0,dx,dy,Ex,Ey
 
 integer           :: i
 
 real              :: r3,xi,yi
 

 
 Ex  = 0.0
                                                                          

                                                                          
 
 Ey  = 0.0
 
 do i= 1,N
 
  xi = x0-X(i)
 
  yi = y0-Y(i)
 
! Exercise: Improve code so that xi*xi+yi*yi=0 is taken care of
 
  r3 = (xi*xi+yi*yi)**(-1.5)
 
  Ex = Ex + Q(i)*xi*r3
 
  Ey = Ey + Q(i)*yi*r3
 
 enddo
 
end subroutine efield
 
!****************************************************
 
subroutine mdist(x0,y0,X,Y,N,rmin,rmax)
 
!****************************************************
 
 implicit none
 
 integer           :: N
 
 real,dimension(N) :: X,Y
 
 real              :: x0,y0,rmin,rmax
 
 integer           :: i
 
 real              :: r
 

 
 rmax = 0.0
 
 rmin = 1000.0
 
 do i = 1,N
 
  r  = sqrt((x0-X(i))**2 + (y0-Y(i))**2)
 
  if(r.GT.rmax) rmax = r
 
  if(r.LT.rmin) rmin = r
 
 enddo
 
end subroutine mdist
 





   Then we list the contents of the file EPotential.f90:
                                                                          

                                                                          


   
!****************************************************
 
program Electric_Potential
 
!****************************************************
 
 implicit none
 
 integer,parameter :: P=20     !max number of charges
 
 real,dimension(P) :: X,Y,Q
 
 integer           :: N
 
 real,parameter    :: PI= 3.14159265359
 
 integer           :: i,j,nd
 
 real              :: x0,y0,rmin,rmax,L
 

 
 print *, ’# Enter number of charges:’
 
 read  *,   N
 
 print *, ’# N= ’,N
 
 do i=1,N
 
  print *,’# Charge: ’,i
 
  print *,’# Position and charge: (X,Y,Q):’
 
  read  *,  X(i),Y(i),Q(i)
 
  print *,’# (X,Y)= ’, X(i),Y(i), ’ Q= ’,Q(i)
 
 enddo
 
!-------------  DRAWING LINES  -------------
 
!We draw lines passing through an equally
 
!spaced lattice of N=(2*nd+1)x(2*nd+1) points
 
!in the square -L<= x <= L, -L<= y <= L.
 
 nd    = 4
 
 L     = 1.0
 
 do  i = -nd,nd
 
  do j = -nd,nd
 
   x0  = i*(L/nd)
 
   y0  = j*(L/nd)
 
   print *,’# @ ’,i,j,L/nd,x0,y0
 
   call  mdist(x0,y0,X,Y,N,rmin,rmax)
 
!we avoid getting too close to a charge:
 
   if(rmin .gt. L/(nd*10) )&
 
        call  epotline(x0,y0,X,Y,Q,N)
 
  enddo
                                                                          

                                                                          
 
 enddo
 
end program Electric_Potential
 
!****************************************************
 
subroutine epotline(xin,yin,X,Y,Q,N)
 
!****************************************************
 
 implicit none
 
 integer           :: N
 
 real,dimension(N) :: X,Y,Q
 
 real              :: xin,yin,x0,y0
 
 real,parameter    :: step=0.02
 
 real,parameter    :: max_dist=20.0
 
 integer           :: i
 
 real              :: r,dx,dy,dl
 
 real              :: Ex,Ey,E
 

 
 dl = step
 
 x0 = xin
 
 y0 = yin
 
 dx = 0.0
 
 dy = 0.0
 
 r  = step                 !in order to start loop
 
 do while( r .gt. (0.9*dl) .and. r .lt. max_dist)
 
  print *,x0,y0
 
! We evaluate the E-field at the midpoint: This reduces
 
! systematic errors
 
  call efield(x0+0.5*dx,y0+0.5*dy,X,Y,Q,N,Ex,Ey)
 
  E  = sqrt(Ex*Ex+Ey*Ey)
 
  if( E .le. 1.0e-10 ) exit
 
  dx =  dl*Ey/E
 
  dy = -dl*Ex/E
 
  x0 = x0 + dx
 
  y0 = y0 + dy
 
  r  = sqrt((x0-xin)**2+(y0-yin)**2)
 
 enddo                     !do while()
 
end subroutine epotline
 
...


 where ... are the subroutines efield and mdist which are identical to the ones
in the file ELines.f90.

   In order to compile the program use the commands:
                                                                          

                                                                          


   
> gfortran ELines.f90     -o el
 
> gfortran EPotential.f90 -o ep


 Then, edit a file and name it e.g. Input and write the data that define a charge
distribution. For example:
                                                                          

                                                                          


   
4             N: Number of charges
 
 1  1  -1     (X,Y,Q): Position and charge
 
-1  1   1     (X,Y,Q): Position and charge
 
 1 -1   1     (X,Y,Q): Position and charge
 
-1 -1  -1     (X,Y,Q): Position and charge


 The results are obtained with the commands:
                                                                          

                                                                          


   
> ./el < Input > el.dat
 
> ./ep < Input > ep.dat
 
> gnuplot
 
gnuplot> plot "el.dat" with dots
 
gnuplot> plot "ep.dat" with dots




   Have fun!




   7.5    Electrostatic Field in the Vacuum

Consider a time independent electric field in an area of space which is
empty of electric charge. Maxwell’s equations are reduced to Gauss’s
law


   	
   
[image:                 ∂Ex    ∂Ey     ∂Ez
∇⃗ ⋅ ⃗E (x, y,z) =---- + ---- +  ----=  0,
                 ∂x     ∂y     ∂z
]
	(7.8)



together with the equation that defines the electrostatic
potential7 


                                                                          

                                                                          
   
[image: E⃗(x,y,z ) = − ⃗∇V (x,y,z).                      (7.9)
]


Equations  (7.8)  and  (7.9)  give the Laplace equation for the function
[image: V (x,y,z )  ]:
   	
   
[image:                 2      2       2
∇2V (x,y, z) = ∂-V--+ ∂-V--+ ∂--V-=  0.
               ∂x2    ∂y2     ∂z2
]
	(7.10)





   The solution of the equation above is a boundary value problem: We are
looking for the potential [image: V(x, y,z)  ] in a region of space [image: 𝒮 ] bounded by a closed
surface [image: ∂𝒮 ]. When the potential is known on [image: ∂𝒮 ] the solution to  (7.10)  is
unique and the potential and the electric field is determined everywhere in
[image: 𝒮 ].

   For simplicity consider the problem confined on a plane, therefore
[image: V  = V (x,y)  ]. In this case the last term in equation  (7.10)  vanishes, the region
[image: 𝒮 ] is a compact subset of the plane and [image: ∂𝒮 ] is a closed curve.

   For the numerical solution of the problem, we approximate [image: 𝒮 ] by a discrete,
square lattice. The potential is defined on the [image: N  ] sites of the lattice. We
take [image: 𝒮 ] to be bounded by a square with sides of length [image: l  ]. The distance
between the nearest lattice points is called the lattice constant [image: a  ]. Then
[image: l = (L − 1)a  ], where [image:     √ ---
L =   N  ] is the number of lattice points on each side of
the square. The continuous solution is approximated by the solution on
                                                                          

                                                                          
the lattice, and the approximation becomes exact in the [image: N  →  ∞ ] and
[image: a →  0  ] limits, so that the length [image: l = (L − 1)a  ] remains constant. The
curve [image: ∂ 𝒮 ] is approximated by the lattice sites that are located on the
perimeter of the square and the loci in the square where the potential takes
constant values. This is a simple model of a set of conducting surfaces
(points where [image: V  =  ] const. [image: ⁄= 0  ]) in a compact region whose boundary is
grounded (points where [image: V  = 0  ]). An example is depicted in figure 7.6.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 7.6: A lattice which corresponds to a cross section of two parallel conducting
planes inside a grounded cubic box. The black lattice sites are the points of constant, fixed
potential whereas the white ones are sites in the vacuum. 



                                                                          

                                                                          
   


   In order to derive a finite difference equation which approximates equation
(7.10) , we Taylor expand around a point [image: (x, y)  ] according to the equations:


   
[image:                             ∂V       1∂2V      2
V (x + δx,y ) =   V (x,y) + ---δx +  ----2 (δx ) + ...
                            ∂x       2 ∂x2
V (x − δx,y ) =   V (x,y) − ∂V-δx +  1∂-V--(δx )2 + ...
                            ∂x       2 ∂x2
                            ∂V       1∂2V     2
V (x,y + δy ) =   V (x,y) + ∂y-δy +  2∂y2-(δy ) + ...
                                       2
V (x,y − δy ) =   V (x,y) − ∂V-δy +  1∂-V-(δy )2 + ....
                            ∂y       2∂y2
]


By summing both sides of the above equations, taking [image: δx = δy  ] and ignoring the
terms implied by [image: ...  ], we obtain 
   
[image: V(x + δx, y) + V(x − δx, y) + V (x,y + δy ) + V (x,y − δy)
                         2      2
    =  4V(x, y) + (δx )2(∂-V-+  ∂-V-) + ...
                        ∂x2    ∂y2
    ≈  4V(x, y),                                         (7.11)
]


The second term in the second line was eliminated by using equation  (7.10)
.
                                                                          

                                                                          
   We map the coordinates of the lattice points to integers [image: (i,j)  ] such that
[image: xi = (i − 1)a  ] and [image: yj = (j − 1)a  ] where [image: i,j =  1,...,L  ]. By taking [image: δx =  δy = a  ]
so that [image: xi ± δx =  ] [image: xi ± a =  ] [image: (i − 1 ± 1)a =  ] [image: xi±1   ] and [image: yj ± δy =  ] [image: yj ± a =  ]
[image: (j − 1 ± 1)a =  ] [image: yj±1   ], equation  (7.11)  becomes:


   	
   
[image:          1
V (i,j) = --(V(i − 1,j) + V(i + 1,j) + V(i,j − 1) + V(i,j + 1)).
         4
]
	(7.12)



The equation above states that the potential at the position [image: (i,j)  ] is the
arithmetic mean of the potential of the nearest neighbors. We will describe an
algorithm which belongs to the class of “successive overrelaxation methods”
(SOR) whose basic steps are:
      

      	Set the size [image: L  ] of the square lattice.
      

      	Flag the sites that correspond to “conductors”, i.e. the sites where the
      potential remains fixed to the boundary conditions values.
      

      	Choose an initial trial function for [image: V (x,y)  ] on the vacuum sites. Of
      course it is not the solution we are looking for. A good choice will lead
      to fast convergence of the algorithm to the true solution. A bad choice
      may lead to slow convergence, no convergence or even convergence to
      the wrong solution. In our case the problem is easy and the simple
      choice [image: V (x,y ) = 0  ] will do.
      

      	Sweep the lattice and enforce equation  (7.12)  on each visited vacuum
      site. This defines the new value of the potential at this site.
                                                                          

                                                                          
      

      	Sweep the lattice repeatedly until two successive sweeps result in a very
      small change in the function [image: V (x,y)  ].


A careful study of the above algorithm requires to test different criteria of “very small
change” and test that different choices of the initial function [image: V (x,y)  ] result in
the same solution.

   We write a program that implements this algorithm in the case of a system
which is the projection of two parallel conducting planes inside a grounded cubic
box on the plane. The lattice is depicted in figure 7.6, where the black dots
correspond to the conductors. All the points of the box have [image: V  = 0  ] and the
two conductors are at constant potential [image: V1   ] and [image: V2   ] respectively. The
user enters the values [image: V1   ] and [image: V2   ], the lattice size [image: L  ] and the required
accuracy interactively. The latter is determined by a small number [image: 𝜖  ]. The
convergence criterion that we set is that the maximum difference between the
values of the potential between two successive sweeps should be less than
[image: 𝜖  ].

   The data structure is very simple. We use a real array V(L,L) in order to store
the values of the potential at each lattice site. A logical array isConductor(L,L)
flags each site as a “conductor site” (= .TRUE.) or as a “vacuum site”
(=.FALSE.).

   The main program reads in the data entered by the user and then calls three
subroutines:
      

      	initialize_lattice(V,isConductor,L,V1,V2):
The routine needs at its input the values of the potential V1 and V2 on
      the left and right plate respectively and the size of the lattice L. On
      exit it provides the initial values of the potential V(L,L) and the flags
      isConductor(L,L). The geometry of the setting is hard coded and the
      user needs to change this subroutine each time that she wants to study
      a different geometry.
      

      	laplace(V,isConductor,L,epsilon):
This is the heart of the program. On entry we provide the initialized
      arrays V(L,L) and isConductor(L,L), the lattice size L, and the desired
      accuracy epsilon. On exit we obtain the final solution V(L,L). This
      subroutine calculates the arithmetic mean of the potential of the nearest
                                                                          

                                                                          
      neighbors Vav and the value V(i,j)=Vav is changed immediately8 .
      The maximum change in the new value of the potential Vav from the
      old one V(i,j) is stored in the variable error. When error becomes
      smaller than epsilon we assume that convergence has been achieved.
      

      	print_results(V,L):
This subroutine prints the potential V(L,L) to the file data. Each line
      contains the integers i, j and the value of the potential V(i,j). We
      note that each time that the index i changes, the subroutine prints an
      extra empty line. This is done so that the output can be read easily by
      the three dimensional plotting function splot of gnuplot.


The full program is listed below:
                                                                          

                                                                          


   
!*************************************************************
 
!PROGRAM LAPLACE_EM
 
!Computes the electrostatic potential around conductors.
 
!The computation is performed on a square lattice of linear
 
!dimension L. A relaxation method is used to converge to the
 
!solution of Laplace equation for the potential.
 
!DATA STRUCTURE:
 
!real(8) V(L,L): Value of the potential on the lattice sites
 
!logical isConductor(L,L): If .TRUE.  site has fixed potential
 
!                          If .FALSE. site is empty space
 
!real epsilon: Determines the accuracy of the solution
 
!The maximum difference of the potential on each site between
 
!two consecutive sweeps should be less than epsilon.
 
!PROGRAM STRUCTURE
 
!main program:
 
! . Data Input
 
! . call subroutines for initialization, computation and
 
!   printing of results
 
!subroutine initialize_lattice:
 
! . Initilization of V(L,L) and isConductor(L,L)
 
!subroutine laplace:
 
! . Solves laplace equation using a relaxation method
 
!subroutine print_results:
 
! . Prints results for V(L,L) in a file. Uses format compatible
 
!with splot of gnuplot.
 
!*************************************************************
 
program laplace_em
 
 implicit none
 
!P defines the size of the arrays and is equal to L
 
 integer,parameter      :: P=31
 
 logical,dimension(P,P) :: isConductor
 
 real(8),dimension(P,P) :: V
 
!V1 and V2 are the values of the potential on the interior
 
!conductors. epsilon is the accuracy desired for the
 
!convergence of the relaxation method in subroutine
 
!laplace()
                                                                          

                                                                          
 
 real(8)                :: V1,V2,epsilon
 
 integer                :: L
 

 
!We ask the user to provide the necessary data:
 
!V1,V2 and epsilon
 
 L = P
 
 print *,’Enter V1,V2:’
 
 read  *, V1,V2
 
 print *,’Enter epsilon:’
 
 read  *, epsilon
 
 print *,’Starting Laplace:’
 
 print *,’Grid Size= ’,L
 
 print *,’Conductors set at V1= ’,V1,’ V2= ’,V2
 
 print *,’Relaxing with accuracy epsilon= ’,epsilon
 
!The arrays V and isConductor are initialized
 
 call initialize_lattice(V,isConductor,L,V1,V2)
 
!We enter initialized V,isConductor. On exit the
 
!routine gives the solution V
 
 call laplace(V,isConductor,L,epsilon)
 
!We print V in a file.
 
 call print_results(V,L)
 

 
end program laplace_em
 
!*************************************************************
 
!subroutine initialize_lattice
 
!Initializes arrays V(L,L) and isConductor(L,L).
 
!V(L,L)= 0.0  and isConductor(L,L)= .FALSE. by default
 
!isConductor(i,j)= .TRUE. on boundary of lattice where V=0
 
!isConductor(i,j)= .TRUE. on sites with i=  L/3+1, 5<= j <= L-5
 
!isConductor(i,j)= .TRUE. on sites with i=2*L/3+1, 5<= j <= L-5
 
!V(i,j) = V1  on all sites with i=  L/3+1, 5<= j <= L-5
 
!V(i,j) = V2  on all sites with i=2*L/3+1, 5<= j <= L-5
 
!V(i,j) = 0   on boundary (i=1,L and j=1,L)
 
!V(i,j) = 0   on interior sites with isConductor(i,j)= .FALSE.
 
!INPUT:
 
!integer L: Linear size of lattice
 
!real(8)  V1,V2: Values of potential on interior conductors
 
!OUTPUT:
 
!real(8)  V(L,L): Array provided by user. Values of potential
 
!logical isConductor(L,L): If .TRUE.  site has fixed potential
 
!                          If .FALSE. site is empty space
                                                                          

                                                                          
 
!*************************************************************
 
subroutine initialize_lattice(V,isConductor,L,V1,V2)
 
 implicit none
 
 integer                :: L
 
 logical,dimension(L,L) :: isConductor
 
 real(8),dimension(L,L) :: V
 
 real(8)                :: V1,V2
 
 integer                :: i,j
 

 
!Initialize to 0 and .FALSE (default values for boundary and
 
!interior sites).
 
 V           =  0.0D0
 
 isConductor = .FALSE.
 
!We set the boundary to be a conductor: (V=0 by default)
 
 do i=1,L
 
  isConductor(1,i) = .TRUE.
 
  isConductor(i,1) = .TRUE.
 
  isConductor(L,i) = .TRUE.
 
  isConductor(i,L) = .TRUE.
 
 enddo
 
!We set two conductors at given potential V1 and V2
 
 do i=5,L-5
 
  V          (  L/3+1,i) =  V1
 
  isConductor(  L/3+1,i) = .TRUE.
 
  V          (2*L/3+1,i) =  V2
 
  isConductor(2*L/3+1,i) = .TRUE.
 
 enddo
 

 
end subroutine initialize_lattice
 
!*************************************************************
 
!subroutine laplace
 
!Uses a relaxation method to compute the solution of the
 
!Laplace equation for the electrostatic potential
 
!on a 2 dimensionalsquarelattice of linear size L.
 
!At every sweep of the lattice we compute the average
 
!Vav of thepotential at each site (i,j) and we immediately
 
! update V(i,j).
 
!The computation continues until Max |Vav-V(i,j)| < epsilon
 
!INPUT:
 
!integer L: Linear size of lattice
 
!real(8) V(L,L): Value of the potential at each site
                                                                          

                                                                          
 
!logical isConductor(L,L): If .TRUE.  potential is fixed
 
!                          If .FALSE. potential is updated
 
!real(8) epsilon: if Max |Vav-V(i,j)| < epsilon return to
 
!callingprogram.
 
!OUTPUT:
 
!real(8) V(L,L): The computed solution for the potential
 
!*************************************************************
 
subroutine laplace(V,isConductor,L,epsilon)
 
 implicit none
 
 integer :: L
 
 logical,dimension(L,L) :: isConductor
 
 real(8),dimension(L,L) :: V
 
 real(8)                :: epsilon
 
 integer                :: i,j,icount
 
 real(8)                :: Vav,error,dV
 

 
 icount = 0                !counts number of sweeps
 
 do while (.TRUE.)         !an infinite loop:
 
  error = 0.0D0            !Exit when error<epsilon
 
  do  j=2,L-1
 
   do i=2,L-1
 
!We change V only for non conductors:
 
    if( .NOT. isConductor(i,j))then
 
     Vav = ( V(i-1,j)+V(i+1,j)+V(i,j+1)+V(i,j-1)) * 0.25D0
 
     dV  = DABS(V(i,j)-Vav)
 
     if(error .LT. dV ) error = dV !maximum error
 
     V(i,j) = Vav          ! we immendiately update V(i,j)
 
    endif
 
   enddo
 
  enddo
 
  icount = icount + 1
 
  print *,icount,’ err= ’,error
 
  if( error .LT. epsilon) return !return to main program
 
 enddo
 

 
end subroutine laplace
 
!*************************************************************
 
!subroutine  print_results
 
!Prints the array V(L,L) in file "data"
 
!The format of the output is appropriate for the splot function
 
!of gnuplot: Each time i changes an empty line is printed.
                                                                          

                                                                          
 
!INPUT:
 
!integer L: size of array V
 
!real(8) V(L,L): array to be printed
 
!OUTPUT:
 
!no output
 
!*************************************************************
 
subroutine  print_results(V,L)
 
 implicit none
 
 integer                :: L
 
 real(8),dimension(L,L) :: V
 
 integer                :: i,j
 

 
 open(unit=11,file="data")
 
 do i=1,L
 
  do j =1,L
 
   write(11,*)i,j,V(i,j)
 
  enddo
 
  write (11,*)’’ !empty line for gnuplot,separate isolines
 
 enddo
 

 
end subroutine print_results





   7.6    Results

The program in the previous section is written in the file LaplaceEq.f90.
Compiling and running is done with the commands:
                                                                          

                                                                          


   
> gfortran LaplaceEq.f90 -o lf
 
> ./lf
 
 Enter V1,V2:
 
100 -100
 
 Enter epsilon:
 
0.01
 
 Starting Laplace:
 
 Grid Size=  31
 
 Conductors set at V1=   100. V2=  -100.
 
 Relaxing with accuracy epsilon=   0.01
 
 1 err=   33.3333333
 
 2 err=   14.8148148
 
 3 err=   9.87654321
 
.......................
 
 110 err=   0.0106860904
 
 111 err=   0.0101182476
 
 112 err=   0.00958048937


 In the example above, the program performs 112 sweeps until the error becomes
0.00958048937 < 0.01. The results are stored in the file data. We can
make a three dimensional plot of the function [image: V (i,j)  ] with the gnuplot
commands:
                                                                          

                                                                          


   
gnuplot> set pm3d
 
gnuplot> set hidden3d
 
gnuplot> set size ratio 1
 
gnuplot> splot "data" with lines


 The results are shown in figure 7.7 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 7.7:  The  solution  of  the  equation    (7.10)    computed  by  the  program
LaplaceEq.f90 for L= 31, V1=100, V2=-100, epsilon=0.01.



                                                                          

                                                                          
   


   7.7    Poisson Equation

This section contains a short discussion of the case where the space is filled
with a continuous static charge distribution given by the charge density
function [image: ρ(⃗r)  ]. In this case the Laplace equation becomes the Poisson
equation:


   	
   
[image:          2      2      2
∇2V  =  ∂-V-+  ∂-V--+ ∂-V--= − 4π ρ(x,y,z)
        ∂x2    ∂y2     ∂z2
]
	(7.13)




   The equation on the lattice becomes


   	
   
[image:           1
V (i,j) = -(V (i − 1,j ) + V (i + 1,j ) + V (i,j − 1 ) + V (i,j + 1 ) + ˜ρ(i,j)),
          4
]
	(7.14)


                                                                          

                                                                          

where9 
[image: ˜ρ(i,j) = 4πa2 ρ(i,j)  ]. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 7.8: The solution of the equation  (7.13)  by the program in the file Poisson.f90
for L= 51, V= 0 on the boundary and the charge [image: 4πQ = 1000  ] all concentrated at one
point.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 7.9: The solution of equation  (7.13)  by the program in the file Poisson.f90
for L= 51, V= 0 on the boundary and the charge [image: 4πQ = 1000  ] uniformly distributed in a
small square with sides made of 10 lattice sites.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 7.10: The solution of equation  (7.13)  by the program in the file Poisson.f90
for L= 51, V= 0 on the boundary and the charge [image: 4πQ = 1000  ] uniformly distributed on
all internal lattice sites.



                                                                          

                                                                          
   


   The program in the file PoissonEq.f90 solves equation  (7.14)  for
a uniform charge distribution (figure 7.10), where we have set [image: a = 1  ].
The reader is asked to reproduce this figure together with figures 7.8 and
7.9.
                                                                          

                                                                          


   
!*************************************************************
 
!set the boundary of a square to given potentials
 
!*************************************************************
 
program poisson_eq
 
 implicit none
 
 integer,parameter      :: P=51
 
 logical,dimension(P,P) :: isConductor
 
 real(8),dimension(P,P) :: V,rho
 
 real(8)                :: V1,V2,V3,V4,Q,epsilon
 
 integer                :: L
 

 
 L = P
 
 print *,’Enter V1,V2,V3,V4:’
 
 read  *, V1,V2,V3,V4
 
 print *,’Enter 4*PI*Q:’
 
 read  *, Q
 
 print *,’Enter epsilon:’
 
 read  *, epsilon
 
 print *,’Starting Laplace:’
 
 print *,’Grid Size= ’,L
 
 print *,’Boundaries set at V1= ’,V1,’ V2= ’,V2,’ V3= ’,V3,&
 
      ’ V4= ’,V4,’ and Q= ’,Q
 
 print *,’Relaxing with accuracy epsilon= ’,epsilon
 

 

 
 call initialize_lattice(V,isConductor,rho,L,V1,V2,V3,V4,Q)
 

 
 call laplace(V,isConductor,rho,L,epsilon)
 

 
 call print_results(V,L)
 

 
end program laplace_sq
 
!**********************************************************
 
subroutine &
 
initialize_lattice(V,isConductor,rho,L,V1,V2,V3,V4,Q)
 
!**********************************************************
                                                                          

                                                                          
 
 implicit none
 
 integer                :: L
 
 logical,dimension(L,L) :: isConductor
 
 real(8),dimension(L,L) :: V,rho
 
 real(8)                :: V1,V2,V3,V4,Q,Area
 
 integer                :: i,j,L1,L2
 
!Initialize to 0 and .FALSE.
 
 V           =  0.0D0
 
 isConductor = .FALSE.
 
 rho         =  0.0D0
 
!We set the boundary to be a conductor:
 
 do i=1,L
 
  isConductor(1,i) = .TRUE.
 
  isConductor(i,1) = .TRUE.
 
  isConductor(L,i) = .TRUE.
 
  isConductor(i,L) = .TRUE.
 
  V          (1,i) =  V1
 
  V          (i,L) =  V2
 
  V          (L,i) =  V3
 
  V          (i,1) =  V4
 
 enddo
 
!We set the points with non-zero charge
 
!A uniform distribution at a center square
 
 L1 = (L/2)-5
 
 L2 = (L/2)+5
 
 if(L1.LT.1) stop ’array rho out of bounds. Small L1’
 
 if(L2.GT.L) stop ’array rho out of bounds. Large L2’
 
 Area = (L2-L1+1)*(L2-L1+1)
 
 do j=L1,L2
 
  do i=L1,L2
 
   rho(i,j) = Q/Area !rho is \tilde\rho in notes
 
  enddo              !so Q is 4*PI*Q
 
 enddo
 

 
end subroutine initialize_lattice
 
!*************************************************************
 
subroutine laplace(V,isConductor,rho,L,epsilon)
 
!*************************************************************
 
 implicit none
 
 integer :: L
 
 logical,dimension(L,L) :: isConductor
                                                                          

                                                                          
 
 real(8),dimension(L,L) :: V,rho
 
 real(8)                :: epsilon
 
 integer                :: i,j,icount
 
 real(8)                :: Vav,error,dV
 

 
 icount = 0
 
 do while (.TRUE.)
 
  error = 0.0D0
 
  do  j=2,L-1
 
   do i=2,L-1
 
!We change the voltage only for non conductors:
 
    if( .NOT. isConductor(i,j))then
 
     Vav = (V(i-1,j)+V(i+1,j)+V(i,j+1)+V(i,j-1)+rho(i,j))&
 
           *0.25D0
 
     dV  = DABS(V(i,j)-Vav)
 
     if(error .LT. dV ) error = dV !maximum error
 
     V(i,j) = Vav
 
    endif
 
   enddo
 
  enddo
 
  icount = icount + 1
 
  if( error .LT. epsilon) exit
 
 enddo
 
 print *,icount,’ err= ’,error
 

 
end subroutine laplace
 
!*************************************************************
 
subroutine  print_results(V,L)
 
!*************************************************************
 
 implicit none
 
 integer                :: L
 
 real(8),dimension(L,L) :: V
 
 integer                :: i,j
 

 
 open(unit=11,file="data")
 
 do i=1,L
 
  do j =1,L
 
   write(11,*)i,j,V(i,j)
 
  enddo
 
  write (11,*)’’ !empty line for gnuplot,separate isolines
 
 enddo
                                                                          

                                                                          
 

 
end subroutine print_results


 In the bibliography the algorithm described above is called the Gauss–Seidel
method. In this method, the right hand side of equation  (7.14)  uses the updated
values of the potential in the calculation of [image: V (i,j)  ] and [image: V (i,j)  ] is immediately
updated. In contrast, the Jacobi method uses the old values of the potential in the
right hand side of  (7.14)  and the new value computed is stored in order
to be used in the next sweep. The Gauss–Seidel method is superior to
the Jacobi method as far as speed of convergence is concerned. We can
generalize Jacobi’s method by defining the residual [image: R
  i,j  ] of equation
(7.14)


   	
   
[image: R   = V (i+ 1, j)+ V (i− 1,j) + V (i,j + 1)+  V(i,j − 1)− 4V (i,j)+ ρ˜(i,j),
  i,j
]
	(7.15)



which vanishes when [image: V (i,j)  ] is a solution of equation  (7.14) . Then, using [image: Ri,j  ],
Jacobi’s method can be formulated as


   	
   
[image: V (n+1 )(i,j) = V (n)(i,j) + 1R (ni,)j ,
                          4
                                                                          

                                                                          
]
	(7.16)



where the quantities with index [image: (n)  ] refer to the values of the potential during
the [image: n  ]-th sweep. The successive overrelaxation (SOR) method is given
by:


   	
   
[image:   (n+1)         (n)        ω  (n)
V     (i,j) = V   (i,j) + -R i,j .
                          4
]
	(7.17)



When [image: ω < 1  ] we have “underrelaxation” and we obtain slower convergence than
the Jacobi method. When [image: 1 < ω < 2  ] we have “overrelaxation” and an
appropriate choice of [image: ω  ] can lead to an improvement compared to the Jacobi
method. When [image: ω  > 2  ] SOR diverges. Further study of the SOR methods is left as
an exercise to the reader.
                                                                          

                                                                          


   7.8    Problems


      

      	Reproduce the figures with the electric field lines and equipotential
      lines shown in section 7.2.
      

      	Take the charge distributions that you used in the previous problems,
      make all the charges to be positive and remake the figures of the field
      lines and the equipotential lines. Then repeat by taking half of the
      charges to be twice in magnitude than the others.
      

      	The program ELines.f90 gets stuck when you apply it on a charge
      distribution of four equal charges located at the vertices of a square.
      How can you correct this pathology?
      

      	Make the necessary changes to the program in the file ELines.f90 so
      that the number of field lines starting near a charge [image: q  ] is proportional
      to [image: q  ].
      

      	 Improve the program in EPotential.f90 so that the equipotential lines are
      drawn with a density proportional to the magnitude of the electric
      field.
Hint:
           
           	Write a subroutine that calculates the potential [image: V (x,y)  ] at the
           point [image: (x, y)  ].
           

           	From each point charge draw a line in the radial direction and
           calculate the potential on points that are at small distance [image: Δl  ]
           from each other.
           

           	Calculate   the   maximum/minimum   value   of   the   potential
           [image: Vmax  ]/[image: Vmin  ]   and  use  them  in  order  to  choose  the  values
           of  the  potential  on  the  equipotential  lines  that  you  plan  to
                                                                          

                                                                          
           draw.  If  e.g.  you  choose  to  draw  5  equipotential  lines,  take
           [image: δV =  (Vmax − Vmin)∕4  ] and [image: Vi = Vmin + iδV  ] [image: i = 0,...,4  ].
           

           	Repeat  the  second  step.  When  the  potential  at  a  point  takes
           approximately one of the values [image: Vi  ] chosen in the previous step,
           draw an equipotential line from that point.


      

      	Compute the electric potential using the program in the file LaplaceEq.f90
      for
           
           	L= 31, V1=100, V2=100
           

           	L= 31, V1=100, V2=0


      and construct the corresponding plot for [image: V (i,j)  ].
      


      	Compute the electric potential using the program in the file LaplaceEq.f90
      for
           
           	V1=100, V2=100
           

           	V1=100, V2=100
           

           	V1=100, V2=0


      for L=31,61,121,241,501 and construct the corresponding plot for
      [image: V (i,j)  ]. Vary epsilon=0.1, 0.01, 0.001, 0.0001, 0.00001,
      0.000001. What is the dependence of the number of sweeps [image: N  ] on
      epsilon? Make the plot of [image: N  ](epsilon). Put the points and curves of
      [image: N  ](epsilon) for all values of L on the same plot.
      


      	Compute the electrostatic potential of a square conductor when the
      potential on each side is V1, V2, V3, V4. Repeat what you did in the
      previous problem for
           
           	V1=10, V2=5, V3=10, V4= 5
                                                                          

                                                                          
           

           	V1=10, V2=0, V3=0, V4= -10
           

           	V1=10, V2=0, V3=0, V4= 0


      

      	 Compute the electrostatic potential of a system of square conductors where
      the one is inside the other as shown in figure 7.11. The side of each
      conductor has L1, L2 sites respectively and the value of the potential
      is V1,V2 respectively. Take L2= L1/5 and repeat the steps in the
      previous problem for V1=10, V2=-10 and L1= 25, 50, 100, 200.
      





[image: pict]

 
Figure 7.11: The square conductors described in problem 7.9.



      


      

      	Perform a numerical computation of the capacitance [image: C =  Q ∕V  ] of the
      system of conductors of the previous problem when [image: V1 = V  ], [image: V2 = − V  ]. In
      order to calculate the charge [image: Q  ], compute the surface charge density [image: σ  ]
      using the equation
      
      [image:     En-
σ = 4π ,
      ]
 where [image: En  ] is the perpendicular component of the electric field on the
      surface. Use the approximation
                                                                          

                                                                          
      
      [image:         δV-
En =  − δr ,
      ]
 where [image: δV  ] is the potential difference between a point on the conductor and
      its nearest neighbor. By integrating (i.e. summing) you can estimate the
      total charge on each conductor. If these are opposite and their absolute
      value is [image: Q  ], then the capacitance can be calculated from the equation
      [image: C =  Q∕V  ]. Perform the calculation described above for [image: V = 10  ] and
      L1=25, 75.
      

      	In the system of the previous problem compute the function [image: Q (V )  ]. Verify
      that the capacitance is independent of [image: V  ]. Use L1=25,50, V1= -V2 =1, 2,
      5, 10, 15, 20, 25.
      

      	Reproduce figures 7.8, 7.9 and 7.10. Compare the result of the first case with
      the known solution of a point charge in empty space.
      

      	Introduce the lattice spacing [image: a  ] in the corresponding equations in the
      program in the file PoissonEq.f90. Set the length of each side to be [image: l = 1  ]
      and print the results in the file data as [image: (xi,yi,V(xi,yi))  ] instead of
      [image: (i,j,V (i,j))  ]. Take L=51,101,151,201,251 and plot [image: V (x,y)  ] in the square
      [image: 0 < x < 1  ], [image: 0 < y <  1  ]. Study the convergence of the solutions by plotting
      the section [image: V (x,1∕2)  ] for each L.
      

      	Write a program that implements the SOR algorithm given by equation
      (7.16)  for the problem solved in LaplaceEq.f90. Compare the speed
      of convergence of SOR with that of the Gauss-Seidel method for
      [image: L = 51  ], [image: ω  = 1.0  ], [image: 0.9  ], [image: 0.8  ], [image: 0.6  ], [image: 0.4  ], [image: 0.2  ]. What happens when
      [image: ω > 1  ]?
      

      	Write a program that implements the SOR algorithm given by equation
      (7.16)  for the problem solved in PoissonEq.f90. Compare the speed
                                                                          

                                                                          
      of convergence of SOR with that of the Gauss-Seidel method for
      [image: L = 51  ], [image: ω  = 1.0  ], [image: 0.9  ], [image: 0.8  ], [image: 0.6  ], [image: 0.4  ], [image: 0.2  ]. What happens when
      [image: ω > 1  ]?


                                                                          

                                                                          
   


Chapter 8
Diffusion Equation

   8.1    Introduction

The diffusion equation is related to the study of random walks. Consider a
particle moving on a line (one dimension) performing a random walk. The motion
is stochastic and the kernel


   	
   
[image: K  (x, x0;t),
]
	(8.1)



is interpreted as the probability density to observe the particle at position [image: x  ] at
time [image: t  ] if the particle is at [image: x0   ] at [image: t = 0  ]. The equation that determines
[image: K (x,x0; t)  ] is


   	
   
[image: ∂K (x, x0;t)      ∂2K (x,x0;t)
------------=  D -------2----,
     ∂t              ∂x
]
	(8.2)



which is the diffusion equation. The coefficient [image: D  ] depends on the
details of the system that is studied. For example, for the Brownian
motion of a dust particle in a fluid which moves under the influence of
                                                                          

                                                                          
random collisions with the fluid particles, we have that [image: D  = kT ∕γ  ],
where [image: T  ] is the (absolute) temperature of the fluid, [image: γ  ] is the friction
coefficient1 
of the particle in the fluid and [image: k  ] is the Boltzmann constant.

   Usually the initial conditions are chosen so that at [image: t = 0  ] the particle is localized at one
point [image: x0   ], i.e.2 


   	
   
[image: K  (x, x0;0) = δ(x − x0).
]
	(8.3)




   The interpretation of [image: K (x,x0;t)  ] as a probability density implies that for every [image: t  ] we
should have that3 


   	
                                                                          

                                                                          
   
[image: ∫
  +∞
     K (x,x0; t)dx =  1.
 −∞
]
	(8.4)



It is not obvious that this relation can be imposed for every instant of time. Even
if [image: K (x,x0; t)  ] is normalized so that  (8.4)  holds for [image: t = 0  ], the time evolution of
[image: K (x,x0; t)  ] is governed by equation  (8.2)  which can spoil equation  (8.4)  at
later times.

   If we impose equation  (8.4)  at [image: t = 0  ], then it will hold at all times
if


   	
   
[image:    ∫
-d   + ∞
dt       K (x,x0;t)dx = 0.
    −∞
]
	(8.5)



By taking into account that [image:   ∫
ddt  +−∞∞ K (x, x0;t)dx =  ] [image: ∫
 +−∞∞ ∂K(x∂,xt0;t)dx  ] and that
[image: ∂K-(x,x0;t)
    ∂t   =  ] [image:   ∂2K(x,x0;t)
D    ∂x2   ] we obtain 

   
[image: d ∫ + ∞                      ∫ + ∞  ∂ ( ∂K (x, x ;t))
--         K (x,x0; t)dx =  D       ---  --------0---  dx
dt − ∞                      | − ∞  ∂x       ∂x     |
                ∂K  (x,x0;t)|           ∂K (x,x0;t)|
           =  D ------------||      − D  -----------||      .   (8.6)
                     ∂x      x→+ ∞          ∂x      x→ −∞
]


The above equation tells us that for functions for which the right hand side
vanishes, the normalization condition will be valid for all [image: t > 0  ].
   A careful analysis of equation  (8.2)  gives that the asymptotic behavior of
[image: K (x,x0; t)  ] for small times is


   	
   
[image:                − |x−4xD0t|2-∑∞
K (x,x0; t) ∼ e-------     ai(x, x0)ti.
                td∕2   i=0
]
	(8.7)



This relation shows that diffusion is isotropic (the same in all directions) and that the
probability of detecting the particle drops exponentially with the distance squared
from the initial position of the particle. This relation cannot hold for all times, since
for large enough times the probability of detecting the particle will be the same
everywhere4 .

   The return probability of the particle to its initial position is 


   	
                                                                          

                                                                          
   
[image:                             ∞
                       -1--∑            i
PR (t) = K (x0,x0;t) ∼ td∕2     ai(x0, x0)t.
                           i=0
]
	(8.8)



The above relation defines the spectral dimension [image: d  ] of space. [image: d = 1  ] in our
case.

   The expectation value of the distance squared of the particle at time [image: t  ] is easily
calculated5 


   	
   
[image:                        ∫  +∞
⟨r2⟩ = ⟨(x − x0)2⟩(t) =      (x − x0)2K (x,x0;t)dx ∼ 2Dt.
                         −∞
]
	(8.9)



This equation is very important. It tells us that the random walk (Brownian
motion) is not a classical motion but it can only be given a stochastic description:
A classical particle moving with constant velocity [image: v  ] so that [image: x − x0 ∼  vt  ] results
in [image: r2 ∼ t2   ].

   In the following sections we take6 
[image: D  = 1  ] and define


                                                                          

                                                                          
   	
   
[image: u(x,t) ≡ K (x − x0,x0;t).
]
	(8.10)





   8.2    Heat Conduction in a Thin Rod

Consider a thin rod of length [image: L  ] and let [image: T(x,t)  ] be the temperature distribution
within the rod at time [image: t  ]. The two ends of the rod are kept at constant
temperature [image: T (0, t) = T (L,t) = T0   ]. If the initial temperature distribution in the
rod is [image: T (x,0)  ], then the temperature distribution at all times is determined by
the diffusion equation


   	
   
[image: ∂T (x,t)     ∂2T(x,t)
--------=  α -----2--,
   ∂t          ∂x
]
	(8.11)



where [image: α = k∕(c ρ)
        p  ] is the thermal diffusivity, [image: k  ] is the thermal conductivity, [image: ρ  ]
is the density and [image: cp  ] is the specific heat of the rod.

   Define
                                                                          

                                                                          


   	
   
[image:          T (xL, L2t) − T
u(x,t) = -------α-------0,
                T0
]
	(8.12)



where [image: x ∈ [0, 1]  ]. The function [image: u (x,t)  ], giving the fraction of the temperature
difference to the temperature at the ends of the rod, is dimensionless
and


   	
   
[image: u(0,t) = u(1,t) = 0.
]
	(8.13)



These  are  called  Dirichlet  boundary
conditions7 .

   Equation  (8.11)  becomes


   	
                                                                          

                                                                          
   
[image: ∂u-(x,t)   ∂2u-(x,t)
   ∂t    =    ∂x2
]
	(8.14)




   Equation  (8.6)  becomes


   	
   
[image: d ∫ 1             ∂u ||      ∂u||
--    u(x,t)dx =  ---||   −  --||
dt 0              ∂x x=1    ∂x x=0
]
	(8.15)




   The relation above cannot be equal to zero at all times due to the boundary
conditions  (8.13) . This can be easily understood with an example. Suppose
that


   	
   
[image: u (x, 0) = sin(πx ),
]
	(8.16)



then it is easy to confirm that the boundary conditions are satisfied and that the
function


   	
   
[image:                     2
u(x,t) = sin(πx)e− πt,
]
	(8.17)



is the solution to the diffusion equation. It is easy to see that


   
[image: ∫ 1             2   2
    u(x,t)dx =  -e−π t
 0              π  ]

drops exponentially with time and that
   
[image:    ∫ 1
-d     u(x,t)dx = − 2πe− π2t,
dt  0  ]

which is in agreement with equations  (8.15) .
   The exponential drop of the magnitude of [image: u (x, t)  ] is in agreement with the
expectation that the rod will have constant temperature at long times, which will
be equal to the temperature at its ends ([image: limt→+ ∞ u (x,t) = 0  ]).


   8.3    Discretization

The numerical solution of equation  (8.14)  will be computed in the interval
[image: x ∈ [0,1]  ] for [image: t ∈ [0,tf]  ]. The problem will be defined on a two dimensional
discrete lattice and the differential equation will be approximated by finite
difference equations.

   The lattice is defined by [image: Nx  ] spatial points [image: xi ∈ [0, 1]  ]


   	
   
[image: x =  0 + (i − 1)Δx  i = 1,...,N  ,
 i                              x
]
	(8.18)



where the [image: Nx − 1  ] intervals have the same width


   	
   
[image:        1 − 0
Δx  = -------,
      Nx  − 1
]
	(8.19)



and by the [image: Nt  ] time points [image: tj ∈ [0,tf]  ]


   	
   
[image: tj = 0 + (j − 1)Δt  j = 1,...,Nt,
]
	(8.20)



where the [image: N  − 1
 t  ] time intervals have the same duration


   	
   
[image:        tf − 0
Δt  = -------.
      Nt −  1
]
	(8.21)



We note that the ends of the intervals correspond to


   	
                                                                          

                                                                          
   
[image: x1 = 0,   xNx = 1,   t1 = 0,   tNt = tf.
]
	(8.22)



The function [image: u(x,t)  ] is approximated by its values on the [image: Nx × Nt  ]
lattice


   	
   
[image: ui,j ≡ u(xi,tj).
]
	(8.23)



The derivatives are replaced by the finite differences 


   	
   
[image: ∂u (x,t)   u (xi,tj + Δt ) − u(xi,tj)   1
-------- ≈ ------------------------ ≡ --- (ui,j+1 − ui,j),
   ∂t                 Δt              Δt
]
	(8.24)


                                                                          

                                                                          



   
[image: ∂2u-(x,t)      u(xi +-Δx,-tj)-−-2u(xi,tj) +-u-(xi-−-Δx,-tj)
   ∂x2     ≈                    (Δx )2

           ≡   --1---(ui+1,j − 2ui,j + ui−1,j).               (8.25)
               (Δx  )2
]


By equating both sides of the above relations according to  (8.14) , we obtain the
dynamic evolution of [image: ui,j  ] in time
   	
   
[image:                -Δt---
ui,j+1 = ui,j + (Δx  )2 (ui+1,j − 2ui,j + ui−1,j).
]
	(8.26)



This is a one step iterative relation in time. This is very convenient, because
one does not need to store the values [image: u
 i,j  ] for all [image: j  ] in the computer
memory.

   The second term (the “second derivative”) in  (8.26)  contains only the nearest
neighbors [image: ui±1,j  ] of the lattice point [image: ui,j  ] at a given time slice [image: tj  ]. Therefore it
can be used for all [image: i = 2,...,Nx − 1  ]. The relations  (8.26)  are not needed for
the points [image: i = 1  ] and [image: i = N
      x  ] since the values [image: u   =
 1,j  ] [image: u     = 0
 Nx,j  ] are kept
constant.

   The parameter
                                                                          

                                                                          


   	
   
[image:   Δt
-----2
(Δx )
]
	(8.27)



determines the time evolution in the algorithm. It is called the Courant parameter
and in order to have a time evolution without instabilities it is necessary to
have


   	
   
[image: -Δt---   1-
(Δx  )2 <  2.
]
	(8.28)



This condition will be checked in our analysis empirically.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 8.1: The function [image: u(x,t)  ] for Nx=10, Nt=100, tf= 0.4.



                                                                          

                                                                          
   


   8.4    The Program

The fact that equation  (8.26)  is a one time step iterative relation, leads to a
substantial simplification of the structure of the program. Because of
this, at each time step, it is sufficient to store the values of the second
term (the “second derivative”) in one array. This array will be used in
order to update the values of [image: ui,j  ]. Therefore we will define only two
arrays [image: u
 i  ], [image: i = 1,...,N
            x  ] and [image: (∂2u ∕∂x2)
          i  ], [image: i = 1,...,N
           x  ] which store
the values of [image: ui,j  ] and [image:          2
Δt ∕(Δx ) (ui+1,j − 2ui,j + ui−1,j)  ] at time [image: tj  ]
respectively. In the program listed below, the names of these arrays are u(P) and
d2udx2(P).

   The data is stored in the array positions u(1) ... u(Nx) and d2udx2(1) ...
d2udx2(Nx) and the parameter P is taken large enough so that Nx is always
smaller than P.

   The user enters the [image: Nx  =  ] Nx, [image: Nt  =  ]Nt and [image: tf =  ]tf interactively. The
values of [image: Δx  ], [image: Δt  ] and [image: Δt ∕Δx2 =  ] courant are calculated during the
initialization.

   On exit, we obtain the results in the file d.dat which contains [image: (t ,x ,u  )
  j  i  i,j  ] in
three columns. When a time slice is printed, the program prints an empty line so
that the output is easily read by the three dimensional plotting function splot of
gnuplot.

   The program is in the file diffusion.f90 and is listed below:
                                                                          

                                                                          


   
!=======================================================
 
! 1-dimensional Diffusion Equation with simple
 
! Dirichlet boundary conditions u(0,t)=u(1,t)=0
 
! 0<= x <= 1 and 0<= t <= tf
 
!
 
! We set initial condition u(x,t=0) that satisfies
 
! the given boundary conditions.
 
! Nx is the number of points in spatial lattice:
 
! x = 0 + (j-1)*dx, j=1,...,Nx and dx = (1-0)/(Nx-1)
 
! Nt is the number of points in temporal lattice:
 
! t = 0 + (j-1)*dt, j=1,...,Nt and dt = (tf-0)/(Nt-1)
 
!
 
! u(x,0) = sin(pi*x) tested against analytical solution
 
! u(x,t) = sin(pi*x)*exp(-pi*pi*t)
 
!
 
!=======================================================
 
program diffusion_1d
 
 implicit none
 
 integer,parameter    :: P =100000  ! Max no of points
 
 real(8),parameter    :: PI=3.1415926535897932D0
 
 real(8),dimension(P) :: u, d2udx2
 
 real(8) :: t,x,dx,dt,tf,courant
 
 integer Nx,Nt,i,j
 
! --- Input:
 
 print *, ’# Enter: Nx, Nt, tf: (P= ’,P,’ Nx must be < P)’
 
 read  *, Nx,Nt,tf
 
 if(Nx .ge. P) stop ’Nx >= P’
 
 if(Nx .le. 3) stop ’Nx <= 3’
 
 if(Nt .le. 2) stop ’Nt <= 2’
 
! --- Initialize:
 
 dx      = 1.0D0/(Nx-1)
 
 dt      = tf   /(Nt-1)
 
 courant = dt/dx**2
 
 print * ,’# 1d Diffusion Equation: 0<=x<=1, 0<=t<=tf’
 
 print * ,’# dx= ’,dx,’ dt= ’,dt,’ tf= ’, tf
 
 print * ,’# Nx= ’,Nx,’ Nt= ’,Nt
                                                                          

                                                                          
 
 print * ,’# Courant Number= ’,courant
 
 if(courant .gt. 0.5D0) print *,’# WARNING: courant > 0.5’
 
 open(unit=11,file=’d.dat’) ! data file
 
! --- Initial condition at t=0 ------------------------------
 
!u(x,0) = sin( pi x)
 
 do i= 1, Nx
 
  x    = (i-1)*dx
 
  u(i) = sin(PI*x)
 
 enddo
 
 u(1)  = 0.0d0
 
 u(Nx) = 0.0d0
 
 do i= 1,Nx
 
  x    = (i-1)*dx
 
  write(11,*) 0.0D0, x, u(i)
 
 enddo
 
 write(11,*)’ ’
 
! ----------------------------------------------------------
 
! --- Calculate time evolution:
 
 do j=2,Nt
 
  t = (j-1)*dt
 
! ----- second derivative:
 
  do i=2,Nx-1
 
   d2udx2(i) = courant*(u(i+1)-2.0D0*u(i)+u(i-1))
 
  enddo
 
! ----- update:
 
  do i=2,Nx-1
 
   u(i) = u(i) + d2udx2(i)
 
  enddo
 
  do i=1,Nx
 
   x =  (i-1)*dx
 
   write(11,*) t, x, u(i)
 
  enddo
 
  write(11,*)’ ’
 

 
 enddo ! do j=2,Nt
 

 
 close(11)
 
end program diffusion_1d
 




                                                                          

                                                                          


   8.5    Results

The compilation and running of the program can be done with the commands:
                                                                          

                                                                          


   
> gfortran diffusion.f90 -o d
 
> echo "10 100 0.4" | ./d
 
 # Enter: Nx, Nt, tf: (P= 100000  Nx must be < P)
 
 # 1d Diffusion Equation: 0<=x<=1, 0<=t<=tf
 
 # dx= 0.11111111111111110 dt= 4.04040404040404040E-3 tf= 0.4
 
 # Nx= 10                  Nt= 100
 
 # Courant Number=   0.32727272727272733


 The input to the program ./d is read from the stdin and it is given by the
stdout of the command echo through a pipe, as shown in the second line in the
listing above. The lines that follow are the standard output stdout of the
program.

   The three dimensional plot of the function [image: u(x,t)  ] can be made with the
gnuplot commands:
                                                                          

                                                                          


   
gnuplot> set pm3d
 
gnuplot> set hidden3d
 
gnuplot> splot "d.dat" with lines
 
gnuplot> unset pm3d


 In order to make the plot of [image: u(x,t)  ] for a fixed value of [image: t  ] we first note that an
empty line in the file d.dat marks a change in time. The following awk program
counts the empty lines of d.dat and prints only the lines when the number of
empty lines that have been encountered so far is equal to 3. The counter n=0, 1,
..., Nt-1 determines the value of [image: tj = tn−1   ]. We save the results in the file
tj which can be plotted with gnuplot. We repeat as many times as we
wish:
                                                                          

                                                                          


   
> awk ’NF<3{n++}n==3  {print}’ d.dat > tj
 
gnuplot> plot "tj" using 2:3 with lines


 The above task can be completed without creating the intermediate file tj by
using the awk filter within gnuplot. For example, the commands
                                                                          

                                                                          


   
gnuplot> ! echo "10 800 2" | ./d
 
gnuplot> plot   "<awk ’NF<3{n++}n==3  {print}’ d.dat" u 2:3 w l
 
gnuplot> replot "<awk ’NF<3{n++}n==6  {print}’ d.dat" u 2:3 w l
 
gnuplot> replot "<awk ’NF<3{n++}n==10 {print}’ d.dat" u 2:3 w l
 
gnuplot> replot "<awk ’NF<3{n++}n==20 {print}’ d.dat" u 2:3 w l
 
gnuplot> replot "<awk ’NF<3{n++}n==30 {print}’ d.dat" u 2:3 w l
 
gnuplot> replot "<awk ’NF<3{n++}n==50 {print}’ d.dat" u 2:3 w l
 
gnuplot> replot "<awk ’NF<3{n++}n==100{print}’ d.dat" u 2:3 w l


 run the program for Nx=10, Nt=800, tf= 2 and construct the plot in figure 8.2



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 8.2: The function [image: u(x,t)  ] for Nx=10, Nt=800, tf= 2 for different values of
the time [image: tj  ]. We take [image: j = 4,7,11,21,31,51,101  ] and observe that the function [image: u(x,t)  ]
decreases then [image: j  ] increases.



                                                                          

                                                                          
   


   It is instructive to compare the results with the known solution
[image:                     2
u (x, t) = sin(πx )e −π t  ]. We compute the relative error


   
[image: ui,j-−-u(xi,tj)
     ui,j      ,  ]

which can be done within gnuplot with the commands:
                                                                          

                                                                          
   
gnuplot> du(x,y,z) = (z - sin(pi*x)*exp(-pi*pi*y))/z
 
gnuplot> plot "<awk ’NF<3{n++}n==2  ’ d.dat" u 2:(du($2,$1,$3))
 
gnuplot> plot "<awk ’NF<3{n++}n==6  ’ d.dat" u 2:(du($2,$1,$3))
 
gnuplot> plot "<awk ’NF<3{n++}n==20 ’ d.dat" u 2:(du($2,$1,$3))
 
gnuplot> plot "<awk ’NF<3{n++}n==200’ d.dat" u 2:(du($2,$1,$3))
 
gnuplot> plot "<awk ’NF<3{n++}n==600’ d.dat" u 2:(du($2,$1,$3))
 
gnuplot> plot "<awk ’NF<3{n++}n==780’ d.dat" u 2:(du($2,$1,$3))


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 8.3: The absolute value of the relative error of the numerical computation for
Nx=10, Nt=800, tf= 2 for different times [image: tj  ]. We take [image: j = 3,7,21,201,601,781  ] and
observe that the relative error increases with [image: j  ]. 



                                                                          

                                                                          
   


   The results can be seen in figure 8.3.


   8.6    Diffusion on the Circle

In order to study the kernel [image: K (x, x0;t)  ] for the diffusion, or random walk,
problem, we should impose the normalization condition  (8.4)  for all times.
In the case of the function [image: u(x, t)  ] defined for [image: x ∈ [0, 1]  ] the relation
becomes


   	
   
[image: ∫ 1

 0 u(x, t)dx =  1.
]
	(8.29)



In order to maintain this relation at all times, it is necessary that the right hand
side of equation  (8.15)  is equal to 0. One way to impose this condition is to
study the diffusion problem on the circle. If we parametrize the circle using the
variable [image: x ∈ [0,1 ]  ], then the points [image: x = 0  ] and [image: x = 1  ] are identified and we
obtain


   	
   
[image:                      ∂u(0,t)    ∂u(1,t)
u (0, t) = u (1, t),     --------=  -------.
                       ∂x         ∂x
]
	(8.30)



The second relation in the above equations makes the right hand side of equation
(8.15)  to vanish. Therefore if [image: ∫ 1
 0 u(x,0 )dx =  1  ], we obtain [image: ∫ 1
  0 u (x, t)dx = 1  ],
[image: ∀t > 0  ].

   Using the above assumptions, the discretization of the differential equation is
done exactly as in the problem of heat conduction. Instead of keeping
the values [image: u(0,t) = u(1,t) = 0  ], we apply equation  (8.26)  also for the
points [image: x1   ], [image: xNx   ]. In order to take into account the cyclic topology we
take


   	
   
[image:                -Δt---
u1,j+1 = u1,j + (Δx  )2 (u2,j − 2u1,j + uNx,j),
]
	(8.31)



and


   	
   
[image:                  Δt
uNx,j+1 = ui,j +-----2 (u1,j − 2uNx,j + uNx −1,j) ,
               (Δx )
]
	(8.32)


                                                                          

                                                                          

since the neighbor to the right of the point [image: xNx   ] is the point [image: x1   ] and the
neighbor to the left of the point [image: x1   ] is the point [image: xNx   ]. For the rest of the points
[image: i = 2,...,Nx −  1  ] equation  (8.26)  is applied normally.

   The program that implements the problem described above can be found in
the file diffusionS1.f90. The boundary conditions  (8.30)  are enforced in the
lines
                                                                          

                                                                          


   
   nnr = i+1
 
   if(nnr .gt. Nx) nnr = 1
 
   nnl = i-1
 
   if(nnl .lt. 1 ) nnl = Nx
 
   d2udx2(i) = courant*(u(nnr)-2.0D0*u(i)+u(nnl))




   The initial conditions at [image: t = 0  ] are chosen so that the particle is located at
[image: xNx ∕2   ]. For each instant of time we perform measurements in order to verify
the equations  (8.4)  and  (8.9)  and the fact that [image: limt→+ ∞ u (x, t) =  ]
const.

   The variable prob [image:   ∑
=    Ni=x1 ui,j  ] and we should check that its value is
conserved and is always equal to 1.

   The variable r2 [image:    ∑Nx              2
=    i=1(xi − xNx∕2)ui,j  ] is a discrete estimator of
the expectation value of the distance squared from the initial position.
For small enough times it should follow the law given by equation  (8.9)
.

   These variables are written to the file e.dat together with the values [image: u
 Nx∕2,j  ],
[image: uNx ∕4,j  ] and [image: u1,j  ]. The latter are measured in order to check if for large enough
times they obtain the same constant value according to the expectation
[image: limt→+ ∞ u (x, t) =  ] const.

   The full code is listed below:
                                                                          

                                                                          


   
!=======================================================
 
! 1-dimensional Diffusion Equation with
 
! periodic boundary conditions u(0,t)=u(1,t)
 
! 0<= x <= 1 and 0<= t <= tf
 
!
 
! We set initial condition u(x,t=0) that satisfies
 
! the given boundary conditions.
 
! Nx is the number of points in spatial lattice:
 
! x = 0 + (j-1)*dx, j=1,...,Nx and dx = (1-0)/(Nx-1)
 
! Nt is the number of points in temporal lattice:
 
! t = 0 + (j-1)*dt, j=1,...,Nt and dt = (tf-0)/(Nt-1)
 
!
 
! u(x,0) = \delta_{x,0.5}
 
!
 
!=======================================================
 
program diffusion_1d
 
 implicit none
 
 integer,parameter    :: P =100000  ! Max no of points
 
 real(8),parameter    :: PI=3.1415926535897932D0
 
 real(8),dimension(P) :: u, d2udx2
 
 real(8) :: t,x,dx,dt,tf,courant,prob,r2,x0
 
 integer Nx,Nt,i,j,nnl,nnr
 
! --- Input:
 
 print *, ’# Enter: Nx, Nt, tf: (P= ’,P,’ Nx must be < P)’
 
 read  *, Nx,Nt,tf
 
 if(Nx .ge. P) stop ’Nx >= P’
 
 if(Nx .le. 3) stop ’Nx <= 3’
 
 if(Nt .le. 2) stop ’Nt <= 2’
 
! --- Initialize:
 
 dx      = 1.0D0/(Nx-1)
 
 dt      = tf   /(Nt-1)
 
 courant = dt/dx**2
 
 print * ,’# 1d Diffusion Equation on S1: 0<=x<=1, 0<=t<=tf’
 
 print * ,’# dx= ’,dx,’ dt= ’,dt,’ tf= ’, tf
 
 print * ,’# Nx= ’,Nx,’ Nt= ’,Nt
 
 print * ,’# Courant Number= ’,courant
                                                                          

                                                                          
 
 if(courant .gt. 0.5D0) print *,’# WARNING: courant > 0.5’
 
 open(unit=11,file=’d.dat’) ! data file
 
 open(unit=12,file=’e.dat’) ! data file
 
! --- Initial condition at t=0 ------------------------------
 
 do i= 1, Nx
 
  x      = (i-1)*dx
 
  u(i)   = 0.0D0
 
 enddo
 
 u(Nx/2) = 1.0D0
 
 do i= 1,Nx
 
  x      = (i-1)*dx
 
  write(11,*) 0.0D0, x, u(i)
 
 enddo
 
 write(11,*)’ ’
 
! ----------------------------------------------------------
 
! --- Calculate time evolution:
 
 do j=2,Nt
 
  t = (j-1)*dt
 
! ----- second derivative:
 
  do i=1,Nx
 
   nnr = i+1
 
   if(nnr .gt. Nx) nnr = 1
 
   nnl = i-1
 
   if(nnl .lt. 1 ) nnl = Nx
 
   d2udx2(i) = courant*(u(nnr)-2.0D0*u(i)+u(nnl))
 
  enddo
 
! ----- update:
 
  prob = 0.0D0
 
  r2   = 0.0D0
 
  x0   = ((Nx/2)-1)*dx !original position
 
  do i=1,Nx
 
   x    =  (i-1)*dx
 
   u(i) = u(i) + d2udx2(i)
 
   prob = prob + u(i)
 
   r2   = r2   + u(i)*(x-x0)*(x-x0)
 
  enddo
 
  do i=1,Nx
 
   x =  (i-1)*dx
 
   write(11,*) t, x, u(i)
 
  enddo
 
  write(11,*)’ ’
                                                                          

                                                                          
 
  write(12,*) ’pu ’,t, prob,r2,u(Nx/2),u(Nx/4),u(1)
 
 enddo ! do j=2,Nt
 

 
 close(11)
 
end program diffusion_1d





   8.7    Analysis

For each moment of time, the program writes the following quantities to the file
e.dat:


   	
   
[image:      ∑Nx
Uj =     ui,j
      i=1
]
	(8.33)



which is an estimator of  (8.29)  and we expect to obtain [image: Uj =  1  ] for all
[image: j  ],


   	
   
[image:         Nx
⟨r2⟩  = ∑   u  (x −  x    )2
   j        i,j  i    Nx∕2
       i=1
]
	(8.34)



which is an estimator of  (8.9)  for which we expect to obtain


   	
   
[image:   2
⟨r ⟩j ∼ 2tj,
]
	(8.35)



for small times as well as the values of [image: uNx∕2,j  ], [image: uNx∕4,j  ], [image: u1,j  ].

   The values of [image: tj  ], [image: Uj  ], [image: ⟨r2⟩j  ], [image: uNx∕2,j  ], [image: uNx ∕4,j  ], [image: u1,j  ] are found in
columns 2, 3, 4, 5, 6 and 7 respectively of the file e.dat. The gnuplot
commands
                                                                          

                                                                          


   
gnuplot> ! gfortran diffusionS1.f90 -o d
 
gnuplot> ! echo "10 100 0.4" | ./d


 compile and run the program within gnuplot. They set [image: N   = 10
  x  ], [image: N  = 100
  t  ],
[image: tf = 0.4  ], [image: Δx  ≈ 0.111  ], [image: Δt ≈  4.0404  ], [image:        2
Δt∕ Δx  ≈  0.327  ]. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 8.4: The functions [image: u
 Nx∕2,j  ], [image: u
  Nx∕4,j  ], [image: u
 1,j  ] are given as a function of [image: t
 j  ] for
[image: Nx = 10  ], [image: Nt = 100  ], [image: tf = 0.4  ]. We observe that for large times they are consistent with
uniform diffusion.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 8.5: The expectation value [image: ⟨r2⟩
   j  ] as a function of [image: t
 j  ] for [image: N  = 10
 x  ], [image: N  = 100
  t  ],
[image: tf = 0.4  ]. For small values of [image: tj  ] we obtain [image:  2
⟨r ⟩j ≈ 2tj  ]. The solid line is the straight
line [image: 2t  ].



                                                                          

                                                                          
   


   The gnuplot commands
                                                                          

                                                                          


   
gnuplot> plot   "e.dat" u 2:5 w l
 
gnuplot> replot "e.dat" u 2:6 w l
 
gnuplot> replot "e.dat" u 2:7 w l


 construct the plot in figure 8.4. We observe that for large times we obtain
uniform diffusion.

   The relation [image: Uj =  1  ] can be easily confirmed by inspecting the values recorded
in the file e.dat.

   The asymptotic relation [image:   2
⟨r ⟩j ∼ 2tj  ] can be confirmed with the commands
                                                                          

                                                                          


   
gnuplot> plot [:][:0.11] "e.dat" u 2:4,2*x


 which construct the plot in figure 8.5.

   Finally we make a plot of the function [image: u(x,t)  ] with the commands
                                                                          

                                                                          


   
gnuplot> ! echo "10 100 0.16" | ./d
 
gnuplot> set pm3d
 
gnuplot> splot [0:0.16][0:1][0: 1] "d.dat" w l
 
gnuplot> splot [0:0.16][0:1][0:.2] "d.dat" w l


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 8.6: The function [image: u(x,t)  ] for [image: N  = 10
  x  ], [image: N = 100
 t  ], [image: t = 0.16
f  ]. The second
plot differs only in the scale of the [image: z  ] axis so that we can easily see the details of the
diffusion away from the point [image: x0 ≡ xNx∕2 = x5  ].



                                                                          

                                                                          
   


   and the result is shown in figure 8.6.
                                                                          

                                                                          


   8.8    Problems


      

      	Reproduce the results in figure 8.3.
      

      	The temperature distribution [image: u(x,t)  ] in a thin rod satisfies equation
      (8.14)   together with the boundary conditions   (8.13)   at the ends
      [image: x = 0,1  ]. The initial temperature distribution at [image: t = 0  ] is given by
      the function
      
      [image:          {  0.5  x ∈ [x ,x  ]
u(x,0) =               1  2  ,
            0.3  x ∕∈ [x1,x2 ]
      ]
 where [image: x1 = 0.25  ] and [image: x2 = 0.75  ].
           
           	Calculate the temperature distribution [image: u(x,tf)  ] for [image: tf = 0.0001  ],
           [image: 0.001  ], [image: 0.01  ], [image: 0.05  ]. Take [image: Nx = 100  ] and [image: Nt = 1000  ]. Do the
           same  for  [image: tf = 0.1  ]  by  choosing  appropriate  [image: Nx  ]  and  keeping
           [image: Nt = 1000  ]. Plot the functions [image: u(x,tf)  ] in the same plot.
           

           	Calculate  the  maximum  value  of  the  temperature  graphically
           for [image: tf = 0.0001  ], [image: 0.001  ], [image: 0.01  ], [image: 0.05  ], [image: 0.1  ], [image: 0.15  ], [image: 0.25  ]. Take
           [image: N  =  100
  x  ] and choose an appropriate value for the corresponding
           [image: Nt  ].
           

           	Calculate the time at which the temperature of the rod becomes
           everywhere less than [image: 0.1  ].


      Hint: Make your program print only the final temperature distribution
      [image: u(x,tf)  ].
                                                                          

                                                                          
      


      	The temperature distribution [image: u(x,t)  ] in a thin rod satisfies the
      equation
      
      [image: ∂u     ∂2u
---=  α---2.
∂t     ∂x
      ]
 The temperature at the ends of the rod is [image: u(0,t) = u(1,t) = 0  ], and when
      [image: t = 0  ]
      
      [image:          (     [        (2πx)]
         {  0.5 1 − cos  -b-    0 ≤ x < b
u(x,0) =    0                   b ≤ x ≤ 1  .
         (
      ]

           
           	Calculate  the  temperature  distribution  [image: u (x,tf)  ]  for  [image: α =  0.5  ],
           [image: b = 0.09  ]  and  for  [image: tf =  ]  [image: 0.0001  ],  [image: 0.001  ],  [image: 0.01  ],  by  taking
           [image: Nx =  300  ], [image: Nt = 1000  ]. Do the same for [image: tf = 0.05  ] by choosing
           appropriate [image: Nx  ]. Plot the functions [image: u(x,tf)  ] in the same plot.
           

           	Using the same parameters, calculate the time evolution of the
           values of the temperature distribution at the points [image: x  = 0.05
  1  ],
           [image: x2 = 0.50  ] and [image: x3 = 0.95  ] for [image: 0 ≤ t ≤ 0.05  ]. Plot the functions
           [image: u(x1,2,3,t)  ] in the same plot.
                                                                          

                                                                          
           

           	Calculate the temperature distribution [image: u(x,tf)  ] for [image: b = 0.09  ] and
           [image: α = 5,2,1  ] for [image: tf = 0.001  ]. Plot the functions [image: u(x,tf)  ] in the
           same plot. Comment on the effect of the parameter [image: α  ] on your
           results.


      

      	The temperature distribution [image: u (x, t)  ] in a thin rod of length [image: L  ] satisfies
      equation
      
      [image:             2
∂u-=  D(x )∂-u-− -4D (x)∂u-,
∂t         ∂x2   L      ∂x
      ]
 where [image:           −4x∕L
D (x) = ae  ] is the [image: x  ]-dependent thermal diffusivity. The
      temperature of the rod at its ends is such that [image: u(0,t) = u(L,t) = 0  ], and at
      time [image: t = 0  ], the temperature distribution is
      
      [image:             −(x−L∕2)2∕σ2
u(x,0) = Ce            .
      ]

           
           	Write a program where the user enters the parameters [image: L  ], [image: a  ],
           [image: C  ], [image: σ  ], [image: N
  x  ], [image: N
  t  ] and [image: t
 f  ] interactively. On exit, the program
           calculates [image: u(x, tf)  ] and writes the points [image: (xi,u(xi,tf))  ] in two
           columns to a file d.dat.
                                                                          

                                                                          
           

           	Run                    the                    program                    for
           [image: L = 4  ], [image: a = 0.2  ], [image: C =  1  ], [image: σ = 1∕2  ], [image: Nx = 400  ], [image: Nt = 20000  ]
           and calculate [image: u(x,tf)  ] for [image: tf = 0.05,1.0,5.0  ]. Plot the functions
           [image: u(x,t )
     f  ] in the same plot.
           

           	Using the same parameters, calculate the time evolution of the
           temperature distribution at the points [image: x  = 1
 1  ] and [image: x  = 2
 2  ] for
           [image: 0 ≤ t ≤ 5  ]. Plot the functions [image: u(x1,2,t)  ] in the same plot.


      

      	Reproduce the results shown in figures 8.4 and 8.5.


                                                                          

                                                                          

                                                                          

                                                                          


   


Chapter 9
The Anharmonic Oscillator
 In this chapter we will use matrix
methods in order to compute the quantum mechanical energy spectrum of the
anharmonic oscillator. This problem cannot be solved exactly and one has to
resort to perturbative or other approximation methods. We will approach
this problem numerically by representing the Hamiltonian [image: H  ] as a real
symmetric matrix in an appropriately chosen basis of the Hilbert space [image: ℋ ] of
quantum mechanical states. The energy spectrum is obtained from the
eigenvalues of this matrix and the numerical problem reduces to that of
the diagonalization of a real symmetric matrix. Since the Hamiltonian is
represented in [image: ℋ ] by an infinite size matrix, we have to restrict ourselves to a
finite dimensional subspace [image: ℋN  ] of dimension [image: N  ]. In this space the
Hamiltonian is represented by an [image: N ×  N  ] real symmetric matrix. The
eigenvalues of this matrix will be calculated numerically using standard
methods and the energy eigenvalues will be obtained in the [image: N →  ∞ ]
limit.
For the calculation of the eigenvalues we will use software that is found in the
well known library Lapack which contains high quality, freely available,
linear algebra software. Part of the goals of this chapter is to show to
the reader how to link her programs with software libraries. In order to
solve the same problem using Mathematica or Matlab see  [40] and  [41]
respectively.


   9.1    Introduction

The Hamiltonian of the harmonic oscillator is given by


   	
   
[image:       p2    1    2 2
H0 =  ---+  -m ω  x .
      2m    2
]
	(9.1)


                                                                          

                                                                          

Define the position and momentum scales [image:      ∘ --------
x0 =   ℏ∕ (m ω )  ], [image:      √-----
p0 =  ℏm  ω  ] so that
we can express the above equation using dimensionless terms:


   	
   
[image:         (    )2     (   )2
H0-    1- -p-     1-  x--
ℏ ω =  2  p0    + 2   x0   .
]
	(9.2)



If we take the units of energy, distance and momentum to be [image: ℏ ω  ], [image: x0   ] and [image: p0   ],
then we obtain


   	
   
[image: H  =  1p2 + 1x2,
 0    2     2
]
	(9.3)



where [image: H0   ], [image: p  ] and [image: x  ] are now dimensionless. The operator [image: H0   ] can be
diagonalized with the help of the creation and annihilation operators [image: a  ] and [image: a† ],
defined by the relations:


   	
                                                                          

                                                                          
   
[image:      1                   i
x = √---(a† + a)    p = √--(a† − a),
      2                   2
]
	(9.4)



or


   	
   
[image: a = √1-(x + ip)    a † = √1-(x − ip),
      2                   2
]
	(9.5)



which obey the commutation relation


   	
   
[image: [a, a†] = 1,
]
	(9.6)



which leads to
                                                                          

                                                                          


   	
   
[image: H  =  a†a + 1.
  0         2
]
	(9.7)



The eigenstates [image: |n⟩ ], [image: n = 0,1,2, ...  ] of [image: H0   ] span the Hilbert space of states [image: ℋ ]
and satisfy the relations


   	
   
[image:         √------                  √ --
a†|n ⟩ =  n +  1|n + 1 ⟩    a|n⟩ =   n|n − 1⟩    a |0⟩ = 0,
]
	(9.8)



therefore


   	
   
[image:  †
a a|n⟩ = n|n⟩,
]
	(9.9)



and


   	
   
[image: H  |n⟩ = E  |n⟩,     E  =  n + 1.
  0       n           n       2
]
	(9.10)



The position representation of the eigenstates [image: |n ⟩ ] is given by the wavefunctions:


   	
   
[image:                      1        2
ψn (x) = ⟨x|n⟩ = ∘------√--e−x ∕2Hn (x),
                   2nn!  π
]
	(9.11)



where [image: Hn (x)  ] are the Hermite polynomials.

   From equations  (9.4)  and  (9.8)  we obtain 

                                                                          

                                                                          
   
[image:                     -1-√ ------         -1-√ --
xnm =  ⟨n|x|m ⟩ =   √2-- m  + 1δn,m+1 + √2-- m δn,m−1     (9.12)
                      √----------
                =   1- n +  m + 1δ|n−m |,1                  (9.13)
                    2
                    -i-√ ------         -i-√ --
pnm  = ⟨n|p|m ⟩ =   √ 2  m  + 1δn,m+1 − √ 2  m δn,m−1.    (9.14)
]



   From the above equations we can easily calculate the Hamiltonian of the
anharmonic oscillator


   	
   
[image:                 4
H (λ) = H0  + λx .
]
	(9.15)



The matrix elements of [image: H  ] in this representation are: 

   
[image:                                              4
Hnm  (λ) ≡ ⟨n|H (λ)|m ⟩  =   ⟨n|H0|m ⟩ + λ⟨n|x |m ⟩      (9.16)
                                 1-          4
                        =   (n + 2)δn,m + λ(x )nm       (9.17)
]


where [image:   4
(x )nm  ] can be calculated from equation  (9.12) :
   	
   
[image:             ∞∑
(x4)nm =         xni1xi1i2xi2i3xi3m.
          i1,i2,i3=0
]
	(9.18)



This relation computes the matrix elements of the matrix [image: x4   ] from the matrix
product of [image: x  ] with itself.

   The problem of the calculation of the energy spectrum has now been reduced
to the problem of calculating the eigenvalues of the matrix [image: Hnm  ].




   9.2    Calculation of the Eigenvalues of [image: Hnm  (λ)  ]

We start by choosing the dimension [image: N  ] of the subspace [image: ℋN  ] of the Hilbert space
of states [image: ℋ ]. We will restrict ourselves to states within this subspace and we will
use the [image: N  ] dimensional representation matrices of [image: x  ], [image: H0   ] and [image: H (λ)  ] in [image: ℋN  ].
For example, when [image: N  =  4  ] we obtain


   	
                                                                          

                                                                          
   
[image:     (       1             )
        0   √2-  0     0
    |  √1-  0    1     0  |
x = ||    2           ∘  3-||
    |(   0   1    0      2 |)
                ∘ 3-
        0   0     2    0
]
	(9.19)





   	
   
[image:      (              )
         1  0  0  0
     |  02  3  0  0 |
H0 = |(      2  5    |)
        0   0  2  07
        0   0  0  2
]
	(9.20)





   	
   
[image:         (   1   3λ-             3√λ-           )
            2 + 4     0         2      ∘0--
        ||     0     3+  15λ-    0      3   3λ ||
H (λ) = ||    -3λ-    2    4   5   27λ-      2  ||
        (    √2-     ∘0--    2 +  4     0    )
              0     3   3λ     0      7+  15λ-
                        2             2   4
]
	(9.21)







   Our goal is to write a program that calculates the eigenvalues [image: En(N, λ )  ] of
the [image: N  × N  ] matrix [image: H    (λ)
  nm  ]. Instead of reinventing the wheel, we will use ready
made routines that calculate eigenvalues and eigenvectors of matrices found in the
Lapack library. This library can be found in the high quality numerical software
repository Netlib and more specifically at http://www.netlib.org/lapack/.
Documentation can be found at http://www.netlib.org/lapack/lug/, but it
is also easily accessible online by a Google search or by using the man
pages1 .




   As inexperienced users we will first look for driver routines that perform a
diagonalization process. Since our task is to diagonalize a real symmetric matrix,
we pick the subroutine DSYEV (D = double precision, SY = symmetric, EV =
eigenvalues with optional eigenvectors). If the documentation of the library is
installed in our system, we may use the Linux man pages for accessing
it:2 
                                                                          

                                                                          


   
> man dsyev




   From this page we learn how to use this subroutine:
                                                                          

                                                                          


   
SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
 
 CHARACTER     JOBZ, UPLO
 
 INTEGER       INFO, LDA, LWORK, N
 
 DOUBLE        PRECISION A( LDA, * ),W( * ), WORK( * )
 

 
ARGUMENTS
 
 JOBZ  (input) CHARACTER*1
 
       = ’N’:  Compute eigenvalues only;
 
       = ’V’:  Compute eigenvalues and eigenvectors.
 

 
 UPLO  (input) CHARACTER*1
 
       = ’U’:  Upper triangle of A is stored;
 
       = ’L’:  Lower triangle of A is stored.
 

 
 N     (input) INTEGER
 
       The order of the matrix A.  N >= 0.
 

 
 A     (input/output) DOUBLE PRECISION array, dimension (LDA, N)
 
       On  entry,  the symmetric matrix A.  If UPLO = ’U’, the
 
       leading N-by-N upper triangular part of A contains the
 
       upper triangular part  of the matrix A.  If UPLO = ’L’,
 
       the leading N-by-N lower triangular part of A contains
 
       the lower triangular part of  the matrix A.  On exit, if
 
       JOBZ = ’V’, then if INFO = 0, A contains
 
       the orthonormal eigenvectors of the matrix A.  If
 
       JOBZ = ’N’, then on exit the lower triangle (if UPLO=’L’)
 
       or the upper triangle (if UPLO=’U’) of A, including the
 
       diagonal, is destroyed.
 
 LDA   (input) INTEGER
 
       The leading dimension of the array A.  LDA >= max(1,N).
 

 
 W     (output) DOUBLE PRECISION array, dimension (N)
 
       If INFO = 0, the eigenvalues in ascending order.
 

 
 WORK  (workspace/output) DOUBLE PRECISION array, dimension
 
       (LWORK).
                                                                          

                                                                          
 
       On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 

 
 LWORK (input) INTEGER
 
       The  length  of  the  array  WORK.  LWORK >= max(1,3*N-1).
 
       For optimal efficiency, LWORK >= (NB+2)*N, where NB is
 
       the  blocksize for DSYTRD returned by ILAENV.
 

 
       If  LWORK  = -1, then a workspace query is assumed; the
 
       routine only calculates the optimal size of  the  WORK
 
       array,  returns this  value  as the first entry of the
 
       WORK array, and no error message related to LWORK is
 
       issued by XERBLA.
 

 
 INFO  (output) INTEGER
 
       = 0:  successful exit
 
       < 0:  if INFO = -i, the i-th argument had an illegal value
 
       > 0:  if INFO = i, the algorithm failed  to  converge;  i
 
       off-diagonal  elements  of an intermediate tridiagonal
 
       form did not converge to zero.


 These originally cryptic pages contain all the necessary information and
the reader should familiarize herself with its format. For a quick and
dirty use of the routine, all we need to know is the types and usage of its
arguments. These are classified as “input”, “output” and “working space”
variables (some are in more than one classes). Input is the necessary data
that the routine needs in order to perform the computation. Output is
where the results of the computation are stored. And working space is the
memory provided by the user to the routine in order to store intermediate
results.

   From the information above we learn that the matrix to be diagonalized is A
which is a rectangular matrix with the number of its rows and columns [image: ≤  N  ].
The number of rows LDA (LDA= “leading dimension of A”) can be larger than
N is which case DSYEV will diagonalize the upper left N[image: × ]N part of the
matrix3 .
In our program we define a large matrix A(LDA,LDA) and diagonalize a smaller
submatrix A(N,N). This way we can study many values of [image: N  ] using the same
matrix. The subroutine can be used in two ways: 

      
                                                                          

                                                                          
      	If JOBZ=’N’, it calculates only the eigenvalues of the matrix A(N,N)
      and  stores  them  in  the  array  W(N),  sorted  in  ascending  order.  We
      have  to  be  careful  because,  upon  return,  the  routine  destroys  the
      upper (UPLO=’U’) or lower (UPLO=’L’) triangular part of A. Since A is
      symmetric, only this part is needed by DSYEV. If we need to reuse the
      matrix A, we have to make a backup copy before the call to DSYEV.
      

      	If JOBZ=’V’, it calculates both the eigenvalues and the eigenvectors of
      the matrix A(N,N). The eigenvalues are stored in the array W(N) as
      before, whereas the corresponding eigenvectors in the columns of the
      matrix A(N,N). In order to use the eigenvectors, we can use a statement
      like v = A(1:N,j) where the array v(N) stores the components of the
      j-th eigenvector of the matrix corresponding to the eigenvalue [image: λj  ]. The
      eigenvectors are normalized to unity, i.e. [image: ∑
   N
   i=1   ]v(i)*v(i)[image: =  1  ]. The
      matrix A(N,N) is destroyed after the call to DSYEV and if we need it we
      have to make a backup copy before the call.


The reader should also familiarize herself with the use of the workspace array WORK.
This is memory space given to the routine for all its intermediate calculations.
Determining the size of this array needs some care. This is given by LWORK
and if performance is an issue the reader should read the documentation
carefully for its optimal determination. We will make the simple choice
LWORK=3*LDA-1. The variable INFO is used as a flag which informs the user
whether the calculation was successful, in which case its value is set to 0.
In our case, if INFO takes a non zero value, the program will abort the
calculation.

   Before using the program in a complicated calculation, it is necessary to test
its use in a simple, easily controlled problem. We will familiarize ourselves with
the use of DSYEV by writing the following program:
                                                                          

                                                                          


   
program test_evs
 
 implicit none
 
 integer, parameter :: P     = 100 ! P= LDA
 
 integer, parameter :: LWORK = 3*P-1
 
 real(8) :: A(P,P),W(P),WORK(LWORK)
 
 integer :: N  ! DSYEV diagonalizes A(N,N)
 
 integer :: i,j
 
 integer :: LDA,INFO
 
 character(1) :: JOBZ,UPLO
 
!Define the **symmetric** matrix to be diagonalized
 
!The subroutine uses the upper triangular part  (UPLO=’U’)
 
!therefore the lower triangular part needs not to be defined
 
 N=4
 
 A(1,1)=-7.7;
 
 A(1,2)= 2.1;A(2,2)= 8.3;
 
 A(1,3)=-3.7;A(2,3)=-16.;A(3,3)=-12.
 
 A(1,4)= 4.4;A(2,4)= 4.6;A(3,4)=-1.04;A(4,4)=-3.7
 
!We print the matrix A before calling DSYEV since it is
 
!destroyed after the call.
 
 do i=1,N
 
  do j=i,N
 
   print *,’A( ’,i,’ , ’,j,’ )=’,A(i,j)
 
  enddo
 
 enddo
 
!We ask for eigenvalues AND eigenvectors (JOBZ=’V’)
 
 JOBZ=’V’; UPLO=’U’
 
 print *,’COMPUTING WITH DSYEV:’
 
 LDA=P                     !notice that LDA-> P>N !!
 
 call DSYEV(JOBZ,UPLO,N,A,LDA,W,WORK,LWORK,INFO)
 
 print *,’DSYEV: DONE. CHECKING NOW:’
 
!If INFO is nonzero, then there is an error:
 
 if(INFO .ne. 0)then
 
  print *,’DSYEV FAILED. INF0= ’,INFO
 
  stop
 
 endif
 
!Print results: W(I) has the eigenvalues:
                                                                          

                                                                          
 
 print *,’DSYEV: DONE.:’
 
 print *,’EIGENVALUES OF MATRIX:’
 
 do i=1,N
 
  print *,’LAMBDA(’,i,’)=’,W(i)
 
 enddo
 
!Eigenvectors are in stored in the columns of A:
 
 print *,’EIGENVECTORS OF MATRIX’
 
 do J=1,N
 
  print *,’EIGENVECTOR ’,j,’ FOR EIGENVALUE ’,W(j)
 
  do i=1,N
 
   print *,’V_’,j,’(’,i,’)= ’,A(i,j)
 
  enddo
 
 enddo
 
end program test_evs





   The next step is to compile and link the program. In order to link the program
to Lapack we have to instruct the linker ld where to find the libraries Lapack and
BLAS4 
and link them to our program. A library contains compiled software in archives of
object files. The convention for their names in a Unix environment is to start with
the string “lib” followed by the name of the library and a .a or .so extension.
For example, in our case the files we are interested in have the names
liblapack.so and libblas.so which can be searched in the file system by the
commands:
                                                                          

                                                                          


   
> locate libblas
 
> locate liblapack


 In order to see the files that they contain we give the
commands5 :
                                                                          

                                                                          


   
> ar -t /usr/lib/libblas.so
 
> ar -t /usr/lib/liblapack.so


 In the commands shown above you may have to substitute /usr/lib with the
path appropriate for your system. If the program is in the file test.f90, the
compilation/linking command is:
                                                                          

                                                                          


   
> gfortran test.f90 -o test -L/usr/lib -llapack -lblas


 The option -L/usr/lib instructs the linker to look for libraries in the /usr/lib
directory6 ,
whereas the options -llapack -lblas instructs the linker to look for any
unresolved symbols (i.e. names of external functions and subroutines not coded in
our program) first in the library liblapack.a and then in the library
libblas.a.

   The command shown above produces the executable file test which, when
run, produces the result:
                                                                          

                                                                          


   
 EIGENVALUES OF MATRIX:
 
 LAMBDA( 1)= -21.4119907
 
 LAMBDA( 2)= -9.93394359
 
 LAMBDA( 3)= -2.55765591
 
 LAMBDA( 4)=  18.8035905
 
 EIGENVECTORS OF MATRIX
 
 EIGENVECTOR  1 FOR EIGENVALUE  -21.4119907
 
 V_ 1( 1)=  -0.197845668
 
 V_ 1( 2)=  -0.464798676
 
 V_ 1( 3)=  -0.854691009
 
 V_ 1( 4)=   0.119676904
 
 EIGENVECTOR  2 FOR EIGENVALUE  -9.93394359
 
 V_ 2( 1)=   0.824412399
 
 V_ 2( 2)=  -0.132429396
 
 V_ 2( 3)=  -0.191076519
 
 V_ 2( 4)=  -0.516039161
 
 EIGENVECTOR  3 FOR EIGENVALUE  -2.55765591
 
 V_ 3( 1)=   0.502684215
 
 V_ 3( 2)=  -0.247784372
 
 V_ 3( 3)=   0.132853329
 
 V_ 3( 4)=   0.817472616
 
 EIGENVECTOR  4 FOR EIGENVALUE   18.8035905
 
 V_ 4( 1)=   0.168848655
 
 V_ 4( 2)=   0.839659187
 
 V_ 4( 3)=  -0.464050682
 
 V_ 4( 4)=   0.226096318


 We are now ready to tackle the problem of computing the energy spectrum of the
anharmonic oscillator. The main program contains the user interface where the
basic parameters for the calculation are read from the stdin. The user can
specify the dimension DIM [image: ≡  N  ] of [image: ℋN  ] and the coupling constant [image: λ  ].
Then the program computes the eigenvalues [image: En(N, λ)  ] of the [image: N  × N  ]
matrix [image: Hnm (λ)  ], which represents the action of the operator [image: H (λ)  ] in the
[image: {|n⟩}n=0,1,...,N− 1   ] representation in [image: ℋN  ]. The tasks are allocated to the
subroutines calculate_X4, calculate_evs and calculate_H. The subroutine
calculate_X4 calculates the [image: N  × N  ] matrix [image:    4
(x )nm  ]. First, the matrix [image: xnm  ] is
calculated and then [image: (x4)nm  ] is obtained by computing its fourth power. The
                                                                          

                                                                          
matrix [image:   4
(x  )nm  ] can also be calculated analytically and this is left as an
exercise to the reader. The subroutine calculate_H calculates the matrix
[image: Hnm  (λ )  ] using the result for [image: (x4 )nm  ] given by calculate_X4. Finally
the eigenvalues are calculated in the subroutine calculate_evs by a
call to DSYEV, which are returned to the main program for printing to
the stdout. The program is listed below and can be found in the file
anharmonic.f90:
                                                                          

                                                                          


   
!========================================================
 
program anharmonic_elevels
 
!========================================================
 
 implicit none
 
 integer,parameter       :: P     = 1000
 
 integer,parameter       :: LWORK = 3*P-1
 
 integer                 :: DIM
 
 real(8),dimension(P,P)  :: H,X,X4 !Hamiltionian+Position Ops
 
 real(8),dimension(P)    :: E      !energy eigenvalues
 
 real(8),dimension(LWORK):: WORK
 
 real(8)                 :: lambda
 
 integer                 :: i
 

 
 print *,’# Enter Hilbert Space dimension:’
 
 read  *,DIM
 
 print *,’# Enter lambda:’
 
 read  *,lambda
 
 print *,’# lambda= ’,lambda
 
!Print Message:
 
 print *,’# ################################################’
 
 print *,’# Energy spectrum of anharmonic oscillator’
 
 print *,’# using matrix methods.’
 
 print *,’# Hilbert Space Dimension DIM = ’,DIM
 
 print *,’# lambda coupling = ’,lambda
 
 print *,’# ################################################’
 
 print *,’# Outpout: DIM lambda E_0 E_1 .... E_{N-1}’
 
 print *,’# ------------------------------------------------’
 

 
!Calculate X^4 operator:
 
 call calculate_X4(X,X4,DIM)
 
!Calculate eigenvalues:
 
 call calculate_evs(H,X4,E,WORK,lambda,DIM)
 
 write(6,100)’EV ’,DIM,lambda,(E(i),i=1,DIM)
 
100 FORMAT(A3,I8,20000G25.15)
 
end program anharmonic_elevels
 
!========================================================
                                                                          

                                                                          
 
subroutine calculate_evs(H,X4,E,WORK,lambda,DIM)
 
!========================================================
 
 implicit none
 
 integer,parameter        :: P     = 1000
 
 integer,parameter        :: LWORK = 3*P-1
 
 real(8),dimension(P,P)   :: H,X4
 
 real(8),dimension(P)     :: E
 
 real(8),dimension(LWORK) :: WORK
 
 integer                  :: DIM
 
 real(8)                  :: lambda
 
 character(1)             :: JOBZ,UPLO
 
 integer                  :: LDA,INFO,i,j
 

 
 call calculate_H(H,X4,lambda,DIM)
 
 JOBZ=’V’;UPLO=’U’
 
 call DSYEV(JOBZ,UPLO,DIM,H,P,E,WORK,LWORK,INFO)
 
 print *,’# ********************** EVEC *******************’
 
 do j=1,DIM
 
  write(6,101)’# EVEC ’,lambda,(H(i,j), i=1,DIM)
 
 enddo
 
 print *,’# ********************** EVEC *******************’
 
101 FORMAT(A7,F15.3,20000G14.6)
 
!If INFO is nonzero then we have an error
 
 if(INFO .ne. 0)then
 
  print *,’dsyev failed. INFO= ’,INFO
 
  stop
 
 endif
 

 
end subroutine calculate_evs
 
!========================================================
 
subroutine calculate_H(H,X4,lambda,DIM)
 
!========================================================
 
 implicit none
 
 integer,parameter      :: P = 1000
 
 real(8),dimension(P,P) :: H,X4
 
 integer                :: DIM
 
 real(8)                :: lambda
 
 integer                :: i,j
 

 
 do j=1,DIM
 
  do i=1,DIM
                                                                          

                                                                          
 
   H(i,j)=lambda*X4(i,j)
 
  enddo
 
  H(j,j) = H(j,j) + DBLE(j) - 0.5D0 !E_n=n+1/2,n=j-1=>E_n=j-1/2
 
 enddo
 

 
 print *,’# ********************** H *******************’
 
 do j=1,DIM
 
  write(6,102)’# HH ’,(H(i,j), i=1,DIM)
 
 enddo
 
 print *,’# ********************** H *******************’
 

 
102 FORMAT(A5,20000G20.6)
 
end subroutine calculate_H
 
!========================================================
 
subroutine  calculate_X4(X,X4,DIM)
 
!========================================================
 
 implicit none
 
 integer,parameter     :: P=1000
 
 real(8),dimension(P,P):: X,X4,X2
 
 integer               :: DIM
 
 integer               :: i,j,m,n
 
 real(8),parameter     :: isqrt2=1.0D0/sqrt(2.0D0)
 
!Compute the position operator:
 
 X = 0.0D0
 
!Compute the nonzero elements
 
 do i=1,DIM
 
  n=i-1 !indices 0,...,DIM-1
 
! The delta_{n,m+1} term, i.e. m=n-1
 
  m=n-1 !the energy level n -> i=n+1, m-> j=m+1
 
  j=m+1
 
  if(j.ge.1  ) X(i,j)=isqrt2*sqrt(DBLE(m+1))
 
! The delta_{n,m-1} term, i.e. m=n+1
 
  m=n+1
 
  j=m+1
 
  if(j.le.DIM) X(i,j)=isqrt2*sqrt(DBLE(m))
 
 enddo
 
!Compute the Hamiltonian operator:
 
!Start with the X^4 operator:
 
 X2 = MATMUL(X ,X ) !first X2,then X4:
 
 X4 = MATMUL(X2,X2)
 
end subroutine calculate_X4
                                                                          

                                                                          





   

                                                                          

                                                                          

                                                                          

                                                                          
[image: pict]

 
Figure 9.1: The ground state energy [image: E0(λ)  ] for [image: λ = 0.2,0.9  ] is calculated in the large
[image: N  ] limit of the eigenvalues [image: E0(N,λ)  ]. Convergence is satisfactory for relatively small
values of [image: N  ] and it is slightly faster for [image: λ = 0.2  ] than it is for [image: λ = 0.9  ].
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Figure 9.2: The 9th excited state [image: E9(λ)  ] for [image: λ = 0.2,0.9  ] is given by the large [image: N  ]
limit of the eigenvalues [image: E9(N, λ)  ].
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Figure 9.3: The 20th excited state [image: E20(λ)  ] for [image: λ = 0.2,0.9  ] is given by the large [image: N  ]
limit of the eigenvalues [image: E20(N,λ)  ]. Convergence has not been achieved for the displayed
values of [image: N ≤ 80  ]. 

                                                                          

                                                                          
   


   9.3    Results

Compiling and running the program can be done with the commands:
                                                                          

                                                                          


   
> gfortran -O2 anharmonic.f90 -o an -llapack -lblas
 
> ./an
 
 # Enter Hilbert Space dimension:
 
4
 
 # Enter lambda:
 
0.0
 
.....
 
# ********************** H *******************
 
# HH            0.50   0.00  0.00   0.00
 
# HH            0.00   1.50  0.00   0.00
 
# HH            0.00   0.00  2.50   0.00
 
# HH            0.00   0.00  0.00   3.50
 
# ********************** H *******************
 
# ********************** EVEC ****************
 
# EVEC  0.000   1.00   0.00  0.00   0.00
 
# EVEC  0.000   0.00   1.00  0.00   0.00
 
# EVEC  0.000   0.00   0.00  1.00   0.00
 
# EVEC  0.000   0.00   0.00  0.00   1.00
 
# ********************** EVEC ****************
 
EV  4   0.000   0.50   1.50  2.50   3.50


 In the above program we used [image: N  = 4  ] and [image: λ = 0  ]. The [image: λ = 0  ] choice leads us
to the simple harmonic oscillator and we obtain the expected solutions:
[image: Hnm  =  (n +  1∕2)δn,m  ], [image: En = (n + 1∕2 )  ] and the eigenstates (eigenvectors of
[image: Hnm  ]) [image:                ∑3
|n ⟩λ=0 =  |n ⟩ =   m=0 δn,m |m⟩ ]. Similar results can be obtained for larger
[image: N  ].

   For non zero values of [image: λ  ], the finite [image: N  ] calculation contains systematic errors
from neglecting all the matrix elements [image: Hnm  (λ)  ] for [image: n ≥  N  ] or [image: m ≥  N  ]. Our
program calculates the eigenvalues [image: En (N, λ )  ] of the finite matrix [image: Hnm  (λ )  ],
[image: m, n =  0,...,N −  1  ] and one expects that


   	
                                                                          

                                                                          
   
[image: En (λ) =  lim  En (N, λ),
         N→ ∞
]
	(9.22)



where


   	
   
[image: H (λ)|n ⟩λ = En(λ )|n⟩λ,
]
	(9.23)



is the true [image: n  ]-th level eigenvalue of the Hamiltonian [image: H (λ)  ]. In practice the limit
9.22 for given [image: λ  ] and [image: n  ] is calculated by computing [image: En (N, λ)  ] numerically for
increasing values of [image: N  ]. If convergence to a desired level of accuracy is achieved
for the accessible values of [image: N  ], then the approached limit is taken as an
approximation to [image: E  (λ )
 n  ]. This process is shown graphically in figures 9.1-9.3 for
[image: λ =  0.2,0.9  ]. Convergence is satisfactory for quite small [image: N  ] for [image: n = 0,9  ] but
larger values of [image: N  ] are needed for [image: n = 20  ]. Increasing the value of [image: n  ] for fixed
[image: λ  ] makes the use of larger values of [image: N  ] necessary. Similarly for a given energy
level [image: n  ], increasing [image: λ  ] also makes the use of larger values of [image: N  ] necessary. A
session that computes this limit for the ground level energy [image: E (λ =  0.9)
 0  ] is shown
below7 :
                                                                          

                                                                          


   
> tcsh
 
> gfortran -O2 anharmonic.f90 -llapack -lblas -o an
 
> foreach N (4 8 12 16 24 32)
 
foreach? (echo $N;echo 0.9) |./an >> data
 
foreach? end
 
> grep ^EV data | awk ’{print $2,$4}’
 
4  0.711467845686790
 
8  0.786328966767866
 
12 0.785237674919165
 
16 0.784964461939594
 
24 0.785032515135677
 
32 0.785031492177730
 
> gnuplot
 
gnuplot> plot "<grep ^EV data | awk ’{print 1/$2,$4}’"


 Further automation of this process can be found in the shell script file
anharmonic.csh in the accompanying software. We note the large [image: N  ]
convergence of [image: E0 (N,0.9)  ] and that we can take [image: E0(0.9) ≈ 0.78503  ]. For higher
accuracy, a computation using larger [image: N  ] will be necessary.

   We can also compute the expectation values [image: ⟨A⟩n(λ )  ] of an operator
[image: A  = A (p, q)  ] when the anharmonic oscillator is in a state [image: |n⟩λ  ]:


   	
   
[image: ⟨A⟩n(λ) = λ⟨n |A |n ⟩λ.
]
	(9.24)



In practice, the expectation value will be computed from the limit


                                                                          

                                                                          
   	
   
[image: ⟨A ⟩n (λ ) = lNi→m∞⟨A ⟩n(N, λ) ≡ Nli→m∞ N,λ⟨n|A|n⟩N,λ,
]
	(9.25)



where [image: |n ⟩N,λ  ] are the eigenvectors of the finite [image: N  × N  ] matrix [image: Hnm  (λ)  ]
computed numerically by DSYEV. These are determined by their components
[image: cm (N, λ)  ], where


   	
   
[image:          N∑− 1
|n⟩N,λ =     cm(N, λ)|m ⟩,
         m=0
]
	(9.26)



which are stored in the columns of the array H after the call to DSYEV:


   	
   
[image: cm (N, λ ) = H (m  + 1,n + 1).
]
	(9.27)



Substituting equation  (9.26)  to  (9.24)  we obtain


   	
   
[image:             N∑−1
⟨A⟩ (λ ) =       c∗(N, λ)c  ′(N, λ)A    ′,
   n          ′   m       m         mm
          m,m =0
]
	(9.28)



and we can use  (9.27)  for the computation of the sum.

   As an application, consider the expectation values of the operators [image: x2   ], [image: x4   ]
and [image:  2
p   ]. Taking into account that [image: ⟨x ⟩n =  ] [image: ⟨p⟩n = 0  ], we obtain the uncertainties
[image: Δxn  ≡ ] [image: ∘ ---2-------2
  ⟨x ⟩n − ⟨x⟩n =  ] [image: ∘ --2---
  ⟨x ⟩n  ] and [image: Δpn  =  ] [image: ∘ --2--
  ⟨p ⟩n  ]. Their product
should satisfy Heisenberg’s uncertainty relation [image: Δxn  ⋅ Δpn ≳ 1∕2  ]. The results are
shown in table 9.1 and in figures 9.4-9.5. The calculation is left as an exercise to
the reader. 
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Figure 9.4:  The  expectation  values  [image:   2 1∕2
⟨x ⟩n (λ)  ],  [image:  2 1∕2
⟨p ⟩n (λ)  ]  and  the  product  of
uncertainties [image: Δxn  ⋅Δpn  ] for [image: n = 9  ] and [image: λ = 0.5  ] calculated from the large [image: N  ] limits of
[image: ⟨x2⟩1∕n2(N,λ)  ], [image: ⟨p2⟩1n∕2(N,λ )  ].
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Figure 9.5:  The  expectation  values  [image:   2 1∕2
⟨x ⟩n (λ)  ],  [image:  2 1∕2
⟨p ⟩n (λ)  ]  and  the  product  of
uncertainties [image: Δxn ⋅Δpn  ] for [image: n = 9  ].

                                                                          

                                                                          
   


   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	
	
	

	  	         [image: λ = 0.5  ]
           	         [image: λ = 2.0  ]


	
	
	
	
	
	
	

	[image: n  ]	 [image:   2
⟨x ⟩ ]
  	 [image:   2
⟨p ⟩ ]
  	[image: Δx  ⋅ Δp  ]
	 [image:   2
⟨x  ⟩ ]
  	 [image:   2
⟨p ⟩ ]
 	[image: Δx ⋅ Δp  ]


	
	
	
	
	
	
	

	 0	0.305814	0.826297	 0.502686	 0.21223	1.19801	 0.504236
	 1	0.801251	 2.83212	 1.5064	0.540792	4.21023	 1.50893

	 2	 1.15544	 5.38489	  2.49438	0.761156	8.15146	  2.49089
	 3	 1.46752	 8.28203	 3.48627	0.958233	12.6504	 3.48166

	 4	 1.75094	 11.4547	  4.47845	 1.13698	 17.596	  4.47285

	 5	 2.01407	 14.8603	  5.47079	 1.30291	22.9179	  5.46443

	 6	  2.2617	 18.4697	   6.4632	 1.45905	28.5683	  6.45619

	 7	 2.49696	 22.2616	  7.45562	 1.60735	34.5124	  7.44805

	 8	 2.72198	 26.2196	  8.44804	 1.74919	40.7234	  8.43998

	 9	 2.93836	 30.3306	  9.44045	 1.88558	47.1801	  9.43194

	
	
	
	
	
	
	

	  





 Table 9.1: The expectation values [image: ⟨x2⟩ ], [image: ⟨p2⟩ ], [image: Δx ⋅Δp  ] for the anharmonic oscillator
for the states [image: |n⟩ ], [image: n = 0,...,9  ]. We observe a decrease of [image:       ∘ -2--
Δx  =   ⟨x ⟩ ] and an increase
of [image:      ∘ ----
Δp =   ⟨p2⟩ ] as [image: λ  ] is increased. The product [image: Δx ⋅Δp  ] seems to remain very close to
the values [image: (n +1∕2)  ] of the harmonic oscillator for both values of [image: λ  ]. 

                                                                          

                                                                          
   


   

   The physics of the anharmonic oscillator can be better understood by studying
the large [image: λ  ] limit. As shown in figure 9.5, the term [image: λx4   ] dominates in this limit
and the expectation value [image:   2
⟨x ⟩n(λ )  ] decreases. This means that states that
confine the oscillator to a smaller range of [image: x  ] are favored. This, using the
uncertainty principle, implies that the typical momentum of the oscillator
also increases in magnitude. This is confirmed in figure 9.5 where we
observe the expectation value [image: ⟨p2⟩ (λ)
    n  ] to increase with [image: λ  ]. In order to
understand quantitatively these competing effects we will use a scaling
argument due to Symanzik. We redefine [image:        −1∕6
x →  λ    x  ], [image:       1∕6
p →  λ   p  ] in the
Hamiltonian [image: H (λ) = p2∕2 + x2∕2 + λx4   ] and for large enough [image: λ  ] we
obtain8 
the asymptotic behavior


   	
   
[image: H (λ) ∼ λ1∕3h(1),     λ →  ∞,
]
	(9.29)



where [image:         2        4
h(λ) = p ∕2 + λx   ] is the Hamiltonian of the anharmonic “oscillator” with
[image: ω =  0  ]. Since the operator [image: h (1 )  ] is independent of [image: λ  ], the energy spectrum will
have the asymptotic behavior


   	
                                                                          

                                                                          
   
[image: En(λ ) ∼ Cnλ1∕3,     λ → ∞.
]
	(9.30)



In reference  [42] it is shown that for [image: λ >  100  ] we have that


   	
   
[image: E0(λ) = λ1∕3(0.66798625918  + 0.14367 λ−2∕3 − 0.0088 λ−4∕3 + ...) ,
]
	(9.31)



with an accuracy better than one part in [image:   6
10   ]. For large values of [image: n  ], the authors
obtain the asymptotic behavior


   	
   
[image:                (      )4∕3
En(λ ) ∼ Cλ1∕3  n +  1-   ,     λ →  ∞, n →  ∞,
                     2
]
	(9.32)



where [image:       4∕3  2       8∕3
C =  3  π ∕ Γ (1∕4)   ]  [image: ≈ 1.37650740  ]. This relation is tested
in figure 9.6 where we observe good agreement with our calculations.
                                                                          

                                                                          



                                                                          

                                                                          

                                                                          

                                                                          

[image: pict]

  
Figure 9.6:  Test  of  the  asymptotic  relation     (9.32)  .  The  vertical  axis  is
[image: En λ−1∕3(n + 1∕2)−4∕3  ] where for large enough [image: n  ] and [image: λ  ] should approach the value
[image: C = 34∕3π2∕Γ (1∕4)8∕3  ] [image: ≈ 1.37650740  ] (horizontal line). 

                                                                          

                                                                          
   


                                                                          

                                                                          
   


                                                                          

                                                                          
 Table 9.2:  Numerical calculation of the energy levels of the anharmonic oscillator given
in reference  [42].

 	
	
	
	
	
	

	[image: λ  ]  	   [image: E0   ]        	   [image: E1   ]        	   [image: E2   ]        	   [image: E3   ]        	   [image: E4   ]        

	
	
	
	
	
	

	0.002 	0.501 489 66	1.507 419 39	2.519 202 12	3.536 744 13	4.559 955 56
	0.006 	0.504 409 71	1.521 805 65	2.555 972 30	3.606 186 33	4.671 800 37

	0.01  	0.507 256 20	1.535 648 28	2.590 845 80	3.671 094 94	4.774 913 12
	0.05 	0.532 642 75	1.653 436 01	2.873 979 63	4.176 338 91	5.549 297 81

	0.1    	0.559 146 33	1.769 502 64	3.138 624 31	4.628 882 81	6.220 300 90
	0.3 	0.637 991 78	2.094 641 99	3.844 782 65	5.796 573 63	7.911 752 73

	0.5    	0.696 175 82	2.324 406 35	4.327 524 98	6.578 401 95	9.028 778 72
	0.7 	0.743 903 50	2.509 228 10	4.710 328 10	7.193 265 28	9.902 610 70

	1      	0.803 770 65	2.737 892 27	5.179 291 69	7.942 403 99	 10.963 5831 
	2 	0.951 568 47	3.292 867 82	6.303 880 57	9.727 323 19	 13.481 2759

	50     	2.499 708 77	8.915 096 36	 17.436 9921 	 27.192 6458 	 37.938 5022 
	200 	3.930 931 34	 14.059 2268 	 27.551 4347 	 43.005 2709 	 60.033 9933

	1000  	3.694 220 85	 23.972 2061 	 47.017 3387 	 73.419 1140 	 102.516 157 
	8000 	 13.366 9076 	 47.890 7687 	 93.960 6046 	 146.745 512 	 204.922 711

	20000	 18.137 2291 	 64.986 6757 	 127.508 839 	 199.145 124 	 278.100 238 

	
	
	
	
	
	

	[image: λ  ]   	   [image: E5   ]        	   [image: E6   ]        	   [image: E7   ]        	   [image: E8   ]        	          

	
	
	
	
	
	

	0.002 	5.588 750 05	6.623 044 60	7.662 759 33	8.707 817 30	          

	0.006 	5.752 230 87	6.846 948 47	7.955 470 29	9.077 353 66	          

	0.01  	5.901 026 67	7.048 326 88	8.215 837 81	9.402 692 31	          

	0.05  	6.984 963 10	8.477 397 34	 10.021 9318 	 11.614 7761 	          

	0.1    	7.899 767 23	9.657 839 99	 11.487 3156 	 13.378 9698 	          

	0.3    	 10.166 4889 	 12.544 2587 	 15.032 7713 	 17.622 4482 	          

	0.5    	 11.648 7207 	 14.417 6692 	 17.320 4242 	 20.345 1931 	          

	0.7    	 12.803 9297 	 15.873 6836 	 19.094 5183 	 22.452 9996 	          

	1      	 14.203 1394 	 17.634 0492 	 21.236 4362 	 24.994 9457 	          

	2      	 17.514 1324 	 21.790 9564 	 26.286 1250 	 30.979 8830 	          

	50     	 49.516 4187 	 61.820 3488 	 74.772 8290 	 88.314 3280 	          

	200   	 78.385 6232 	 97.891 3315 	 118.427 830 	 139.900 400 	          

	1000  	 133.876 891 	 167.212 258 	 202.311 200 	 239.011 580 	          

	8000  	 267.628 498 	 334.284 478 	 404.468 350 	 477.855 700 	          

	20000	 363.201 843 	 453.664 875 	 548.916 140 	 648.515 330 	          

	     
	
	
	
	
	
	




                                                                          

                                                                          
   


   9.4    The Double Well Potential

We can also use matrix methods in order to calculate the energy spectrum of a
particle in a double well potential given by the Hamiltonian:


   	
   
[image:       2     2     4
H  = p--− x--+  λx--.
      2    2      4
]
	(9.33)



The equilibrium points of the classical motion are located at the minima:


   	
   
[image: x  = ± √1--,V    = − -1-.
 0       λ   min     4λ
]
	(9.34)






                                                                          

                                                                          

                                                                          

                                                                          
[image: pict]

 
Figure 9.7: The potential energy [image: V(x)  ] for the double well potential for [image: λ = 0.1,0.2  ].


                                                                          

                                                                          
   


   When the well is very deep, then for the lowest energy levels the potential can
be well approximated by that of a harmonic oscillator with angular frequency
[image: ω2 =  V′′(x0)  ], therefore


   	
   
[image: E    ≈ V    +  1ω.
 min     min   2
]
	(9.35)



In this case the tunneling effect is very weak and the energy levels are arranged in
almost degenerate pairs. The corresponding eigenstates are symmetric and
antisymmetric linear combinations of states localized near the left and right
minima of the potential. For example, for the two lowest energy levels we expect
that


   	
   
[image:                Δ
E0,1 ≈ Emin ±  --,
               2
]
	(9.36)



where [image: Δ ≪  |E   |
       min ] and


   	
                                                                          

                                                                          
   
[image: |0⟩λ ≈ |+-⟩√ +-|−-⟩,   |1⟩λ ≈ |+-⟩√ −-|−-⟩,
            2                     2
]
	(9.37)



where the states [image: |+⟩ ] and [image: |− ⟩ ] are localized to the left and right well of the
potential respectively (see also figure 10.4 of chapter 10).

   We will use equations  (9.12)  in order to calculate the Hamiltonian  (9.33) .
We need to make very small modifications to the code in the file anharmonic.f90.
We will only add a routine that calculates the matrices [image: p
 nm  ]. The resulting
program can be found in the file doublewell.f90:
                                                                          

                                                                          


   
!========================================================
 
program doublewell_elevels
 
!========================================================
 
! H      : Hamiltonian operator H0+(lambda/4)*X^4
 
! H0     : Hamiltonian H0=1/2 P^2-1/2 X^2
 
! X,X2,X4: Position operator and its powers
 
! iP     : i P operator
 
! P2     : P^2 = -(iP)(iP) operator
 
! E      : Energy eigenvalues
 
! WORK   : Workspace for lapack routine DSYEV
 
!========================================================
 
 implicit none
 
 integer,parameter       :: P=1000
 
 integer,parameter       :: LWORK=3*P-1
 
 real(8),dimension(P,P)  :: H,H0,X,X4,X2,iP,P2
 
 real(8),dimension(P)    :: E
 
 real(8),dimension(LWORK):: WORK
 
 real(8)                 :: lambda,lambda0,lambdaf,dlambda
 
 integer                 :: DIM0,DIMF,dDIM,DIM
 
 integer                 :: i
 

 
!Minimum and maximum values of Hilbert space dimensions:
 
 print *,’Enter Hilbert Space dimensions (DIM0,DIMF,DDIM):’
 
 read  *,DIM0,DIMF,DDIM
 
!Minimum and maximum values of lambda (step dlambda):
 
 print *,’Enter lambda0,lambdaf,dlambda:’
 
 read  *,lambda0,lambdaf,dlambda
 
 print *,’lambda0= ’,lambda0
 
!Print Message:
 
 print *,’# ################################################’
 
 print *,’# Energy levels of double well potential’
 
 print *,’# using matrix methods.’
 
 print *,’# Hilbert Space Dimensions = ’,DIM0,’ - ’,DIMF,&
 
      ’ step= ’,dDIM
 
 print *,’# lambda coupling = ’,lambda0,’ - ’,lambdaf,&
 
      ’ step= ’,dlambda
                                                                          

                                                                          
 
 print *,’# ################################################’
 
 print *,’# Outpout: DIM lambda E_0 E_1 .... E_{N-1}’
 
 print *,’# ------------------------------------------------’
 

 
 do DIM=DIM0,DIMF,dDIM
 

 
  call calculate_operators(X,X2,X4,iP,P2,H0,DIM)
 

 
  lambda = lambda0
 
  do while (lambda .le. lambdaf )
 
   call calculate_evs(H,H0,X4,E,WORK,lambda,DIM)
 
   write(6,100)’EV ’,DIM,lambda,(E(i),i=1,DIM)
 
   lambda = lambda+dlambda
 
  enddo
 
 enddo
 
100 FORMAT(A3,I5,1000G25.15)
 
end program doublewell_elevels
 
!========================================================
 
subroutine calculate_evs(H,H0,X4,E,WORK,lambda,DIM)
 
!========================================================
 
 implicit none
 
 integer,parameter        :: P=1000
 
 integer,parameter        :: LWORK=3*P-1
 
 real(8),dimension(P,P)   :: H,H0,X4
 
 real(8),dimension(P)     :: E
 
 real(8),dimension(LWORK) :: WORK
 
 integer                  :: DIM
 
 real(8)                  :: lambda
 
 character(1)             :: JOBZ,UPLO
 
 integer                  :: LDA,INFO,i,j
 

 
 call calculate_H(H,H0,X4,lambda,DIM)
 
 JOBZ=’V’;UPLO=’U’
 
 call DSYEV(JOBZ,UPLO,DIM,H,P,E,WORK,LWORK,INFO)
 
 print *,’# ********************** EVEC *******************’
 
 do j=1,DIM
 
  write(6,101)’# EVEC ’,DIM,lambda,(H(i,j), i=1,DIM)
 
 enddo
 
 print *,’# ********************** EVEC *******************’
 
101 FORMAT(A7,I5,F8.4,1000G14.6)
 

                                                                          

                                                                          
 
 if(INFO .ne. 0)then
 
  print *,’dsyev failed. INFO= ’,INFO
 
  stop
 
 endif
 

 
end subroutine calculate_evs
 
!========================================================
 
subroutine calculate_H(H,H0,X4,lambda,DIM)
 
!========================================================
 
 implicit none
 
 integer,parameter      :: P=1000
 
 real(8),dimension(P,P) :: H,H0,X4
 
 integer                :: DIM
 
 real(8)                :: lambda
 
 integer                :: i,j
 

 
 do j=1,DIM
 
  do i=1,DIM
 
   H(i,j)=H0(i,j)+0.25D0*lambda*X4(i,j)
 
  enddo
 
 enddo
 

 
 print *,’# ********************** H *******************’
 
 do j=1,DIM
 
  write(6,102)’# HH ’,(H(i,j), i=1,DIM)
 
 enddo
 
 print *,’# ********************** H *******************’
 

 
102 FORMAT(A5,1000G14.6)
 
end subroutine calculate_H
 
!========================================================
 
subroutine  calculate_operators(X,X2,X4,iP,P2,H0,DIM)
 
!========================================================
 
 implicit none
 
 integer,parameter      :: P=1000
 
 real(8),dimension(P,P) :: X,X4,X2,iP,P2,H0
 
 integer                :: DIM
 
 integer                :: i,j,m,n
 
 real(8),parameter      :: isqrt2=1.0D0/sqrt(2.0D0)
 

 
 X =0.0D0;X2=0.0D0;X4=0.0D0
                                                                          

                                                                          
 
 iP=0.0D0;P2=0.0D0
 

 
 do i=1,DIM
 
  n=i-1 !indices 0,...,DIM-1
 
! The delta_{n,m+1} term, i.e. m=n-1
 
  m=n-1 !energy level: n -> i=n+1, m-> j=m+1
 
  j=m+1
 
  if(j.ge.1) X (i,j) =  isqrt2*sqrt(DBLE(m+1))
 
  if(j.ge.1) iP(i,j) = -isqrt2*sqrt(DBLE(m+1))
 
! The delta_{n,m-1} term, i.e. m=n+1
 
  m=n+1
 
  j=m+1
 
  if(j.le.DIM) X (i,j) =  isqrt2*sqrt(DBLE(m))
 
  if(j.le.DIM) iP(i,j) =  isqrt2*sqrt(DBLE(m))
 
 enddo !do i=1,DIM
 

 
 X2 =  MATMUL( X, X)
 
 P2 = -MATMUL(iP,iP)
 
 X4 =  MATMUL(X2,X2)
 

 
!The Hamiltionian:
 
 H0 =  0.5D0*(P2-X2)
 

 
end subroutine calculate_operators


 Where is the particle’s favorite place when it is in the states [image: |+ ⟩ ] and [image: |− ⟩ ]? The
answer to this question is obtained from the study of the expectation value of the
position operator [image: ⟨x⟩ ] in each one of them. We know that when the particle is in
one of the energy eigenstates, then we have that


   	
   
[image: ⟨x⟩n(λ ) = λ⟨n |x |n ⟩λ = 0
                                                                          

                                                                          
]
	(9.38)



because the potential [image: V (x) = V(− x)  ] is even. Therefore 

   
[image: ⟨x⟩±(λ ) =   ⟨± |x |± ⟩

         =   √1--(λ⟨0|x |0 ⟩λ ± λ⟨1|x|0⟩λ ± λ⟨0|x |1⟩λ + λ⟨1|x|0⟩λ)
               2
         =   ± √2-⟨1|x|0 ⟩,                                    (9.39)
                        λ
]


where in the last line we used the relation  (9.38)  [image: λ⟨0|x|0⟩λ =  ]
[image: λ⟨1|x|1⟩λ = 0  ] and that the amplitudes [image: λ⟨1|x|0⟩λ =  ] [image: λ⟨0|x |1⟩λ  ].
Also9 
we have that [image: λ⟨1|x|0⟩λ > 0  ]. Therefore, if we have that [image:        ∑ ∞    (0)
|0⟩λ =   m=0 cm |m ⟩ ] and
[image:        ∑
|1⟩λ =   ∞m=0 c(m1)|m ⟩ ], we obtain
   	
   
[image:             √ -- ∑∞
⟨x⟩±(λ ) = ±  2       c(0m)c(m1)′Xmm  ′.
                m,m ′=0
]
	(9.40)



Given that for finite [image: N  ], the subroutine DSYEV returns approximations to the
                                                                          

                                                                          
coefficients [image:  (n)
cm  ] in the columns of the matrix H(DIM,DIM) so that [image:  (n)
cm  ≈ ]
H(m+1,n+1), you may compare the value of [image: ⟨x ⟩±(λ)  ] with the classical values
[image:          √ --
x0 = ±1 ∕  λ  ] as [image: λ  ] is increased.


   

                                                                          

                                                                          

                                                                          

                                                                          

[image: pict]

 
Figure 9.8:  Calculation  of  the  difference  of  the  energy  levels  [image: Δn = En+1 − En  ]
for  [image: n = 0,6,30  ]  for  the  double  well  potential  from  the  program  doublewell.f90.
The  difference  vanishes  as  the  well  becomes  deeper  with  decreasing  [image: λ  ].  The  states
[image: |±⟩ = (|n+ 1⟩ ± |n⟩ )∕√2-
            λ     λ  ] are  more  and  more  localized  to  the  right  or  left  well
respectively.

                                                                          

                                                                          
   


                                                                          

                                                                          
   9.5    Problems


      

      	Calculate the matrix [image: H  (λ )  ] for [image: N =  2,3  ] analytically. Calculate its
      eigenvalues for [image: N  = 2  ]. Compare your results with the numerical values
      that you obtain from your program.
      

      	Add the necessary code to the program in the file test.f90 so that it
      checks that the eigenvectors satisfy their defining relations [image: Avi = λivi  ]
      and that they form an orthonormal basis [image: vi ⋅ vj = δij  ].
      

      	Calculate [image: E5(λ)  ] and [image: E9(λ)  ] for [image: λ =  0.8,1.2  ] with an accuracy better
      than [image: 0.01  ]%.
      

      	For how large [image: n  ] can you calculate [image: En(λ )  ] for [image: λ = 1  ] with an accuracy
      better than [image: 2  ]% when [image: N =  64  ]?
      

      	Calculate [image: E3(λ )  ] and [image: E12(λ )  ] for [image: 0 ≤ λ ≤  4  ] with step [image: δλ = 0.2  ] by
      achieving accuracy better than [image: 0.01  ]%. How large should [image: N  ] be taken
      in each case?
      

      	Calculate the expression that gives the matrix elements of the operator
      [image:  4
x   ] in the [image: |n ⟩ ] representation analytically. Modify the program in
      anharmonic.f90 in order to incorporate your calculation. Verify that
      the  results  are  the  same  and  test  if  it  has  an  effect  in  the  total
      computation time with and without calculating the eigenvalues and
      eigenvectors of the Hamiltonian. Compute in each case the dependence
      of the cpu time on [image: N  ] by computing the exponent (cpu time)[image:     a
∼ N  ]
      for [image: N  = 40 − 1000  ].
      

      	Modify the code in the file anharmonic.f90 so that the arrays H, X,
      X4, E, WORK are ALLOCATABLE and their dimension is determined by
      the variable DIM read by the program interactively.
(Hint: Look at the file anharmonicSPEED.f90.)
                                                                          

                                                                          
      

      	Make an attempt to reproduce the results of Hioe and Montroll  [42]
      given in table 9.2 for [image: n = 3  ] and [image: n = 5  ]. What is the largest value of
      [image: λ  ] that you can study given your computational resources?
      

      	Make an attempt to reproduce the results of Hioe and Montroll  [42]
      given by equation  (9.31) . Calculate the ground state energy [image: E0   ] for
      [image: 200 < λ <  20000  ] and then fit your results to a function of the form
      [image: λ1∕3(a + bλ −2∕3 + cλ −4∕3)  ]. What is the accuracy in the calculation of
      the coefficients [image: a  ], [image: b  ] and [image: c  ] and how good is the agreement with
      equation  (9.31) ?
      

      	Modify the code in the file anharmonic.f90 so that it calculates the
      expectation values [image: ⟨x2⟩n(N, λ)  ], [image: ⟨p2⟩n(N, λ)  ] and the corresponding
      products [image: Δx  ⋅ Δp  ]. 
(Hint: See the file anharmonicOBS.f90.)
      

      	Reproduce the results shown in figure 9.4. Repeat your calculation for
      [image: λ = 2.0,10.0,100.0  ]. Repeat your calculations for [image: n =  20  ].
      

      	Reproduce the results shown in figure 9.5. Repeat your calculations for
      [image: n = 20  ].
      

      	Reproduce the results shown in figure 9.6. Repeat your calculation for
      [image: n = 3,7,12, 18,24  ].
      

      	Write a program that calculates the energy levels of the anharmonic
      oscillator
      	
      
      [image:           1      1
H (λ,μ) = --p2 + -x2 + λx4 + μx6.
          2      2
      ]
	(9.41)


      
      Calculate [image: En(λ )  ] for [image: n = 0, 3,8,20  ], [image: λ = 0.2  ] and [image: μ =  0.2,0.5, 1.0,2.0,10.0  ].
      


      	Modify the program of the previous problem so that it calculates the
      expectation values [image: ⟨x2 ⟩n (N, λ )  ], [image: ⟨p2⟩n(N, λ)  ] and the products [image: Δx ⋅ Δp  ].
      Calculate the expectation values [image: ⟨x2⟩ (λ )
    n  ], [image: ⟨p2⟩ (λ)
    n  ] and [image: Δx ⋅ Δp  ] for
      [image: n = 0,3,8, 20  ], [image: λ = 0.2  ] and [image: μ =  0.2,0.5, 1.0,2.0,10.0  ].
      

      	Use the program doublewell.f90 in order to calculate the energy
      level pairs [image: En, En+1   ] for [image: n = 0,4,20  ] and [image: λ =  0.2,0.1,0.05,0.02  ].
      Calculate the difference [image: Δn =  En+1 − En  ] and comment on your
      results.
      

      	Define the energy values
      
      [image:              (      )
𝜖  = − -1- +  n +  1- .
 n     4 λ         2
      ]
 Compare the results for [image: En, En+1   ] of the previous problem with
      [image: 𝜖n − Δn ∕2  ] and [image: 𝜖n + Δn ∕2  ] respectively. Explain your results.
      

      	Modify the program doublewell.f90, so that it calculates the expectation
      values [image: ⟨x ⟩±(λ)  ] given by equation  (9.40) . Compare [image: ⟨x ⟩± (λ)  ] with the
      classical values [image:          √ --
x0 = ±1 ∕  λ  ] for [image: λ =  0.2,0.1,0.05,0.02,0.01  ].
      

      	Repeat the previous problem when the states [image:          √ --
|± ⟩ = (1∕  2)(|n⟩λ ± |n + 1⟩λ)  ]
      for [image: n =  6  ] and [image: n =  30  ].
                                                                          

                                                                          
      

      	For the simple harmonic oscillator, the energy levels are equidistant,
      i.e. [image: Δn  = En+1  − En =  1  ], [image: (Δn+2 − Δn )∕Δn  = 0  ]. Calculate these
      quantities for the anharmonic oscillator and the double well potential for
      [image: λ = 1,10, 100,1000  ] and [image: n = 0,8, 20  ]. What do you conclude from your
      results?
      


                                                                          

                                                                          
   


Chapter 10
Time Independent Schrödinger Equation

In this chapter, we will study the time independent Schrödinger equation
for a non relativistic particle of mass [image: m  ], without spin, moving in one
dimension, in a static potential [image: V (x)  ]. We will only study bound states. The
solutions in this case yield the discrete energy spectrum [image: {En } ] as well as
the corresponding eigenstates of the Hamiltonian [image: { ψn(x)} ] in position
representation.

   From a numerical analysis point of view, the problem consists of solving for
the eigensystem of a differential equation with boundary conditions. Part of the
solution is the energy eigenvalue which also needs to be determined.

   As an exercise, we will use two different methods, one that can be applied to a
particle in an infinite well with [image: V (x) = V (− x )  ], and one that can be applied to
more general cases. The first method is introduced only for educational
purposes and the reader may skip section 10.2 to go directly to section
10.3.


   10.1    Introduction

The wave functions [image: ψ(x )  ], which are the position representation of the energy
eigenstates, satisfy the Schrödinger equation


   	
   
[image:   ℏ2-∂2ψ-(x)
− 2m   ∂x2   + V (x )ψ(x) = E ψ (x ),
]
	(10.1)



with the normalization condition


   	
                                                                          

                                                                          
   
[image:          ∫ +∞
                ∗
⟨ψ |ψ ⟩ =  −∞  ψ  (x)ψ(x )dx  = 1.
]
	(10.2)



The Hamiltonian operator is given in position representation by


   	
   
[image:         2   2
ˆH =  − ℏ---∂--+  V(ˆx ),
       2m ∂x2
]
	(10.3)



and it is Hermitian, i.e. [image:  ˆ†    ˆ
H   = H  ]. Equation  (10.1)  is an eigenvalue
problem


   	
   
[image: ˆH ψ(x) = E ψ(x ),
]
	(10.4)


                                                                          

                                                                          

which, for bound states, has as solutions a discrete set of real functions
[image: ψ ∗n(x) = ψn(x)  ] such that [image: Hˆψn (x) = En ψn(x)  ]. The numbers [image: E0 ≤ E1 ≤  E2 ≤ ...  ]
are real and they are the (bound) energy spectrum of the particle in the
potential1 
[image: V (x)  ]. The minimum energy [image: E0   ] is called the ground state energy and the
corresponding ground state is given by a non trivial function [image: ψ0(x )  ]. According to
the Heisenberg uncertainty principle, in this state the uncertainties in momentum
[image: Δp  > 0  ] and position [image: Δx  >  0  ] so that [image: Δp ⋅ Δx ≥ ℏ ∕2  ].

   The eigenstates [image: ψn(x)  ] form an orthonormal basis 


   	
   
[image:            ∫
             +∞   ∗
⟨ψn|ψm ⟩ =       ψn(x)ψm (x)dx =  δn,m.
            ∞
]
	(10.5)



so that any (square integrable) wave function [image: ϕ (x)  ] which represents the state
[image: |ϕ⟩ ] is given by the linear combination


   	
   
[image:         ∑∞
ϕ (x) =    cnψn (x).
        n=0
]
	(10.6)



The amplitudes [image: cn = ⟨ψn |ϕ ⟩ ][image:   ∫+ ∞
=  −∞  ψ∗n(x)ϕ (x)dx  ] are complex numbers
that give the probability [image: pn = |cn|2   ] to measure energy [image: En  ] in the state
[image: |ϕ⟩ ].

   For any state [image: |ϕ⟩ ] the function


   	
   
[image:               2    ∗
pϕ (x ) = |ϕ (x )| = ϕ (x)ϕ (x)
]
	(10.7)



is the probability density of finding the particle at position [image: x  ], i.e. the probability
of detecting the particle in the interval [image: [x1,x2]  ] is given by


   	
   
[image:                    ∫  x2           ∫ x2
𝒫  (x  < x < x  ) =     p (x)dx =      ϕ∗(x)ϕ (x )dx.
  ϕ  1         2     x1  ϕ          x1
]
	(10.8)



The normalization condition  (10.2)  reflects the conservation of probability
                                                                          

                                                                          
(independent of time, respected by the time dependent Schrödinger equation) and
the completeness (in this case the certainty that the particle will be observed
somewhere on the [image: x  ] axis).

   The classical observables [image: 𝒜(x, p)  ] of this quantum mechanical system are
functions of the position and the momentum and their quantum mechanical
versions are given by operators [image:  ˆ
𝒜 (ˆx, ˆp)  ]. Their expectation values when the
system in a state [image: |ϕ ⟩ ] are given by


   	
   
[image:                   ∫
  ˆ         ˆ        +∞  ∗    ˆ
⟨𝒜 ⟩ϕ = ⟨ϕ|𝒜 |ϕ ⟩ =      ϕ (x )𝒜 (ˆx,pˆ)ϕ (x)dx.
                    −∞
]
	(10.9)




   From a numerical point of view, the eigenvalue problem  (10.1)  requires the
solution of an ordinary second order differential equation. There are certain
differences in this problem compared to the ones studied in previous sections:


      
      	Instead of an initial value problem (i.e. the values of the function and its
      derivative are given at one point), we have a boundary value problem
      (values of the function or its derivative given at two different points).
      

      	The eigenvalue (energy) is unknown and should be determined as part
      of the solution.


As an introduction to such classes of problems, we will present some simple methods
which are special to one dimension.

   For the numerical solution of the above equation we renormalize [image: x  ], the
function [image: ψ (x )  ] and the parameters so that we deal only with dimensionless
quantities. Equation  (10.1)  is rewritten as:


                                                                          

                                                                          
   	
   
[image:   2
d--ψ (x) + 2m-(E −  V(x ))ψ (x) = 0.
dx2        ℏ2
]
	(10.10)



Then we choose a length scale [image: L  ] which is defined by the parameters of the
problem2 
and we redefine [image: ˜x = x ∕L  ]. We define [image: ψ˜(˜x) = ψ(x)  ] [image: ψ˜′(x˜) = dψ(x)∕d ˜x = Ld ψ(x)∕dx  ]
and we obtain


   	
   
[image:  ′′     2mL2
˜ψ (˜x ) +--ℏ2--(E −  V(˜xL ))˜ψ(˜x) = 0.
]
	(10.11)



We define [image: v(˜x) = 2mL2V  (x)∕ℏ2   ] [image: =  2mL2V  (˜xL )∕ ℏ2   ], [image: 𝜖 = 2mL2E  ∕ℏ2   ] and
change notation to [image: ˜x →  x  ], [image: ψ˜→  ψ  ]. We obtain


   	
                                                                          

                                                                          
   
[image: ψ ′′(x) = − (𝜖 − v (x ))ψ (x).
]
	(10.12)



The solutions of equation  (10.1)  can be obtained from those of equation  (10.12)  by using the
following “dictionary”3 :


   	
   
[image:                   2                 2
x →  x-,  E =  --ℏ---𝜖,  V (x) = --ℏ---v(x∕L ).
     L         2mL2              2mL2
]
	(10.13)



The dimensionless momentum is defined as [image: ˜p = − i∂∕∂ ˜x  ] [image: = − iL∂∕ ∂x  ] and we
obtain


   	
   
                                                                          

                                                                          
[image: ˜p = L-p.
     ℏ
]
	(10.14)



The commutation relation [image: [x, p] = iℏ  ] becomes [image: [˜x, ˜p] = i  ]. The kinetic energy
[image:        2
T  = -p--
     2m  ] is given by


   	
   
[image:         2           2    2
     -ℏ---- 2    --ℏ----∂--
T =  2mL2 p˜ = − 2mL2  ∂ ˜x2,
]
	(10.15)



and the Hamiltonian [image: H  = T +  V  ]


   	
   
[image:        ℏ2  (         )     ℏ2  (    ∂2        )
H =  ----2- ˜p2 + v(˜x)  = -----2  − ---2 + v(˜x)  .
     2mL                 2mL       ∂x˜
]
	(10.16)



In what follows, we will omit the tilde above the symbols and write [image: x  ] instead of
[image: ˜x ].


                                                                          

                                                                          
   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 10.1: The potentials given by equations  (10.17) ,  (10.26)  and  (10.27) . 



                                                                          

                                                                          
   


   10.2    The Infinite Potential Well

The simplest model for studying the qualitative features of bound states is the
infinite potential well of width [image: L  ] where a particle is confined within the interval
[image: [− L∕2,L ∕2]  ]:


   	
   
[image:        {
          0     |x | < 1
v(x) =    + ∞   |x | ≥ 1
]
	(10.17)



The length scale chosen here is [image: L∕2  ] and the dimensionless variable [image: x  ]
corresponds to [image: x ∕(L∕2)  ] when [image: x  ] is measured in length units.

   The solution of  (10.12)  can be easily computed. Due to the symmetry


   	
   
[image: v(− x) = v(x),
]
	(10.18)



of the potential, the solutions have well defined parity. This property will be
crucial to the method used below. The method discussed in the next section can
                                                                          

                                                                          
also be used on non even potentials.

   The solutions are divided into two categories, one with even parity
[image: ψn (x) ≡ ψ(n+)(− x)  ] [image: = ψn(+)(x)  ] for [image: n = 1,3,5, 7,...  ] and one with odd parity
[image: ψ  (x) ≡ − ψ(−)(− x )
  n         n  ] [image: =  ψ(−)(x)
    n  ] for [image: n = 2,4,6,8,...  ].


   	
   
[image:         (
        {  ψ (n+)(x ) = cos(nπ2 x) |x| < 1  n =  1,3,5,7,...
ψn(x ) =   ψ (−)(x ) = sin (nπx)  |x| < 1  n =  2,4,6,8,...
        (    n            2
]
	(10.19)



where


   	
   
[image:      (    )2
𝜖n =   nπ-   ,
        2
]
	(10.20)



and the normalization has been chosen so
                                                                          

                                                                          
that4 
[image: ∫1 (ψn(x))2dx =  1
 −1  ].

   The solutions can be found by using the parity of the wave functions. We note
that for the positive parity solutions


   	
   
[image: ψ(+)(0) = A     ψ(+)′(0) = 0,
 n               n
]
	(10.21)



whereas for the negative parity solutions


   	
   
[image: ψ(n−)(0) = 0    ψ (n−)′(0) = A.
]
	(10.22)



The constant [image: A  ] depends on the normalization of the wave function. Therefore
we can set [image: A  = 1  ] originally and then renormalize the wave function so
                                                                          

                                                                          
that equation  (10.2)  is satisfied. If the energy is known, the relations
(10.21)  and  (10.22)  can be taken as initial conditions in relation  (10.12) .
By using a Runge–Kutta algorithm we can evolve the solution towards
[image: x =  ±1  ]. The problem is that the energy [image: 𝜖  ] is unknown. If the energy
is not allowed by the quantum theory we will find that the boundary
conditions


   	
   
[image: ψ(n±)(±1) = 0
]
	(10.23)



are violated. As we approach the correct value of the energy, we obtain
[image:   (± )
ψ n (±1 ) →  0  ]. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 10.2:  Convergence  of  the  solution  [image: ψ (x)
  i  ]  of   (10.12)   with  the  potential
(10.17)  as a function of the number of iterations [image: i  ] in the program well.f90. Initially
energy = 2.0 and parity = 1. After 29 iterations the solution converges to the ground
state [image: ψ1(x) = cos(πx∕2)  ] with energy [image: 𝜖 = (π∕2)2  ] and with relative accuracy [image: ∼ 10−9  ].
The  bottom  plot  shows  the  error  as  a  function  of  the  number  of  iterations  in  a
logarithmic scale. For [image: i ≡ ]iter = 1,2,3,5,10,12,20 we obtain energy = 2.4, 2.6,
2.4, 2.4625, 2.46875, 2.4673828125. 



                                                                          

                                                                          
   


   Therefore we follow the steps described below: 

      
      	We choose an initial value for the energy [image: 𝜖  ] that is lower than the
      one we are looking for. We can use estimates from known solutions
      of similar looking potential wells or simply start from a value slightly
      higher than the absolute minimum of the potential.
      

      	We  choose  the  parity  of  the  solution  and  we  set  initial  conditions
      according to equations  (10.21)  and  (10.22) .
      

      	We evolve the solutions using a 4th order Runge-Kutta method from
      5
      [image: x = 0  ] to [image: x =  +1  ].
      

      	If equation  (10.23)  is not satisfied, we increase the energy by [image: δ𝜖  ] and
      we repeat.
      

      	We repeat until [image:   (± )
ψ n (1)  ] changes sign. Then we lower the energy by
      [image: δ𝜖 = − δ𝜖∕2  ].
      

      	The  process  is  ended  when  [image: |ψ(n±)(1)| < δ  ] for  appropriately  chosen
      small [image: δ  ].


   For the evolution of the solution from [image: x = 0  ] to [image: x =  1  ] we use the 4th order
Runge-Kutta method programmed in the file rk.f90 of chapter 4. We copy the
subroutine RKSTEP in a local file rk.f90. The integration of  (10.12)  can by done
by using the function [image: ϕ(x) ≡ ψ ′(x)  ] 

   
[image:   ′
ψ (x)  =   ϕ(x)
ϕ ′(x)  =   (v(x) − 𝜖)ψ (x),                 (10.24)
]


with the initial conditions 
   
[image:                       ′
ψ(0) = 1  ,  ϕ (0 ) ≡ ψ (0 ) = 0 even  parity
ψ(0) = 0  ,  ϕ (0 ) ≡ ψ′(0 ) = 1 odd  parity.        (10.25)
]


We use the notation [image: ψ(x) → ] psi, [image: ϕ (x) → ] psip. The functions f1 and f2
correspond to the right hand side of  (10.24) . They are the derivatives of
[image: ψ (x)  ] and [image: ϕ (x)  ] respectively and f1=psip, f2=(V-energy)*psi. The
code of f1 and f2 is put in a different file so that we can easily reuse
the code for many different potentials [image: v(x )  ]. The file wellInfSq.f90
contains the necessary program for the potential of equation  (10.17)
:
                                                                          

                                                                          
   
!===========================================================
 
!file: wellInfSq.f
 
!
 
!Functions used in RKSTEP routine. Here:
 
!f1 = psip(x) = psi(x)’
 
!f2 = psip(x)’= psi(x)’’
 
!
 
!All one has to set is V, the potential
 
!===========================================================
 
!-------- trivial function: derivative of psi
 
real(8) function f1(x,psi,psip)
 
 real(8) :: x,psi,psip
 
 f1=psip
 
end function f1
 
!===========================================================
 
!-------- the second derivative of wavefunction:
 
!psip(x)’ = psi(x)’’ = -(E-V) psi(x)
 
real(8) function f2(x,psi,psip)
 
 implicit none
 
 real(8) :: x,psi,psip,energy,V
 
 common /params/energy
 
!------- potential, set here:
 
 V  = 0.0D0
 
!------- Schroedinger eq: RHS
 
 f2 = (V-energy)*psi
 
end function f2
 
!===========================================================


 We stress that the energy [image: 𝜖 =  ] energy is put in a common block so that it can
be accessed by the main program.

   The main program is in the file well.f90. The user enters the parameters
(energy, parity, Nx) and the loop
                                                                          

                                                                          


   
 do while (iter .lt. 10000)
 
  ............
 
  if(DABS(psinew)  .le. epsilon) EXIT
 
  if(psinew*psiold .lt. 0.0D0  ) de = -0.5D0*de
 
  energy = energy + de
 
  ............
 
 enddo                     ! do while


 exits when [image: ψ (1 ) =  ]psinew has an absolute value which is less than epsilon, i.e.
when the condition  (10.23)  is satisfied to the desired accuracy. The value of the
energy increases up to the point where the sign of the wave function at [image: x =  1  ]
changes (psinew*psiold[image: <  0  ]). Then the value of the energy is overestimated
and we change the sign of the step de and reduce its magnitude by a half. The
algorithm described on page 1064 is implemented inside the loop. After exiting
the loop, the energy has been determined with the desired accuracy and the rest
of the program stores the solution in the array psifinal(STEPS). The results
are written to the file psi.dat. Note how the variable parity is used so
that both cases parity[image: = ±1  ] can be studied. The full program is listed
below:
                                                                          

                                                                          


   
!===========================================================
 
!file: well.f
 
!
 
!Computation of energy eigenvalues and eigenfunctions
 
!of a particle in an infinite well with V(-x)=V(x)
 
!
 
!Input:  energy: initial guess for energy
 
!        parity: desired parity of solution (+/- 1)
 
!        Nx-1  : Number of RK4 steps from x=0 to x=1
 
!Output: energy: energy eigenvalue
 
!        psi.dat: final psi(x)
 
!        all.dat: all psi(x) for trial energies
 
!===========================================================
 
program even_potential_well
 
 implicit none
 
 integer,parameter :: P=10000
 
 real(8) :: energy,dx,x,epsilon,de
 
 common /params/energy
 
 integer :: parity,Nx,iter,i
 
 real(8) :: psi,psip,psinew,psiold
 
 real(8) :: psifinal(-P:P),xstep(-P:P)
 
!------ Input:
 
 print *,’Enter energy,parity,Nx:’
 
 read  *, energy,parity,Nx
 
 if(Nx  .gt. P) stop ’Nx > P’
 
 if(parity .gt. 0) then
 
  parity =  1
 
 else
 
  parity = -1
 
 endif
 
 print *,’# #######################################’
 
 print *,’# Estart= ’,energy,’ parity= ’,parity
 
 dx      = 1.0D0/(Nx-1)
 
 epsilon = 1.0D-6
 
 print *,’# Nx=  ’,Nx ,’ dx = ’,dx,’ eps= ’,epsilon
 
 print *,’# #######################################’
                                                                          

                                                                          
 

 
!----- Calculate:
 
 open(unit=11,file=’all.dat’)
 
 iter    = 0
 
 psiold  = 0.0D0 ! calculated values of psi at x=1
 
 psinew  = 1.0D0
 
 de      = 0.1D0*DABS(energy) ! original change in energy
 
 do while (iter .lt. 10000)
 
!---------- Initial conditions at x=0
 
  x      = 0.0D0
 
  if(parity .eq. 1)then
 
   psi   = 1.0D0
 
   psip  = 0.0D0
 
  else
 
   psi   = 0.0D0
 
   psip  = 1.0D0
 
  endif
 
  write(11,*) iter,energy, x, psi,psip
 
! --------- Use Runge-Kutta to forward to x=1
 
  do i=2,Nx
 
   x     = (i-2)*dx
 
   call RKSTEP(x,psi,psip,dx)
 
   write(11,*) iter,energy,x,psi,psip
 
  enddo                    ! do i=2,Nx
 
  psinew = psi
 
  print *,iter, energy, de,psinew
 
! --------- Stop if value of psi close to 0
 
  if(DABS(psinew)  .le. epsilon) EXIT
 
! --------- Change direction of energy search:
 
  if(psinew*psiold .lt. 0.0D0  ) de = -0.5D0*de
 
  energy = energy + de
 
  psiold = psinew
 
  iter   = iter + 1
 
 enddo                     ! do while
 
 close(11)
 
!We found the solution: calculate it once again and store it
 
 if(parity .eq. 1)then
 
  psi    = 1.0D0
 
  psip   = 0.0D0
 
  node   = 0  ! count number of nodes of function
 
 else
                                                                          

                                                                          
 
  psi    = 0.0D0
 
  psip   = 1.0D0
 
  node   = 1
 
 endif
 
 x              = 0.0D0
 
 xstep   (0)    = x
 
 psifinal(0)    = psi ! array that stores psi(x)
 
 psiold         = 0.0D0
 
!------- Use Runge-Kutta to move to x=1
 
 do i=2,Nx
 
  x             = (i-2)*dx
 
  call RKSTEP(x,psi,psip,dx)
 
  xstep   (i-1) = x
 
  psifinal(i-1) = psi
 
! ------ Use parity to compute psi(-x)
 
  xstep   (1-i) = -x
 
  psifinal(1-i) = parity*psi
 
!------- Print final solution:
 
 open(unit=11,file=’psi.dat’)
 
 print *,’Final result: E= ’,energy,’ n= ’,node,&
 
      ’ parity= ’,parity
 
 write(11,*)’# E= ’         ,energy,’ n= ’,node,&
 
      ’ parity= ’,parity
 
 do i=-(Nx-1),(Nx-1)
 
  write(11,*) xstep(i),psifinal(i)
 
 enddo
 
 close(11)
 
end program even_potential_well


 The compilation and running of the program can be done with the commands
                                                                          

                                                                          


   
> gfortran  well.f90 wellInfSq.f90 rk.f90 -o well
 
> ./well
 
 Enter energy,parity,Nx:
 
2.0 1 400
 
 # #######################################
 
 # Estart=  2.0000000000000000       parity= 1
 
 # Nx= 400 dx = 2.50626566416E-003 eps= 9.9999999999E-007
 
 # #######################################
 
  0   2.0000000000000    0.200000000000     0.15594369476721
 
  1   2.2000000000000    0.200000000000     8.74448016806986E-2
 
............................................
 
 28   2.4674072265624    1.220703125000E-5 -1.95005436858826E-6
 
 29   2.4674011230468   -6.103515625000E-6 -7.24621589476086E-9
 
 Final result: E=    2.4674011230468746    parity=        1


 The energy is determined to be [image: 𝜖 =  ]2.467401123 which can be compared to the
exact value [image: 𝜖 = (π∕2)2 ≈ ] 2.467401100. The fractional error is [image: ∼ 10 −8   ]. The
convergence can be studied graphically in figure 10.2.

   The calculation of the excited states is done by changing the parity and by
choosing the initial energy slightly higher than the one determined in the previous
step6 .
The results are in table 10.1. The agreement with the exact result [image: 𝜖n = (n π∕2)2   ]
is excellent. 

                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	

	[image: n  ]	 [image: (nπ∕2 )2   ]   	  Square   	 Triangular  	 Double Well 

	
	
	
	
	

	 1  	2.467401100	2.467401123	 5.248626709 	15.294378662
	 2 	9.869604401	9.869604492	14.760107422	15.350024414

	 3  	 22.2066099 	 22.2066040 	 27.0690216  	 59.1908203  
	 4 	 39.47841 	 39.47839 	 44.51092 	 59.96887

	 5  	 61.6850275 	 61.6850242 	 66.6384315  	 111.3247375 
	 6 	 88.82643 	 88.82661 	 93.84588 	 126.37628

	 7  	 120.902653 	 120.902664 	 125.878830  	 150.745215  

	 8  	 157.91367  	 157.91382  	 162.92569  	 194.07578  

	 9  	 199.859489 	 199.859490 	 204.845026  	 235.017471  

	 10 	 246.74011  	 246.74060  	 251.74813  	 275.67383  

	 11 	 298.555533 	 298.555554 	 303.545814  	 331.428306  

	 12 	 355.3057  	 355.3064  	  360.3107   	  388.7444   

	
	
	
	
	

	   





 Table 10.1: Energy eigenvalues for the square, triangular and double well potentials
(equations   (10.17) ,   (10.26)   with [image: v0 = 10  ] and equation   (10.27)   with [image: v0 = 100  ],
[image: a = 0.3  ]). The agreement of the results for the square potential with the exact ones is
excellent. For the other potentials, we note that as we move further from the bottom of
the well we obtain energy levels very close to those of the square well: The particle does
not feel the influence of the details at the bottom of the well. For the double well potential
we obtain [image: E1 ≈ E2  ] and [image: E3 ≈ E4  ] according to the analysis on page 1077. 

                                                                          

                                                                          
   


   

   We close this section with two more examples. First, we study a potential well
with triangular shape at its bottom


   	
   
[image:        ({  v |x | |x| < 1
           0
v(x) = (  + ∞   |x| > 1
]
	(10.26)



and then a double well potential with


   	
   
[image:        (
       ||{   v0     |x| < a
           0    a < |x| < 1
v(x) = |  + ∞     1 < |x|
       |(
]
	(10.27)



where the parameters [image: v0,a  ] are positive numbers. A qualitative plot of these
functions is shown in figure 10.1.

   For the triangular potential we take [image: v  = 10
  0  ], whereas for the double well
potential [image: v0 = 100  ] and [image: a = 0.3  ]. The code in wellInfSq.f90 is appropriately
modified and saved in the files wellInfTr.f90 and wellInfDbl.f90 respectively.
                                                                          

                                                                          
All we have to do is to change the line computing the value of the potential in the
function f2. For example the file wellInfTr.f90 contains the code
                                                                          

                                                                          


   
!------- potential, set here:
 
 V  = 10.0D0*DABS(x)


 whereas the file wellInfDbl.f90 contains the code
                                                                          

                                                                          


   
!------- potential, set here:
 
 if( DABS(x) .le. 0.3D0)then
 
  V = 100.0D0
 
 else
 
  V = 0.0D0
 
 endif


 The analysis is performed in exactly the same way and the results are shown in
table 10.1. Note that, for large enough [image: n  ], the energy levels of all the potentials
that we studied above tend to have identical values. This happens because, when
the particle has energy much larger than [image: v0   ], the details of the potential at the
bottom do not influence its dynamical properties very much. For the triangular
potential, the energy levels have higher values than the corresponding ones of the
square potential. This happens because, on the average, the potential energy is
higher and the potential tends to confine the particle to a smaller region ([image: Δx  ] is
decreased, therefore [image: Δp  ] is increased). This can be seen in figure 10.3
where the wave functions of the particle in each of the two potentials are
compared.

   Similar observations can be made for the double well potential. Moreover, we
note the approximately degenerate energy levels, something which is expected for
potentials of this form. This can be understood in terms of the localized
states given by the wave functions [image:             √ --
ψ+ (x ) = (1 ∕  2)(ψ1 (x) + ψ2(x))  ] and
[image: ψ  (x) = (1∕√2-)(ψ (x) − ψ (x ))
  −               1        2  ]. The first one represents a state where
the particle is localized in the left well and the second one in the right.
This is shown in figure 10.4. As [image: v0 →  +∞ ] the two wells decouple and
the wave functions [image: ψ ±(x)  ] become equal to the energy eigenstate wave
functions of two particles in separate infinite square wells of width [image: 1 − a  ]
with energy eigenvalues [image: 𝜖   =  𝜖   = (π∕ (1 − a))2
 +,1    −,1   ]. The difference of [image: 𝜖
 1   ]
and [image: 𝜖2   ] from these two values is due to the finite [image: v0   ] (see problem 4).
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Figure 10.3: The wave functions of the energy eigenstates of the infinite square and
triangular well potentials for [image: n = 1,2,3,4,8,12  ] given by equations  (10.17)  and  (10.26)
with [image: v0 = 10  ]. We observe the influence of the shape of the potential on the wave functions
with small [image: n  ], while for [image: n ≥ 8  ] the influence becomes weaker. 
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Figure 10.4: The functions [image:            √-
ψ ±(x) = (1∕ 2)(ψn(x)± ψn+1(x))  ] for [image: n = 1,3,5  ] for the
double well potential (equation  (10.27)  with [image: v0 = 100,a = 0.3  ]) are plotted using bold
red lines. We observe that the more degenerate the states, the stronger the localization of
the particle to the left or right well. The other plots are those of the energy eigenfunctions
for [image: n = 1,2,3,4,5,6  ]. 



                                                                          

                                                                          
   


   We will now discuss the limitations of this method. First, the method can be
used only on potential wells that are even, i.e. [image: v(x) = v(− x)  ]. We used this
assumption in equations  (10.21)  and  (10.22)  giving the initial conditions for
states of well defined parity. When the potential is even, the energy eigenstates
have definite parity. The other problem can be understood by solving problem 4:
When [image: v(0) ≫ 𝜖  ], the wave function is almost zero around [image: x =  0  ] and
the integration from [image: x = 0  ] to [image: x =  1  ] will be dominated by numerical
errors. The same is true when the particle has to go through high potential
barriers.

   This method can also we used on potential wells that are not infinite. In that
case we can add infinite walls at points that are far enough so that the wave
function is practically zero there. Then the influence of this artificial wall will be
negligible (see problem 3).


   10.3    Bound States

   

                                                                          

                                                                          

                                                                          

                                                                          




[image: PIC]

 
Figure 10.5:  Integration  of  Schrödinger’s  equation  by  the  use  of  the  algorithm  of
section  10.3.  The  wave  functions  and  their  derivatives  are  given  small  trial  values  at
xmin and  xmax which  are  in  the  classically  forbidden  regions  of  [image: x  ].  The  point  [image: xm  ]
is  calculated  from  the  equation  [image: v(xm ) = 𝜖  ].  The  wave  functions  are  evolved  to  [image: xm  ]
according to  (10.24)  and we obtain the solutions [image: ψ (+)(x)  ] and [image: ψ(−)(x)  ]. We renormalize
[image: ψ (−)(x)  ] so that [image: ψ(+)(x  ) = ψ(−)(x )
     m          m  ] and we vary the energy until the derivatives
[image:   (+)′       (−)′
ψ    (xm ) ≈ ψ  (xm )  ]. 



                                                                          

                                                                          
   


   A serious problem with the method discussed in the previous section is that it
is numerically unstable. You should have already realized that if you tried to solve
problem 3. In that problem, when the walls are moved further than [image: |x | = 3  ], the
convergence of the algorithm becomes harder. You can understand this by
realizing that in the integration process the solution is evolved from the classically
allowed into the classically forbidden region so that an oscillating solution
changes into an exponentially damped one. But as [image: |x| → + ∞ ] there are two
solutions, one that is physically acceptable [image: ψ(x ) ∼ e −k|x| ] and one that is
diverging [image:          +k|x|
ψ(x ) ∼ e ] which is not acceptable due to  (10.2) . Therefore, in
order to achieve convergence to the physically acceptable solution, the
energy has to be finely tuned, especially when we integrate towards large
[image: |x| ]. For this reason it is preferable to integrate from the exponentially
damped region towards the oscillating region. The idea is to start integrating
from these regions and try to match the solutions and their derivatives at
appropriately chosen matching points. The matching is achieved at a
point [image: xm  ] by trying to determine the value of the energy that sets the
ratio


   	
   
[image:          (+ )′       (+)        (−)′       (− )
f(𝜖) = ψ----(xm)∕ψ----(xm-)-−-ψ----(xm-)∕ψ---(xm-)
       ψ (+ )′(xm)∕ψ (+)(xm ) + ψ(−)′(xm )∕ψ (− )(xm )
]
	(10.28)



equal to zero, within the attainable numerical accuracy. It is desirable to
choose a point [image: xm  ] within the classical region ([image: 𝜖 > v (x )  ]) and usually
we pick a turning point [image: 𝜖 = v(x)  ]. By renormalizing [image: ψ(±)(x)  ] we can
always set [image:   (+ )        (−)
ψ   (xm ) = ψ   (xm )  ], therefore [image: f(𝜖) ≪ 1  ] means that
[image: ψ (+ )′(xm ) ≈ ψ(−)′(xm )  ]. The denominator of  (10.28)  sets the scale of the desired
                                                                          

                                                                          
accuracy7 
The idea is depicted in figure 10.5. The algorithm is the following: 

      
      	Choose the integration interval [xmin,xmax].
      

      	Choose    the    initial    conditions    [image: ψ (− )(xmin  )  ],    [image: ψ(−)′(xmin  )  ],
      [image: ψ(+)(xmax  )  ],  [image: ψ(+)′(xmax  )  ].  This  choice  depends  on  the  potential
      [image: v(x)  ]. Usually we take xmin and xmax deep enough in the classically
      forbidden region and choose the values [image:  (−)
ψ   (xmin )  ], [image:  (+)
ψ   (xmax )  ] to
      be zero or exponentially small (e.g. [image: ∼ e −k|x| ], [image: k2 = v(x) − 𝜖  ]). The
      corresponding values of the derivatives [image: ψ (−)′(xmin )  ], [image: ψ(+)′(xmax  )  ]
      are also taken to be small. The arbitrary normalization of [image: ψ(x )  ] allows
      these initial values to be chosen in a crude way. The relative sign of
      the derivatives at large [image: |x | ] (determined e.g. by the parity of the wave
      function for even potentials) is also taken care by the renormalization
      of [image: ψ (− )(x )  ] when applying the matching condition. For an infinite well,
      the points xmin,xmax are the ones where the potential becomes infinite
      and [image:   (− )           (+)
ψ   (xmin  ) = ψ   (xmax  ) = 0  ].
      

      	Choose the initial value of the energy [image: 𝜖  ] and of the energy variation
      step [image: δ𝜖  ].
      

      	 Calculate xm from the initial value of the energy and the solution of
      [image: v(x) = 𝜖  ]. Choose the solution that is at the left most side8 .
      

      	Evolve the equations  (10.24)  from xmin to xm and obtain the solutions
      [image: ψ(−)(x)  ],[image: ψ (− )′(x)  ].
      

      	Evolve the equations  (10.24)  from xmax to xm and obtain the solutions
      [image: ψ(+)(x)  ],[image: ψ (+ )′(x)  ].
                                                                          

                                                                          
      

      	Renormalize    [image:  (−)        (−)   (  (+ )       (−)    )
ψ   (x) →  ψ   (x) ψ   (xm )∕ψ    (xm  ) ],    so    that
      [image: ψ(+)(xm ) = ψ (−)(xm )  ].
      

      	Compute the ratio [image: f(𝜖)  ] of equation  (10.28) .
      

      	If [image: |f(𝜖)| < δ  ] for appropriately chosen [image: δ >  0  ], the calculation ends.
      The result for the energy eigenvalue and eigenfunction is considered to
      be determined with adequate accuracy and we may proceed with the
      analysis of the results.
      

      	If  [image: f(𝜖)  ]  changes  sign  it  means  that  we  have  crossed  the  energy
      eigenvalue. Reverse the direction of search by taking [image: δ𝜖 → − δ𝜖∕2  ].
      

      	Change the energy [image: 𝜖 → 𝜖 + δ𝜖  ] and repeat by going back to the fourth
      step.


When we exit the above loop, the current wave function is a good approximation to
the eigenfunction [image: ψ (x)
 n  ] corresponding to the eigenvalue [image: 𝜖
 n  ]. We normalize the
wave function according to equation  (10.2)  and we calculate the expectation
values according to  (10.9) . It is also interesting to determine the number of
nodes9 
[image: n0   ] of the wave function which is related to [image: n  ] by [image: n = n0 + 1  ].

   Our program needs to implement the Runge–Kutta algorithm. We use the
routine RKSTEP (see page 539) which performs a 4th order Runge–Kutta step. Its
code is copied to the file rk.f90.

   The potential [image: v(x)  ] is coded in the function V(x). The boundary conditions
are programmed in the subroutine boundary(xmin, xmax, psixmin, psipxmin,
psixmax, psipxmax) which returns the values of psixmin = [image:  (−)
ψ   (xmin )  ],
psipxmin = [image:  (−)′
ψ    (xmin  )  ], psixmax = [image:  (+)
ψ   (xmax  )  ], psipxmax = [image:  (−)′
ψ   (xmax  )  ]
to the calling program. These routines are put in a separate file for each
potential that we want to study. The name of the file is related to the form
of the potential, e.g. we choose schInfSq.f90 for the infinite potential
well of  (10.17) . The same file contains the code for the functions f1,
f2:
                                                                          

                                                                          


   
!===========================================================
 
!file: schInfSq.f
 
!
 
!Functions used in RKSTEP routine. Here:
 
!f1 = psip(x) = psi(x)’
 
!f2 = psip(x)’= psi(x)’’
 
!
 
!One has to set:
 
!  1. V(x), the potential
 
!  2. The boundary conditions for psi,psip at x=xmin and x=xmax
 
!
 
!===========================================================
 
!----- potential:
 
real(8) function V(x)
 
 implicit none
 
 real(8) :: x
 
 V = 0.0D0
 
end function V
 
!----- boundary conditions:
 
subroutine &
 
 boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)
 
 implicit none
 
 real(8) :: xmin,xmax,psixmin,psipxmin,psixmax,psipxmax,V
 
!for infinite square well we set psi=0 at boundary
 
!and psip=+/-1
 
 psixmin  =  0.0D0
 
 psipxmin =  1.0D0
 
 psixmax  =  0.0D0
 
 psipxmax = -1.0D0
 
!----- Initial values at xmin and xmax
 
end subroutine boundary
 
!===========================================================
 
!===========================================================
 
!----- trivial function: derivative of psi
 
real(8) function f1(x,psi,psip)
 
 real(8) :: x,psi,psip
                                                                          

                                                                          
 
 f1=psip
 
end function f1
 
!===========================================================
 
!----- the second derivative of wavefunction:
 
!psip(x)’ = psi(x)’’ = -(E-V) psi(x)
 
real(8) function f2(x,psi,psip)
 
 implicit none
 
 real(8) :: x,psi,psip,energy,V
 
 common /params/energy
 
!----- Schroedinger eq: RHS
 
 f2 = (V(x)-energy)*psi
 
end function f2
 
!===========================================================


 We note that if the potential becomes infinite for [image: x <  ] xmin and/or [image: x >  ]xmax,
then this will be determined by the boundary conditions at xmin and/or
xmax.

   The main program is in the file sch.f90. The code is listed below and it
includes the function integrate(psi, dx, Nx) used for the normalization of the
wave function. It performs a numerical integration of the square of a function
whose values psi(i) i=1,...,Nx are given at an odd number of Nx equally
spaced points by a distance dx using Simpson’s rule.
                                                                          

                                                                          


   
!===========================================================
 
!
 
! File: sch.f90
 
!
 
! Integrate 1d Schrodinger equation from xmin to xmax.
 
! Determine energy eigenvalue and eigenfunction by matching
 
! evolving solutions from xmin and from xmax at a point xm.
 
! Matching done by equating values of functions and their
 
! derivatives at xm. The point xm chosen at the left most
 
! turning point of the potential at any given value of the
 
! energy. The potential and boundary conditions chosen in
 
! different file.
 
! ----------------------------------------------------------
 
! Input:  energy: Trial value of energy
 
!         de: energy step, if matching fails de -> e+de, if
 
!             logderivative changes sign     de -> -de/2
 
!         xmin, xmax, Nx
 
! ----------------------------------------------------------
 
! Output: Final value of energy, number of nodes of
 
!    wavefunction in stdout
 
!    Final eigenfunction in file psi.dat
 
!    All trial functions and energies in file all.dat
 
!===========================================================
 
program schroedinger_equation_1D
 
 implicit none
 
 integer,parameter :: P=20001
 
 integer ::  Nx,NxL,NxR
 
 real(8) ::  psi(P),psip(P)
 
 real(8) ::  dx
 
 real(8) ::  xmin,xmax,xm       !left/right/matching points
 
 real(8) ::  psixmin,psipxmin,psixmax,psipxmax
 
 real(8) ::  psileft ,psiright ,psistep,psinorm
 
 real(8) ::  psipleft,psipright,psipstep
 
 real(8) ::  energy,de,epsilon,integrate
 
 common/params/energy
 
 real(8) ::  matchlogd,matchold,psiold,norm,x
                                                                          

                                                                          
 
 integer ::  iter,i,imatch,nodes
 
 real(8) ::  V
 
!---------- Input:
 
 print *,’# Enter energy,de,xmin,xmax,Nx’
 
 read  *,energy,de,xmin,xmax,Nx
 
!--- need even intervals for normalization integration
 
 if( mod(Nx,2).eq.0)Nx=Nx+1
 
 if( Nx .gt. P      ) stop ’Fatal Error: Nx>P’
 
 if( xmin  .ge. xmax) stop ’Error: xmin >= xmax’
 
 dx      = (xmax - xmin)/(Nx-1)
 
 epsilon = 1.0D-6
 
 call boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)
 
 print *,’# #######################################’
 
 print *,’# Estart= ’,energy, ’ de= ’,de
 
 print *,’# Nx=  ’,Nx ,’ eps= ’,epsilon
 
 print *,’# xmin= ’,xmin,’ xmax= ’,xmax, ’ dx= ’,dx
 
 print *,’# psi(xmin)= ’,psixmin,’ psip(xmin)= ’,psipxmin
 
 print *,’# psi(xmax)= ’,psixmax,’ psip(xmax)= ’,psipxmax
 
 print *,’# #######################################’
 
!----- Calculate:
 
 open(unit=11,file=’all.dat’)
 
 matchold   = 0.0d0
 
 do iter=1,10000
 
!----- Determine matching point at turning point from the left:
 
  imatch = -1
 
  do i=1,Nx
 
   x = xmin + (i-1)*dx
 
   if( imatch .lt. 0 .and. (energy-V(x)) .gt. 0.0D0) imatch = i
 
  enddo
 
  if( imatch .le. 100 .or. imatch .ge. Nx-100) imatch = Nx/5
 
  xm     = xmin + (imatch-1)*dx
 
  NxL = imatch
 
  NxR = Nx-imatch+1
 
!----- Evolve wavefunction from the left:
 
  psi  (1)  = psixmin
 
  psip (1)  = psipxmin
 
  psistep   = psixmin
 
  psipstep  = psipxmin
 
  do i=2,NxL
 
   x        = xmin + (i-2)*dx !this is x before the step
 
   call RKSTEP(x,psistep,psipstep, dx)
                                                                          

                                                                          
 
   psi (i)  = psistep
 
   psip(i)  = psipstep
 
  enddo
 
! use this to normalize eigenfunction to match at xm
 
  psinorm   = psistep
 
  psipleft  = psipstep
 
!----- Evolve wavefunction from the right:
 
  psi (Nx)  = psixmax
 
  psip(Nx)  = psipxmax
 
  psistep   = psixmax
 
  psipstep  = psipxmax
 
  do i=2,NxR
 
   x        = xmax - (i-2)*dx
 
   call RKSTEP(x,psistep,psipstep,-dx)
 
   psi (Nx-i+1) = psistep
 
   psip(Nx-i+1) = psipstep
 
  enddo
 
  psinorm       = psistep/psinorm
 
  psipright     = psipstep
 
!----- Renormalize psil so that psil(xm)=psir(xm)
 
  do i=1,NxL-1
 
   psi (i)      = psinorm * psi (i)
 
   psip(i)      = psinorm * psip(i)
 
  enddo
 
  psipleft      = psinorm * psipleft
 
!----- print current solution:
 
  do i=1,Nx
 
   x = xmin + (i-1)*dx
 
   write(11,*)iter,energy,x,psi(i),psip(i)
 
  enddo
 
!----- matching using derivatives:
 
!Careful: this can fail if psi’(xm) = 0 !! (use also |de|<1e-6
 
!criterion)
 
  matchlogd = &
 
       (psipright-psipleft)/(DABS(psipright)+DABS(psipleft))
 
  print *,’# iter,energy,de,xm,logd: ’,&
 
       iter,energy,de,xm,matchlogd
 
!----- Exit condition:
 
  if(DABS(matchlogd).le.epsilon.or.DABS(de/energy).lt.1.0D-12)&
 
       EXIT
 
  if( matchlogd * matchold .lt. 0.0D0) de = -0.5D0*de
                                                                          

                                                                          
 
  energy    = energy + de
 
  matchold  = matchlogd
 
 enddo ! do iter=1,10000
 
 close(11)
 
!---------------------------------------------------
 
!----- Solution has been found and now it is stored:
 
 norm     = integrate(psi,dx,Nx)
 
 norm     = 1.0D0/sqrt(norm)
 
 do i=1,Nx
 
  psi(i)  = norm*psi(i)
 
 enddo
 
!----- Cound number of zeroes, add one and get energy level:
 
 nodes    = 1
 
 psiold   = psi(1)
 
 do i=2,Nx-1
 
  !should be 0 within epsilon
 
  if(  DABS(psi(i)) .gt.epsilon)then
 
   if( psiold*psi(i).lt.0.0D0  )nodes = nodes+1
 
   psiold = psi(i)
 
  endif
 
 enddo !i=2,Nx-1
 
!------- Print final solution:
 
 open(unit=11,file=’psi.dat’)
 
 print *,’Final result: E= ’,energy,’ n= ’,nodes,&
 
      ’ norm = ’      ,norm
 
 if( DABS(matchlogd) .gt. epsilon) print *&
 
      ,’Final result: SOS: logd>epsilon. logd= ’,matchlogd
 
 write(11,*)’# E= ’         ,energy,’ n= ’,nodes,&
 
      ’ norm = ’      ,norm
 
 do i=1,Nx
 
  x = xmin + (i-1)*dx
 
  write(11,*) x,psi(i)
 
 enddo
 
 close(11)
 
end program schroedinger_equation_1D
 
!===========================================================
 
!Simpson’s rule to integrate psi(x)*psi(x) for proper
 
!normalization. For n intervals of width dx (n even)
 
!Simpson’s rule is:
 
!int(f(x)dx) =
 
! (dx/3)*(f(x_0)+4 f(x_1)+2 f(x_2)+...+4 f(x_{n-1})+f(x_n))
                                                                          

                                                                          
 
!
 
!Input:   Discrete values of function psi(Nx)
 
!         Integration step dx
 
!Returns: Integral(psi(x)psi(x) dx)
 
!===========================================================
 
real(8) function integrate(psi,dx,Nx)
 
 implicit none
 
 integer :: Nx
 
!------------- Note: we need P due to geometry of array
 
 real(8) :: psi(Nx),dx
 
!-------------
 
 real(8) :: int
 
 integer :: i
 
!----- zeroth order point:
 
 i    = 1
 
 int  = psi(i)*psi(i)
 
!----- odd  order points (i=k+1 is even):
 
 do i=2,Nx-1,2
 
  int = int + 4.0D0*psi(i)*psi(i)
 
 enddo
 
!----- even order points:
 
 do i=3,Nx-2,2
 
  int = int + 2.0D0*psi(i)*psi(i)
 
 enddo
 
!----- last point:
 
 i    = Nx
 
 int  = int + psi(i)*psi(i)
 
!----- measure normalization:
 
 int  = int*dx/3.0D0
 
!----- final result:
 
 integrate = int
 
end function integrate
 
!===========================================================


 The reproduction of the results of the previous section for the infinite potential
well is left as an exercise. The compilation and running of the program can be
done with the commands:
                                                                          

                                                                          


   
> gfortran sch.f90 schInfSq.f90 rk.f90 -o s
 
> ./s
 
 # Enter energy,de,xmin,xmax,Nx
 
1 0.5 -1 1 2000
 
 # #######################################
 
 # Estart=    1.000  de=    0.5
 
 # Nx=        2001   eps=   1.0E-006
 
 # xmin=     -1.000  xmax=  1.000 dx=  1.000E-003
 
 # psi(xmin)= 0.000  psip(xmin)=    1.000
 
 # psi(xmax)= 0.000  psip(xmax)=   -1.000
 
 # #######################################
 
 # iter,energy,de,xm,logd:  1 1.0000  0.500    -0.601 -0.9748
 
 # iter,energy,de,xm,logd:  2 1.5000  0.500    -0.601 -0.6412
 
.....
 
 # iter,energy,de,xm,logd: 30 2.4674 -3.815E-6 -0.601 -1.0E-6
 
 # iter,energy,de,xm,logd: 31 2.4674  1.907E-6 -0.601  2.7E-7
 
 Final result: E= 2.467401504516602 n= 1 norm = 1.5707965025


 We set xmin= -1, xmax = 1, Nx= 2000 and [image: 𝜖 = 1  ], [image: δ𝜖 = 0.5  ]. The energy of
the ground state is found to be [image: 𝜖1 = 2.4674015045166016  ]. The wave
function is stored in the file psi.dat and can be plotted with the gnuplot
command
                                                                          

                                                                          


   
gnuplot> plot "psi.dat" using 1:2 with lines


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 10.6: The convergence of the solutions to the solution of Schrödinger’s equation
for the ground state of the infinite potential well according to the discussion on page 1100.




                                                                          

                                                                          
   


   The functions computed during the iterations of the algorithm are stored in
the file all.dat. The first column is the iteration number (here we have iter =
0, ... 31) and we can easily filter each one of them with the commands

                                                                          

                                                                          


   
gnuplot> plot   "<awk ’$1==1’ all.dat" using 3:4 w l t "iter=1"
 
gnuplot> replot "<awk ’$1==2’ all.dat" using 3:4 w l t "iter=2"
 
gnuplot> replot "<awk ’$1==3’ all.dat" using 3:4 w l t "iter=3"
 
gnuplot> replot "<awk ’$1==4’ all.dat" using 3:4 w l t "iter=4"
 
.....


 which reproduce figure 10.6.


   10.4    Measurements

The action of an operator [image: 𝒜ˆ(ˆx, ˆp)  ] on a state [image: |ψ ⟩ ] can be easily calculated in the
position representation by its action on the corresponding wave function [image: ψ(x)  ].
The action of the operators


   	
   
[image:                                ∂
ˆxψ (x) = xψ (x)    ˆpψ (x) = − i--ψ (x)
                               ∂x
]
	(10.29)



yield10 


   	
                                                                          

                                                                          
   
[image: 𝒜ˆ(ˆx,pˆ)ψ (x) = 𝒜 (x,− i ∂-)ψ (x).
                       ∂x
]
	(10.30)



Using equation  (10.9)  we can calculate the expectation value [image: ⟨𝒜 ⟩ ] of the
operator [image: 𝒜 ] when the system is at the state [image: |ψ ⟩ ]. Interesting examples are the
observables “position” [image: x  ], “position squared” [image: x2   ], “momentum” [image: p  ], “momentum
squared” [image: p2   ], “kinetic energy” [image: T  ], “potential energy” [image: V  ], “energy” or
“Hamiltonian” [image: H  = T  + V  ] whose expectation values are given by the relations


   
[image:           ∫ +∞
 ⟨x⟩  =        ψ ∗(x)xψ (x)dx
           −∞
          ∫ +∞
⟨x2⟩  =        ψ ∗(x)x2ψ (x)dx
          ∫−∞        (       )
            +∞   ∗        ∂--
 ⟨p⟩  =        ψ  (x)  − i∂x   ψ(x)dx
          ∫−∞+∞       (       )
   2             ∗       -∂2-
 ⟨p ⟩  =    −∞  ψ  (x)  − ∂x2   ψ(x)dx
             2  ∫ + ∞       (    2 )
 ⟨T⟩  =   --ℏ---      ψ∗(x)  − -∂--  ψ (x)dx
          2mL2   − ∞           ∂x2
             2  ∫ + ∞
 ⟨V⟩  =   --ℏ---      ψ∗(x)v(x )ψ (x)dx
          2mL2   − ∞
            ℏ2  ∫ + ∞       (   ∂2        )
⟨H ⟩  =   -----2      ψ∗(x)  − ---2 + v(x)  ψ (x )dx.    (10.31)
          2mL    − ∞           ∂x
]


We remind the reader that we used the dimensionless [image: x,p  ] as well as
equations  (10.15)  and  (10.16) . Especially interesting are the “uncertainties”
[image:    2     2       2
Δx   = ⟨x ⟩ − ⟨x⟩   ], [image:    2     2      2
Δp  =  ⟨p ⟩ − ⟨p⟩   ] that satisfy the inequality (“Heisenberg’s
uncertainty relation”) 
   	
   
[image:            1-
Δx ⋅ Δp ≥  2.
]
	(10.32)



In the previous section we described how to calculate numerically the
eigenfunctions of the Hamiltonian. If [image: Hˆψ (x) = E ψ(x)  ], we obtain that
[image: ⟨H ⟩ = (1∕2mL2  )𝜖  ]. Other operators need a numerical approximation
for the calculation of their expectation values. If the values of the wave
function are given at [image: N  ] equally spaced points [image: x1,x2,...,xN  ], then we
                                                                          

                                                                          
obtain


   	
   
[image: ∂-ψ(xi) ≈ ψ-(xi+1) −-ψ-(xi−1)
  ∂x              2h
]
	(10.33)



where [image: h = xi+1 − xi  ] and


   	
   
[image: ∂2ψ-(xi)   ψ(xi+1)-−-2ψ-(xi)-+-ψ-(xi−-1)-
  ∂x2   ≈              h2             .
]
	(10.34)



Both equations entail an error of the order of [image: 𝒪 (h2)  ]. Special care should be taken at
the endpoints of the interval [image: [x ,x  ]
  1  N  ]. As a first approach we will use the naive
approximations11 


                                                                          

                                                                          
   
[image: ∂-ψ(x1)  ≈   ψ-(x2) −-ψ-(x1)
  ∂x               h
∂ψ-(xN-)-     ψ-(xN)-−-ψ-(xN−1)-
  ∂x     ≈           h                       (10.35)
]


and 
   
[image:  ∂2ψ(x1)      ψ (x3) − 2ψ(x2) + ψ(x1)
 ----2--- ≈   ------------2-----------
 2 ∂x                    h
∂-ψ-(xN)-     ψ-(xN-) −-2ψ-(xN−-1) +-ψ-(xN−-2)
  ∂x2     ≈                 h2              .       (10.36)
]


The relevant program that calculates [image: ⟨x⟩ ], [image: ⟨x2⟩ ], [image: ⟨p⟩ ], [image: ⟨p2⟩ ], [image: Δx  ], [image: Δp  ] can be
found in the file observables.f90 and is listed below:
                                                                          

                                                                          
   
!===========================================================
 
!
 
! File observables.f90
 
! Compile: gfortran observables.f90 -o o
 
! Usage:   ./o <psi.dat>
 
!
 
! Read in a file with a wavefunction in the format of psi.dat:
 
! # E= <energy> ....
 
! x1  psi(x1)
 
! x2  psi(x2)
 
! ............
 
!
 
! Outputs expectation values:
 
! normalization Energy <x> <p> <x^2> <p^2> Dx Dp DxDp
 
! where Dx = sqrt(<x^2>-<x>^2) Dp = sqrt(<p^2>-<p>^2)
 
!  DxDp = Dx * Dp
 
!
 
!===========================================================
 
program observables_expectation
 
 implicit none
 
 integer,parameter :: P=50000
 
 integer Nx,i
 
 real(8) :: xstep(P),psi(P),obs(P)
 
 real(8) :: xav, pav, x2av, p2av, Dx, Dp, DxDp,energy,h,norm
 
 real(8) :: integrate
 
 character(20) ::  psifile,scratch
 

 
!the first argument of the command line must be the path
 
!to the file with the wavefunction. (GNU fortran extension...)
 
 if( iargc() .ne. 1) stop ’Usage: o  <filename>’
 
 call getarg(1,psifile)
 
!If the file does not exist, we go to label 100 (stop):
 
 open(unit=11,file=psifile,status=’OLD’,err=100)
 
 print *,"# reading wavefunction from file:", psifile
 
!we read the first comment line from the file:
 
 read(11,*) scratch,scratch,energy
 
!-------------------------------------------------------
                                                                          

                                                                          
 
!Input data: psi(x)
 
 Nx = 1
 
 do while(.TRUE.)
 
  if(Nx .ge. P) stop ’Too many points’
 
  read(11,*,end=101) xstep(Nx),psi(Nx)
 
  Nx = Nx+1
 
 enddo !do while(.TRUE.)
 
101 continue
 
 Nx = Nx - 1
 
 if(mod(Nx,2) .eq. 0) Nx = Nx - 1
 
 h  = (xstep(Nx)-xstep(1))/(Nx-1)
 
!-------------------------------------------------------
 
!Calculate:
 
!---------- norm:
 
 do i=1,Nx
 
  obs(i) = psi(i)*psi(i)
 
 enddo
 
 norm = integrate(obs,h,Nx)
 
!---------- <x> :
 
 do i=1,Nx
 
  obs(i) = xstep(i)*psi(i)*psi(i)
 
 enddo
 
 xav = integrate(obs,h,Nx)/norm
 
!---------- <p>/i :
 
 obs(1) = psi(1)*(psi(2)-psi(1))/h
 
 do i=2,Nx-1
 
  obs(i) = psi(i)*(psi(i+1)-psi(i-1))/(2.0D0*h)
 
 enddo
 
 obs(Nx) = psi(Nx)*(psi(Nx)-psi(Nx-1))/h
 
 pav = -integrate(obs,h,Nx)/norm
 
!--------- <x^2>
 
 do i=1,Nx
 
  obs(i) = xstep(i)*xstep(i)*psi(i)*psi(i)
 
 enddo
 
 x2av = integrate(obs,h,Nx)/norm
 
!-------- <p^2>
 
 obs(1) = psi(1)*(psi(3)-2.0D0*psi(2)+psi(1))/(h*h)
 
 do i=2,Nx-1
 
  obs(i) = psi(i)*(psi(i+1)-2.0D0*psi(i)+psi(i-1))/(h*h)
 
 enddo
 
 obs(Nx) = psi(Nx)*&
                                                                          

                                                                          
 
      (psi(Nx)-2.0D0*psi(Nx-1)+psi(Nx-2))/(h*h)
 
 p2av = -integrate(obs,h,Nx)/norm
 
!-------- Dx
 
 Dx = sqrt(x2av - xav*xav)
 
!-------- Dp
 
 Dp = sqrt(p2av - pav*pav)
 
!-------- Dx . Dp
 
 DxDp = Dx*Dp
 
!print results:
 
 print *,’# norm E <x> <p>/i <x^2> <p^2> Dx Dp DxDp’
 
 print ’(10G25.17)’,norm,energy,xav,pav,x2av,p2av,Dx,Dp,DxDp
 
 stop !normal execution ends here. Error messages follow
 
100 stop ’Cannot open file’
 
end program observables_expectation
 
!===========================================================
 
!
 
!Simpson’s rule to integrate psi(x).
 
!For n intervals of width dx (n even)
 
!Simpson’s rule is:
 
!int(f(x)dx) =
 
! (dx/3)*(f(x_0)+4 f(x_1)+2 f(x_2)+...+4 f(x_{n-1})+f(x_n))
 
!
 
!Input:   Discrete values of function psi(Nx)
 
!         Integration step dx
 
!Returns: Integral(psi(x)psi(x) dx)
 
!===========================================================
 
real(8) function integrate(psi,dx,Nx)
 
 implicit none
 
 integer :: Nx
 
 real(8) :: psi(Nx),dx
 
 real(8) :: int
 
 integer i
 
!----- zeroth order point:
 
 i    = 1
 
 int  = psi(i)
 
!----- odd  order points (i=k+1 is even):
 
 do i=2,Nx-1,2
 
  int = int + 4.0D0*psi(i)
 
 enddo
 
!----- even order points:
 
 do i=3,Nx-2,2
                                                                          

                                                                          
 
  int = int + 2.0D0*psi(i)
 
 enddo
 
!----- last point:
 
 i    = Nx
 
 int  = int + psi(i)
 
!----- measure normalization:
 
 int  = int*dx/3.0D0
 
!----- final result:
 
 integrate = int
 
end function integrate
 
!===========================================================


 The program needs to read in the wave function at the points [image: x1,...,xNx  ] in the
format produced by the program in sch.f90. The first line should have the energy
written at the 3rd column, whereas from the 2nd line and on there should be two
columns with the [image: (xi,ψ(xi))  ] pairs. It is not necessary to have the wave
function properly normalized, the program will take care of it. If this data is
stored in a file psi.dat, then the program can be used by running the
commands
                                                                          

                                                                          


   
> gfortran  observables.f90 -o obs
 
> ./obs psi.dat


 The program prints the normalization constant of [image: ψ(x)  ], the value of the
energy12 ,
[image: ⟨x⟩ ], [image: ⟨x2⟩ ], [image: ⟨p⟩∕i  ], [image: ⟨p2⟩ ], [image: Δx  ], [image: Δp  ] and [image: Δx  ⋅ Δp  ] to the stdout.

   Some details about the program: In order to read in the data from the file
psi.dat we use the functions  iargc(), getarg(n,string). The former
returns the number of arguments of the command line and the latter
stores the n-th argument to the CHARACTER variable string. Therefore, the
statements
                                                                          

                                                                          


   
 character(20) ::  psifile,scratch
 
 if( iargc() .ne. 1) stop ’Usage: o  <filename>’
 
 call getarg(1,psifile)


 stop the program if the command line does not have exactly one argument and
store the first argument to the variable file.

   The command
                                                                          

                                                                          


   
 open(unit=11,file=psifile,status=’OLD’,err=100)
 
100 stop ’Cannot open file’


 opens a file which should already exist (status=’OLD’), otherwise an
error message is issued. The option err=100 transfers the control of the
program to the statement labeled ’100’. In the example shown above, the
program stops and prints an error message ’Cannot open filename’ to the
stdout.

   The commands
                                                                          

                                                                          


   
 Nx = 1
 
 do while(.TRUE.)
 
  read(11,*,end=101) xstep(Nx),psi(Nx)
 
  Nx = Nx+1
 
 enddo !do while(.TRUE.)
 
101 continue


 read the opened file line by line. The option end=101 at the statement
read(11,*,end=101) transfers the control of the program to the labeled
statement with label 101 (i.e. outside the do loop) when we reach the end of
file.

   The rest of the commands are applications of equations  (10.33) ,  (10.34) ,
(10.35)  and  (10.36)  to the formulas  (10.31)  and the reader is asked to study
them carefully. The program uses the function integrate in order to perform the
necessary integrals.


   10.5    The Anharmonic Oscillator - Again...

In the previous chapter 9 we studied the quantum mechanical harmonic and
anharmonic oscillator in the representation of the energy eigenstates of the
harmonic oscillator [image: |n ⟩ ]. In this section we will revisit the problem by using the
position representation. We will calculate the eigenfunctions [image: ψn,λ(x)  ] that
diagonalize the Hamiltonian  (9.15) , which are the solutions of the Schrödinger
equation. By setting [image:     ∘  ------
L =    ℏ∕m ω  ] in equation  (10.13) , equation  (10.12)
becomes


   	
   
[image:   ′′
ψ  (x) = − (𝜖 − v(x))ψ (x),
]
	(10.37)



where [image: v(x) = x2 + 2λx4   ]. For [image: λ =  0  ] we obtain the harmonic oscillator with



   	
   
[image:                                       (      )
ψn(x ) = ∘---1-√---e−x2∕2Hn (x),𝜖n = 2  n +  1- ,
           2nn!  π                          2
]
	(10.38)



where [image: Hn (x)  ] are the Hermite polynomials.

   We start with the simple harmonic oscillator where the exact solution is
known. The potential and the initial conditions are programmed in the file
schHOC.f90. The changes that we need to make concern the functions V(x),
boundary(xmin, xmax, psixmin, psipxmin, psixmax, psipxmax):
                                                                          

                                                                          


   
!===========================================================
 
!file: schHOC.f
 
!..............
 
!----- potential:
 
real(8) function V(x)
 
 implicit none
 
 real(8) :: x
 
 V = x*x
 
end function V
 
!----- boundary conditions:
 
subroutine &
 
 boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)
 
 implicit none
 
 real(8) :: xmin,xmax,psixmin,psipxmin,psixmax,psipxmax,V
 

 
 psixmin    =  exp(-0.5D0*xmin*xmin)
 
 psipxmin   = -xmin*psixmin
 
 psixmax    =  exp(-0.5D0*xmax*xmax)
 
 psipxmax   = -xmax*psixmax
 
end subroutine boundary
 
!===========================================================
 
.................


 The code omitted at the dots is identical to the one discussed in the previous section.
The initial conditions are inspired by the asymptotic behavior of the solutions to
Schrödinger’s13 
equation [image: ψ  (x) ∼ e−x2∕2
  0   ], [image: ψ ′(x) ∼ − xψ  (x )
  n          n  ]. You are encouraged to test the
influence of other choices on the results. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

[image: pict] [image: pict]

 
Figure 10.7: The eigenfunctions [image: ψ0(x)  ], [image: ψ9(x)  ] calculated by the program in sch.f90,
schHOC.f90. The plot to the right shows the difference of the results from the known
values  (10.38) . 



                                                                          

                                                                          
   


   The results are depicted in figure 10.7 where, besides the qualitative
agreement, their difference from the known values  (10.38)  is also shown. This
difference turns out to be of the order of [image: 10 −11   ]–[image: 10− 7   ]. The values of the energy
[image: 𝜖
 n  ] for [image: n ≤ 14  ] are in agreement with  (10.38)  with relative accuracy better than
[image:   − 9
10   ].

   Then we calculate the expectation values [image: ⟨x ⟩ ], [image:    2
⟨x ⟩ ], [image: ⟨p⟩ ], [image:   2
⟨p ⟩ ], [image: Δx  ] and
[image: Δp  ]. These are easily calculated using equations  (9.4)  and  (9.8) . We
see that [image:                   √--
⟨x⟩ = ⟨n|(a† + a )∕ 2 |n ⟩ = 0  ], [image:                    √ --
⟨p⟩ = ⟨n |i(a† − a)∕  2|n ⟩ = 0  ],
whereas


   	
   
[image:                                   (       )
⟨x2 ⟩ = ⟨p2⟩ = ⟨n |1-(a†a + aa†)|n ⟩ =  n + 1-  .
                2                       2
]
	(10.39)



The program observables.f90 calculates [image: ⟨x⟩ = 0  ] with accuracy [image:     − 6
∼ 10   ] and
[image: ⟨p⟩ = 0  ] with accuracy [image: ∼  10−11   ]. The expectation values [image: ⟨x2⟩ ], [image: ⟨p2⟩ ] are shown
in table 10.2. 

                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	

	[image: n  ]	   [image: ⟨x2⟩ ]
    	  [image: ⟨p2⟩ ]
   	 [image: Δx ⋅ Δp  ]


	
	
	
	

	  0	 0.500000000	 0.4999977	 0.4999989
	 1	 1.500000284	 1.4999883	 1.4999943

	  2	 2.499999747	 2.4999711	 2.4999854
	 3	 3.499999676	 3.4999441	 3.4999719

	  4	 4.499999607	 4.4999082	 4.4999539
	 5	 5.499999520	 5.4998633	 5.4999314

	  6	 6.499999060	 6.4998098	 6.4999044

	  7	 7.499999642	 7.4995484	 7.4997740

	  8	 8.499999715	 8.4994203	 8.4997100

	  9	 9.499999837	 9.4992762	 9.4996380

	 10	10.500000012	10.4991160	10.4995580

	 11	11.499999542	11.4994042	11.4997019

	 12	12.499999610	12.4992961	12.4996479

	 13	13.499999705	13.4991791	13.4995894

	 14	14.499999835	14.4990529	14.4995264

	
	
	
	

	   





 Table 10.2: The expectation values [image: ⟨x2⟩ ], [image: ⟨p2⟩ ] and the product [image: Δx ⋅Δp  ] for the
simple harmonic oscillator for the states [image: |n⟩ ], [image: n = 0,...,14  ]. 

                                                                          

                                                                          
   


   

   Next, the calculation is repeated for the anharmonic oscillator for
[image: λ =  0.5,2.0  ]. We copy the file schHOC.f90 to schUOC.f90 and change the
potential in the function V(x):
                                                                          

                                                                          


   
!===========================================================
 
!file: schUOC.f
 
!...................
 
!----- potential:
 
real(8) function V(x)
 
 implicit none
 
 real(8) :: x, lambda
 
 lambda = 2.0D0
 
 V = x*x+2.0D0*lambda*x*x*x*x
 
end function V
 
....................


 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict] [image: pict] [image: pict] [image: pict] [image: pict]

  
Figure 10.8:  The  wave  functions  of  the  anharmonic  oscillator  [image: ψ   (x)
 n,λ  ]  for
[image: n = 0,1,2,3,4,5  ] and  [image: λ = 0.5,2.0  ]  compared  to  the  respective  ones  of  the  simple
harmonic oscillator. Increasing [image: λ  ] yields stronger confinement of the particle in space. 



                                                                          

                                                                          
   


   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	

	[image: n  ]	  [image: 𝜖n  ]
  	[image: 𝜖n,λ=0.5   ]
	[image: 𝜖n,λ=2.0   ]


	
	
	
	

	  0	 1.0000	  1.3924	  1.9031
	 1	 3.0000	 4.6488	 6.5857

	  2	 5.0000	  8.6550	 12.6078
	 3	 7.0000	 13.1568	 19.4546

	  4	 9.0000	 18.0576	 26.9626

	  5	11.0000	 23.2974	 35.0283

	  6	13.0000	 28.8353	 43.5819

	  7	15.0000	 34.6408	 52.5723

	  8	17.0000	 40.6904	 61.9598

	  9	19.0000	 46.9650	 71.7129

	
	
	
	

	   





 Table 10.3: The values of the energy [image: 𝜖n  ] for the harmonic and anharmonic oscillator for
[image: λ = 0.5,2.0  ]. The values of the corresponding energy levels are increased with increasing
[image: λ  ]. 

                                                                          

                                                                          
   


   

   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	
	
	

	  	        [image: λ =  0.5  ]
         	        [image: λ = 2.0  ]


	
	
	
	
	
	
	

	[image: n  ]	[image:   2
⟨x ⟩ ]
	 [image:   2
⟨p ⟩ ]
 	[image: Δx  ⋅ Δp  ]
	[image:   2
⟨x ⟩ ]
	 [image:   2
⟨p ⟩ ]
 	[image: Δx  ⋅ Δp  ]


	
	
	
	
	
	
	

	 0	0.3058	 0.8263	   0.5027	0.2122	 1.1980	   0.5042
	 1	0.8013	 2.8321	 1.5064	0.5408	 4.2102	 1.5089

	 2	1.1554	 5.3848	   2.4944	0.7612	 8.1513	   2.4909
	 3	1.4675	 8.2819	 3.4862	0.9582	12.6501	 3.4816

	 4	1.7509	11.4545	   4.4784	1.1370	17.5955	   4.4728

	 5	2.0141	14.8599	   5.4707	1.3029	22.9169	   5.4643

	 6	2.2617	18.4691	   6.4631	1.4590	28.5668	   6.4560

	 7	2.4970	22.2607	   7.4555	1.6074	34.5103	   7.4478

	 8	2.7220	26.2184	   8.4478	1.7492	40.7206	   8.4397

	 9	2.9384	30.3289	   9.4402	1.8856	47.1762	   9.4316

	
	
	
	
	
	
	

	  





 Table 10.4:  The  expectation  values  [image: ⟨x2⟩ ],  [image: ⟨p2⟩ ] and  the  product  [image: Δx ⋅Δp  ]  for
the  anharmonic  oscillator  for  the  states  [image: |n⟩ ],  [image: n = 0,...,9  ].  Note  the  decrease  of
[image:      ∘ ----
Δx =   ⟨x2⟩ ] and the increase of [image:      ∘ ----
Δp =   ⟨p2⟩ ] with increasing [image: λ  ]. The uncertainty
product [image: Δx  ⋅Δp  ] seems to take values close to the corresponding ones of the harmonic
oscillator for both values of [image: λ  ]. Compare the results in this table with the ones in table
9.1. 

                                                                          

                                                                          
   


   

   The wave functions are plotted in figure 10.8. We see that by increasing [image: λ  ] the
particle becomes more confined in space as expected. In table 10.3 we list the
values of the energy [image: 𝜖
 n  ] for [image: n = 0,...,9  ]. By increasing [image: λ  ], [image: 𝜖 (λ)
 n  ] is increased.
Table 10.4 lists the expectation values [image:    2
⟨x  ⟩ ], [image:   2
⟨p ⟩ ] and [image: Δx ⋅ Δp  ] for the
anharmonic oscillator for the states [image: |n ⟩ ], [image: n =  0,...,9  ]. By increasing [image: λ  ],
[image:       ∘  ----
Δx  =    ⟨x2⟩ ] is decreased and [image:       ∘  ----
Δp  =    ⟨p2⟩ ] is increased. The product of the
uncertainties [image: Δx  ⋅ Δp  ] seems to be quite close to the corresponding values for the
harmonic oscillator. The results should be compared with the ones obtained in
table 9.1 of chapter 9.


   10.6    The Lennard–Jones Potential

The Lennard–Jones potential is a simple phenomenological model of the
interaction between two neutral atoms in a diatomic molecule. This is given
by


   	
   
[image:            { ( σ)12   ( σ)6 }
V (x ) = 4V0    --   −   --    .
               x        x
]
	(10.40)



The repulsive term describes the Pauli interaction due to the overlapping of the
electron orbitals, whereas the attractive term describes the Van der Waals force.
The first one dominates at short distances and the latter at long distances. We
choose [image: L  = σ  ] in  (10.13)  and define [image: v0 = 2m σ2V0 ∕ℏ2   ]. Equation  (10.40)
becomes


   	
                                                                          

                                                                          
   
[image:            { (  )12   (   )6}
               1-       1-
v (x ) = 4v0    x    −   x      ,
]
	(10.41)



whereas the eigenvalues [image: 𝜖n  ] are related to the energy values [image: En  ] by


   	
   
[image:         (    )
          En
𝜖n = 4v0  ---  .
           V0
]
	(10.42)



The plot of the potential is shown in figure 10.5 for [image: v  = 250
 0  ]. The minimum is
located at [image:        1∕6
xm =  2   ≈ 1.12246  ] and its value is [image: − v0   ]. The code for this
potential is in the file schLJ.f90. The necessary changes to the code discussed in
the previous sections are listed below:
                                                                          

                                                                          


   
!===========================================================
 
!file: schLJ.f90 (Lennard-Jones)
 
!..................
 
!----- potential:
 
real(8) function V(x)
 
 implicit none
 
 real(8) :: x,V0
 

 
 V0 = 250.0D0
 
 V  = 4.0D0*V0*(1.0D0/x**12-1.0D0/x**6)
 

 
end function V
 
!----- boundary conditions:
 
subroutine &
 
 boundary(xmin,xmax,psixmin,psipxmin,psixmax,psipxmax)
 
 implicit none
 
 real(8) :: xmin,xmax,psixmin,psipxmin,psixmax,psipxmax,V
 
 real(8) :: energy
 
 common/params/energy
 
!----- Initial values at xmin and xmax
 
 psixmin    =  exp(-xmin*sqrt(DABS(energy-V(xmin))))
 
 psipxmin   =  sqrt(DABS(energy-V(xmin)))*psixmin
 
 psixmax    =  exp(-xmax*sqrt(DABS(energy-V(xmax))))
 
 psipxmax   = -sqrt(DABS(energy-V(xmax)))*psixmax
 
end subroutine boundary
 
............................


 

                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	
	
	
	
	

	[image: n  ]
	  [image: 𝜖n  ]
  	[image: ⟨x⟩ ]
	 [image: ⟨p⟩ ]
  	[image: ⟨x2⟩ ]
	[image: ⟨p2 ⟩ ]
	[image: Δx  ]
	[image: Δp  ]
	[image: Δx ⋅ Δp  ]


	
	
	
	
	
	
	
	
	

	  0	-173.637	1.186	 1.0e-10	1.415	34.193	0.091	5.847	    0.534
	 1	 -70.069	1.364	 6.0e-11	 1.893	56.832	0.178	7.539	 1.338

	  2	 -18.191	1.699	-4.5e-08	2.971	39.480	0.291	6.283	    1.826

	  3	  -1.317	2.679	-2.6e-08	7.586	 9.985	0.638	3.160	    2.016

	
	
	
	
	
	
	
	
	

	   





 Table 10.5: The results for the Lennard-Jones potential with [image: v0 = 250  ]. We find 4
bound states. 

                                                                          

                                                                          
   


   

   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 10.9: The four bound states for the Lennard-Jones potential with [image: v = 250
0  ].
The bold red line is the potential [image: v(x)∕v0  ]. We plot the energy levels [image: 𝜖n∕v0  ]  and the
corresponding wave functions. 
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Figure 10.10:  Comparison  of  the  results  of  the  calculation  of  the  wave  functions
[image: ψn,λ(x)  ] of  the  anharmonic  oscillator  for  [image: λ = 2.0  ]  using  the  methods  described  in
problem 12. The wave functions [image: ψsch(x)  ] are the wave functions [image: ψn,λ(x)  ] calculated
using the methods described in this chapter. The wave functions [image: ψmat(x)  ] are the wave
functions [image: ψn,λ(x)  ] calculated using the methods described in chapter 9 for Hilbert space
dimension  [image: N = 40  ].  Note  the  difference  at  large  [image: x  ].  This  is  because  the  amplitudes
[image: ψn,λ(x) = ⟨x|n⟩λ  ] for large [image: x  ] receive contributions from states [image: |m ⟩ ] with large [image: m  ]
(why?). 



                                                                          

                                                                          
   


   For the integration we choose [image: v0 = 250  ] and xmin = 0.7, [image: 4 <  ]xmax [image: <  10  ].
The results are plotted in figure 10.9. There are four bound states. The first
two ones are quite confined within the potential well whereas the last
ones begin to “spill” out of it. Table 10.5 lists the results. We observe
that [image: ⟨p⟩ = 0  ] within the attained accuracy as expected for real, bound
states14 .


   10.7    Problems


      

      	 Add the necessary code to the program in the file well.f90 so that the
      final wave function printed in the file psi.dat is properly normalized. The
      integral [image: ∫ 1
 − 1ψ (x )ψ(x)dx  ] can be computed using the Simpson rule
      
      
      [image: ∫
  b
   f (x)dx  =   (h∕3)(f (x0 ) + 4f (x1) + 2f (x2) + ...
 a
                +2f (xn−2) + 4f(xn −1) + f (xn).)
      ]

      
The interval [image: [a,b]  ] is discretized by [image: n  ] points [image: x0 = a,x1,x2,...,xn =  b  ]
      where [image: n  ] is even. Each interval [image: [x ,x   ]
 i  i+1  ] has width [image: h  ].
      

      	 Add the necessary code to the program in the file well.f90 in order to
      calculate the number of nodes (zeroes) of the wave function. Using this
                                                                          

                                                                          
      result, the program should print the level [image: n  ] of the calculated wave function
      [image: ψn(x )  ].
      

      	 Calculate the wave functions of the energy eigenstates for the potential
      (10.27)  with [image: v0 < 0  ]. This is the problem of the (finite) potential well.
      Solve the problem for [image: v = − 100
 0  ] and [image: a = 0.3  ]. How many bound states do
      you find? Next study the influence of the wall on the solutions. Introduce a
      parameter [image: b  ] so that [image: v(x ≥  b) = + ∞ ] and study the dependence of the
      solutions on [image: b  ]. Take [image: b = 0.35,0.4,0.5,0.6,0.8,1.0,1.5, 2.0,2.5,3.0  ] and
      compute the difference of the first two energy eigenvalues. Estimate the
      accuracy of the method. Next lower the value of [image: |v |
 0 ] until there is no
      bound state. What is the relation between [image: a  ] and [image: v0   ] when this happens?
      Compare with the analytic result which you know from your quantum
      mechanics course. 
Hint: For the largest values of [image: b  ], take Nx > 1000. When convergence is not
      achieved decrease epsilon.
      

      	 Set [image: v0 = 1000, 5000  ] to the double well potential. Observe the (almost)
      degenerate states and plot the wave functions [image:           √ --
ψ±,n = (1∕  2)(ψn (x ) ± ψn+1 (x))  ],
      where [image: n  ] is odd. Compare the results with the corresponding energy levels
      and eigenfunctions of the infinite square well. Increase [image: v0   ] to the point
      where you cannot solve the problem numerically. 
Hint: For large [image: v0   ] the numerical effort is increased. For [image: |x| < a  ] the wave
      function is almost zero and it is hard to obtain the non trivial wave function
      for [image: a < |x| < 1  ]. As the accuracy deteriorates, you should increase
      epsilon in the program so that convergence is achieved relatively
      fast.
      

      	 Repeat problems 3 and 4 using the program sch.f90. Compare the
      results.
      

      	 Study the bound states in the potentials
      
                                                                          

                                                                          
      [image:        (
       ||{     0  a < |x|
          − V0  b < |x | < a
v(x) = ||  − V1  |x | < b
       (
      ]
 for [image: a = 1,b = 0.2,V0 = 100, V1 = 0,50  ] and
      
      [image:        (
       ||{    V1  x <  0
v(x ) =   − V0  0 < x <  a
       ||     0  a < x
       (
      ]
 for [image: a = 1,V0 =  100,V1 = + ∞, 10,100  ] and
      
      [image:        (
       ||{    V1  a < |x|
v(x) =    − V0  b < |x | < a
       ||     0  c < |x | < b
       (  − V0  |x | < c
      ]
 for [image: a = 1,b = 0.7,c = 0.6,0.3,V0 = 100,V1 =  +∞,  10,0  ]. In each case
      calculate [image: ⟨x⟩ ], [image: ⟨x2⟩ ], [image: ⟨p⟩ ], [image: ⟨p2⟩ ], [image: Δx  ], [image: Δp  ], [image: Δx  ⋅ Δp  ].
      

      	Write a program that calculates the probability that a particle is
      found in an interval [image: [x1,x2]  ] given the wave function calculated
      by the program in the file sch.f90. Apply your program on the
                                                                          

                                                                          
      results of the previous problem and calculate the intervals [image: [− x1,x1]  ]
      where the probability to find the particle inside them is equal to
      [image: 1∕3  ].
      

      	 Fill the tables 10.3 and 10.4 with the results for [image: λ = 0.2  ], [image: 0.7  ], [image: 1.0  ], [image: 1.3  ],
      [image: 1.6  ], [image: 2.5  ], [image: 3.0  ] and plot each expectation value as a function of
      [image: λ  ].
      

      	 A particle is under the influence of a potential
      
      [image:           2           {                }
V (x ) = ℏ--α2 λ(λ − 1)  1-− -----1----   .
        2m              2   cosh2 (αx )
      ]
 The energy spectrum is given by
      
      [image:             {                        }
      -ℏ2- 2  λ(λ-−-1)-             2
En  = 2m α        2    − (λ − 1 − n )
      ]
 for the values of [image: n = 0, 1,2,...  ] for which [image: En  > Vmin   ]. Calculate the
      energy levels [image: 𝜖n  ] of the bound states numerically by setting [image: L =  1∕α  ] in
      equation  (10.13)  and [image: λ = 4  ]. Plot the potential [image: v (x )  ] and the
      corresponding eigenfunctions. Calculate the expectation values of the
      position and momentum, the uncertainties in position and momentum and
      their product. Repeat for [image: λ =  2,6,8,10  ].
                                                                          

                                                                          
      

      	 Write a program that reads in a wavefunction and calculates the
      expectation value of the Hamiltonian
      
      [image:        ∫ +∞      (   ℏ2  ∂2         )
⟨ ˆH ⟩ =     ψ (x)  − ------2 + V (x)  ψ(x)dx,
        −∞           2m ∂x
      ]
 by assuming that [image: ψ (x)  ] is real. Calculate [image: ψ  (x)
  n  ] for the harmonic
      oscillator for [image: n = 1,...,10  ] and show (numerically) that [image:   ˆ
⟨H ⟩n = En  ].
      

      	 Consider a particle in the Morse potential
      
      [image:            {                   }
            (     −a(r−re))2
V(x ) = De   1 − e          − 1  .
      ]
 Calculate the energy spectrum of the bound states. Choose [image: L =  1∕a  ],
      [image: x = ar  ], [image: xe = are  ], [image:   2           2 2
λ  = 2mDe  ∕a ℏ   ] and obtain
      
      [image:          2( −2(x−xe)    − (x−xe))
v(x ) = λ  e        − 2e        .
                                                                          

                                                                          
      ]
 Compare your results with the known analytic solutions
      
      [image:      (           )
               1  2
𝜖n =   λ − n − --
               2
      ]

      
      [image: ψn(z) = Nnz λ−n− 1∕2e− z∕2L2λn− 2n− 1(z )
      ]
 where [image: z = 2λe −(x− xe)   ], [image:         ∘ -----------------------------------
Nn =  n!  (2λ − 2n − 1)∕(Γ (n + 1)Γ (2λ − n))  ], and
      [image: Lαn (z )  ] is a Laguerre polynomial given by [image: L αn(z) = (z−αez∕n!)(dn∕dzn )(zn+ αe−z)  ]
      [image: =  (Γ (α + 2)∕(Γ (n + 2)Γ (α − n + 2)) F (− n,α + 1, z)
                                    1 1  ]. You can take
      [image: λ = 4  ], [image: xe = 1  ] and calculate [image: ⟨x ⟩ ], [image:   2
⟨x ⟩ ], [image: ⟨p⟩ ], [image:   2
⟨p ⟩ ], [image: Δx  ], [image: Δp  ],
      [image: Δx ⋅ Δp  ].
      

      	 Calculate the wave functions of the eigenstates of the Hamiltonian for the
      anharmonic oscillator for [image: λ = 2.0  ] and [image: n = 0,...,15  ]. Calculate the
      wavefunctions using the program anharmonic.f90 of chapter 9 for
      [image: N  = 15,40,100  ] and compare the two results. 
Hint: Write a program that calculates the energy eigenfunctions of the
      simple harmonic oscillator
                                                                          

                                                                          
      
      [image:          ----1----- −x2∕2
ψn (x) = ∘2nn!--√-πe     Hn (x)
      ]
 where the Hermite polynomials satisfy the relations
      
      [image: Hn+1 (x) = 2xHn  (x ) − 2nHn −1(x),  H0 (x) = 1,  H1 (x) = 2x.
      ]
 The program anharmonic.f90 calculates the eigenstates of the anharmonic
      oscillator
      
      [image:       N∑−1
|n ⟩λ =     H (m  + 1,n + 1)|m ⟩
      m=0
      ]
 by storing the coefficients of the linear expansion in the elements of the
      array H(N,N). The same relation holds for the corresponding wave functions
      [image: ψn,λ(x)  ], [image: ψn(x)  ]. From [image: ψn (x )  ] and H(i,j) calculate [image: ψn,λ(x)  ] for
      [image: −  8 < x < 8  ] and determine the accuracy achieved by the calculation for
      each [image: N  ]. For which values of [image: x  ] do you obtain large discrepancies between
      your results? Remember that for large [image: x  ], the states of high energy
      contribute more than for small [image: x  ]. Figure 10.10 can help you understanding
      this statement.


                                                                          

                                                                          
                                                                          

                                                                          

                                                                          

                                                                          


   


Chapter 11
The Random Walker

In this chapter we will study the typical path followed by a ... drunk when he
decides to start walking from a given position. Because of his drunkenness, his
steps are in random directions and uncorrelated. These are the basic properties of
the models that we are going to study. These models are related to specific
physical problems like the Brownian motion, the diffusion, the motion of
impurities in a lattice, the large distance properties of macromolecules etc. In the
physics of elementary particles random walks describe the propagation of free
scalar particles and they most clearly arise in the Feynman path integral
formulation of the euclidean quantum field theory. Random walks are precursors
to the theory of random surfaces which is related to the theory of two dimensional
“soft matter” membranes, two dimensional quantum gravity and string theory
 [44].

   The geometry of a typical path of a simple random walk is not classical and this
can be seen from two of its non classical properties. First, the average distance
traveled by the random walker is proportional to the square root of the time
traveled, i.e. the classical relation [image: r =  vt  ] does not apply. Second, the geometry of
the path of the random walker has fractal dimension which is larger than
one1 .
Similar structures arise in the study of quantum field theories and random
surfaces, where the non classical properties of a typical configuration can be
described by appropriate generalizations of these concepts. For further study we
refer to  [7, 43, 44, 45].

   In order to simulate a stochastic system on the computer, it is necessary to use
random number generators. In most of the cases, these are deterministic
algorithms that generate a sequence of pseudorandom numbers distributed
according to a desired distribution. The heart of these algorithms generate
numbers distributed uniformly from which we can generate any other complex
distribution. In this chapter we will study simple random number generators and
learn how to use high quality, research grade, portable, random number
generators.


   11.1    (Pseudo)Random Numbers

                                                                          

                                                                          
The production of pseudorandom2 
numbers is at the heart of a Monte  Carlo simulation. The algorithm used in their
production is deterministic: The generator is put in an initial state and the
sequence of pseudorandom numbers is produced during its “time evolution”. The
next number in the sequence is determined from the current state of the generator
and it is in this sense that the generator is deterministic. Same initial
conditions result in exactly the same sequence of pseudorandom numbers. But
the “time evolution” is chaotic and “neighboring” initial states result
in very different, uncorrelated, sequences. The chaotic properties of the
generators is the key to the pseudorandomness of the numbers in the sequence:
the numbers in the sequence decorrelate exponentially fast with “time”.
But this is also the weak point of the pseudorandom number generators.
Bad generators introduce subtle correlations which produce systematic
errors. Truly random numbers (useful in cryptography) can be generated
by using special devices based on e.g. radioactive decay or atmospheric
noise3 .
Almost random numbers are produced by the special files /dev/random and
/dev/urandom available on unix systems, which read bits from an entropy pool
made up from several external sources (computer temperature, device noise
etc).

   Pseudorandom number generators, however, are the source of random numbers
of choice when efficiency is important. The most popular generators are the
modulo generators (D.H. Lehmer, 1951) because of their simplicity. Their state is
determined by only one integer [image: xi−1   ] from which the next one [image: xi  ] is generated by
the relation


   	
                                                                          

                                                                          
   
[image: xi = axi−1 + c(modm  )
]
	(11.1)



for appropriately chosen values of [image: a  ], [image: c  ] and [image: m  ]. In the bibliography, there is a
lot of discussion on the good and bad choices of [image: a  ], [image: c  ] and [image: m  ], which
depend on the programming language and whether we are on a 32–bit
or 64–bit systems. For details see the chapter on random numbers in
 [8].

   The value of the integer [image: m  ] determines the maximum period of the sequence.
It is obvious that if the sequence encounters the same number after [image: k  ] steps, then
the exact same sequence will be produced and [image: k  ] will be the period of the
sequence. Since there are at most [image: m  ] different numbers, the period is at most
equal to [image: m  ]. For a bad choice of [image: a  ], [image: c  ] and [image: m  ] the period will be much smaller.
But [image: m  ] cannot be arbitrarily large since there is a maximum number of bits that
computers use for the storage of integers. For 4-byte (32 bit) unsigned integers the
maximum number is [image:  32
2  −  1  ], whereas for signed integers [image:  31
2  − 1  ]. One can
prove4 
that a good choice of [image: a  ], [image: c  ] and [image: m  ] results in a sequence which is a permutation
[image: {π  ,π ,...,π  }
   1  2      m ] of the numbers [image: 1,2, ...,m  ]. This is good enough for simple
applications that require fast random number generation but for serious
calculations one has to carefully balance efficiency with quality. Good quality
random generators are more complicated algorithms and their states are
determined by more than one integer. If you need the source code for such
generators you may look in the bibliography, like in e.g.  [4],  [5],  [8],
 [47]. If portability is an issue, we recommend the RANLUX random
number generator  [47] or the Marsaglia, Zaman and Tsang generator.
The Fortran code for RANLUX can also be found in the accompanying
software, whereas the MZT generator can be found in Berg’s book/site  [5].


   In order to understand the use of random number generators, but also in order
to get a feeling of the problems that may arise, we list the code of the two
functions naiveran() and drandom(). The first one is obviously problematic and
we will use it in order to study certain type of correlations that may exist in
the generated sequences of random numbers. The second one is much
                                                                          

                                                                          
better and can be used in non–trivial applications, like in the random
walk generation or in the Ising model simulations studied in the following
chapters.

   The function naiveran() is a simple application of equation  (11.1)  with
[image: a = 1277  ], [image: c = 0  ] and [image: m  = 217   ]:
                                                                          

                                                                          


   
!=============================================
 
!File: naiveran.f90
 
!Program to demonstrate the usage of a modulo
 
!generator with a bad choice of constants
 
!resulting in strong pair correlations between
 
!generated numbers
 
!=============================================
 
real(8) function naiveran()
 
 implicit none
 
 integer           :: iran=13337
 
 common /naiveranpar/ iran
 
 integer,parameter :: m = 131072 ! equal to 2**17
 
 integer,parameter :: a = 1277
 

 
 iran = a*iran
 
 iran = MOD(iran,m)
 

 
 naiveran = iran/DBLE(m)
 

 
end function naiveran


 The function drandom() is also an application of the same equation,
but now we set [image:      5
a = 7   ], [image: c = 0  ] and [image:       31
m =  2  − 1  ]. This is the choice of
Lewis, Goodman and Miller (1969) and provides a generator that passes
many tests and, more importantly, it has been used countless of times
successfully. One technical problem is that, when we multiply [image: x
  i−1   ] by [image: a  ],
we may obtain a number which is outside the range of 4-byte integers
and this will result in an “integer overflow”. In order to have a fast and
portable code, it is desirable to stay within the range of the [image: 231 − 1  ]
positive, 32-bit (4 byte), signed integers. Schrage has proposed to use the
relation


   	
                                                                          

                                                                          
   
[image:                   (                     [    ]
                  ||  a (xi− 1  modq ) − r  xi−1-       if it is ≥ 0
                  {                     [  q ]
(axi−1)  modm   = |  a (xi− 1  modq ) − r  xi−q1- + m   if it is < 0
                  |(
]
	(11.2)



where [image: m =  aq + r  ], [image: q = [m ∕a ]  ] and [image: r = m  moda  ]. One can show that if
[image: r < q  ] and if [image: 0 < x    < m  − 1
      i−1  ], then [image: 0 ≤ a (x    modq ) ≤ m  − 1
        i− 1  ],
[image: 0 ≤ r[xi−1∕q] ≤ m −  1  ] and that  (11.2)  is valid. The period of the generator is
[image:  31             9
2   − 2 ≈ 2 × 10   ]. The proof of the above statements is left as an exercise to the
reader.
                                                                          

                                                                          


   
!====================================================
 
!File: drandom.f90
 
!Implementation of the Schrage algorithm for a
 
!portable modulo generator for 32 bit signed integers
 
!(from numerical recipes)
 
!
 
!returns uniformly distributed pseudorandom numbers
 
! 0.0 < x < 1.0 (0 and 1 excluded)
 
!====================================================
 
real(8) function drandom()
 
 implicit none
 
 integer,parameter :: a = 16807      ! a = 7**5
 
 integer,parameter :: m = 2147483647 ! m = a*q+r = 2**31-1
 
 integer,parameter :: q = 127773     ! q = [m/a]
 
 integer,parameter :: r = 2836       ! r = MOD(m,a)
 
 real(8),parameter :: f = (1.0D0/m)
 
 integer           :: p
 
 integer           :: seed
 
 real(8)           :: dr
 
 common /randoms/seed
 

 
101 continue
 
 p       = seed/q              !  = [seed/q]
 
 seed    = a*(seed- q*p) - r*p !  = a*MOD(seed,q)-r*[seed/q]
 
 if(seed .lt. 0) seed = seed + m
 
 dr      = f*seed
 
 if( dr .le. 0.0D0 .or. dr .ge. 1.0D0) goto 101
 
 drandom = dr
 
end function drandom


 The line that checks the result produced by the generator is necessary in order
to check for the number [image: 0  ] which appears once in the sequence. This
adds a [image: 10 −  20  ]% overhead, depending on the compiler. If you don’t
care about that, you may remove the line. Note that the number seed
is put in a common block so it can be accessed by other parts of the
program.
                                                                          

                                                                          

   Now we will write a program in order to test the problem of correlations in the
sequence of numbers produced by naiveran(). The program will produce pairs of
integers [image: (i,j)  ], where [image: 0 ≤  i,j < 10000  ], which are subsequently mapped on
the plane. This is done by taking the integer part of the numbers [image: Lu  ]
with [image: L  = 10000  ] and [image: 0 ≤ u <  1  ] is the random number produced by the
generator:
                                                                          

                                                                          


   
!==========================================================
 
!Program that produces N random points (i,j) with
 
!0<= i,j < 10000. Simple qualitative test of  serial
 
!correlations of random number generators on the plane.
 
!
 
!compile:
 
!gfortran correlations2ran.f90 naiveran.f90 drandom.f90
 
!==========================================================
 
program correlations2
 
 implicit none
 
 integer,parameter :: L = 10000
 
 integer           :: i,N
 
 character(10)     :: arg
 
 real(8)           :: naiveran,drandom
 
 integer           :: seed
 
 common /randoms/     seed
 
!Read the number of points from first command argument
 
 if(IARGC() .EQ. 1)then
 
  call GETARG(1,arg); read(arg,*)N !convert string->integer
 
 else !default value, if no N given by user:
 
  N=1000
 
 endif
 
 seed = 348325
 
 do i=1,N
 
  print *,INT(L * naiveran()),INT(L * naiveran())
 
! print *,INT(L * drandom ()),INT(L * drandom ())
 
 enddo
 

 
end program correlations2


 The program can be found in the file correlations2ran.f90. In order to test
naiveran() we compile with the command
                                                                          

                                                                          


   
> gfortran correlations2ran.f90 naiveran.f90 -o naiveran


 whereas in order to test drandom() we uncomment the print lines as
follows
                                                                          

                                                                          


   
! print *,INT(L * naiveran()),INT(L * naiveran())
 
  print *,INT(L * drandom ()),INT(L * drandom ())


 and recompile:
                                                                          

                                                                          


   
> gfortran correlations2ran.f90 drandom.f90 -o drandom


 These commands result in two executable files naiveran and drandom. In order
to see the results we run the commands
                                                                          

                                                                          


   
> ./naiveran 100000 > naiveran.out
 
> ./drandom  100000 > drandom.out
 
> gnuplot
 
gnuplot> plot "naiveran.out" using 1:2 with dots
 
gnuplot> plot "drandom.out"  using 1:2 with dots


 which produce [image: 105   ] points used in the plots in figures 11.1 and 11.2. In the plot
of figure 11.1, we see the pair correlations between the numbers produced by
naiveran(). Figure 11.2 shows the points produced by drandom(), and we can
see that the correlations shown in figure 11.1 have vanished. The plot in figure
11.2 is qualitative, and a detailed, quantitative, study of drandom() shows that
the pairs [image: (ui,ui+1)  ] that it produces, do not pass the [image: χ2   ] test when we have more
than [image: 107   ] points, which is much less than the period of the generator. In order to
avoid such problems, there are many solutions that have been proposed and the
simplest among them “shuffle” the results so that the low order serial
correlations vanish. Such generators will be discussed in the next section.
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Figure 11.1: Pairs of pseudorandom numbers produced by the function naiveran().
The correlations among pairs of such numbers show in the distribution of such pairs on a
clearly seen lattice. 
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Figure 11.2: Pairs of pseudorandom numbers produced by the function drandom().
These points have a random distribution on the plane compared to those generated by
naiveran().



                                                                          

                                                                          
   


   The uniform distribution of the random numbers produced
can be examined graphically by constructing a histogram of the
relative frequency of their appearance. In order to construct the
histograms we use the script histogram which is written in the awk
language5 
as shown below:
                                                                          

                                                                          


   
> histogram -v f=0.01 drandom.out > drandom.hst
 
> gnuplot
 
gnuplot> plot "drandom.hst" using 1:3 with histeps
 
gnuplot> plot [:][0:] "drandom.hst" using 1:3 with histeps


 The command histogram -v f=0.01 constructs a histogram of the data so that
the bin width is [image: 1 ∕0.01 =  100  ]. The reciprocal of the number following the option
-v f=0.01 defines the bin width. The histogram is saved in the file drandom.out.
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Figure 11.3:  The  relative  frequency  distribution  of  the  pseudorandom  numbers
generated  by  drandom().  The  distribution  is  uniform  within  [image: (0,1)  ]  and  we  see  the
deviations from the average value.
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Figure 11.4: Same as in figure 11.3, but with the scale enlarged, so that the dispersion
of the histogram values is clearly seen.
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Figure 11.5:  The  relative  frequency  distribution  of  the  pseudorandom  numbers
generated by drandom() as a function of the sample size [image: n  ] for [image: n = 1000,10000,100000  ].
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Figure 11.6: The dependence of the variance   (11.3)   on [image: n  ] for the distribution of
random numbers generated by drandom().



                                                                          

                                                                          
   


   The results are shown in figures 11.3 and 11.4. Next, we study the variance of
the measurements, shown in figure 11.3. The variance is decreased with
the size of the sample of the collected random numbers. This is seen in
the histogram of figure 11.5. For a quantitative study of the dependence
of the variance on the size [image: n  ] of the sample, we calculate the standard
deviation


   	
   
[image:     ┌│ ------(------------(---------)2-)-
    ││    1     1 ∑n        1 ∑n
σ = ∘  -----(  --   x2i −  --    xi   ),
       n − 1   n i=1        n  i=1
]
	(11.3)



where [image: {xi} ] is the sequence of random numbers. Figure 11.6 plots this relation.
By fitting


   	
   
[image: ln σ ∼  1ln(n),
       2
]
	(11.4)



to a straight line, we see that


                                                                          

                                                                          
   	
   
[image: σ ∼ √1--.
      n
]
	(11.5)




   If we need to generate random numbers which are distributed according to the
probability density [image: f (x)  ] we can use a sequence of uniformly distributed random
numbers in the interval [image: (0,1)  ] as follows: Consider the cumulative distribution
function 


   	
   
[image:                 ∫  x
0 ≤ u ≡  F(x) =      f(x′)dx′ ≤ 1,
                  −∞
]
	(11.6)



which is equal to the area under the curve [image: f(x )  ] in the interval [image: (− ∞, x]  ] and it
is equal to the probability [image:     ′
P (x  < x)  ]. If [image: u  ] is uniformly distributed in the
interval [image: (0,1)  ] then we have that [image:     ′
P(u  < u) = u  ]. Therefore [image:       −1
x = F   (u)  ] is such
that [image: P (x′ < x) = u = F (x)  ] and follows the [image: f (x)  ] distribution. Therefore, if
[image: ui  ] form a sequence of uniformly distributed random numbers, then the
numbers


   	
                                                                          

                                                                          
   
[image: xi = F− 1(ui)
]
	(11.7)



form a sequence of random numbers distributed according to [image: f(x)  ].

   Consider for example the Cauchy distribution


   	
   
[image:         1   c
f(x) = ---------  c > 0.
       π c2 + x2
]
	(11.8)



Then


   	
   
[image:         ∫  x    ′   ′   1   1     −1( x)
F (x) =      f(x )dx =  --+ --tan     -- .
          −∞            2   π         c
]
	(11.9)


                                                                          

                                                                          

According to the previous discussion, the random number generator is given by
the equation


   	
   
[image: xi = ctan (πui − π∕2 )
]
	(11.10)



or equivalently (for a more efficient generation)


   	
   
[image: xi = c tan(2πui ).
]
	(11.11)




   The generator of Gaussian random numbers is found in many applications.
The Gaussian distribution is given by the probability density 


   	
                                                                          

                                                                          
   
[image:        ---1-- − x2∕(2σ2)
g(x) = √ 2π σe
]
	(11.12)



The cumulative distribution function is


   	
   
[image:         ∫                        (      )
          x     ′   ′   1-  1-     --x--
G (x) =      g(x )dx  =  2 + 2erf   √2-σ
         − ∞
]
	(11.13)



where [image:          ∫
erf(x) =   x  exp{ − (x′)2}dx′
          −∞ ] is the error function. The error function, as
well as its inverse, can be calculated numerically, but this would result in a slow
computation. A trick to make a more efficient calculation is to consider the
probability density [image: ρ (x, y)  ] of two independent Gaussian random variables [image: x  ]
and [image: y  ]


   	
   
[image:                  1      2   2   1      2   2          1     2   2
ρ (x, y)dxdy =  √-----e−x ∕(2σ )√-----e−y ∕(2σ )dxdy  = ----2e− r∕(2σ )rdrdϕ
                 2πσ            2πσ                 2π σ
]
	(11.14)



where [image: x = rcos ϕ  ], [image: y = r sin ϕ  ]. Then we have that


   	
   
[image:             ∫ r ∫ 2π
u =  G(r) =         drd ϕρ(r,ϕ) = 1 − e−r2∕(2σ2),
             0   0
]
	(11.15)



which, upon inversion, it gives


   	
   
[image:      ∘  -------------
r = σ   − 2 ln (1 − u ).
]
	(11.16)



Therefore it is sufficient to generate a sequence [image: {ui} ] of uniformly distributed
random numbers and take 

                                                                          

                                                                          
   
[image:            ∘ ---------
  ri  =   σ  − 2ln(ui)                   (11.17)
  ϕ   =   2πu                            (11.18)
   i         i+1
  xi  =   ricosϕi                        (11.19)
xi+1  =   risin ϕi.                       (11.20)
]


The algorithm shown above gives a sequence of pseudorandom numbers [image: {xi} ], which follow the
Gaussian distribution6 .
The program for [image: σ =  1  ] is listed below:
                                                                          

                                                                          
   
!===================================================
 
!Function to produce random numbers distributed
 
!according to the gaussian distribution
 
!g(x) = 1/(sigma*sqrt(2*pi))*exp(-x**2/(2*sigma**2))
 
!===================================================
 
real(8) function gaussran()
 
 implicit none
 
 real(8),parameter :: sigma = 1.0D0
 
 real(8)           :: r,phi
 
 logical,save      :: new   = .TRUE.
 
 real(8),save      :: x
 
 real(8),parameter :: PI2   = 6.28318530717958648D0
 
 real(8)           :: drandom
 
 if(new)then
 
  new      = .FALSE.
 
  r        =     drandom()
 
  phi      = PI2*drandom()
 
  r        = sigma*sqrt(-2.0D0*log(r))
 
  x        = r*cos(phi)
 
  gaussran = r*sin(phi)
 
 else
 
  new      = .TRUE.
 
  gaussran = x
 
 endif
 
end function gaussran
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Figure 11.7: The distribution of pseudorandom numbers generated by gaussran() for
[image: σ = 1  ] and [image: σ = 2  ]. The histogram is superimposed to the plot of  (11.12) .



                                                                          

                                                                          
   


   The result is shown in figure 11.7. Notice the SAVE attribute for the variables
new and x. This means that their values are saved between calls of drandom. We
do this because each time we calculate according to  (11.17) , we generate two
random numbers, whereas the function returns only one. The function needs to
know whether it is necessary to generate a new pair [image: (xi,xi+1)  ] (this is what the
“flag” new marks) and, if not, to return the previously generated number, saved in
the variable x. The analysis of the results is left as an exercise to the
reader.


   11.2    Using Pseudorandom Number Generators

The function drandom() is good enough for the problems studied in this
book. However, in many demanding and high accuracy calculations, it is
necessary to use higher quality random numbers and/or have the need of
much longer periods. In this section we will discuss how to use two high
quality, efficient and portable generators which are popular among many
researchers.

   The first one is an intrinsic procedure in the Fortran language, the subroutine
RANDOM_NUMBER. The algorithm implemented is not universal and depends on the Fortran
environment7 .
For the gfortran compiler RANDOM_NUMBER uses the “multiply-with-carry”
algorithm of George Marsaglia in combination with a modulo and shift-register
generator. The period is larger than  [image: 2123 ≈ 1037   ]. The state of the generator is
determined by more than one numbers. In order to use it we should learn


      
      	how to start from a new state
      

      	how to save the current state
      

      	how to restart from a previously saved state
      

      	and, of course, how to obtain the random numbers.


                                                                          

                                                                          
Saving the current state of the generator is very important when we execute a job
that is split in several parts (checkpointing). This is done very often on
computer systems that set time limits for jobs or when our jobs are so long
(more than 8-10 hours) that it will be painful to loose the resources (time
and money) spent for the calculation in case of a computer crash. If we
want to restart the job from exactly the same state as it was before we
stopped, we also need to restart the random number generator from the same
state.

   Starting from a new, fresh state is called seeding. The seeding of RANDOM_NUMBER
is done by an unspecified number of NSEEDS integers. In order to get this number,
we should call the subroutine RANDOM_SEED(size = NSEEDS) which returns the
number of seeds NSEEDS when its argument is size = NSEEDS. Then we
have to define the integer values of the array seeds(NSEEDS) and call
again the routine RANDOM_SEED(PUT = seeds) with the argument PUT =
seeds, which will seed the generator from the seeds in seeds. In the code
listed below we show how to seed the generator by using only one integer
seed:
                                                                          

                                                                          


   
 integer               :: NSEEDS
 
 integer,allocatable   :: seeds(:)
 
 integer               :: seed
 
!---------------------------------------
 
 seed = 47279823
 
 call RANDOM_SEED(size = NSEEDS)
 
 ALLOCATE(seeds(NSEEDS))
 
 seeds = seed + 37 * (/ (i - 1, i = 1, NSEEDS) /)
 
 call RANDOM_SEED(PUT = seeds)


 The last line8 
uses the values stored in the array seeds(1) ... seeds(NSEEDS) in
order to initialize RANDOM_NUMBER. It is important to note that, using this
method, the same seed will generate the same sequence of pseudorandom
numbers.

   Sometimes we need to initialize the random number generator from as a
random initial state as possible, so that each time that we run our program, a
different sequence of random numbers is generated. For Unix like systems, like the
GNU/Linux system, we can use the two special files /dev/random and
/dev/urandom in order to generate cryptographic-grade random numbers. These
generate random bits from the current state of the computer and it is practically
impossible to predict the obtained sequence of bits. It is preferable to use
/dev/urandom because /dev/random ceases to work when there are no new
random bits in its pool and waits until they are safely generated. The code that
uses9 
/dev/urandom for seeding is 
                                                                          

                                                                          


   
 open(unit=13, file=’/dev/urandom’, access=’stream’, &
 
  form=’unformatted’)
 
 call RANDOM_SEED(size = NSEEDS)
 
 ALLOCATE(seeds(NSEEDS))
 
 read (13) seeds
 
 close(13)


 The special file /dev/urandom provides binary, non printable, data so it is
necessary to open it with the unformatted option. For the same reason, the
command read does not have a format instruction but only the unit number. It
reads the number of bits necessary to fill the array seeds. If we need to work in
an environment where the special file /dev/urandom is not available, it is
possible to seed using the current time and the process number ID. The
latter is necessary in case we start several processes in parallel and we
need different seeds. Check the file seed.f90 in order to see how to do
it10 .

   In order to save the current state of the random number generator use the
subroutine RANDOM_SEED(GET = seeds) with argument GET = seeds.
The call stores the necessary information in the array seeds. We can
save the values of the array seeds in order to use them to restart the
random number generator from exactly the same state. The necessary code
is:
                                                                          

                                                                          


   
 integer               :: NSEEDS
 
 integer,allocatable   :: seeds(:)
 
!----------------------------------
 
 call RANDOM_SEED(size = NSEEDS)
 
 ALLOCATE(seeds(NSEEDS))
 
 call RANDOM_SEED(GET = seeds)
 
 open(unit=11,file=’state’)
 
 write(11,*)seeds


 In order to restart the generator from a saved state, we read the values of the
array seeds and call RANDOM_SEED(PUT = seeds) with argument PUT = seeds.
The following code reads seeds from a file named state:
                                                                          

                                                                          


   
 open(unit=11,file=’state’)
 
 read(11,*)seeds
 
 call RANDOM_SEED(PUT = seeds)


 In order to generate random numbers, we can use a scalar variable and generate
them one by one or we can use an array which RANDOM_NUMBER will fill with
random numbers. The first method has a small overhead and in same cases
we will prefer the second one. The code that applies the first method
is
                                                                          

                                                                          


   
 real(8)               :: r
 
!---------------------------------------
 
 do icount = 1,10
 
  call RANDOM_NUMBER(r)
 
  print *,r
 
 enddo


 and the code that applies the second is
                                                                          

                                                                          


   
 integer,parameter     :: NR=20
 
 real(8),dimension(NR) :: randoms
 
 call RANDOM_NUMBER(randoms)
 
 print *,randoms


 The code in the file test_random_number.f90 implements all of the above tasks
and we list it below:
                                                                          

                                                                          


   
program use_random_number
 
 implicit none
 
 integer               :: NSEEDS
 
 integer,allocatable   :: seeds(:)
 
 integer               :: seed
 
 real(8)               :: r
 
 integer,parameter     :: NR=20
 
 real(8),dimension(NR) :: randoms
 
 integer(8)            :: icount
 
 integer               :: i
 
!---------------------------------------
 
!start from a new seed:
 
 seed = 47279823
 
!get number of seeds for generator:
 
 call RANDOM_SEED(size = NSEEDS)
 
 ALLOCATE(seeds(NSEEDS))
 
!fill in the rest of the seeds:
 
 seeds = seed + 37 * (/ (i - 1, i = 1, NSEEDS) /)
 
!initialize the generator from the arrays seeds:
 
 call RANDOM_SEED(PUT = seeds)
 
!---------------------------------------
 
!generate random numbers one by one:
 
 do icount = 1,10
 
  call random_number(r)
 
  print *,r
 
 enddo
 
!generate random numbers in an array:
 
 call random_number(randoms)
 
 print ’(1000G28.17)’,randoms
 
!---------------------------------------
 
!save state of random_number:
 
 open(unit=11,file=’rannum.seed’)
 
 call RANDOM_SEED(GET = seeds)
 
 write(11,’(5I20)’)seeds
 
 close(11)
 
!---------------------------------------
                                                                          

                                                                          
 
!generate some randoms:
 
 call random_number(randoms)
 
 print ’(A,1000G28.17)’,’#FIRST :’,randoms
 
!---------------------------------------
 
!read state of random_number:
 
 open(unit=11,file=’rannum.seed’)
 
 read(11,*)seeds
 
 call RANDOM_SEED(PUT = seeds)
 
!---------------------------------------
 
!generate same randoms:
 
 call random_number(randoms)
 
 print ’(A,1000G28.17)’,’#SECOND:’,randoms
 
end program use_random_number


 Use the following commands in order to compile and see the results:
                                                                          

                                                                          


   
> gfortran test_random_number.f90 -o random_number
 
> ./random_number




   A very high quality, portable random number generator was proposed by
Martin Lüscher  [47], and a program that implements it is Ranlux. Besides the
high quality random numbers and a period greater than [image: 10171   ], a great advantage
of RANLUX is that it will run in any Fortran environment. The code, which can also
be found in the accompanying software, has been written by Fred James and you
can download it in its original form from the links given in the bibliography  [47].
The generator uses a subtract-with-borrow algorithm by Marsaglia and Zaman
 [49], which has a very large period but fails some of the statistical tests. Based
on the chaotic properties of the algorithm, Lüscher attributed the problems to
short time autocorrelations and proposed a solution in order to eliminate
them.

   In order to start RANLUX using a single seed, use the subroutine RLUXGO. The
necessary code is: 
                                                                          

                                                                          


   
 integer                   :: seed,ranlux_level
 
!---------------------------------------
 
 seed         = 58266273
 
 ranlux_level = 2
 
 call RLUXGO(ranlux_level,seed,0,0)


 The value of the variable ranlux_level determines the quality of random
numbers and it can take the values 1, 2, 3 or 4. Setting ranlux_level=2 is enough
for the needs of this book and ranlux_level=3 is the default value. A larger
value of ranlux_level requires more computational effort (see problem).


   In order to save the current state of RANLUX, we need an integer array of size
25. A call to the subroutine RLUXUT saves the necessary information in this array.
We can save this array in order to read it at a later time and start the
sequence of random numbers from the same point. The necessary code
is:
                                                                          

                                                                          


   
 integer,parameter         :: NSEEDS = 25
 
 integer,dimension(NSEEDS) :: seeds
 
!---------------------------------------
 
 open(unit=11,file=’ranlux.seed’)
 
 call RLUXUT(seeds)
 
 write(11,*)seeds
 
 close(11)


 In order to start RANLUX from a previously saved state we call the subroutine
RLUXIN as follows: 
                                                                          

                                                                          


   
 integer,parameter         :: NSEEDS = 25
 
 integer,dimension(NSEEDS) :: seeds
 
 open(unit=11,file=’ranlux.seed’)
 
 read(11,*)seeds
 
 call RLUXIN(seeds)


 We can generate random numbers one by one and store them in a scalar
variable
                                                                          

                                                                          


   
 real(8)                   :: r
 
!---------------------------------------
 
 call ranlux(r,1)
 
 print *,r


 or generate many random numbers with one call and store them in a one
dimensional array
                                                                          

                                                                          


   
 integer,parameter         :: NR=20
 
 real(8),dimension(NR)     :: randoms
 
!---------------------------------------
 
 call ranlux(randoms,NR)
 
 print *,randoms


 where the parameter NR is set equal to the desired value. The program in the
file test_ranlux.f90 implements all of the above tasks and we list it
below:
                                                                          

                                                                          


   
program use_ranlux
 
 implicit none
 
 integer,parameter         :: NSEEDS = 25
 
 integer,dimension(NSEEDS) :: seeds
 
 integer                   :: seed,ranlux_level
 
 integer(8)                :: icount
 
 real(8)                   :: r
 
 integer,parameter         :: NR=20
 
 real(8),dimension(NR)     :: randoms
 
!---------------------------------------
 
!start from a new seed:
 
 seed         = 58266273
 
 ranlux_level = 2
 
 call RLUXGO(ranlux_level,seed,0,0)
 
!---------------------------------------
 
!generate random numbers one by one:
 
 do icount = 1,10
 
  call ranlux(r,1)
 
  print *,r
 
 enddo
 
!generate random numbers in an array:
 
 call ranlux(randoms,NR)
 
 print ’(1000G28.17)’,randoms
 
!---------------------------------------
 
!save state of ranlux:
 
 open(unit=11,file=’ranlux.seed’)
 
 call RLUXUT(seeds)
 
 write(11,’(5I20)’)seeds
 
 close(11)
 
!---------------------------------------
 
!generate some randoms:
 
 call ranlux(randoms,NR)
 
 print ’(A,1000G28.17)’,’#FIRST :’,randoms
 
!---------------------------------------
 
!read state of ranlux:
 
 open(unit=11,file=’ranlux.seed’)
                                                                          

                                                                          
 
 read(11,*)seeds
 
 call RLUXIN(seeds)
 
!---------------------------------------
 
!generate same randoms!
 
 call ranlux(randoms,NR)
 
 print ’(A,1000G28.17)’,’#SECOND:’,randoms
 
end program use_ranlux


 Compile the file together with the file ranlux.F, which contains the RANLUX code,
and run it with the commands
                                                                          

                                                                          


   
> gfortran test_ranlux.f90 ranlux.F -o ranlux
 
> ./ranlux





   11.3    Random Walks

Consider a particle which is located at one of the sites of a two dimensional square
lattice. After equilibrating at this position, it can jump randomly to one of its
nearest neighbor positions. There, it might need some time to equilibrate again
before jumping to a new position. During this time, the momentum that it had at
its arrival is lost, therefore the next jump is made without “memory”
of the previous position where it came from. This process is repeated
continuously. We are not interested in the mechanism that causes the
jumping11 ,
and we seek a simple phenomenological description of the process.

   Assume that the particle jumps in each direction with equal  probability and
that each jump occurs after the same time [image: τ  ]. The minimum distance between
the lattice sites is [image: a  ] (lattice constant). The vector that describes the change of
the position of the particle during the [image: i  ]-th jump is a random variable [image: ⃗ξi  ] and it
always has the same magnitude [image: |⃗ξ| = a
  i  ]. This means that, given the
position [image: ⃗rk  ] of the particle at time [image: tk = k τ  ], its position [image: ⃗rk+1   ] at time
[image: tk+1 = (k + 1)τ = tk + τ  ] is


   	
   
                                                                          

                                                                          
[image: ⃗rk+1 = ⃗rk + ⃗ξk,
]
	(11.21)



where


   	
   
[image:      (
     ||    aˆx  with probability   14
⃗    {  − aˆx  with probability   14
ξk = |    aˆy  with probability   1 .
     |(                           41
        − aˆy  with probability   4
]
	(11.22)



The vectors [image: ξ⃗i  ] and [image: ⃗ξj  ] are uncorrelated for [image: i ⁄= j  ] and we have that


   	
   
[image: ⟨⃗ξi ⋅ ⃗ξj⟩ = ⟨⃗ξi⟩ ⋅ ⟨⃗ξj⟩.
]
	(11.23)



The possible values of [image: ξ⃗
 i  ] are equally probable, therefore we obtain


   	
                                                                          

                                                                          
   
[image: ⟨⃗ξi⟩ = ⃗0.
]
	(11.24)



This is because the positive and negative terms in the sum performed in the
calculation of [image:  ⃗
⟨ξi⟩ ] occur with the same frequency and they cancel each other.
Therefore [image: ⟨⃗ξi ⋅ ⃗ξj⟩ = 0  ] for [image: i ⁄= j  ]. Since the magnitude of the vectors [image: |⃗ξi| = a  ] is
constant, we obtain


   	
   
[image: ⟨⃗ξ ⋅ξ⃗⟩ = a2δ  .
  i  j       i,j
]
	(11.25)



The probability for a path [image: CN  ] of length [image: N  ] to occur
is12 


   	
                                                                          

                                                                          
   
[image:           1
p (CN  ) = ---,
          zN
]
	(11.26)



where [image: z = 4  ] is the number of nearest neighbors of a lattice site. This
probability depends on the length of the path and not on its geometry.
This can be easily seen using the obvious relation [image: p(CN+1 ) = 1zp(CN )  ],
since there are exactly [image: z  ] equally probable cases. The partition function
is


   	
   
[image: ZN  = zN ,
]
	(11.27)



and it counts the number of different paths of length [image: N  ].

   After time [image: t = N τ  ] the particle is displaced from its original position
by


   	
   
[image:      N
⃗R = ∑   ⃗ξ .
         i
     i=1
]
	(11.28)



The average value of the displacement vanishes


   	
   
[image:        N
⟨⃗R ⟩ = ∑  ⟨⃗ξ⟩ = ⃗0.
            i
       i=1
]
	(11.29)



The expectation value of the displacement squared is non zero


   	
   
[image:                   N                N
   2     ⃗  ⃗    ∑    ⃗  ⃗      2 ∑          2
⟨R ⟩ = ⟨R ⋅ R⟩ =     ⟨ξi ⋅ξj⟩ = a     δi,j = a N .
                 i,j=1            i,j=1
]
	(11.30)



The conclusion is that the random walker has been displaced from its original
position rather slowly


   	
                                                                          

                                                                          
   
[image:        ∘  -----   √ ---  √ -
Rrms =    ⟨R2 ⟩ = a  N  ∝   t.
]
	(11.31)



For a particle with a non zero average velocity we expect that [image: Rrms ∝  t  ].

   Equation  (11.31)  defines the critical exponent [image: ν  ]


   	
   
[image: ⟨R2⟩ ∼ N 2ν,
]
	(11.32)



where [image: ∼ ] means asymptotic behavior in the limit [image: N →  ∞ ]. For a classical
walker [image: ν =  1  ], whereas for the random walker [image: ν =  1
     2   ].

   The Random Walker (RW) model has several variations, like the Non Reversal
Random Walker (NRRW) and the Self Avoiding Walk (SAW) . The NRRW model
is defined by excluding the vector pointing to the previous position of the
walker and by selecting the remaining vectors [image: ⃗ξi  ] with equal probability.
The SAW is a NRRW with the additional requirement that, when the
walker ends in a previously visited position, the ... walking ends! Some
models studied in the literature include, besides the infinite repulsive force,
an attractive contribution to the total energy for every pair of points of
the path that are nearest neighbors. In this case, each path is weighted
with the corresponding Boltzmann weight according to equation  (12.4)
.

   For the NRRW, equation  (11.32)  is similar to that of the RW, i.e. [image:      1
ν =  2   ].
Even though the paths differ microscopically, their long distance properties are
                                                                          

                                                                          
the same. They are examples of models belonging to the same universality class
according to the discussion in section 13.1.

   This is not the case for the SAW. For this system we have that  [50]


   	
   
[image:   2 SAW      2ν         3-
⟨R ⟩     ∼ N       ν =  4,
]
	(11.33)



therefore the typical paths in this model are longer than those of the RW. If we
introduce a nearest neighbor attraction according to the previous discussion, then
there is a critical temperature [image: β
 c  ] such that for [image: β < β
     c  ] we have similar behavior
given by equation  (11.33) , whereas for [image: β > βc  ] the attractive interaction
dominates, the paths collapse and we obtain [image: ν =  1∕3 < νRW  ]. For [image: β = βc  ] we
have that [image: ν =  12   ]. For more information we refer the reader to the book of Binder
and Heermann  [7].

   In order to write a program that simulates the RW we apply the following
algorithm:
      

      	Set the number of the random walks to be generated
      

      	Set the number of steps of each walk
      

      	Set the initial position of the walk
      

      	At each step on the walk, pick a random direction with equal probability
      

      	After the walk is completed, measure [image: ⃗R  ], [image: R2   ], etc
                                                                          

                                                                          
      

      	After all walks have been generated, compute the expectation values of
      the measured quantities and the statistical error of their measurement.


   All we need to explain is how to program the choice of “random direction”.
The program is in the file rw.f90
                                                                          

                                                                          


   
program random_walker
 
 implicit none
 
 integer,parameter :: Nwalk = 1000
 
 integer,parameter :: Nstep = 100000
 
 integer           :: iwalk,istep,ir
 
 real(8)           :: x,y
 
 real(8)           :: drandom
 
 integer           :: seed
 
 common /randoms/     seed
 

 
 seed = 374676287
 
 open(unit=20,file=’dataR’)
 
 do iwalk = 1,Nwalk
 
  x = 0.0D0 ; y = 0.0D0
 
  open(unit=21,file=’data’)
 
  do istep=1,Nstep
 
   ir = INT(drandom()*4)
 
   select case(ir)
 
    case(0)
 
     x = x + 1.0D0
 
    case(1)
 
     x = x - 1.0D0
 
    case(2)
 
     y = y + 1.0D0
 
    case(3)
 
     y = y - 1.0D0
 
   end select
 
   write(21,*) x,y
 
  enddo !do istep=1,Nstep
 
  close(21)
 
  call sleep(2)
 
  write(20,*) x*x+y*y
 
  call flush(20)
 
 enddo !do iwalk = 1,Nwalk
 
end program random_walker


                                                                          

                                                                          
 The length of the paths is Nstep and the number of the generated paths
is Nwalk. Their values are hard coded and a run using different values
requires recompilation. The results are written to the files dataR and
data. The square of the final displacement of the walker [image: R2   ] is written to
dataR and the coordinates [image: (x,y )  ] of the points visited by the walker
in each path is written to data. In order to make the contents of the
files available immediately, we empty the I/O buffers by a call to the
subroutine flush(unit). The file data is truncated at the beginning
of each path, therefore it contains the coordinates of the current path
only.

   Each path is made of Nstep steps. The random vector [image: ⃗
ξistep  ] is chosen and it
is added in the current position [image: ⃗ristep = (x,y )  ]. The choice on [image: ⃗ξistep  ] is made in
the line
                                                                          

                                                                          


   
   ir = INT(drandom()*4)


 where the variable ir [image: =  0,1,2,3  ] because the function INT returns the integer
part of a real. The values of ir correspond to the four possible directions
of [image: ⃗
ξ  ]. We use the construct select case(ir) in order to move in the
direction chosen by ir. Depending on its value, the control of the program is
transferred to the command that moves the walker to the corresponding
direction.

   Compiling and running the program can be done with the commands
                                                                          

                                                                          


   
> gfortran rw.f90 drandom.f90 -o rw
 
> ./rw


 Because of the command call sleep(2), the program temporarily halts
execution for 2 seconds at the end of each generated path (you should remove this
line at the production stage). This allows us to monitor the generated
paths graphically. During the execution of the program, use gnuplot
in order to plot the random walk which is currently stored in the file
data:
                                                                          

                                                                          


   
gnuplot> plot "data" with lines


 Repeat for as many times as you wish to see new random walks. The automation
of this process is taken care in the script eternal-rw:
                                                                          

                                                                          


   
> ./rw &
 
> ./eternal-rw &
 
> killall rw eternal-rw gnuplot


 The last command ends the execution of all programs.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 11.8: Four typical paths of the RW for [image: N = 10000  ].



                                                                          

                                                                          
   


   Some typical paths are shown in figure 11.8. Figure 11.9 shows the results for
the expectation value [image: ⟨R2⟩ ] for [image: N  = 10,...,100000  ] which confirm equation
(11.30)  [image: ⟨R2 ⟩ = N  ]. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

                           
Figure 11.9:                                    Numerical
confirmation of the relation [image:   2
⟨R ⟩ = N  ] for [image: N = 10,...,100000  ]. The straight line is the
fit of the data to the function [image: y = ax  ] with [image: a = 0.9994(13)  ].



                                                                          

                                                                          
   


   You can reproduce this figure as follows:
      

      	Set  the  values  of  Nwalk and  Nstep in  the  file  rw.f90.  Delete  the
      commands  call sleep(2) and  write(21,*) x,y and  compile  the
      code.
      

      	Run the program and analyze the data in the file dataR:
                                                                          

                                                                          
      
      > ./rw
       
> awk ’{av += $1}END{print av/NR}’ dataR


      Write the results in a file r2.dat in two columns with the length of the
      paths [image: N  ] in the first column and with [image:    2
⟨R ⟩ ] in the second. The
      command13 
      {av+=$1} in the awk program adds the first column of each line of
      the file dataR to the variable av. After reading the whole file, the
      command END{print av/NR}, prints the variable av divided by the
      number of lines in the file (NR = “Number of Records”). This is a
      simple way for computing the mean of the first column of the file
      dataR.
      


      	Use a linear squares method in order to find the optimal line [image: y = ax + b  ]
      going through the points ([image: lnN  ],[image:     2
ln⟨R ⟩ ]). You can also use the fit
      command in gnuplot as follows:
                                                                          

                                                                          
      
      gnuplot> fit  a*x+b "r2.dat" u (log($1)):(log($2)) via a,b


      
      


      	Construct the plot with the command:
                                                                          

                                                                          
      
      gnuplot> plot a*x+b,"r2.dat" u (log($1)):(log($2)) w e


      



The obtained results are meaningless without their statistical errors. Since each
measurement is statistically independent, the true expectation value is
approached in the limit of infinite measurements with a speed proportional to
[image:      √---
∼ 1∕  M  ], where [image: M  ] is the number of measurements. For the same
reason14 ,
the statistical error is given by equation  (11.3) , e.g.


   	
   
[image:          ┌ -------(------------------------------)-
         ││              M∑          (    ∑M    )2
δ⟨R2 ⟩ = │∘ ---1---(  1--   (R2)2 −   -1-    R2   ).
           M  −  1   M        i      M       i
                        i=1             i=1
]
	(11.34)



We can add the calculation of the error in the program in rw.f90 or we can leave
this task to external utilities. For example we can use the awk script, which is
written in the file average: 
                                                                          

                                                                          


   
#!/usr/bin/awk -f
 
{
 
  av += $1;     # the sum of data
 
  er += $1*$1;  # the sum of squares of data
 
}
 
END{
 
  av /= NR;     # NR = "Number of Records" = number of lines
 
  er /= NR;
 
  # formula for error of uncorrelated measurements
 
  er  = sqrt( (er - av*av)/(NR-1) );
 
  print av, "+/-", er;
 
}


The contents of this file is an example of a script interpreted by the awk program.
The operating system knows which program to use for the interpretation by
reading the first line #!/bin/awk -f where the first two characters of the program
should be exactly #!. For the commands to be interpreted and executed, one has
to make the script executable using the command chmod a+x average. Then the
command
                                                                          

                                                                          


   
> ./average dataR


 executes the script using the awk interpreter. We remind to the
reader that the commands between curly brackets { ... } are
executed by awk for every line of the file dataR. The commands between
END{ ... } are executed after the last line of the file has been
read15 .
Therefore the lines
                                                                          

                                                                          


   
  av += $1;     #  the sum of data
 
  er += $1*$1;  # the sum of squares of data


add the first column of the file dataR and its square to the variables av and er
respectively. The commands
                                                                          

                                                                          


   
  av /= NR;     # NR = "Number of Records" = number of lines
 
  er /= NR;


 are executed after the whole file dataR has been read and divide the variables av
and er with the predefined variable NR which counts the total number of lines
read so far. The last lines of the script compute the error according to equation
(11.34)  and print the final result. The shell script in the file rw1-anal.csh codes
all of the above commands in a script. Read the comments in the file for usage
instructions.


   11.4    Problems


      

      	Reproduce the results shown in figure 11.6 and confirm the validity of
      equation  (11.5) .
      

      	Generate a sequence of pseudorandom numbers which follow a Gaussian
      distribution with standard deviation [image:        √ --
σ =  1∕  2  ]. Construct the plot
      of relative frequencies together with the plot of the probability density
      function.
      

      	Generate  a  sequence  of  pseudorandom  numbers  which  follow  the
      Cauchy  distribution  with  [image: c = 1  ].  Construct  the  plot  of  relative
      frequencies together with the plot of the probability density function.
      

      	Write a program that calculates the period of the function drandom().
      Check whether the numbers 0 and 1 belong to the sequence.
      

      	Compute the CPU time cost of the random number generation as follows: If
      you have an executable file, e.g. random, run the /usr/bin/time command
      with ./random as its argument:
                                                                          

                                                                          
      
      > /usr/bin/time ./random


       Upon exit of the command, the program /usr/bin/time prints the total
      CPU time in seconds to the stderr. Compute the time needed to generate
      [image:   9
10   ] random numbers using the function drandom() and the subroutines
      random_number and ranlux. For RANLUX, measure the CPU time for each
      value of ranlux_level from 1 to 4. How does this time depend on
      whether the random numbers are generated one by one or in groups of
      1000 by calls to random_number and ranlux having as an argument
      an array of size 1000? How does the time change if the random
      numbers are generated in groups of 10000 instead? (Hint: see the file
      performance_ran.f90)
      


      	For each of the random number generators drandom(), random_number and
      ranlux, generate 10 random numbers. Then save the state of the
      generator in a file. Then generate 10 more random numbers. Read from
      the file the saved state of the generator and generate 10 random
      numbers. Check that the last two sequences of random numbers are
      identical.
      

      	Make the appropriate changes in the file seed.f90 so that it can be used for
      seeding RANLUX. Do it in two different ways: (a) by generating one seed and
      use RLUXGO for the initialization. (b) By generating 25 seeds and use RLUXIN
      for the initialization.
      

      	Show that if the expectation values of the vectors [image: ⟨⃗ξi⟩ = ⃗vτ  ] then
      [image:  ⃗
⟨R⟩ = ⃗v τN  ] and we obtain a linear relation between displacement–length of
      path. The quantity [image: v  ] is the expectation value of the speed of the particle.
      Compute [image: ⟨R2 ⟩ ] for large values of [image: N  ].
      

      	Confirm the relations computed in the previous problem numerically. In
      your program, set the first line in  (11.22)  equal to [image: 1∕2  ] and the rest equal
      to [image: 1∕6  ]. Compute the expectation values [image: ⟨(ξi)x⟩ ] and [image: ⟨(ξi)y⟩ ] and use them
      to calculate the average speed of the particle. Check the validity of the
                                                                          

                                                                          
      relations [image:    2     α
⟨R ⟩ ∼ N  ] and [image:           2ax
⟨Rx ⟩ ∼ N   ] [image:          2ay
⟨Ry⟩ ∼ N   ]. What is the
      relation between [image: a  ], [image: ax  ] and [image: ay  ]?
      

      	Make the appropriate changes in the file rw.f90 so that the user can enter
      the values Nwalk and Nstep interactively using the command line
      arguments. For example, if she wants to generate 100 random walks with
      [image: N  = 2000  ], she should run the command ./rw 100 2000. You will need to
      use the Fortran intrinsic functions GETARG and IARGC. (Hint: Look in the file
      rw1.f90)
      

      	We know that for the RW we have that [image: ⟨⃗R ⟩ = ⃗0  ]. Calculate [image: ⟨x ⟩ ] and [image: ⟨y⟩ ]
      numerically for [image: N  = 100, 100000  ]. Are they really equal to zero? Why? How
      does this depend on the number of measurements?
      

      	Compute the expectation value of the number of returns of the RW to his
      initial position as a function of [image: N  ]. What happens as [image: N  → ∞ ]?
      Why?
      

      	 Reproduce figure 11.9 for the RW.
      

      	 Write a program that implements the NRRW and reproduce the results in
      figure 11.9 for the NRRW.
      

      	In the program rw.f90 the RW’s position is determined by two REAL(8)
      variables x,y. The next position is calculated by the statements
      x=x+1.0D0, y=y+1.0D0. What are the limitations on the size of random
      walks that can be studied with this choice? What happens if one
      uses REAL variables x,y instead? Take into account the fact that
      [image:   2
⟨R ⟩ = N  ].
      

      	Repeat the previous problem by using INTEGER(8) variables x,y. The next
      position is calculated by the statements x=x+1, y=y+1. Discuss the pros and
      the cons of each choice.
      

      	Repeat the previous problems by using INTEGER(4) variables x,y. Discuss
                                                                          

                                                                          
      the pros and the cons of each choice by considering also the running time of
      the program. Use the command /usr/bin/time.
      

      	Write a straightforward code that implements the SAW. How big [image: N  ] can
      you simulate? Check whether the CPU time for computing a given number
      of random walks increases exponentially with [image: N  ]. Search the internet
      for the most efficient algorithm that simulates the SAW for large
      [image: N  ].


                                                                          

                                                                          

                                                                          

                                                                          


   


Chapter 12
Monte Carlo Simulations

In this chapter we review the basic principles of Monte Carlo simulations in
statistical mechanics. In the introduction, we review some of the fundamental
concepts of statistical physics. The reader should have a basic understanding of
concepts like the canonical ensemble, the partition function, the entropy,
the density of states and the quantitative description of fluctuations of
thermodynamic quantities. For a more in depth discussion of these concepts, see
 [4, 43, 51, 52, 53, 54].

   For most of the interesting systems, the partition function cannot be
calculated analytically, and in such a case we may resort to a numerical
computation. This is what is done most effectively using Monte Carlo simulations,
which consist of collecting a statistical sample of states of the system
with an appropriately chosen probability distribution. It is remarkable
that, by collecting a sample which is a tiny fraction of the total number
of states, we can perform an accurate calculation of its thermodynamic
quantities1 .
But this is no surprise: it happens in our labs all the
time2 !


   12.1    Statistical Physics

Statistical physics describes systems with a very large number of degrees of
freedom [image: N  ]. For simple macroscopic systems [image:        23
N ≈  10   ] – [image:   44
10   ]. For such
systems, it is practically impossible to solve the microscopic equations that
                                                                          

                                                                          
govern their dynamics. Even if we could, the solution would have had much
more information than we need (and capable of analyzing!). It is enough,
however, to know a small number of bulk properties of the system in
order to have a useful description of it. E.g. it is enough to know the
internal energy and magnetization of a magnet or the energy and density of
a fluid instead of the detailed knowledge of the position, momentum,
energy and angular momentum of each particle they are made of. These
quantities provide a thermodynamic description of a system. Statistical
physics makes an attempt to derive these quantities from the microscopic
degrees of freedom and their dynamics given by the Hamiltonian of the
system.

   Consider a system which can be in a set of discrete states which belong to a countable
set [image: {μ} ]. The energy spectrum of those states is assumed to consist of discrete
values3 
[image: E0 <  E1 < ... < En <  ...  ]. This system is in contact and interacts with a large
heat reservoir which has temperature [image: β = 1∕kT  ]. The contact with the
reservoir results in random transitions which change the energy of the
system4 .
The system is described by the weights [image: w μ(t)  ] which give the probability to find
the system in a state [image: μ  ] at time [image: t  ]. These weights are the connection between the
microscopic and statistical description of the system. When this system is in
thermal equilibrium with the reservoir, its statistical properties are described by
the, so called, canonical ensemble.

   Let [image: R(μ →  ν)  ] be the transition rates  from the state [image: μ →  ν  ], i.e.


   	
   
[image: R (μ →  ν )dt = Transition probability μ →  ν in time dt,
]
	(12.1)



which depend on the interaction between the system and the thermal reservoir.
The master equation for the weights [image: w  (t)
  μ  ] is 

   
[image:   dw  (t)     ∑
  ---μ---  =      {wν(t)R (ν →  μ ) − w μ(t)R (μ → ν)}
    dt         ν
∑
   w μ(t)  =  1.                                         (12.2)
 μ
]


The first of the above equations tells us that the change in [image: w  (t)
  μ  ] is equal to
the rate that the system comes into the state [image: μ  ] from any other state
[image: ν  ], minus the rate of leaving the state [image: μ  ]. The second equation is a
result of the probability interpretation of the weights [image: w μ(t)  ] and states
that the probability of finding the system in any state is equal to 1 at all
times.
   The transition rates [image: R (μ → ν )  ] are assumed to be time independent
and then the above system of equations for [image: wμ(t)  ] is linear with real
parameters. This, together with the constraint [image: 0 ≤ w μ(t) ≤ 1  ], implies
that5 ,
in the large time limit, [image: dwμ(t)
  dt  = 0  ] and the system reaches equilibrium. Then, the
[image: w μ(t)  ] converge to finite numbers [image: pμ ≥ 0  ]. These are the equilibrium occupation
probabilities 

                                                                          

                                                                          
   
[image:                        ∑
pμ = lim w μ(t),           pμ = 1.              (12.3)
     t→∞                 μ
]


For a system in thermodynamic equilibrium with a reservoir in temperature [image: T  ],
with [image: β =  1∕kT  ], the probabilities [image: pμ  ] follow the Boltzmann distribution (Gibbs
1902)
   	
   
[image:       1
pμ =  -e− βEμ,
      Z
]
	(12.4)



and define the, so called, canonical ensemble. The parameter [image: β  ] will be frequently
referred to as simply “the temperature” of the system, although, strictly speaking,
it is the inverse of it. Its appearance in the exponential in equation  (12.4) ,
defines a characteristic energy scale of the system. The Boltzmann constant
[image: k ≈  1.38 × 10 −23JK −1   ] is simply a conversion constant between units of
energy6 .

   The normalization [image: Z  ] in equation  (12.4)  is the so called partition function of
the system. The condition [image: ∑   pμ = 1
  μ  ] implies


   	
                                                                          

                                                                          
   
[image:         ∑    −βEμ
Z (β) =     e
         μ
]
	(12.5)




   The measurement of a physical quantity, or observable, of a thermodynamic
system has a stochastic character. For systems with very large number of degrees
of freedom [image: N  ], one is interested only in the average value of such a quantity. This
is because the probability of measuring the quantity to take a value significantly
different from its average is ridiculously small. The average, or expectation value,
[image: ⟨𝒪 ⟩ ] of a physical observable [image: 𝒪 ] whose value in a state [image: μ  ] is [image: 𝒪 μ  ] is equal
to


   	
   
[image:        ∑             ∑
⟨𝒪 ⟩ =     pμ𝒪 μ = 1-    𝒪 μe−βEμ.
        μ          Z
]
	(12.6)



As we will see later, the standard deviation [image: Δ 𝒪 ] for a typical thermodynamic
system is such that


   	
                                                                          

                                                                          
   
[image: Δ-𝒪-   --1-
 𝒪   ∼ √N--,
]
	(12.7)



which is quite small for macroscopic
systems7 .
In such cases, the fluctuations of the values of [image: 𝒪 ] from its expectation value
[image: ⟨𝒪 ⟩ ] can be neglected. The limit [image: N  →  ∞ ] is the so called thermodynamic limit,
and it is in this limit in which we are studying systems in statistical mechanics.
Most systems in the lab are practically in this limit, but in the systems simulated
on a computer we may be far from it. The state of the art is to invent methods
which can be used to extrapolate the results from the study of the finite system to
the thermodynamic limit efficiently.

   Because of  (12.5) , the partition function encodes all the statistical
information about the system. It is not just a simple function of one or more
variables, but it counts all the states of the system with the correct weight. Its
knowledge is equivalent to being able to compute any thermodynamic
quantity like, for example, the expectation value of the energy [image: ⟨E ⟩ ] of the
system8 :


   
[image:                1 ∑                1 ∑   ∂             1 ∂  ∑
U   ≡  ⟨E ⟩ = --    E μe−βEμ =  − --    ---e−βEμ = − -----    e− βEμ
              Z   μ               Z  μ  ∂β           Z ∂ β  μ
          1 ∂Z      ∂ ln Z
    =  − -- ----= − ------.                                      (12.8)
         Z  ∂β       ∂ β
]



   Similarly, one can calculate the specific heat from


   	
   
[image:                                 2             2
C =  ∂U-=  ∂β-∂U--=  (− k β2)(− ∂-ln-Z) = k β2∂-ln-Z-.
     ∂T    ∂T  ∂β               ∂β2            ∂β2
]
	(12.9)





   12.2    Entropy

The entropy [image: S  ] of a thermodynamic system is defined by


   	
   
[image:       ∂F
S = − ----,  F =  U − T S,
      ∂T
]
	(12.10)



where [image: F  ] is the free energy if the system. We will attempt to provide microscopic
definitions that are consistent with the above equations.

   We define the free energy from the relation 

   
[image:  −βF        ∑    −βEμ
e    = Z  ≡     e    ,                     (12.11)
             μ
]


or equivalently 
   
[image:        1
F  = − --lnZ.                          (12.12)
       β
]


Note that for [image: T  → 0  ] the free energy becomes the ground state
energy9 .
Indeed, as [image: β →  ∞ ] only the lowest energy term in equation  (12.11)  survives.
For this reason, equation  (12.10)  gives [image: limT →0 S =  0  ], which is the third law of
                                                                          

                                                                          
thermodynamics.
   The definition  (12.11)  is consistent with  (12.10)  since


   	
   
[image:        ∂-ln-Z-     -∂-                ∂F--        ∂F--
U  = −  ∂ β  =  − ∂β (− βF ) = F + β ∂β =  F − T ∂T  =  F + T S.
]
	(12.13)




   The relation of the entropy [image: S  ] to the microscopic degrees of freedom can be
derived from equations  (12.11)  and  (12.10) :


   	
   
[image: S-   U-−--F-                 ∑           1-
k =    kT   =  β(U − F ) = β(    pμE μ + β ln Z ).
                              μ
]
	(12.14)



But


   	
                                                                          

                                                                          
   
[image:       − βEμ
pμ = e----- ⇒  Eμ = −  1(lnpμ + lnZ ),
       Z               β
]
	(12.15)



therefore 

   
[image: S        ∑   (   1                  1     )
--  =  β      −  -(lnpμ + lnZ )pμ + --lnZ
k         μ      β                  β
          ∑                ∑
    =  −     pμ ln pμ − lnZ     pμ + lnZ
           μ                μ
          ∑
    =  −     pμ ln pμ.                               (12.16)
           μ
]


Finally
   	
   
[image:         ∑
S  = − k    pμ ln pμ.
         μ
]
	(12.17)


                                                                          

                                                                          


   Let’s analyze the above relation in some special cases. Consider a
system10 
where all possible states have the same energy. For such a system, using equation
(12.17) , we obtain that


   	
   
[image:       1-
p μ = g = const. ⇒ S  = k ln g.
]
	(12.18)



Therefore, the entropy simply counts the number of states of the system. This is
also the case in the microcanonical ensemble. Indeed, equation  (12.18)  is also
valid for the distribution


   	
   
[image:      {
        --1-  Eμ = E
pμ =    g(E)           ,
         0    Eμ ⁄= E
]
	(12.19)


                                                                          

                                                                          

which can be considered to be equivalent to the microcanonical ensemble
since it enforces [image: Eμ = E  = const.  ] Equation  (12.19)  can viewed as an
approximation to a distribution sharply peaked at [image: E  ]. In such a case, [image: S  ] counts,
more or less, the number of states of the system with energy close to
[image: E  ].

   In general, the function11 
[image: g(E )  ] is defined to be equal to the number of states with energy equal to [image: E  ].
Then the probability [image: p(E )  ] to measure energy [image: E  ] in the canonical ensemble
is


   	
   
[image:                   ∑             1-∑    −βEμ        -1 − βE ∑
p(E ) = ⟨δE,Eμ⟩ =    p μδE,E μ = Z     e    δE,Eμ = Z e        δE,Eμ.
                   μ
]
	(12.20)



Since [image: ∑   δE,E  = g(E )
   μ    μ  ], we obtain


   	
   
[image:                   g(E )e− βE
p(E ) = ⟨δE,E μ⟩ = ---------.
                      Z
]
	(12.21)



For a generic system we have that


   	
   
[image: g (E ) ∼ E αN ,
]
	(12.22)



where [image: N  ] is the number of degrees of freedom of the system and [image: α  ] is a constant.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 12.1: The probability [image: p(E)  ] as a result of the competition of the Boltzmann
factor [image:  −βE
e  ] and the density of states [image:         αN
g(E) ∼ E  ]. [image:   ∗
E ] is the most probable value of
the energy and [image: ΔE  ] is a measure of the energy fluctuations.



                                                                          

                                                                          
   


   The qualitative behavior of the distribution  (12.21)  is shown in figure 12.1.
For such a system the most probable values of the energy are sharply peaked
around a value [image: E∗ ] and the deviation [image: ΔE  ] is a measure of the energy
fluctuations. The ratio [image: ΔE  ∕E  ] drops with [image: N  ] as [image: 1∕ √N---  ]. Indeed, the
function12 


   	
   
[image:           αN − βE    −βE −αN lnE
p˜(E ) = E   e     = e
]
	(12.23)



has a maximum when


   	
   
[image:          ||                                  ||
∂-lnp˜(E-)|     =  0 ⇒  -∂-(− βE  + αN  ln E )|     = − β + αN-- = 0
   ∂E    |E=E ∗        ∂E                   |E=E ∗          E∗
]
	(12.24)



or


                                                                          

                                                                          
   	
   
[image:   ∗   α
E  =  βN  .
]
	(12.25)



As the temperature increases ([image: β  ] decreases), [image: E ∗ ] shifts to larger values. [image: E ∗ ] is
proportional to the system size. By Taylor expanding around [image: E ∗ ] we obtain


   
[image:                                           ||
ln ˜p(E ) =  ln ˜p(E∗) + (E − E ∗) ∂ ln-˜p(E)-|
                                    ∂E    |E=E ∗
                 1           ∂2ln ˜p(E)||
               + -(E − E ∗)2 ------2--||     +  ...
                 2             ∂E  (   E=E ∗)
                  ∗    1        ∗ 2    αN
         =  ln ˜p(E ) + -(E  − E  )  − ---∗-2  + ...,    (12.26)
                       2              (E  )
]


where we used equation  (12.24)  and computed [image:  2     |
∂-ln∂pE˜(2E)||
        E=E ∗ ]. Therefore
   	
   
                                                                          

                                                                          
[image:                   (E−E∗)2
p(E ) ≈ p(E ∗)e −αN-2(E-∗)2 ,
]
	(12.27)



which is a Gaussian distribution with standard deviation


   	
   
[image:        ∘ ------   ∘ -αN----  √ ---
         (E-∗)2     (-β-)2   --N-
ΔE  ∼     αN   =     αN    ∼   β .
]
	(12.28)



Therefore we confirm the relation  (12.7)


   	
   
[image:        √ --
ΔE     -βN     1
--∗-∼  -N--=  √---.
E       β       N
]
	(12.29)



In the analysis above we assumed analyticity (Taylor expansion, equation  (12.26)
), which is not valid at a critical point of a phase transition in the thermodynamic
limit.
                                                                          

                                                                          

   Another important case where the above analysis becomes slightly more
complicated is when the distribution [image: p(E)  ] has more than one equally probable
maxima13 
separated by a large probability barrier as shown in figure 12.2 like when the
system undergoes a first order phase transition. Such a transition occurs when ice
turns into water or when a ferromagnet looses its permanent magnetization due to
temperature increase past its Curie point. In such a case the two states, ice –
water / ferromagnet – paramagnet, are equally probable and coexist. This is
qualitatively depicted in figure 12.2.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 12.2: Two peak structure in the distribution [image: p(E )  ] of the energy [image: E  ] for a
system undergoing a first order phase transition. The two maxima correspond to two
coexisting states (“ice”–”water”) and [image: ΔE ∕N  ] is the latent heat. In the thermodynamic
limit [image: N →  ∞ ], [image: R = pmin∕pmax  ] decreases like [image: R ∼ e−fA  ], where [image: A  ] is the minimal
surface separating the two phases and [image: f  ] is the interface tension.



                                                                          

                                                                          
   


   12.3    Fluctuations

The stochastic behavior of every observable [image: 𝒪 ] is given by a distribution function
[image: p(𝒪 )  ] which can be derived from the Boltzmann distribution  (12.4) . Such a
distribution is completely determined by its expectation value [image: ⟨𝒪 ⟩ ] and
all its higher order moments, i.e. the expectation values [image: ⟨(𝒪 − ⟨𝒪 ⟩)n⟩ ],
[image: n =  1,2,3....  ]. The most commonly studied moment is the second moment
([image: n = 2  ])


   	
   
[image: (Δ 𝒪 )2 ≡ ⟨(𝒪  − ⟨𝒪 ⟩)2⟩ = ⟨𝒪2 ⟩ − ⟨𝒪⟩2.
]
	(12.30)



For a distribution with a single maximum, [image: Δ 𝒪 ] is a measure of the fluctuations
of [image: 𝒪 ] away from its expectation value [image: ⟨𝒪 ⟩ ]. When [image: 𝒪 =  E  ] we obtain


   	
   
[image:       2             2       2       2
(ΔE  ) ≡  ⟨(E  − ⟨E ⟩) ⟩ = ⟨E  ⟩ − ⟨E ⟩ ,
]
	(12.31)


                                                                          

                                                                          

and using the relations


   	
   
[image:    2    1-∑     2 −βEμ    1-∂2--∑    −βEμ   -1 ∂2Z-
⟨E  ⟩ = Z     E μe     =  Z ∂β2     e     = Z  ∂β2 ,
            μ                    μ
]
	(12.32)



and


   	
   
[image:          ∑                     ∑
⟨E ⟩ = 1-    Eμe −βEμ = − 1--∂-    e−βE μ = − 1-∂Z-,
       Z  μ               Z ∂β   μ            Z ∂β
]
	(12.33)



we obtain that


   	
   
                                                                          

                                                                          
[image:                             2    (        )2      2
(ΔE  )2 = ⟨E2 ⟩ − ⟨E ⟩2 = -1∂--Z −   − 1-∂Z--   = ∂--ln-Z-,
                        Z  ∂β2       Z ∂ β        ∂β2
]
	(12.34)



which, according to  (12.9) , is the specific heat


   	
   
[image:      ∂-⟨E-⟩      2     2
C  =  ∂T   = k β (ΔE ) .
]
	(12.35)



This way we relate the specific heat of a system (a thermodynamic quantity) with
the microscopic fluctuations of the energy.

   This is true for every physical quantity which is linearly coupled to an external
field (in the case of [image: E  ], this role is played by [image: β  ]). For a magnetic system in a
constant magnetic field [image: B  ], such a quantity is the magnetization [image: M  ]. If [image: M μ  ] is
the magnetization of the system in the sate [image: μ  ] and we assume that its direction is
parallel to the direction of the magnetic field [image: ⃗B  ], then the Hamiltonian of the
system is


   	
   
[image: H =  E − BM  ,
                                                                          

                                                                          
]
	(12.36)



and the partition function is


   	
   
[image:     ∑    −βE  +βBM
Z =     e    μ     μ.
      μ
]
	(12.37)



“Linear coupling” signifies the presence of the linear term [image: BM  ] in the
Hamiltonian. The quantities [image: B  ] and [image: M  ] are called conjugate to each other.
Other well known conjugate quantities are the pressure/volume ([image: P  ]/[image: V  ]) in a gas
or the chemical potential/number of particles ([image: μ  ]/[image: N  ]) in the grand canonical
ensemble.

   Because of this linear coupling we obtain


   	
   
[image:         1-∑       −βEμ+βBM μ    -1-∂Z--     ∂F--
⟨M ⟩ =  Z     M μe           =  βZ ∂B  =  − ∂B ,
           μ
]
	(12.38)



which is analogous to  (12.8) . The equation corresponding to  (12.34)  is obtained
from  (12.30)  for [image: 𝒪  = M  ]


                                                                          

                                                                          
   	
   
[image:       2               2       2        2
(ΔM  ) ≡  ⟨(M −  ⟨M ⟩) ⟩ = ⟨M   ⟩ − ⟨M ⟩ .
]
	(12.39)



From  (12.37)  we obtain


   	
   
[image:          1 ∑                      1  ∂2Z
⟨M 2⟩ = --    M μ2e −βEμ+βBM μ = --2- ---2,
        Z   μ                   β  Z ∂B
]
	(12.40)



therefore


   	
   
[image:              {     2        (    )2 }        2
(ΔM  )2 = -1-  -1-∂-Z-−  1--  ∂Z--    =  1--∂-lnZ--=  1∂-⟨M-⟩.
          β2   Z ∂B2     Z2   ∂B         β2  ∂B2      β  ∂B
]
	(12.41)



The magnetic susceptibility [image: χ  ] is defined by the equation


   	
   
[image:      -1-∂⟨M-⟩-   β--           2
χ =  N   ∂B   =  N ⟨(M −  ⟨M ⟩) ⟩,
]
	(12.42)



where we see its relation to the fluctuations of the magnetization. This analysis
can be repeated in a similar way for every pair of conjugate quantities.


   12.4    Correlation Functions

The correlation functions can be obtained is a similar manner when we consider
external fields which are space dependent. For simplicity, consider a system
defined on a discrete lattice, whose sites are mapped to natural numbers
[image: i = 1,...,N  ]. Then the magnetic field [image: Bi  ] is a function of the position [image: i  ] and
interacts with the spin [image: si  ] so that


   	
                                                                          

                                                                          
   
[image:           ∑
H  = E −     Bisi.
           i
]
	(12.43)



Then  the  magnetization  per  site
[image: mi ≡  si  ]14
at position [image: i  ] is


   	
   
[image: ⟨si⟩ = 1-∂-ln-Z-.
       β  ∂Bi
]
	(12.44)



The connected two point correlation function is defined by


   	
   
[image:                                                        1  ∂2 ln Z
G (c2)(i,j) = ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)⟩ = ⟨sisj⟩ − ⟨si⟩⟨sj⟩ =----------.
                                                       β2 ∂Bi∂Bj
]
	(12.45)



When the values of [image: si  ] and [image: sj  ] are strongly correlated, i.e. they “vary together”
in the random samples that we take, the function  (12.45)  takes on large positive
values. When the values of [image: si  ] and [image: sj  ] are not at all correlated with
each other, the terms [image: (si − ⟨si⟩)(sj − ⟨sj⟩)  ] in the sum over [image: μ  ] in the
expectation value [image: ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)⟩ ] cancel each other and [image:   (2)
G c (i,j)  ] is
zero15 .


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 12.3: The connected two point correlation function [image: G (2)(i,j)
  c  ] for [image: ξ < ∞ ] and
[image: ξ → ∞ ].



                                                                          

                                                                          
   


   The function [image:   (2)
G c (i,j )  ] takes its maximum value [image:           2
⟨(si − ⟨si⟩) ⟩ ] for [image: i = j  ].
Then it falls off quite fast. For a generic system


   	
   
[image:   (2)         −|xij|∕ξ
G c (i,j) ∼ e      ,
]
	(12.46)



where [image: |xij| ] is the distance between the points [image: i  ] and [image: j  ]. The correlation length
[image: ξ  ], is a characteristic length scale of the system which is a measure of the
distance where there is a measurable correlation between the magnetic moments
of two lattice sites. It depends on the parameters that define the system
[image: ξ = ξ(β, B, N,...)  ]. It is important to stress that it is a length scale that arises
dynamically. In contrast, length scales like the size of the system [image: L  ] or the lattice
constant [image: a  ] are parameters of the system which don’t depend on the dynamics. In
most of the cases, [image: ξ  ] is of the order of a few lattice constants [image: a  ] and such a
system does not exhibit correlations at macroscopic scales (i.e. of the order of
[image: L  ]).

   Interesting physics arises when [image: ξ →  ∞ ]. This can happen by fine tuning the parameters
on which [image: ξ  ] depends on to their critical values. For example, in the neighborhood of a
continuous16 
phase transition, the exponential falloff in  (12.46)  vanishes and [image:   (2)
G c (i,j )  ] falls
off like a power (see figure 12.3)


   	
                                                                          

                                                                          
   
[image: G (2)(i,j) ∼ ----1----,
  c         |xij|d−2+η
]
	(12.47)



where [image: d  ] is the number of dimensions of space and [image: η  ] a critical exponent. As we approach the
critical point17 ,
correlations extend to distances [image: |xij| ≫ a  ]. Then the system is not sensitive to the
short distance details of the lattice and its dynamics are very well approximated
by continuum space dynamics. Then we say that we obtain the continuum limit of
a theory which is microscopically defined on a lattice. Since the microscopic
details become irrelevant, a whole class of theories with different microscopic
definitions18 
have the same continuum limit. This phenomenon is called universality and plays
a central role in statistical physics and quantum field theories.


   12.5    Sampling

Our main goal is to calculate the expectation value [image: ⟨𝒪 ⟩ ],


   	
   
[image:                    ∑
       ∑             μ𝒪 μe− βEμ
⟨𝒪 ⟩ =    pμ𝒪 μ =  -∑----−βEμ--,
        μ             μ e
                                                                          

                                                                          
]
	(12.48)



of a physical quantity, or observable, [image: 𝒪 ] of a statistical system in the canonical
ensemble approximately. For this reason we construct a sample of [image: M  ]
states [image: {μ ,
  1  ] [image: μ ,
 2  ] [image: ...,  ] [image: μ  }
  M ] which are distributed according to a chosen
probability distribution [image: Pμ  ]. We define the estimator [image: 𝒪M  ] of [image: ⟨𝒪 ⟩ ] to
be


   	
   
[image:        ∑M        − 1− βEμi
𝒪M  =  -∑i=1-𝒪-μiPμi e-----.
           Mi=1 Pμ−1e−βEμi
                i
]
	(12.49)



The above equation is easily understood since, for a large enough sample,
[image: P μi ≈ “Frequency of finding μi in the sample ”  ], and we expect that


   	
   
[image: ⟨𝒪 ⟩ = lim  𝒪M  .
       M→ ∞
]
	(12.50)



Our goal is to find an appropriate [image: P
 μ  ] so that the convergence of  (12.50)  is as
fast as possible. Consider the following cases:
                                                                          

                                                                          




   12.5.1    Simple Sampling

We choose [image: P μ = const.  ], and equation  (12.49)  becomes


   	
   
[image:       ∑M         −βEμi
𝒪M  = --∑i=1-𝒪-μie------.
           Mi=1 e−βEμi
]
	(12.51)



The problem with this choice is the small overlap of the sample with the states
that make the most important contributions to the sum in  (12.48) . As we
have already mentioned in the introduction, the size of the sample in a
Monte Carlo simulation is a minuscule fraction of the total number of
states. Therefore, the probability of picking the ones that make important
contributions to the sum in  (12.48)  is very small. Consider for example the case
[image: 𝒪  = E  ] in a generic model. According to equation  (12.21)  we have
that


   	
   
[image:        ∑
⟨E ⟩ =    Ep (E ),
        E
]
	(12.52)


                                                                          

                                                                          

where [image: p(E )  ] is the probability of measuring energy [image: E  ] in the system. A
qualitative plot of [image: p (E )  ] is shown in figure 12.1. From  (12.25)  and  (12.28)  we
have that [image: E ∗ ∼ 1∕β  ] and [image: ΔE  ∼  1∕β  ], therefore for [image: β =  0  ] and [image: β >  0  ] the
qualitative behavior of the respective [image: p(E )  ] distributions is shown in figure 12.4.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 12.4: The distributions [image: p(E)  ] for a generic model for temperatures [image: β = 0  ]
and  [image: β > 0  ].  The  two  distributions  have  negligible  overlap.  In  order  that  the  [image: β = 0  ]
distribution is as shown, we assume that the energy of all states is bounded and that the
system has a finite number of degrees of freedom.



                                                                          

                                                                          
   


   The distribution of the simple sampling corresponds to the
case [image: β =  0  ] in equation  (12.4) , since [image: pμ =  ]const. in this
case19 .
In order to calculate the sum  (12.52)  with acceptable accuracy for [image: β > 0  ] we
have to obtain a good sample in the region where the product [image: Ep β>0(E )  ] is
relatively important. The probability of obtaining a state such that [image: Ep β>0(E )  ] is
non negligible is very small when we use the [image: pβ=0(E )  ] distribution. This can be
seen pictorially in figure 12.4.

   Even though this method has this serious shortcoming, it could still be useful
in some cases. We have already applied it in the study of random walks. Note
that, by applying equation  (12.51) , we can use the same sample for calculating
expectation values for all values of [image: β  ].


   12.5.2    Importance Sampling

From the previous discussion it has become clear that, for a large system, a very
small fraction of the space of states makes a significant contribution to the
calculation of [image: ⟨𝒪 ⟩ ]. If we choose a sample with probability


   	
   
[image:             −βE μ
P μ = pμ = e-----,
             Z
]
	(12.53)



then we expect to sample exactly within this region. Indeed, the estimator, given
by equation  (12.49) , is calculated from
                                                                          

                                                                          


   	
   
[image:        ∑         (      )−1
          Mi=1 𝒪 μi  e−βEμi   e− βEμi    1 ∑M
𝒪M   = --∑M----(-−βEμ-)−1-−-βEμ---=  M--    𝒪μi.
            i=1  e    i   e     i        i=1
]
	(12.54)



Sampling this way is called importance sampling, and it is the method of choice in
most Monte Carlo simulations. The sample depends on the temperature [image: β  ] and
the calculation of the expectation values  (12.54)  requires a new sample for
each20 
[image: β  ]. This extra effort, however, is much smaller than the one required in order to
overcome the overlap problem discussed in the previous subsection.


   12.6    Markov Processes

Sampling according to a desired probability distribution [image: Pμ  ] is not possible in a
direct way. For example, if we attempt to construct a sample according to
[image:        −βEμ
P μ = e-Z--  ] by picking a state [image: μ  ] by chance and add it to the sample with
probability [image: Pμ  ], then we have a very small probability to accept that state in the
sample. Therefore, the difficulty of constructing the sample runs into the same
overlap problem as in the case of simple sampling. For this reason we construct a
Markov chain instead. The members of the sequence of the chain will be our
sample. A Markov process, or a Markov chain, is a stochastic process which, given
the system in a state [image: μ  ], puts the system in a new state [image: ν  ] in such a way that it
has the Markov property, i.e. that it is memoryless. This means that a chain of
states


                                                                          

                                                                          
   	
   
[image: μ1 →  μ2 →  ...→  μM ,
]
	(12.55)



is constructed in such a way that the transition probabilities [image: P (μ →  ν)  ] from the
state [image: μ  ] to a new state [image: ν  ] satisfy the following requirements:
      

      	They are independent of “time”
      

      	They depend only on the states [image: μ  ] and [image: ν  ] and not on the path that the
      system has followed on order to get to the sate [image: μ  ] (memorylessness)
      

      	The relation
      	
      
      [image: ∑
    P(μ →  ν) = 1
 ν
      ]
	(12.56)


      
      holds. Beware, in most of the cases [image: P (μ →  μ ) > 0  ], i.e. the system has a
      nonzero probability to remain in the same state
                                                                          

                                                                          
      


      	For [image: M  →  ∞ ] the sample [image: {μi} ] follows the [image: P μ  ] distribution.


Then our sample will be [image: {μi} ≡ {μ1,μ2, ...,μM } ]. We may imagine that
this construction happens in “time” [image: i = 1,2,...,M  ]. In a Monte Carlo
simulation we construct a sample from a Markov chain by appropriately
choosing the transition probabilities [image: P (μ →  ν)  ] so that the convergence 4. is
fast.

   Choosing the initial state [image: μ
 1   ] can become a non trivial task. If it turns out
not to be a typical state of the sample, then it could take a long “time” for the
system to “equilibrate”, i.e. for the Markov process to start sampling
states typical of the simulated temperature. The required time for this to
happen is called the thermalization time which can become a serious part
of our computational effort if we make a wrong choice of [image: μ
 1   ] and/or
[image: P (μ →  ν)  ].

   A necessary condition for the sample to converge to the desired distribution is
for the process to be ergodic. This means that for every state [image: μ  ] it is possible to
reach any other state [image: ν  ] in a finite number of steps. If this criterion is
not satisfied and a significant part of phase space is not sampled, then
sampling will fail. Usually, given a state [image: μ  ], the reachable states [image: ν  ] at
the next step (i.e. the states for which [image: P (μ → ν ) > 0  ]) are very few.
Therefore the ergodicity of the algorithm considered must be checked
carefully21 .


   12.7    Detailed Balance Condition

Equation  (12.2)  tells us that, in order to find the system in equilibrium in the
[image: p
 μ  ] distribution, the transition probabilities should be such that


   	
                                                                          

                                                                          
   
[image: ∑                 ∑
   p μP(μ →  ν) =     pνP (ν → μ ).
 ν                 μ
]
	(12.57)



This means that the rate that the system comes into the state [image: μ  ] is equal to the
rate in which it leaves [image: μ  ]. From equation  (12.56)  we obtain


   	
   
[image: p  =  ∑  p P (ν →  μ).
  μ       ν
       μ
]
	(12.58)



This condition is necessary but it is not sufficient (see section 2.2.3 in  [4]). A
sufficient, but not necessary, condition is the detailed balance condition. When the
transition probabilities satisfy


   	
   
[image: pμP (μ →  ν) = pνP (ν →  μ),
                                                                          

                                                                          
]
	(12.59)



then the system will equilibrate to [image: p μ  ] after sufficiently long thermalization time.
By summing both sides of  (12.59) , we obtain the equilibrium condition  (12.57) .
For the canonical ensemble  (12.4)  the condition becomes


   	
   
[image: P (μ →  ν)    p
---------- =  -ν-= e−β(Eν−Eμ).
P (ν →  μ)    pμ
]
	(12.60)



One can show that if the transition probabilities satisfy the above conditions
then the equilibrium distribution of the system will be the Boltzmann
distribution  (12.4) . A program implementing a Monte Carlo simulation of a
statistical system in the canonical ensemble consists of the following main
steps:
      

      	Write   a   program   that   codes   appropriately   chosen   transition
      probabilities [image: P(μ →  ν)  ] that satisfy condition  (12.60)
      

      	Choose an initial state [image: μ1   ]
      

      	Let the system evolve until it thermalizes to the Boltzmann distribution
      (12.4)  (thermalization)
      

      	Collect data for the observables [image: 𝒪 ] and calculate the estimators [image: 𝒪M  ]
      from equation  (12.54)
      

      	Stop when the desired accuracy in the calculation of [image: ⟨𝒪⟩ ] has been
      achieved.


                                                                          

                                                                          
   Equation  (12.60)  has many solutions. For a given problem, we are looking for
the most efficient one. Below we list some possible choices:


   	
   
[image:                  − 12β(Eν−Eμ)
P (μ → ν ) = A ⋅ e         ,
]
	(12.61)





   	
   
[image:                    − β(E ν− Eμ)
P (μ →  ν) = A ⋅ -e------------,
                 1 + e− β(Eν− Eμ)
]
	(12.62)





   	
   
                                                                          

                                                                          
[image:                 {   −β(Eν−E μ)
P (μ →  ν) = A ⋅   e           E ν − Eμ > 0  ,
                   1           E ν − Eμ ≤ 0
]
	(12.63)



for appropriately chosen states [image: ν ⁄= μ  ] and


   	
   
[image:                 ∑
P(μ →  μ ) = 1 −    P (μ →  ν).
                  ν
]
	(12.64)



[image:          ′
P (μ →  ν ) = 0  ] for any other state [image:  ′
ν ]. In order for  (12.64)  to be meaningful,
the constant [image: A  ] has to be chosen so that


   	
   
[image: ∑
    P(μ →  ν) < 1.
ν⁄=μ
]
	(12.65)




   Equation  (12.65)  gives much freedom in the choice of transition probabilities.
In most cases, we split [image: P (μ →  ν)  ] in two independent parts


                                                                          

                                                                          
   	
   
[image: P (μ →  ν) = g(μ →  ν)A(μ →  ν).
]
	(12.66)



The probability [image: g(μ →  ν)  ] is the selection probability of the state [image: ν  ] when the
system is in the state [image: μ  ]. Therefore the first step in the algorithm is to select a
state [image: ν ⁄= μ  ] with probability [image: g(μ →  ν)  ].

   The second step is to accept the change with probability [image: A(μ →  ν)  ]. If the
answer is no, then the system remains in the state [image: μ  ]. This way equation
(12.64)  is satisfied. The probabilities [image: A(μ →  ν)  ] are called the acceptance
ratios.

   The art in the field is to device algorithms that give the maximum possible
acceptance ratios for the new states [image: ν  ] and that the states [image: ν  ] are as much as
possible statistically independent from the original state [image: μ  ]. An ideal situation is
to have [image: A (μ →  ν) = 1  ] for all [image: ν  ] for which [image: g(μ →  ν) > 0  ]. As we will see in a
following chapter, this is what happens in the case of the Wolff cluster
algorithm.




   12.8    Problems


      

      	Prove equation  (12.18) .
      

      	Prove equation  (12.19) .
      

      	Prove equation  (12.45) .
                                                                          

                                                                          
      

      	Show that equations  (12.61) – (12.63)  satisfy  (12.60) .


                                                                          

                                                                          
   


Chapter 13
Simulation of the [image: d = 2  ] Ising Model

This chapter is an introduction to the basic Monte Carlo methods used in the
simulations of the Ising model on a two dimensional rectangular lattice,
but also in a wide spectrum of scientific applications. We will introduce
the Metropolis algorithm, which is the most common algorithm used
in Monte Carlo simulations. We will discuss the thermalization of the
system and the effect of correlations between successive spin configurations
generated during the simulation. The autocorrelation function and the
time scale defined by it, the autocorrelation time, are measures of these
autocorrelations and play a central role in the study of the statistical
independence of our measurements. Beating autocorrelations is crucial in Monte
Carlo simulations since they are the main obstacle for studying large
systems, which in turn is essential for taking the thermodynamic limit
without the systematic errors introduced by finite size effects. We will also
introduce methods for the computation of statistical errors that take into
account autocorrelations. The determination of statistical errors is of
central importance in order to assess the quality of a measurement and
predict the amount of resources needed for reaching a specific accuracy
goal.


   13.1    The Ising Model

The Ising model (1925)  [55] has played an important role in the evolution of
ideas in statistical physics and quantum field theory. In particular, the two
dimensional model is complicated enough in order to possess nontrivial properties
but simple enough in order to be able to obtain an exact analytic solution. The
zero magnetic field model has a 2nd order phase transition for a finite value of the
temperature and we are able to compute critical exponents and study its
continuum limit in detail. This gives us valuable information on the non analytic
properties of a system undergoing a second order phase transition, the appearance
of scaling, the renormalization group and universality. Using the exact
solution1 
of Onsager (1948)  [56] and others, we obtain exact results and compare them
with those obtained via approximate methods, like Monte Carlo simulations,
high and low temperature expansions, mean field theory etc. The result
is also interesting from a physics point of view, since it is the simplest,
phenomenologically interesting, model of a ferromagnetic material. Due to
                                                                          

                                                                          
universality, the model describes also the liquid/vapor phase transition at
the triple point. A well known textbook for a discussion of statistical
mechanical models that can be solved exactly is the book by Baxter  [54].



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.1: The two dimensional square lattice whose sites [image: i = 1,...,N  ] are occupied
by “atoms” or “magnets” with spin [image: si  ]. In this figure spins may have any orientation on
the plane (XY model). The simplest models take into account only the nearest neighbor
interactions [image: − J⃗si ⋅⃗sj  ], where [image: ⟨ij⟩ ] is a link of the lattice. We take periodic boundary
conditions which result in a toroidal topology on the lattice where the horizontal and
vertical sides of the lattice are identified. In the figure, identified sides have the same color
and their respective sites are connected by a link..



                                                                          

                                                                          
   


   In order to define the model, consider a two dimensional square lattice like the
one shown in figure 13.1. On each site or node of the lattice we have an “atom” or
a “magnet” of spin [image: si  ]. The geometry is determined by the distance of the
nearest neighbors, the lattice constant [image: a  ], and the number of sites [image: N  ].
Each side consists of [image: L  ] sites so that [image:                d
N =  L × L =  L  ], where [image: d =  2  ] is
the dimension of space. The topology is determined by the way sites are
connected with each other via links. Special care is given to the sites
located on the sides of the lattice. We usually take periodic boundary
conditions which is equivalent to identifying the opposite sides of the square
by connecting their sites with a link. This is depicted in figure  (13.1) .
Periodic boundary conditions endow the plane on which the lattice is defined
with a toroidal topology.   The system’s dynamics are determined by the
spin–spin interaction. We take it to be short range and the simplest case
considered here takes into account only nearest neighbor interactions.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.2: The Ising model spins take two possible values: “up” or “down” and the
Hamiltonian of the system is the sum of contributions of the energy of all links (“bonds”)
[image: ⟨ij⟩ ]. The energy of each bond takes two values, [image: + J  ] for opposite or [image: − J  ] for same
spins, where [image: J > 0  ] for a ferromagnetic system. The system possesses a discrete [image: Z2  ]
symmetry: The Hamiltonian is invariant when all [image: si → − si  ].



                                                                          

                                                                          
   


   In the Ising model, spins have two possible values, “up” or “down” which we
map2 
to the numerical values [image: + 1  ] or [image: − 1  ]. For the ferromagnetic model, each link
is a “bond” whose energy is higher when the spins on each side of the
link are pointing in the same direction and lower when they point in the
opposite3 
direction. This is depicted in figure 13.1. The system could also be immersed in a
constant magnetic field [image: B  ] whose direction is parallel to the direction of the
spins.

   We are now ready to write the Hamiltonian and the partition function of the
system. Consider a square lattice of [image: N  ] lattice sites (or vertices) labeled by a number
[image: i = 1,2,...,N  ]. The lattice has [image: Nl  ] links (or bonds) among nearest neighbors.
These are labeled by [image: ⟨ij⟩ ], where [image: (i,j)  ] is the pair of vertices on each side of the
link. We identify the sides of the square like in figure 13.1. Then, since two
vertices are connected by one link and four links intersect at one vertex, we have
that4 


   	
   
[image: 2Nl = 4N  ⇒  Nl = 2N  .
]
	(13.1)


                                                                          

                                                                          

At each vertex we place a spin [image: si = ±1  ]. The Hamiltonian of the system is given
by


   	
   
[image:         ∑           ∑
H =  − J    sisj − B    si.
         ⟨ij⟩          i
]
	(13.2)



The first term is the spin–spin interaction and for [image: J >  0  ] the system is
ferromagnetic. In this book, we consider only the [image: J > 0  ] case. A link connecting
same spins has energy [image: −  J  ], whereas a link connecting opposite spins
has energy [image: + J  ]. The difference of the energy between the two states
is [image: 2J  ] and the spin-spin dynamics favor links connecting same spins.
The minimum energy [image: E
  0   ] is obtained for the ground state, which is the
unique5  state in which all
spins point in the direction6 
of [image: B  ]. This is equal to


   	
                                                                          

                                                                          
   
[image: E0 =  − J Nl − BN =  − (2J  + B )N .
]
	(13.3)




   The partition function is 


   	
   
[image:       ∑    ∑        ∑     −βH [{si}]   ∑    βJ∑ ⟨ij⟩sisj+βB ∑i si
Z =             ...      e        ≡      e                 ,
     s1= ±1s2=±1    sN= ±1            {si}
]
	(13.4)



where [image: {si} ≡ {s1,s2,...,sN} ] is a spin configuration of the system. The number
of terms is equal to the number of configurations [image: {si} ], which is equal to [image:   N
2  ], i.e.
it increases exponentially with [image: N  ]. For a humble [image: 5 × 5  ] lattice we have
[image: 225 ≈ 3.4 × 106   ] terms.

   The two dimensional Ising model for [image: B =  0  ] has the interesting property that,
for [image: β = βc  ], where


   	
   
[image:      1        √ --
βc = --ln(1 +   2) ≈ 0.4406867935 ...,
     2
]
	(13.5)



it undergoes a phase transition between an ordered or low temperature phase
where the system is magnetized ([image: ⟨|M  |⟩ > 0  ]) and a disordered or high temperature
phase where the magnetization vanishes ([image: ⟨|M  |⟩ = 0  ]). The magnetization [image: ⟨|M |⟩ ]
distinguishes between the two phases and it is called the order parameter. The
critical temperature [image: βc  ] is the Curie temperature. The phase transition is of second
order, which is a special case of a continuous phase transition. For a continuous
phase transition the order parameter is continuous at  [image: β = βc  ], but it is non
analytic7 .
For a second order phase transition, its derivative is not continuous. This is
qualitatively depicted in figure 13.1. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 13.3: The qualitative behavior of the magnetization (left) and the specific heat
(right) near the Ising model phase transition. The continuous line is the non analytic
behavior in the thermodynamic limit, whereas the dashed lines show the behavior of the
analytic, finite [image: N  ] behavior. The latter converge to the former in the large [image: N  ] limit
(thermodynamic limit).



                                                                          

                                                                          
   


   For [image: β ⁄= βc  ] the correlation function  (12.45)  behaves like in equation
(12.46)  resulting in a finite correlation length [image: ξ (β )  ]. The correlation
length8 
diverges as we approach the critical temperature, and its asymptotic behavior in
this limit is given by the scaling relation


   	
   
[image:                 −ν         βc − β
ξ(β) ≡ ξ(t) ∼ |t|  ,    t = --β----.
                               c
]
	(13.6)



Then the correlation function behaves according to  (12.47)  


   	
   
[image: G (c2)(i,j) ∼ --1--.
            |xij|η
]
	(13.7)



Scaling behavior is also found for the specific heat [image: C  ], the magnetization
[image: M  ≡  ⟨|M  |⟩ ] and the magnetic susceptibility [image: χ  ] according to the relations 
                                                                          

                                                                          


   
[image:           − α
 C   ∼  |t|                           (13.8)
M    ∼  |t|β                           (13.9)
          − γ
 χ   ∼  |t|  ,                       (13.10)
]


whereas the magnetization for [image: t = 0  ] and nonzero magnetic field [image: B  ⁄= 0  ] behaves
like 
   	
   
[image:        − 1∕δ
M  ∼  B    .
]
	(13.11)



The exponents in the above scaling relations are called critical exponents or
scaling exponents. They take universal values, i.e. they don’t depend on the details
of the lattice construction or of the interaction. A whole class of such models
with different microscopic definitions have the exact same long distance
behavior9 !
The systems in the same universality class need to share the same symmetries and
dimensionality of space and the fact that the interaction is of short range. In the
particular model that we study, these exponents take the so called Onsager
exponent values
                                                                          

                                                                          


   	
   
[image:  α = 0,  β =  1,  γ = 7
              8       4
                      1
δ =  15, ν =  1, η =  4.
]
	(13.12)




   Theses exponents determine the non analytic behavior of the corresponding
functions in the thermodynamic limit. Non analyticity cannot arise in the finite
[image: N  ] model. The partition function  (13.4)  is a sum of a finite number of
analytic terms, which of course result in an analytic function. The non
analytic behavior manifests in the [image: N  →  ∞ ] limit, where the finite [image: N  ]
analytic functions converge to a non analytic one. The loss of analyticity is
related to the appearance of long distance correlations between the spins
and the scaling of the correlation length according to equation  (13.6)
.

   The two phases, separated by the phase transition, are identified by the
different values of an order parameter. Each phase is characterized by the
appearance or the breaking of a symmetry. In the Ising model, the order
parameter is the magnetization and the symmetry is the [image: Z2   ] symmetry
represented by the transformation [image: si →  − si  ]. The magnetization is zero in the
disordered, high temperature phase and non zero in the ordered, low temperature
phase. This implies that the magnetization is a non analytic function of the
temperature10 .

   Universality and scale invariance appear in the [image: ξ →  ∞ ] limit. In our case, this
occurs by tuning only one parameter, the temperature, to its critical value. A
unique, dynamical, length scale emerges from the correlation function, the
correlation length [image: ξ  ]. Scale invariance manifests when the correlation length
                                                                          

                                                                          
becomes much larger than the microscopic length scale [image: a  ] when [image: β →  βc  ]. In the
critical region, all quantities which are functions of the distance become functions
only of the ratio [image: r∕ξ  ]. Everything depends on the long wavelength fluctuations
required by the symmetry of the order parameter and all models in the same
universality class have the same long distance behavior. This way one
can study only the simplest model within a universality class in order to
deduce the large distance/long wavelength properties of all systems in the
class.


   13.2    Metropolis

Consider a square lattice with [image: L  ] sites on each side so that [image: N  = L × L  = L2   ] is
the number of lattice sites (vertices) and [image: Nl = 2N  ] is the number of links (bonds)
between the sites. The relation [image: Nl =  2N  ] holds because we choose helical
boundary conditions as shown in figure 13.6. The choice of boundary
conditions will be discussed later. On each site [image: i  ] we have one degree of
freedom, the “spin” [image: si  ] which takes on two values [image: ± 1  ]. We consider the
case of zero magnetic field [image: B =  0  ], therefore the Hamiltonian is given
by11 



   	
   
[image:         ∑
H  =  −    sisj.
        ⟨ij⟩
]
	(13.13)



The sum [image: ∑
  ⟨ij⟩ ] is a sum over the links [image: ⟨ij⟩ ], corresponding to the pairs of sites
[image: i,j  ]. Then [image: ∑             ∑N    ∑N
   ⟨i,j⟩ = (1∕2)   i=1   j=1   ] since each bond is counted twice in the
                                                                          

                                                                          
second sum. The partition function is 


   	
   
[image:      ∑     ∑        ∑               ∑     ∑
Z =             ...      e−βH[{si}] ≡    eβ  ⟨ij⟩sisj.

    s1=±1 s2= ±1    sN=±1             {si}
]
	(13.14)



Our goal is to collect a sample of states that is distributed according to the
Boltzmann distribution  (12.4) . This will be constructed via a Markov process
according to the discussion in section 12.6. Sampling is made according to  (12.53)
and the expectation values are estimated from the sample using  (12.54) . At
each step the next state is chosen according to  (12.60) , and for large
enough sample, or “time steps”, the sample is approximately in the desired
distribution.

   Suppose  that  the  system  is  in  a
state12 
[image: μ  ]. According to  (12.66) , the probability that in the next step the system goes
into the state [image: ν  ] is


   	
   
[image: P (μ → ν ) = g(μ → ν )A(μ →  ν),
                                                                          

                                                                          
]
	(13.15)



where [image: g(μ →  ν)  ] is the selection probability of the state [image: ν  ] when the system is in
the state [image: μ  ] and [image: A (μ →  ν)  ] is the acceptance ratio, i.e. the probability that the
system jumps into the new state. If the detailed balance condition  (12.60)



   	
   
[image: P(μ →  ν)    g(μ →  ν)A(μ →  ν)     −β(E  −E )
----------=  -------------------=  e    ν  μ
P(ν →  μ)    g(ν →  μ)A(ν →  μ)
]
	(13.16)



is satisfied, then the distribution of the sample will converge to  (12.4)
[image:       − βEμ
pμ = e     ∕Z  ]. In order that the system changes states often enough, the
probabilities [image: P (μ →  ν)  ] should be of order one and the differences in the
energy [image: E ν − E μ  ] should not be too large. This means that the product of
the temperature with the energy difference should be a number of order
one or less. One way to accomplish this is to consider states that differ
by the value of the spin on only one site [image:             ′
si = ±1 →  si ∓ 1  ]. Since the
energy  (13.13)  is a local quantity, the change in energy will be small. More
specifically, if each site has [image: z = 4  ] nearest neighbors, the change of the spin on
site [image: i  ] results in a change of sign for [image: z  ] terms [image: sisj  ] in  (13.13) . The
change in the energy for each bond is [image: ±  2  ]. If the state [image: μ  ] is given by
[image: {s1,...,si,...,sN } ] and the state [image: ν  ] by [image:          ′
{s1,...,si,...,sN } ] (i.e. all the spins
are the same except the spin [image: si  ] which changes sign), the energy difference will
be


   	
                                                                          

                                                                          
   
[image: |ΔE  | ≤ 2z ⇔ E μ − 2z ≤ E ν ≤ E μ + 2z.
]
	(13.17)



If the site [image: i  ] is randomly chosen then


   	
   
[image:                         {  1- (μ, ν) differ by one  spin
g(μ →  ν) = g(ν →  μ) =    N                           ,
                           0  otherwise
]
	(13.18)



and the algorithm is ergodic. Then we have that


   	
   
[image: A (μ →  ν)
---------- = e−β(Eν−E μ).
A (ν →  μ)
]
	(13.19)



A simple choice for satisfying this condition is  (12.61)


   	
                                                                          

                                                                          
   
[image:                   − 1β(E −E )
A(μ →  ν) = A0 ⋅ e 2   ν  μ .
]
	(13.20)



In order to maximize the acceptance ratios we have to take [image: A   = e−βz
  0  ].
Remember that we should have [image: A (μ →  ν ) ≤ 1  ] and [image: |ΔE | ≤ 2z  ]. Therefore


   	
   
[image:                1
A (μ →  ν) = e−2β(Eν−E μ+2z).
]
	(13.21)






                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 13.4: The acceptance ratio [image: A(μ → ν)  ] for the two dimensional Ising model on
a square lattice given by equation   (13.21)   (left) and the Metropolis algorithm (right)
as a function of the change in energy [image: ΔE = E ν − Eμ  ]. For the Metropolis algorithm the
acceptance ratios are larger and the algorithm is expected to perform better.



                                                                          

                                                                          
   


   Figure 13.4 depicts the dependence of [image: A (μ →  ν)  ] on the change in energy for
different values of [image: β  ]. We observe that this probability is small even
for zero energy change and we expect this method not to perform very
well.

   It is much more efficient to use the algorithm proposed by Nicolas Metropolis
et. al. 1953  [59] which is given by  (12.63)


   	
   
[image:              { e− β(Eν− Eμ) E   − E  >  0
A (μ →  ν) =                 ν    μ      .
               1           E ν − Eμ ≤  0
]
	(13.22)



According to this relation, when a change in the states lowers the energy, the
change is always accepted. When it increases the energy, the change is
accepted with a probability less than one. As we can see in figure 13.4,
this process accepts new states much more frequently than the previous
algorithm.

   The Metropolis algorithm is very widely used. It is applicable to any system, it is
simple and efficient. We note that the choice to change the spin only locally is not
a restriction put by the metropolis algorithm. There exist efficient algorithms that
make non local changes to the system’s configuration that (almost) conserve the
Hamiltonian13 
and, consequently, the acceptance ratios are satisfactorily large.


   13.3    Implementation

                                                                          

                                                                          
The first step in designing a code is to define the data structure. The
degrees of freedom are the spins [image: si = ±1  ] which are defined on [image: N  ] lattice
sites. The most important part in designing the data structure in a lattice
simulation is to define the neighboring relations among the lattice sites
in the computer memory and this includes the implementation of the
boundary conditions. A bad choice of boundary conditions will make
the effect of the boundary on the results to be large and increase the
finite size effects. This will affect the speed of convergence of the results
to the thermodynamic limit, which is our final goal. The most popular
choice is the toroidal or periodic boundary conditions. A small variation of
these lead to the so called helical boundary conditions, which will be
our choice because of their simplicity. Both choices share the fact that
each site has the same number of nearest neighbors, which give the same
local geometry everywhere on the lattice and minimize finite size effects
due to the boundary. In contrast, if we choose fixed or free boundary
conditions on the sides of the square lattice, the boundary sites have
a smaller number of nearest neighbors than the ones inside the lattice.



   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.5:  An  [image: L = 5  ]  square  lattice  with  periodic      boundary  conditions.  The
topology is toroidal.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.6: An [image: L = 5  ] square lattice with helical  boundary conditions. The topology
is toroidal.



                                                                          

                                                                          
   


   One choice for mapping the lattice sites into the computer memory is to use
their coordinates [image: (i,j)  ], [image: i,j = 1,...,L  ]. Each spin is stored in an array s(L,L).
For a site s(i,j) the four nearest neighbors are s(i[image: ± ]1,j), s(i,j[image: ± ]1). The
periodic boundary conditions are easily implemented by adding [image: ±  L  ] to i,j each
time they become less than one or greater than [image: L  ]. This is shown in figures 13.5
and 13.30.

   The elements of the array s(L,L) are stored linearly into the computer
memory. The element s(i,j) is at a “distance” (j-1)*L+i array positions from
s(1,1) and accessing its value involves an, invisible to the programmer,
multiplication. Using helical boundary conditions this multiplication can be
avoided. The positions of the lattice sites are now given by one number
[image: i = 1,...,L2 =  N  ], as shown in figures 13.6 and 13.31. The spins are stored in
memory in a one dimensional array s(N) and the calculation of the nearest
neighbors of a site s(i) is easily done by taking the spins s(i[image: ± ]1) and
s(i[image: ± ]L). The simplicity of the helical boundary conditions is based
on the fact that, for the nearest neighbors of sites on the sides of the
square, all we have to do is to make sure that the index i stays within
the accepted range 1[image: ≤ ] i [image: ≤ ] N. This is easily done by adding or
subtracting [image: N  ] when necessary. Therefore in a program that we want to
calculate the four nearest neighbors nn of a site i, all we have to do is:

                                                                          

                                                                          


   
 nn=i+1;if(nn.gt.N)nn=nn-N
 
 nn=i-1;if(nn.lt.1)nn=nn+N
 
 nn=i+L;if(nn.gt.N)nn=nn-N
 
 nn=i-L;if(nn.lt.1)nn=nn+N


 We will choose helical boundary conditions for their simplicity and efficiency in calculating
nearest neighbors14 .


   The dynamics of the Monte Carlo evolution is determined by the initial state
and the Metropolis algorithm. A good choice of initial configuration can be
important in some cases. It could lead to fast or slow thermalization, or even to
no thermalization at all. In the model that we study it will not play an important
role, but we will discuss it because of its importance in the study of other systems.
We may choose a “cold” ([image: β = + ∞ ] - all spins aligned) or a “hot” ([image: β = 0  ] - all
spins are equal to [image: ± 1  ] with equal probability [image: 1∕2  ]) initial configuration.
For large lattices, it is desirable to start in one of these states and then
lower/increase the temperature in small steps. Each time that the temperature is
changed, the spin configuration is saved and used in the next simulation. 


   Ergodicity and thermalization must be checked by performing independent
simulations15 
and verify that we obtain the same results. Similarly, independent simulations
starting from different initial states must also be checked that yield the same
results.

   Consider each step in the Markov process defined by the Metropolis algorithm.
Assume that the system is in the state [image: μ = {sμ,...,sμ,...,sμ }
      1      k      N ] and consider the
transition to a new state [image:        ν      ν      ν
ν = {s 1,...,sk,...,sN} ] which differs only by the
value of the spin [image:         μ
sνk = − sk  ] (spin flip), whereas all the other spins are the
                                                                          

                                                                          
same: [image:  ν    μ
sj = sj  ] [image: ∀j ⁄= k  ]. The energy difference between the two states is


   
[image:                  ∑   ν  ν      ∑    μ μ
E ν − E μ =   (−    sis j) − (−    si sj)
                 ⟨ij⟩            ⟨ij⟩
          =   − ∑   sμ(sν− sμ )
                     i  k   k
               ∑⟨ik⟩
          =   2    sμsμ
                    i k
                ⟨ik(⟩      )
                   ∑
          =   2sμ(     sμi)  ,                     (13.23)
                k   ⟨ik⟩
]


where the second line is obtained after the cancellation of the common terms in the
sums. In the third line we used the relation [image: sν − sμ = − 2sμ
 k    k       k  ], which you can prove
easily by examining the cases [image: sμ=  ±1
 k  ] separately. The important property of
this relation is that it is local since it depends only on the nearest neighbors. The
calculation of the energy difference [image: E ν − E μ  ] is fast and is always a number of order
one16 .
   The Metropolis condition is easily implemented. We calculate the sum in the
parenthesis of the last line of equation  (13.23)  and obtain the energy difference
[image: E ν − Eμ  ]. If the energy decreases, i.e. [image: Eν − E μ ≤ 0  ], the new state [image: ν  ] is
accepted and “we flip the spin”. If the energy increases, i.e. [image: E ν − E μ > 0  ], then
the acceptance ratio is [image: A (μ →  ν ) = e −β(E ν− Eμ) < 1  ]. In order to accept the new
state with this probability we pick a random number uniformly distributed in
[image: 0 ≤ x <  1  ]. The probability that this number is [image: x < A(μ →  ν)  ] is equal
                                                                          

                                                                          
to17 
[image: A (μ →  ν)  ]. Therefore if [image: x ≤ A (μ →  ν)  ] the change is accepted. If
[image: x >  A(μ →  ν)  ] the change is rejected and the system remains in the same state
[image: μ  ].

   A small technical remark is in order: The possible values of the sum
[image: (∑      μ)
   ⟨ik⟩ si  = − 4,− 2,0,2,4  ] and these are the only values that enter in the
calculation of [image: A (μ → ν )  ]. Moreover, only the values that increase the energy, i.e.
[image: 2,4  ] are of interest to us. Therefore we only need two values of [image: A(μ →  ν)  ], which
depend only on the temperature. These can by calculated once and for all in
the initialization phase of the program, stored in an array and avoid the
repeated calculation of the exponential [image: e− β(Eν− Eμ)   ] which is expensive.

   In our program we also need to implement the calculation of the observables
that we want to measure. These are the energy  (13.13)  


   	
   
[image:        ∑
E  = −     sisj,
        ⟨ij⟩
]
	(13.24)



and the magnetization


   	
   
                                                                          

                                                                          
[image:       ||     ||
      |∑    |
M  =  ||   si||.
        i
]
	(13.25)



Beware of the absolute value in the last equation! The Hamiltonian
[image: H  ] has a [image: Z
 2   ]  symmetry because it is symmetric under reflection
of all the spins. The probability of appearance of a state depends only
on the value of [image: H  ], therefore two configurations with opposite spin are
equally probable. But such configurations have opposite magnetization,
therefore the average magnetization [image: ⟨∑   si⟩
    i ] will be zero due to this
cancellation18 .

   We can measure the energy and the magnetization in two ways. The first one
is by updating their values each time a Metropolis step is accepted. This is easy
and cheap since the difference in the sum in equations  (13.24)  and  (13.25)
depends only on the value of the spin [image:   μ
s k  ] and its nearest neighbors. The energy
difference is already calculated by  (13.23)  whereas the difference in the
magnetization in  (13.25)  is given by


   	
   
[image: ∑       ∑
    sν−     sμ = sν − sμ = − 2sμ
 i   i    i  i    k    k       k
]
	(13.26)



The second way is by calculating the full sums in  (13.24)  and
                                                                          

                                                                          
(13.25)  every time that we want to take a measurement. The optimal
choice depends on how often one obtains a statistically independent
measurement19 .
If the average acceptance ratio is [image: A¯  ], then the calculation of the magnetization
using the first method requires [image: A¯N  ] additions per [image: N  ] Monte Carlo steps,
whereas the second one requires [image: N  ] additions per measurement. 

   We use the normalization


   	
   
[image:        1         1
⟨e⟩ = ---⟨E ⟩ = ---⟨E ⟩,
      Nl        2N
]
	(13.27)



which gives the energy per link. We have that [image: − 1 ≤  e ≤ +1  ], where [image: e = − 1  ] for
the ground state in which all [image: 2N  ] links have energy equal to [image: − 1  ]. The
magnetization per site is


   	
   
[image:        1
⟨m ⟩ = --⟨M  ⟩.
       N
]
	(13.28)


                                                                          

                                                                          

We have that [image: 0 ≤ m  ≤ 1  ], where [image: m =  0  ] for [image: β =  0  ] (perfect disorder) and
[image: m  = 1  ] for the ground state at [image: β = ∞ ] (perfect order). We call [image: m  ] the
order parameter since its value determines the phase that the system is
in.

   The specific heat is given by the fluctuations of the energy


   	
   
[image: c = β2N ⟨(e − ⟨e⟩)2⟩ = β2N (⟨e2⟩ − ⟨e⟩2),
]
	(13.29)



and the magnetic susceptibility by the fluctuations of the magnetization



   	
   
[image:                    2           2       2
χ =  βN ⟨(m −  ⟨m ⟩) ⟩ = βN (⟨m  ⟩ − ⟨m ⟩).
]
	(13.30)




   In order to estimate the amount of data necessary for an accurate
measurement of these quantities, we consider the fact that for [image: n  ] independent
measurements the statistical error drops as [image:      √ --
∼ 1 ∕  n  ]. The problem of
determining how often we have independent measurements is very important and
                                                                          

                                                                          
it will be discussed in detail later in this chapter.


   13.3.1    The Program

In  this  section  we  discuss  the
program20 
that implements the Monte Carlo simulation of the Ising model. The code in this
section can be found in the accompanying software of this chapter in the directory
Ising_Introduction.

   In the design of the code, we follow the philosophy of modular programming.
Different independent sections of the program will be coded in different
files. This makes easier the development, maintenance and correction of
the code by one or a team of programmers. A header file contains the
definitions which are common for the code in one or more files. Then, all the
parameters and common blocks are in one place and they are easier to
modify for all program units in a unified way, therefore avoiding errors. In
our case we have only one such file, named include.inc, whose code
will be included in the beginning of each program unit using an include
statement:
                                                                          

                                                                          


   
!============== include.inc ==================
 
 implicit none
 
 integer,parameter      :: L = 12
 
 integer,parameter      :: N = L*L
 
 integer,parameter      :: XNN = 1, YNN = L
 
 integer,dimension(N)   :: s
 
 real(8),dimension(0:4) :: prob
 
 real(8)                :: beta
 
 common /lattice/          s
 
 common /parameters/       beta,prob
 
!function definitions:
 
 real(8)                :: drandom
 
 integer                :: seed
 
 common /randoms/          seed


 The lattice size [image: L  ] is a constant parameter, whereas the arrays and variables
encoding the spins and the simulation parameters are put in common
blocks. The array s(N) stores the spin of each lattice site which take
values [image: ±  1  ]. The variable beta is the temperature [image: β  ] and the array
prob(0:4) stores the useful values of the acceptance ratios [image: A (μ →  ν)  ]
according to the discussion on page 1322. The function drandom() is the one
discussed in section 11.1, which generates pseudorandom numbers uniformly
distributed in the interval [image: (0,1)  ] - [image: 0  ] and [image: 1  ] excluded. The parameters XNN
and YNN are used for computing the nearest neighbors in the X and Y
directions according to the discussion of section 13.3 on helical boundary
conditions. For example, for an internal site i, i+XNN is the nearest neighbor
in the [image: +  x  ] direction and i-YNN is the nearest neighbor in the [image: − y  ]
direction.

   The main program is in the file main.f90 and drives the simulation:
                                                                          

                                                                          


   
!============== main.f90    ==================
 
program Ising2D
 
 include ’include.inc’
 
 integer :: start     !start= 0 (cold)/1 (hot)
 
 integer :: isweep, nsweep
 

 
 nsweep = 1000
 
 beta=0.21D0;seed=9873;start=1;
 
 call init(start)
 
 do isweep = 1, nsweep
 
  call met
 
  call measure
 
 end do
 
end program Ising2D
 



 In the beginning we set the simulation parameters. The initial configuration is
determined by the value of start. If start=0, then it is a cold configuration and
if start=1, then it is a hot configuration. The temperature is set by the value of
beta and the number of sweeps of the lattice by the value of nsweep. One sweep
of the lattice is defined by N attempted spin flips. The flow of the simulation is
determined by the initial call to init, which performs all initialization tasks, and
the subsequent calls to met and measure, which perform nsweep Metropolis
sweeps and measurements respectively.

   One level down lies the subroutine init. The value of start is passed through
its argument so that the desired initial state is set:
                                                                          

                                                                          


   
!============== init.f90    ==================
 
! file init.f90
 
! init(start): start = 0: cold start
 
!              start = 1: hot  start
 
!=============================================
 
subroutine init(start)
 
 include ’include.inc’
 
 integer :: start
 
 integer :: i
 
!----------------------
 
!initialize probabilities for E_\nu > E_mu
 
 prob=0.0D0
 
 do i=2,4,2 !i = dE/2 = (E_nu-E_mu)/2=2,4
 
  prob(i) = exp(-2.0D0*beta*i)
 
 enddo
 
!initial configuration:
 
 select case(start)
 
  case(0)!cold:
 
   s = 1 !all s(i) = 1
 
  case(1)!hot:
 
   do i=1,N
 
    if(drandom() .lt. 0.5D0)then
 
     s(i) =  1
 
    else
 
     s(i) = -1
 
    endif
 
   enddo
 
  case default
 
   print *,’init: start= ’,start,’ not valid. Exiting...’
 
   stop
 
  end select
 

 
end subroutine init


 At first the array prob(0:4) is initialized to the values of the acceptance ratios
[image: A (μ →  ν) =  ] [image: e− β(Eν− Eμ) =  ] [image:  −2βsμ ∑   sμ
e    k( ⟨ik⟩ i)  ]. Those probabilities are going to be
                                                                          

                                                                          
used when [image:  μ (∑      μ)
sk    ⟨ik⟩si  > 0  ] and the possible values are obtained when this
expression takes the values 2 and 4. These are the values stored in the array
prob(0:4), and we remember that the index of the array is the expression
[image:  μ (∑      μ)
sk     ⟨ik⟩si ], when it is positive.

   The initial spin configuration is determined by the integer start. Using the
select case block allows us to add more options in the future. When start=0
all spins are set equal to 1, whereas when start=1 each spin’s value is set
to [image: ± 1  ] with equal probability. The probability that drandom()<0.5
is21 
[image: 1∕2  ] in which case we set s(i)=1, otherwise (probability [image: 1 − 1∕2 = 1∕2  ]) we set
s(i)=-1.

   The heart of the program is the subroutine met() which attempts N
Metropolis steps. It picks a random site N times and asks the question whether to
perform a spin flip. This is done using the Metropolis algorithm by calculating the
change in the energy of the system before and after the change of the spin value
according to  (13.23) :
                                                                          

                                                                          


   
!============== met.f90     ==================
 
subroutine met()
 
 include ’include.inc’
 
 integer :: i,k
 
 integer :: nn,snn,dE
 

 
 do k=1,N
 
!pick a random site:
 
  i = INT(N*drandom())+1
 
!snn=sum of neighboring spins:
 
  snn = 0
 
  nn=i+XNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)
 
  nn=i-XNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)
 
  nn=i+YNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)
 
  nn=i-YNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)
 
!dE=change in energy/2:
 
  dE=snn*s(i)
 
!flip:
 
  if(dE.le.0)then
 
   s(i) = -s(i) !accept
 
  else if(drandom() < prob(dE))then
 
   s(i) = -s(i) !accept
 
  endif
 
 enddo !do k=1,N: end sweep
 
end subroutine met


 The line
                                                                          

                                                                          


   
  i = INT(N*drandom())+1


 picks a site i=1,...,N with equal probability. It is important that the value
i=N+1 never appears, something that happens if drandom()=1.0. This value has
been excluded according to the discussion in section 11.1.

   Next, we calculate the sum [image: (∑       )
   ⟨ik⟩ sμi ] in  (13.23) . The nearest
neighbors of the site i have to be determined and this happens in the
lines
                                                                          

                                                                          


   
  snn = 0
 
  nn=i+XNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)
 
  nn=i-XNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)
 
  nn=i+YNN;if(nn.gt.N)nn=nn-N;snn = snn + s(nn)
 
  nn=i-YNN;if(nn.lt.1)nn=nn+N;snn = snn + s(nn)


 The variable delta is set equal to the product  (13.23)  [image:    (        )
sμ  ∑     sμ
 k     ⟨ik⟩ i ]. If it
turns out to be negative, then the change in energy is negative and the spin flip is
accepted. If it turns out to be positive, then we apply the criterion set by  (13.22)
by using the array prob(delta), which has been set in the subroutine init. The
probability that drandom()<prob(delta) is equal to prob(delta), in which case
the spin flip is accepted. In all other cases, the spin flip is rejected and s(i)
remains the same.

   After each Metropolis sweep we perform a measurement. The code is minimal
and simply prints the value of the energy and the magnetization to the stdout.
The analysis is assumed to be performed by external programs. This way we keep
the production code simple and store the raw data for a detailed and flexible
analysis. The printed values of the energy and the magnetization will be used as
monitors of the progress of the simulation, check thermalization and measure
autocorrelation times. Plots of the measured values of an observable as a
function of the Monte Carlo “time” are the so called “time histories”. Time
histories of appropriately chosen observables should always be viewed and
used in order to check the progress and spot possible problems in the
simulation.

   The subroutine measure calculates the total energy and magnetization
(without the absolute value) by a call to the functions E() and M(), which apply
the formulas  (13.24)  and  (13.25) .
                                                                          

                                                                          


   
!============== measure.f90 ==================
 
subroutine measure()
 
 include ’include.inc’
 
 integer :: E,M
 
 print *, E(),M()
 
end subroutine measure
 
!=====================
 
integer function E()
 
 include ’include.inc’
 
 integer en,sum,i,nn
 
 en = 0
 
 do i=1,N
 
!Sum of neighboring spins: only forward nn necessary in the sum
 
  sum = 0
 
  nn=i+XNN;if(nn.gt.N)nn=nn-N;sum = sum + s(nn)
 
  nn=i+YNN;if(nn.gt.N)nn=nn-N;sum = sum + s(nn)
 
  en=en+sum*s(i)
 
 enddo
 
 e = -en
 
end function E
 
!=====================
 
integer function M()
 
 include ’include.inc’
 
 M=SUM(s)
 
end function M


 The compilation of the code is done with the command
                                                                          

                                                                          


   
> gfortran main.f90 met.f90 init.f90 measure.f90 drandom.f90 \
 
   -o is


 which results in the executable file is:
                                                                          

                                                                          


   
> ./is > out.dat
 
> less out.dat
 
-52 10
 
-48 40
 
-64 44
 
-92 64
 
......


 The output of the program is two columns with the values of the total energy
and magnetization (without the absolute value). In order to construct their time
histories we give the gnuplot commands:
                                                                          

                                                                          


   
gnuplot> plot "out.dat" using 1 with lines
 
gnuplot> plot "out.dat" using 2 with lines
 
gnuplot> plot "out.dat" using (($2>0)?$2:-$2) with lines


The last line calculates the absolute values of the second column. The C-like
construct ($2>0)?$2:-$2 checks whether the expression ($2>0) is true. If it is,
then it returns $2, otherwise it returns -$2.


   13.3.2    Towards a Convenient User Interface

In this section we will improve the code, mostly at the user interface level. This is
a nice exercise on the interaction of the programming language with the shell and
the operating system. The code presented can be found in the accompanying
software of this chapter in the directory Ising_Metropolis.

   An annoying feature of the program discussed in the previous section is that
the simulation parameters are hard coded and the user needs to recompile the
program each time she changes them. This is not very convenient if she has to do
a large number of simulations. Another notable change that needs to be
made in the code is that the final configuration of the simulation must be
saved in a file, in order to be read as an initial configuration by another
simulation.

   One of the parameters that the user might want to set interactively at
run time is the size of the lattice L. But this parameter determines the
required memory for the array s(N). Therefore we have to use dynamic
memory allocation for this array using the intrinsic function ALLOCATE.
Another problem is that the array s(N) needs to be accessible by several
parts of the program and allocatable arrays cannot be put in a common
block. Another mechanism for sharing data among different functions
and subroutines is the use of modules. This is the preferable method of
doing it in modern  Fortran programs where the use of common blocks
is discouraged. The shared data needs to be put between the following
statements:
                                                                          

                                                                          


   
module global_data
 
 implicit none
 
 SAVE
 
 ....
 
end module global_data


 In place of the ... we can put variable declarations. We use the statement SAVE
so that their values are saved between function and subroutine calls. The module
has a name which in our case is global_data. Each program unit that
needs to have access to its data needs to start with the statement use
global_data:
                                                                          

                                                                          


   
subroutine share_global_data
 
 use global_data
 
 implicit none
 
 ....
 
end subroutine share_global_data


 In the file global_data.f90 we put all the global variables as follows:
                                                                          

                                                                          


   
module global_data
 
 implicit none
 
 SAVE
 
 integer                :: L
 
 integer                :: N
 
 integer                :: XNN, YNN
 
 integer,allocatable    :: s(:)
 
 real(8),dimension(0:4) :: prob
 
 real(8)                :: beta
 
 integer                :: nsweep,start
 
 integer                :: seed,ranlux_level
 
 real(8)                :: acceptance
 
 character(1024)        :: prog
 
end module global_data


 The array s(:) is allocatable and its storage space will be allocated in the
subroutine init. The variables L, N, XNN and YNN are not parameters anymore
and their values will also be set in init. The new variables are acceptance which
computes the fraction of accepted spin flips in a simulation, ranlux_level which
determines the luxury level of RANLUX and prog which stores the command line
name of the program that runs the simulation.

   The main program has very few changes:
                                                                          

                                                                          


   
!============== main.f90    ==================
 
program Ising2D
 
 use global_data
 
 implicit none
 
 integer :: isweep
 

 
 call init
 
 do isweep = 1, nsweep
 
  call met
 
  call measure
 
 end do
 
 call endsim
 
end program Ising2D
 



 Notice the line use global_data which gives access to the data in the module
global_data. This is the first line of all program units. The subroutine endsim
finishes off the simulation. Its most important function is to store the final
configuration to a file for later use.

   The subroutine init is changed quite a bit since it performs most of the
functions that have to do with the user interface: 
                                                                          

                                                                          


   
!============== init.f90    ==================
 
! start = 0: cold start
 
! start = 1: hot  start
 
! start = 2: use old configuration
 
!=============================================
 
subroutine init
 
 use global_data
 
 implicit none
 
 integer                    :: i,chk
 
 real(8)                    :: obeta=-1.0D0,r
 
 integer                    :: OL=-1
 
 character(1024)            :: buf
 
 integer,parameter          :: f_in=17 !file unit
 
 integer                    :: seeds(25)
 
!----------------------
 
!Define parameters from options:
 
 L=-1;beta=-1.0D0;nsweep=-1;start=-1;seed=-1
 
 ranlux_level=3
 
 call get_the_options
 
 if(start.EQ.0 .OR. start.EQ.1)then
 
  if(L    < 0    )call locerr(’L    has not been set.’)
 
  if(seed < 0    )call locerr(’seed has not been set.’)
 
  if(beta < 0.0D0)call locerr(’beta has not been set.’)
 
!Derived parameters:
 
  N=L*L;XNN=1;YNN=L
 
!Allocate memory for the spins:
 
  ALLOCATE(s(N),STAT=chk)
 
  if(chk      > 0)call locerr(’allocation failure for s(N)’)
 
 endif !if(start.EQ.0 .OR. start.EQ.1)
 
 if(start     < 0)call locerr(’start  has not been set.’)
 
 if(nsweep    < 0)call locerr(’nsweep has not been set.’)
 
!----------------------
 
!initialize probabilities for E_\nu > E_mu
 
 prob=0.0D0
 
 do i=2,4,2 !i = dE/2 = (E_nu-E_mu)/2=2,4
 
  prob(i) = exp(-2.0D0*beta*i)
                                                                          

                                                                          
 
 enddo
 
 acceptance = 0.0D0
 
!--------------------------------------------
 
!initial configuration: cold(0),hot(1),old(2)
 
!--------------------------------------------
 
 select case(start)
 
!--------------------------------------------
 
  case(0)!cold:
 
   call simmessage(6)
 
   call RLUXGO(ranlux_level,seed,0,0)
 
   s = 1 !all s(i) = 1
 
!--------------------------------------------
 
  case(1)!hot:
 
  call simmessage(6)
 
   call RLUXGO(ranlux_level,seed,0,0)
 
   do i=1,N
 
    call ranlux(r,1)
 
    if(r .lt. 0.5D0)then
 
     s(i) =  1
 
    else
 
     s(i) = -1
 
    endif
 
   enddo
 
!--------------------------------------------
 
  case (2)!old:
 
   if(beta < 0.0D0)call locerr(’beta has not been set.’)
 
   open(f_in,file=’conf’,status=’OLD’,ERR=101)
 
   read(f_in,*)buf !read in a comment line
 
   read(f_in,’(A4,I5,A4,I5,A6,G28.17,A6,25I16)’)&
 
    buf,OL,buf,OL,buf,beta,buf,seeds
 
   if(L  < 0 ) L = OL !if L has not been set, read from file
 
   if(L /= OL) &  ! /= the same as .NE. (not equal)
 
    call locerr(’L different from the one read from conf.’)
 
   N=L*L;XNN=1;YNN=L
 
!Allocate memory for the spins:
 
   ALLOCATE(s(N),STAT=chk);
 
   if(chk      > 0)call locerr(’allocation failure for s(N)’)
 
   call simmessage(6)
 
   print ’(A)’,’# Reading configuration from file conf’
 
   do i=1,N
 
    read(f_in,*,END=102) s(i)
                                                                          

                                                                          
 
    if(s(i) /= 1 .AND. s(i) /= -1)&
 
     call locerr(’wrong value of spin’)
 
   enddo
 
   close(f_in)
 
   if(seed < 0) then !initialize from seeds read from file:
 
    call RLUXIN(seeds)
 
   else              !option seed sets new seed:
 
    call RLUXGO(ranlux_level,seed,0,0)
 
   endif
 
!--------------------------------------------
 
  case default
 
   print *,’init: start= ’,start,’ not valid. Exiting...’
 
   stop 1
 
  end select
 
!--------------------------------------------
 
  return
 
!here we put error messages:
 
101 call locerr(’Configuration file conf not found.’)
 
102 call locerr(’File conf ended before reading all spins.’)
 
end subroutine init
 



 In the beginning, the simulation parameters that are to be determined by the user
are given invalid default values. This way they are flagged as not been set. The
subroutine22 
get_the_options sets the parameters to the values that the user passes through
the command line:
                                                                          

                                                                          


   
 L=-1;beta=-1.0D0;nsweep=-1;start=-1;seed=-1
 
 call get_the_options


 Upon return of get_the_options, one has to check if all the parameters have
been set to acceptable values. For example, if the user has forgotten to set the
lattice size L, the call to the subroutine locerr stops the program and prints the
error message passed through its argument:
                                                                          

                                                                          


   
  if(L < 0 )call locerr(’L has not been set.’)


 When the value of N is calculated from L, the program allocates memory for the
array s(N):
                                                                          

                                                                          


   
  N=L*L
 
  ALLOCATE(s(N),STAT=chk)
 
  if(chk > 0)call locerr(’allocation failure for s(N)’)


 When memory allocation is successful, the variable chk is set to 0 by ALLOCATE.
Otherwise we stop the program with a call to locerr.

   Using the construct SELECT CASE(start) we set the initial configuration of
the simulation. A value of start=0 sets all spins equal to 1. The subroutine
simmmessage(f_unit) prints important information about the simulation to the
unit f_unit. The random number generator RANLUX is initialized with a call to
RLUXGO according to the discussion in section 11.2, page 1202. The global variable
ranlux_level is set to 3 by default, but the user can change it from the
command line (see get_the_options). If start=0 the initial configuration is
hot.

   If start=2 we attempt to read a configuration stored in a file named conf.
The format of the file is strictly set by the way we print the configuration in
the subroutine endsim. If the file does not exist, the argument ERR=101
transfers the control of the program to the labeled statement with label
101. This is near the end of the program and stops the program with a
call to locerr. In order to read the configuration properly we need to
know the format of the data in the file conf which is, more or less, as
follows:
                                                                          

                                                                          


   
# Configuration of 2d Ising model on square lattice....
 
Lx= 12 Ly= 12 beta= 0.21 seed=  3718479 5267541 12092770 ....
 
 -1
 
  1
 
  1
 
  1
 
 -1
 
.....


 All comments of the first line are discarded in the character variable buf. The
parameters L and beta of the stored configuration are stored in temporary
variables OL, obeta, so that they can be compared with the values set by the
user.



   If the user provides a seed, then her seed will be used for seeding.
Otherwise RANLUX is initialized to the state read from the file conf. Both
choices are desirable in different cases: If the user wants to split a long
simulation into several short runs, then each time she wants to restart the
random number generator at exactly the same state. If she wants to use
the same configuration in order to produce many independent results,
then RANLUX has to produce different sequences of random numbers each
time23 .
This feature is coded in the lines:
                                                                          

                                                                          


   
   if(seed < 0) then !initialize from seeds read from file:
 
    call RLUXIN(seeds)
 
   else              !option seed sets new seed:
 
    call RLUXGO(ranlux_level,seed,0,0)
 
   endif




   When reading the spins, we have to make sure that they take only
the legal values [image: ± 1  ] and that the data is enough to fill the array
s(N)24 .
Reading enough data is checked by the READ argument END=102. If the READ
statement attempts to read past the end of the file conf, then the control of the
program is transferred to the labeled statement with label 102. This will happen,
e.g. if we attempt to read from a corrupted file.

   The subroutine endsim saves the last configuration in the file conf and can be
found in the file end.f90:
                                                                          

                                                                          


   
!============== end.f90     ==================
 
subroutine endsim()
 
 use global_data
 
 implicit none
 
 integer,parameter :: f_out = 17
 
 integer           :: i,seeds(25)
 

 
 call RLUXUT(seeds)
 
 call rename(’conf’,’conf.old’)
 
 open(unit=f_out,file=’conf’)
 
 write(f_out,’(A)’)&
 
  ’# Configuration of 2d Ising model on square lattice...’
 
 write(f_out,’(A4,I5,A4,I5,A6,G28.17,A6,25I16)’)&
 
  ’Lx= ’,L,’ Ly= ’,L,’ beta= ’,beta,’ seed= ’,seeds
 
 do i=1,N
 
  write(f_out,’(I3)’)s(i)
 
 enddo
 
 close(f_out)
 
 print ’(A,F7.3)’,’# acceptance= ’,&
 
  acceptance/DBLE(N)/DBLE(nsweep)
 
end subroutine endsim


 The state of the random number generator RANLUX is saved by a call to RLUXUT
which stores the necessary information in the array seeds. The call to the
subroutine RENAME renames the file conf (if it exists) to the backup file conf.old.
The format (A4, I5, A4, I5, A6, G28.17, A6, 25I16) has to be obeyed
strictly during the output, as well as during the input of the configuration in the
subroutine init.

   The subroutine get_the_options() reads the parameters, passed through
options from the command line. The choice to use options for passing parameters
to the program has the advantage that they can be passed optionally and in any
order desired. Let’s see how they work. Assume that the executable file is named
is. The command
                                                                          

                                                                          


   
> ./is -L 10 -b 0.44 -s 1 -S 5342 -n 1000


 will run the program after setting L=10 (-L 10), beta=0.44 (-b 0.44), start=1
(-s 1), seed=5342 (-S 5342) and nsweep=1000 (-n 1000). The -L, -b, -s,
-S, -n are options or switches and can be put in any order in the arguments of
the command line. The arguments following an option are the values
passed to the corresponding variables. Options can also be used without
arguments, in which case a common use is to make the command function
differently25 .
In our case, the option -h is an option without an argument which makes the
program to print a usage message and exit without running the simulation:
                                                                          

                                                                          


   
> ./is -h
 
Usage: ./is [options]
 
       -L: Lattice length (N=L*L)
 
       -b: beta
 
       -s: start (0 cold, 1 hot, 2 old config.)
 
       -S: seed
 
       -n: number of sweeps and measurements
 
       -u: seed  from /dev/urandom
 
       -r: ranlux_level
 
Monte Carlo simulation of 2d Ising Model. Metropolis is used by
 
default. Using the options, the parameters of the simulations
 
must be set for a new run (start=0,1). If start=2, a
 
configuration is read from the file conf.


 This is a way to provide a short documentation on the usage of a program.

   Let’s see the code, which is found in the file options.f90:  
                                                                          

                                                                          


   
!============== options.f90 ==================
 
subroutine get_the_options
 
 use global_data
 
 use getopt_m    !from getopt.f90
 
 implicit none
 
 call getarg(0,prog)
 

 
 do
 
  select case( getopt( "-hL:b:s:S:n:r:u" ))
 
  case( ’L’ )
 
   read(optarg,*)L
 
  case( ’b’ )
 
   read(optarg,*)beta
 
  case( ’s’ )
 
   read(optarg,*)start
 
  case( ’S’ )
 
   read(optarg,*)seed
 
  case( ’n’ )
 
   read(optarg,*)nsweep
 
  case( ’r’ )
 
   read(optarg,*)ranlux_level
 
  case( ’u’ )
 
   open (28, file="/dev/urandom", &
 
    access="stream", form="unformatted")
 
   read (28) seed
 
   seed = ABS(seed)
 
   close(28)
 
  case( ’h’ )
 
   call usage
 
  case( ’?’ )
 
   print *, ’unknown option   ’, optopt
 
   stop
 
  case( char(0)) ! done with options
 
   exit
 
  case( ’-’ )    ! use -- to exit from options
 
   exit
                                                                          

                                                                          
 
  case default
 
   print *, ’unhandled option ’, optopt
 
  end select
 
 enddo
 
end subroutine get_the_options


 The command call getarg(0,prog) stores the name of the program in the
command line to the character variable prog. The function getopt is a
function written by Mark Gates and its code is in the file getopt.f90.
It is programmed so that its usage is similar to the corresponding C
function26 .
The argument "-hL:b:s:S:n:r:u" in getopt defines the allowed options ’-’,
’L’, ’b’, ’s’, ’S’, ’n’, ’r’, ’u’. When a user passes one of those through
the command line (e.g. -L 100, -h) the do loop takes us to the corresponding
CASE. If an option does not take an argument (e.g. -h), then a set of commands
can be executed, like call usage. If an option takes an argument, this is marked
by a semicolon in the argument of getopt (e.g. L:, b:, ...) and the argument can
be accessed through the character variable optarg. For example, the
statements
                                                                          

                                                                          


   
  case( ’L’ )
 
   read(optarg,*)L


 and the command line arguments -L 10 set optarg to be equal to ’10’. Be
careful, ’10’ is not a number, but a string of characters! In order to convert the
character ’10’ to the integer 10 we use the command READ, where instead of a
unit number in its arguments we put the variable name. We do the same for the
other simulation parameters.

   The subroutine locerr takes a character variable in its argument which prints
it to the stderr together with the name of the program in the command line.
Then it stops the execution of the program:
                                                                          

                                                                          


   
subroutine locerr(errmes)
 
 use global_data
 
 implicit none
 
 character(*) :: errmes
 
 write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’
 
 stop 1
 
end subroutine locerr


 Note the use of the intrinsic function TRIM which removes the trailing blanks of a
character variable. If we hadn’t been using it, the variable character(1024) ::
prog would have been printed in 1024 character spaces, something that it
wouldn’t have been very pretty...

   The subroutine usage is ... used very often! It is a constant reminder of the
way that the program is used and helps users with weak long and/or short term
memory!
                                                                          

                                                                          


   
subroutine usage
 
 use global_data
 
 implicit none
 
 print ’(3A)’,’Usage: ’,TRIM(prog),’ [options]’
 
 print ’( A)’,’       -L: Lattice length (N=L*L)’
 
 print ’( A)’,’       -b: beta’
 
 print ’( A)’,’       -s: start (0 cold, 1 hot, 2 old config.)’
 
 print ’( A)’,’       -S: seed’
 
 print ’( A)’,’       -n: number of sweeps and measurements’
 
 print ’( A)’,’       -u: seed  from /dev/urandom’
 
 print ’( A)’,’       -r: ranlux_level’
 
 print ’( A)’,’Monte Carlo simulation of 2d Ising Model....’
 
 stop
 
end subroutine usage




   The subroutine simmessage is also quite important. It “labels” our results by
printing all the information that defines the simulation. It is very important to
label all of our data with this information, otherwise it can be dangerously useless!
Imagine a set of energy measurements without knowing the lattice size and/or the
temperature... Other useful information may turn out to be crucial, even though
we might not appreciate it at programming time: The name of the computer, the
operating system, the user name, the date etc. By varying the unit number in
the argument, we can print the same information in any file we want.

                                                                          

                                                                          


   
subroutine simmessage(unit)
 
 use global_data
 
 implicit none
 
 integer :: unit
 
 character(100) :: user,host,mach,tdate
 
 call GETLOG(user)
 
 call GETENV(’HOST’    ,host)
 
 call GETENV(’HOSTTYPE’,mach)
 
 call FDATE (tdate)
 
 write(unit,’( A       )’)&
 
  ’# #######################################################’
 
 write(unit,’( A       )’)&
 
  ’# 2d Ising Model, Metropolis algorithm on square lattice’
 
 write(unit,’( 8A      )’)&
 
  ’# Run on ’,TRIM(host),’ (’,TRIM(mach),’) by ’,TRIM(user),&
 
  ’ on ’,TRIM(tdate)
 
 write(unit,’( A,I6,A  )’)’# L       = ’,L,’ (N=L*L)’
 
 write(unit,’( A,I14   )’)’# seed    = ’,seed
 
 write(unit,’( A,I12,A )’)’# nsweeps = ’,nsweep,’ (No. sweeps)’
 
 write(unit,’( A,G28.17)’)’# beta    = ’,beta
 
 write(unit,’( A,I4 ,A )’)’# start   = ’,start,&
 
  ’ (0 cold, 1 hot, 2 old config)’
 
end subroutine simmessage


 The compilation can be done with the command:
                                                                          

                                                                          


   
> gfortran global_data.f90 getopt.f90 \
 
  main.f90 init.f90 met.f90 measure.f90 end.f90 \
 
  options.f90 ranlux.F -o is


 It is important to note that the files containing modules, like global_data.f90
and getopt.f90, must precede the files with the code that use the modules.

   In order to run the program we pass the parameters through options in the
command line, like for example:
                                                                          

                                                                          


   
> /usr/bin/time ./is -L 10 -b 0.44 -s 1 -S 5342 -n 10000 \
 
    >& out.dat &


 The command time is added in order to measure the computer resources (CPU
time, memory, etc) that the program uses at run time. 



   A useful tool for complicated compilations is the utility make. Its
documentation is several hundred pages which can be accessed through the info
pages27 
and the interested reader is encouraged to browse through it.
If in the current directory there is a file named Makefile whose
contents28 
are
                                                                          

                                                                          


   
# ####################   Makefile  ############################
 
FC     =  gfortran
 
OBJS   =  global_data.o getopt.o ranlux.o \
 
          main.o init.o met.o measure.o end.o options.o
 
FFLAGS = -O2
 

 
is: $(OBJS)
 
$(FC) $(FFLAGS) $^ -o $@
 

 
$(OBJS):   global_data.f90
 
options.o: getopt.f90
 
%.o: %.f90
 
$(FC) $(FFLAGS)   -c -o $@ $<


 then this instructs the program make how to “make” the executable file is. What
have we gained? In order to see that, run make for the first time. Then try making
a trivial change in the file main.f90 and rerun make. Then only the modified file
is compiled and not the ones that have not been touched. This is accomplished by
defining dependencies in Makefile which execute commands conditionally
depending on the time stamps on the relevant files. Dependencies are defined in
lines which are of the form keyword: word1 word2 .... For example, the line
options.o: getopt.f90 defines a dependency of the file options.o from the
file getopt.f90. Lines 2-4 in the above Makefile define variables which
can be used in the commands that follow. There are many predefined
variables29 
in make which makes make programming easier. By using make in a large
project, we can automatically link to libraries, pass complicated compiler
options, do conditional compilation (depending, e.g., on the operating
system, the compiler used etc), etc. A serious programmer needs to invest
some time in order to use the full potential of make for the needs of her
                                                                          

                                                                          
project30 .


   13.4    Thermalization


The problem of thermalization can be important for some systems studied with
Monte Carlo simulations. Even though it will not be so important in the
simulations performed in this book, we will discuss it because of its importance in
other problems. The reader should bear in mind that the thermalization problem
becomes more serious with increasing system size and when autocorrelation times
are large.



   In a Monte Carlo simulation, the system is first put in a properly chosen initial
configuration in order to start the Markov process. In section 12.2 we saw that
when a system is in thermal equilibrium with a reservoir at a given temperature,
then a typical state has energy that differs very little from its average value
and belongs to a quite restricted region of phase space. Therefore, if we
choose an initial state that is far from this region, then the system has to
perform a random walk in the space of states until it finds the region
of typical states. This is the thermalization process in a Monte Carlo
simulation.





   There are two problems that need to be addressed: The first one is the
appropriate choice of the initial configuration and the second one is to find criteria
that will determine when the system is thermalized. For the Ising model the initial
configuration is either, (a) cold, (b) hot or (c) old state. It is obvious that
choosing a hot state in order to simulate the system at a cool temperature is not
the best choice, and the system will take longer to thermalize than if we choose a
cold state or an old state at a nearby temperature. This is clearly seen in figure
13.7. 


                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.7: Magnetization per site for the Ising model in the ordered phase with
[image: L = 40  ], [image: β = 0.48  ]. We show the thermalization of the system by starting from a cold
state and three hot ones. For a hot start, thermalization takes up to 1000 sweeps.



                                                                          

                                                                          
   


   Thermalization depends on the temperature and the system size, but it also
depends on the physical quantity that we measure. Energy is thermalized faster
than magnetization. In general, a local quantity thermalizes fast and a non local
one slower. For the Ising model, thermalization is easier far from the critical
temperature, provided that we choose an initial configuration in the same
phase. It is easier to thermalize a small system rather than a large one.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.8: Magnetization per site for the Ising model for [image: L = 10,14,18,24  ] and
[image: β = 0.50  ]. Thermalization from a hot start takes longer for a large system.
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Figure 13.9: Magnetization per site for the Ising model for [image: L = 30,60,90,120  ] and
[image: β = 0.20  ]. Thermalization starting from a cold start does not depend on the system size.



                                                                          

                                                                          
   


   The second problem is to determine when the system becomes thermalized and
discard all measurements before that. One way is to start simulations using
different initial states, or by keeping the same initial state and using a
different sequence of random numbers. When the times histories of the
monitored quantities converge, we are confident that the system has been
thermalized. Figure 13.7 shows that the thermalization time can vary quite a
lot.

   A more systematic way is to compute an expectation value by removing an
increasing number of initial measurements. When the results converge within the
statistical error, then the physical quantity that we measure has thermalized.
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Figure 13.10: Magnetization per site for the Ising model with [image: L = 100  ] and [image: β = 0.48  ].
Thermalization starts from a hot state.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 13.11:  Magnetization  per  site  for  the  Ising  model  with  [image: L = 100  ]  and
[image: β = 0.48  ]. We calculate the expectation value [image: ⟨m ⟩ ] by neglecting an increasing number
of “thermalization sweeps” from the measurements in figure 13.10. When the neglected
sweeps reach the thermalized state, the result converges to [image: ⟨m⟩ = 0.880(1)  ]. This is an
indication that the system has thermalized.



                                                                          

                                                                          
   


   This process is shown in figures 13.10 and 13.11 where we progressively drop
[image: 0,20, 50,100,200, 400,800,1600, 3200  ] and [image: 6400  ] initial measurements until the
expectation value of the magnetization stabilizes within the limits of its statistical
error.


   13.5    Autocorrelations

In order to construct a set of independent measurements using a Markov process,
the states put in the sample should be statistically uncorrelated. But for a process
using the Metropolis algorithm this is not possible. The next state differs from the
previous one by at most one value of their spins. We would expect that we could
obtain an almost statistically independent configuration after one spin
update per site, a so called sweep of the lattice. This is indeed the case for
the Ising model for temperatures far from the critical region. But as one
approaches [image: βc  ], correlations between configurations obtained after a few
sweeps remain strong. It is easy to understand why this is happening.
As the correlation length [image: ξ  ]  (12.46)  becomes much larger than a few
lattice spacings, large clusters of same spins are formed, as can be seen in
figure 13.32. For two statistically independent configurations, the size,
shape and position of those clusters should be quite different. For a single
flip algorithm, like the Metropolis algorithm, this process takes a lot of
time31 .




   For the quantitative study of autocorrelations between configurations we use
the autocorrelation function. Consider a physical quantity [image: 𝒪 ] (e.g. energy,
magnetization, etc) and let [image: 𝒪 (t)  ] be its value after Monte Carlo “time” [image: t  ]. [image: t  ]
can be measured in sweeps or multiples of it. The autocorrelation function [image: ρ𝒪(t)  ]
of [image: 𝒪 ] is


   	
                                                                          

                                                                          
   
[image:         ⟨(𝒪-(t′) −-⟨𝒪⟩)(𝒪-(t′ +-t) −-⟨𝒪-⟩)⟩t′
ρ𝒪(t) =           ⟨(𝒪 −  ⟨𝒪⟩)2⟩          ,
]
	(13.31)



where [image: ⟨...⟩t′ ] is the average value over the configurations in the sample for
[image: t′ < tmax − t  ]. The normalization is such that [image: ρ𝒪(0) = 1  ].

   The above definition reminds us the correlation function of spins in space (see
equation  (12.45) ) and the discussion about its properties is similar to the one of
section 12.4. In a few words, when the value of [image: 𝒪 ] after time [image: t  ] is strongly
correlated to the one at [image: t = 0  ], then the product in the numerator in
(13.31)  will be positive most of the time and the value of [image: ρ  (t)
 𝒪  ] will be
positive. When the correlation is weak, the product will be positive and
negative the same number of times and [image: ρ𝒪(t)  ] will be almost zero. In the
case of anti-correlations [image: ρ𝒪 (t)  ] is negative. Negative values of [image: ρ𝒪 (t)  ]
occur, but these are artifacts of the finite size of the sample and should be
rejected.

   Asymptotically [image: ρ𝒪 (t)  ] drops exponentially


   	
   
[image: ρ𝒪(t) ∼ e−t∕τ𝒪 .
]
	(13.32)



 [image: τ
 𝒪 ] is the time scale of decorrelation of the measurements of [image: 𝒪 ] and it is called the
autocorrelation time of [image: 𝒪 ]. After time [image: 2 τ𝒪 ], [image: ρ𝒪(t)  ] has dropped to the [image:    2
1∕e  ≈ 14%  ]
of its initial value and then we say that we have an independent measurement
                                                                          

                                                                          
of32 
[image: 𝒪 ]. Therefore, if we have [image: tmax   ] measurements, the number of independent
measurements of [image: 𝒪 ] is 


   	
   
[image:       tmax-
n𝒪 =  2τ𝒪 .
]
	(13.33)



For expensive measurements we should measure every [image: ∼  τ𝒪 ] sweeps. If the cost
of measurement is not significant, then we usually measure more often, since there
is still statistical information even in slightly correlated configurations. An
accurate determination of [image: τ𝒪 ] is not easy since it requires measuring for [image: t ≫ τ𝒪 ].



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.12: The autocorrelation function of the magnetization [image: ρ (t)
 m  ] for the Ising
model for [image: L = 100  ], [image: β = 0.42  ]. We see its exponential decay and that [image: τm ≈ 200  ] sweeps.
One can see the finite sample effects (the sample consists of about 1,000,000 measurements)
when [image: ρ  ] starts fluctuating around 0.
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Figure 13.13: The autocorrelation function shown in figure 13.12 of the magnetization
[image: ρm (t)  ] for the Ising model for [image: L = 100  ], [image: β = 0.42  ] in a log plot. The plot shows a fit to
[image: Ce −t∕τ  ] (see equation  (13.32) ) with [image: τ = 235(3)  ] sweeps.



                                                                          

                                                                          
   


   An example is shown in figure 13.12 for the case of the magnetization
([image: 𝒪  = m  ]). We calculate the function [image: ρm (t)  ] and we see that a fit to equation
(13.32)  is quite good for [image: τm =  235 ± 3  ] sweeps. The calculation is performed on a
sample of [image: 106   ] measurements with 1 measurement/sweep. Therefore the number
of independent measurements is [image:      6
≈ 10 ∕ (2 × 235 ) ≈ 2128  ].

   Another estimator of the autocorrelation time is the so called integrated
autocorrelation time [image: τint,𝒪 ]. Its definition stems from equation  (13.32)  where we
take 


   	
   
[image:        ∫  +∞           ∫ + ∞    −t∕τ
τint,𝒪 =       dtρ𝒪 (t) ∼       dte   𝒪 = τ𝒪.
         0              0
]
	(13.34)



The values of [image: τ
 int,𝒪 ] and [image: τ
 𝒪 ] differ slightly due to systematic errors that come from the
corrections33 
to equation  (13.32) . The upper limit of the integral is cut off by a maximum
value [image: tmax   ]


   	
   
[image:               ∫ tmax
τint,𝒪(tmax) =       dtρ𝒪 (t).
               0
]
	(13.35)



For large enough [image: tmax   ] we observe a plateau in the plot of the value of
[image: τint,𝒪(tmax)  ] which indicates convergence, and we take this as the estimator of
[image: τint,𝒪 ]. For even larger [image: tmax   ], finite sample effects enter in the sum that should be
discarded.
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Figure 13.14: Calculation of the integrated autocorrelation time of the magnetization
for the same data used in figure 13.19. There is a plateau in the values of [image: τint,m  ] for
[image: τ1 = 214(1)  ]sweeps and a maximum for [image: τ2 ≈ 219.5  ] sweeps. The fall from [image: τ2  ] to [image: ≈ τ1  ]
is due to the negative values of [image: ρm (t)  ] due to the noise coming from finite sample effects.
We estimate that [image: τint,m = 217(3)  ] sweeps.



                                                                          

                                                                          
   


   This calculation is shown in figure 13.14 where we used the same measurements
as the ones in figure 13.12. We find that [image: τint,m =  217(3)  ]sweeps, which
is somewhat smaller than the autocorrelation time that we calculated
using the exponential fit to the autocorrelation function. If we are
interested in the scaling properties of the autocorrelation time with the
size of the system [image: L  ] or the temperature [image: β  ], then this difference is not
important34 .
The calculation of [image: τint,𝒪 ] is quicker since it involves no
fitting35 .
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Figure 13.15:  The  autocorrelation  time  of  the  magnetization  for  the  Ising  model
at (high) temperature [image: β = 0.20  ] for [image: L = 10,20,40,60,80  ]. The autocorrelation time in
sweeps is independent of [image: L  ].
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Figure 13.16: The autocorrelation time of the magnetization for the Ising model at
(low) temperature [image: β = 0.65  ] for [image: L = 5,10,20,40  ]. The autocorrelation time in sweeps is
independent of [image: L  ].



                                                                          

                                                                          
   


   Autocorrelation times are not a serious problem away from the critical region.
Figures 13.15 and 13.16 show that they are no longer than a few sweeps and that
they are independent of the system size [image: L  ]. As we approach the critical region,
autocorrelation times increase. At the critical region we observe scaling of their
values with the system size, which means that for large [image: L  ] we have that



   	
   
[image: τ ∼  Lz.
]
	(13.36)



 This is the phenomenon of critical slowing down. For the Metropolis
algorithm and the autocorrelation time of the magnetization, we have that
[image: z = 2.1665 ± 0.0012  ]  [60]. This is a large value and that makes the algorithm
expensive for the study of the critical properties of the Ising model. It means that
the simulation time necessary for obtaining a given number of independent
configurations increases as


   	
   
[image:          d+z    4.17
tCPU ∼ L     ≈ L   .
]
	(13.37)


                                                                          

                                                                          

In the next chapter, we will discuss the scaling relation  (13.36)  in more detail
and present new algorithms that reduce critical slowing down drastically.
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Figure 13.17: The autocorrelation function of the magnetization for the Ising model
for [image: L = 40  ]. It shows how the autocorrelation time increases as we approach the critical
temperature from the disordered (hot) phase.



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.18: The autocorrelation function of the magnetization for the Ising model
for [image: L = 40  ]. It shows how the autocorrelation time increases as we approach the critical
temperature from the ordered (cold) phase.
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Figure 13.19: The autocorrelation function for the Ising model for [image: β = 0.4407 ≈ β
            c  ]
and different [image: L  ]. We observe the increase of the autocorrelation time with the system size
in the critical region.
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Figure 13.20: The integrated autocorrelation time [image: τ
 int,m  ] for [image: β = β
     c  ] in a logarithmic
scale. The continuous line is the fit to [image:          2.067(21)
0.136(10)L  ]. The expected result from the
bibliography is [image: z = 2.1665(12)  ] and the difference is a finite size effect.



                                                                          

                                                                          
   


   13.6    Statistical Errors

The estimate of the expectation value of an observable from its average value in a
sample gives no information about the quality of the measurement. The complete
information is provided by the full distribution, but in practice we are usually
content with the determination of the “statistical error” of the measurement. This
is defined using the assumption that the distribution of the measurements is
Gaussian, which is a very good approximation if the measurements are
independent. The statistical error is determined by the fluctuations of the values
of the observable in the sample around its average (see discussion in section 12.2
and in particular equation  (12.27) ). Statistical errors can be made to
vanish, because they decrease as the inverse square root of the size of the
sample.


   Besides statistical errors, one has systematic errors, which are harder to
control. Some of them are easier to control (like e.g. poor thermalization) and
others maybe hard even to realize their effect (like e.g. a subtle problem in a
random number generator). In the case of a discrete, finite, lattice, approximating
a continuous theory, there are systematic errors due to the discretization and the
finite size of the system. These errors are reduced by simulating larger systems
and by using several techniques (e.g. finite size scaling) in order to extrapolate the
results to the thermodynamic limit. These will be studied in detail in the
following chapter.


   
13.6.1    Errors of Independent Measurements

Using the assumption that the source of statistical errors are the thermal
fluctuations around the average value of an observable, we conclude that its
expectation value can be estimated by the mean of the sample and its error by the
error of the mean. Therefore if we have a sample of [image: n  ] measurements
[image: 𝒪  ,𝒪  ,...,𝒪
  0   1       n−1   ], their mean is an estimator of [image: ⟨𝒪 ⟩ ]


   	
                                                                          

                                                                          
   
[image:        1 n∑−1
⟨𝒪 ⟩ = --    𝒪i.
       n i=0
]
	(13.38)



 The error of the mean is an estimator of the statistical error [image: δ𝒪 ]


   	
   
[image:                      {                  }
                 1     1 n∑−1                   1   (            )
(δ𝒪 )2 ≡ σ2𝒪 =  ------  --   (𝒪i − ⟨𝒪 ⟩)2  =  ------ ⟨𝒪2⟩ − ⟨𝒪 ⟩2 .
               n − 1   n i=0                 n − 1
]
	(13.39)



The above equations assume that the sample is a set of statistically
independent measurements. This is not true in a Monte Carlo simulation
due to the presence of autocorrelations. If the autocorrelation time,
measured in number of measurements, is [image: τ𝒪 ], then according to equation
13.33 we will have [image: n  =  n∕(2τ  )
 𝒪         𝒪  ] independent measurements. One can
show that in this case, the statistical error in the measurement of [image: 𝒪 ]
is36 
 [61]


   	
                                                                          

                                                                          
   
[image: (δ𝒪 )2 = 1-+-2τ𝒪-(⟨𝒪2 ⟩ − ⟨𝒪 ⟩2).
          n − 1
]
	(13.40)



If [image: τ𝒪  ≪ 1  ], then we obtain equation  (13.39) . If [image: τ𝒪 ≫  1  ] 

   
[image:      2     -2τ𝒪--(   2       2)
(δ𝒪 )  ≈   n − 1  ⟨𝒪  ⟩ − ⟨𝒪⟩
               1    (            )
       ≈   --------  ⟨𝒪2⟩ − ⟨𝒪 ⟩2
           (n ∕2τ𝒪)
           ---1--- (  2        2)
       ≈   n 𝒪 − 1  ⟨𝒪 ⟩ − ⟨𝒪 ⟩                (13.41)
]


which is nothing but equation  (13.39)  for [image: n𝒪 ] independent measurements (we
assumed that [image: 1 ≪  n𝒪 ≪  n  ]). The above relation is consistent with our
assumption that measurements become independent after time [image: ∼  2τ𝒪 ].

   In some cases, the straightforward application of equations  (13.41)  is not
convenient. This happens when, measuring the autocorrelation time according to
the discussion in section 13.5, becomes laborious and time consuming. Moreover,
one has to compute the errors of observables that are functions of correlated
quantities, like in the case of the magnetic susceptibility  (13.30) . The
calculation requires the knowledge of quantities that are not defined on
one spin configuration, like [image: ⟨m ⟩ ] and [image: ⟨m2 ⟩ ] (or [image: (mi  − ⟨m ⟩)  ] on each
configuration [image: i  ]). After these are calculated on the sample, the error [image: δχ  ]
is not a simple function of [image: δ⟨m ⟩ ] and [image: δ⟨m2 ⟩ ]. This is because of the
correlation between the two quantities and the well known formula of
error propagation [image:       2       2  2        2 2         22
(δ(⟨m  ⟩ − ⟨m ⟩ )) = (δ⟨m ⟩)  + (δ⟨m ⟩)   ] cannot be
applied.
                                                                          

                                                                          


   13.6.2    Jackknife



The simplest solution to the problems arising in the calculation of statistical
errors discussed in the previous section is to divide a sample into blocks or
bins. If one has [image: n  ] measurements, she can put them in [image: nb  ] “bins” and
each bin is to be taken as an independent measurement. This will be
true if the number of measurements per bin [image: b = (n∕n  ) ≫ τ
         b     𝒪 ]. If [image: 𝒪b
  i  ]
[image: i = 0,...,nb − 1  ] is average value of [image: 𝒪 ] in the bin [image: i  ], then the error is given by
(13.39)


   	
   
[image:                {    nb−1            }
    2   ---1---  -1-∑     b      b 2
(δ 𝒪)  = nb − 1   nb     (𝒪i − ⟨𝒪  ⟩)
                    i=0
]
	(13.42)



This is the binning or blocking method and it is quite  simple in its use. Note that
quantities, like the magnetic susceptibilities, are calculated in each bin as if
the bin were an independent sample. Then the error is easily calculated
by equation  (13.42) . If the bin is too small and the samples are not
independent, then the error is underestimated by a factor of [image: 2τ𝒪∕(nb − 1)  ] (see
equation  (13.40) ). The bins are statistically independent if [image: b ∼ 2τ𝒪 ]. If [image: τ𝒪 ]
is not a priori known we compute the error  (13.42)  by decreasing the
number of bins [image: nb  ]. When the error is not increasing anymore and takes on
a constant value, then the calculation converges to the true statistical
error.

   But the method of choice in this book is the jackknife method. It is
more stable and more reliable, especially if the sample is small. The basic
idea is similar to the binning method. The difference is that the bins are
constructed in a different way and equation  (13.42)  is slightly modified.
                                                                          

                                                                          
The data is split in [image: nb  ] bins which contain [image: b = n −  (n ∕nb)  ] elements as
follows: The bin [image: j  ] contains the part of the sample obtained after we
we erase the contents of the [image: j  ]-th bin of the binning method from the
full sample [image: 𝒪0, ...,𝒪n− 1   ]. The procedure is depicted in figure 13.21.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.21: The jackknife method applied on a sample of [image: n = 20  ] measurements.
The data is split to [image: nb = 5  ] bins and each bin contains [image: b = n − (n∕nb) = 20− 4 = 16  ]
measurements (the black disks). We calculate the average value [image: 𝒪bi  ] in each bin and, by
using them, we calculate the error [image:      ∘ -----------------
δ𝒪 =   nb(⟨(𝒪b)2⟩− ⟨𝒪b ⟩2)  ]. 



                                                                          

                                                                          
   


   We calculate the average value of [image: 𝒪 ] in each bin and we obtain
[image: 𝒪b0,𝒪b1,...,𝒪bnb− 1   ]. Then the statistical error in the measurement of [image: 𝒪 ]
is


   	
   
[image:          n∑b−1(          )      (                )
(δ𝒪 )2 =      𝒪bj − ⟨𝒪b ⟩ 2 = nb  ⟨(𝒪b )2⟩ − ⟨𝒪b ⟩2 .
         j=0
]
	(13.43)



In order to determine the error, one has to vary the number of bins and check for
the convergence of  (13.43) , like in the case of the binning method.

   For more details and proofs of the above statements, the reader is referred to
the book of Berg  [5]. Appendix 13.8.1 provides examples and a program for the
calculation of jackknife errors.


   13.6.3    Bootstrap



Another useful method for the estimation of statistical errors is the bootstrap
method. Suppose that we have [image: n  ] independent measurements. From these we
create [image: n
 S  ] random samples as follows: We choose one of the [image: n  ] measurements
with equal probability. We repeat [image: n  ] times using the same set of [image: n  ]
measurements - i.e. by putting the chosen measurements back to the sample. This
means that on the average [image: ∼  1 − 1∕e ≈ 63%  ] of the sample will consist of the
same measurements. In each sample [image: i = 0,...,nS − 1  ] we calculate the average
values [image: 𝒪S
  i  ] and from those


   	
                                                                          

                                                                          
   
[image:            nS∑− 1
⟨𝒪S ⟩ = -1-     𝒪Si ,
        nS  i=0
]
	(13.44)



and


   	
   
[image:  (   )      1 nS∑− 1(   )
⟨ 𝒪S  2⟩ = ---      𝒪Si 2.
           nS  i=0
]
	(13.45)



The estimate for the error in [image: ⟨𝒪⟩ ] is37 


   	
   
[image:      2    (  S)2      S 2
(δ𝒪 ) =  ⟨ 𝒪    ⟩ − ⟨𝒪 ⟩ .
]
	(13.46)



We stress that the above formula gives the error for independent measurements.
If we have non negligible autocorrelation times, then we must use the
correction


   	
   
[image:      2            (  (  S)2      S 2)
(δ𝒪 ) =  (1 + 2τ𝒪)  ⟨ 𝒪    ⟩ − ⟨𝒪 ⟩
]
	(13.47)



Appendix 13.8.2 discusses how to use the bootstrap method in order to calculate
the true error [image: δ𝒪 ] without an a priori knowledge of [image: τ
 𝒪 ]. For more details, the
reader is referred to the articles of Bradley Efron  [62]. In appendix 13.8.2
you will find examples and a program that implements the bootstrap
method.


   13.7    Appendix: Autocorrelation Function

This appendix discusses the technical details of the calculation of the
autocorrelation function  (13.31)  and the autocorrelation time given by equations
(13.32)  and  (13.34) . The programs can be found in the directory Tools in the
accompanying software.

   If we have a finite sample of [image: n  ] measurements [image: 𝒪 (0),𝒪 (1),...,𝒪 (n − 1)  ],
then we can use the following estimator for the autocorrelation function, given by
equation  (13.31) , 


   	
                                                                          

                                                                          
   
[image:                  n−1−t
        -1---1-- ∑        ′             ′
ρ𝒪 (t) = ρ0 n − t     (𝒪 (t) − ⟨𝒪 ⟩0)(𝒪 (t + t) − ⟨𝒪⟩t),
                 t′=0
]
	(13.48)



where the average values are computed from the
equations38 


   	
   
[image:               n−1−t                      n− 1− t
        --1-- ∑       ′             --1-- ∑       ′
⟨𝒪 ⟩0 ≡ n − t      𝒪 (t)    ⟨𝒪 ⟩t ≡ n − t      𝒪 (t +  t).
              t′=0                        t′=0
]
	(13.49)



The constant [image: ρ0   ] is chosen so that [image: ρ𝒪 (0) = 1  ].

   The program for the calculation of  (13.48)  and the autocorrelation time
(13.34)  is listed below. It is in the file autoc.f90 and you should read the
comments embedded in the code for explanations of the most important
steps.
                                                                          

                                                                          


   
!======================================================
 
!file: autoc.f90
 
MODULE rho_function
 
 implicit none
 
 SAVE
 
 integer                 :: NMAX,tmax
 
 character(200)          :: prog
 
 CONTAINS
 
!------------------------------------------------------
 
!rho is the unnormalized autocorrelation function at t:
 
  real(8) function rho(x,ndat,t)
 
   implicit none
 
   integer               :: ndat,t
 
   real(8),dimension(0:) :: x
 
   integer               :: n,t0
 
   real(8)               :: xav0,xavt,r
 
!--------------------------------------
 
   n=ndat-t
 
   if(n<1) call locerr(’rho: n<1’)
 
!Calculate the two averages: xav0=<x>_0, xavt=<x>_t
 
   xav0 = SUM( x(0:n-1  )) / n
 
   xavt = SUM( x(t:n-1+t)) / n
 
   rho  = SUM((x(0:n-1)-xav0)*(x(t:n-1+t)-xavt))/n
 
  end function rho
 
!------------------------------------------------------
 
  subroutine locerr(errmes)
 
   implicit none
 
   character(*) :: errmes
 
   write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’
 
   stop 1
 
  end subroutine locerr
 
END MODULE rho_function
 
!======================================================
 
program autocorrelations
 
 USE rho_function
 
 implicit none
                                                                          

                                                                          
 
 real(8),allocatable,dimension(:) :: r,tau,x
 
 real(8)                          :: norm
 
 integer                          :: i,ndat,t,tcut,chk
 
!------------------------------------------------------
 
!Default values for max number of data and max time for
 
!rho and tau:
 
 NMAX=2000000;tmax=1000 !NMAX=2e6 requires ~ 2e6*8=16MB
 
 call get_the_options
 
 ALLOCATE(x(0:NMAX-1),STAT=chk)
 
 if(chk > 0) call locerr(’Not enough memory for x’)
 
 ndat=0
 
 do while ( ndat < NMAX)
 
  read(*,*,END=101)x(ndat)
 
  ndat = ndat+1
 
 enddo !
 
101 continue
 
 if(ndat >= NMAX) write(0,’(3A,I14,A,I14)’)  &
 
      ’# ’,TRIM(prog),                       &
 
      ’: Warning: read ndat=’, ndat,         &
 
      ’ and reached the limit: ’,NMAX
 
!We decrease tmax if it is comparable or large of ndat
 
 if(tmax > (ndat/10) ) tmax = ndat/10
 
!r(t) stores the values of the autocorrelation function rho(t)
 
 ALLOCATE(r(0:tmax-1))
 
 do t=0,tmax-1
 
  r(t) = rho(x,ndat,t)
 
 enddo
 
 norm  = 1.0D0/r(0); r = norm*r
 
!tau(t) stores integrated autocorrelation times with tcht=t
 
 ALLOCATE(tau(0:tmax-1))
 
 do tcut=0,tmax-1
 
  tau(tcut)=0.0D0
 
  do t=0,tcut
 
   tau(tcut) = tau(tcut)+r(t)
 
  enddo
 
 enddo
 
!Output:
 
 print ’(A)’,’# ===========================================’
 
 print ’(A)’,’# Autoc function rho and int autoc time tau  ’
 
 print ’(A,I12,A,I8)’,’# ndat= ’,ndat,’  tmax= ’,tmax
 
 print ’(A)’,’# t         rho(t)              tau(tcut=t)  ’
                                                                          

                                                                          
 
 print ’(A)’,’# ===========================================’
 
 do t=0,tmax-1
 
  print ’(I8,2G28.17)’,t,r(t),tau(t)
 
 enddo
 
end program autocorrelations
 
!======================================================
 
subroutine get_the_options
 
 use rho_function
 
 use getopt_m    !from getopt.f90
 
 implicit none
 
 call getarg(0,prog)
 

 
 do
 
  select case( getopt( "-ht:n:" ))
 
  case( ’t’ )
 
   read(optarg,*)tmax
 
  case( ’n’ )
 
   read(optarg,*)NMAX
 
  case( ’h’ )
 
   call usage
 
  case( ’?’ )
 
   print *, ’unknown option   ’, optopt
 
   stop
 
  case( char(0)) ! done with options
 
   exit
 
  case( ’-’ )    ! use -- to exit from options
 
   exit
 
  case default
 
   print *, ’unhandled option ’, optopt
 
  end select
 
 enddo
 

 
end subroutine get_the_options
 
!======================================================
 
subroutine usage
 
 use rho_function
 
 implicit none
 
 print ’(3A)’,’Usage: ’,TRIM(prog),&
 
              ’ [-t <maxtime>] [-n <ndat>]’
 
 print ’( A)’,’      Reads data from stdin (one column) and’
 
 print ’( A)’,’       computes autocorrelation function and’
                                                                          

                                                                          
 
 print ’( A)’,’       integrated autocorrelation time.’
 
 stop
 
end subroutine usage
 
!======================================================


 The calculation of the autocorrelation function is put in a separate module
rho_function which can be used by any of your programs. After the statement
CONTAINS we can add code for functions and subroutines which can be
accessed39 
by any program unit that uses the module. The module makes global variables,
like NMAX, tmax and prog, accessible to all program units that use the
module.

   The compilation is done with the commands
                                                                          

                                                                          


   
> gfortran -O2 getopt.f90 autoc.f90 -o autoc


 If our data is written in a file named data in one column, then the calculation of
the autocorrelation function and the autocorrelation time is done with the
command
                                                                          

                                                                          


   
> cat data | ./autoc > data.rho


 The results are written to the file data.rho in three columns. The first one
is the time [image: t  ], the second one is [image: ρ  (t)
 𝒪  ] and the third one is [image: τ    (t)
 int,𝒪  ]
(equation  (13.35) ). The corresponding plots are constructed by the gnuplot
commands:
                                                                          

                                                                          


   
gnuplot> plot "data.rho" using 1:2 with lines
 
gnuplot> plot "data.rho" using 1:3 with lines


 If we wish to increase the maximum number of data NMAX or the maximum time
tmax, then we use the options -n and -t respectively:
                                                                          

                                                                          


   
> cat data | autoc -n 20000000 -t 20000 > data.rho


 For doing all the work at once using gnuplot, we can give the command:
                                                                          

                                                                          


   
gnuplot> plot "<./is -L 20 -b 0.4407 -s 1 -S 345 -n 400000|\
 
               grep -v ’#’|awk ’{print ($2>0)?$2:-$2;}’  |\
 
               autoc -t 500" using 1:2 with lines


The above command is long and it is broken into 3 lines for better printing. You
can type it in one line by removing the trailing ∖.

   A script that works out many calculations together is listed below. It is in the
file autoc_L and computes the data shown in figure 13.19.
                                                                          

                                                                          


   
#!/bin/tcsh -f
 

 
set nmeas  = 2100000
 
set Ls     = (5 10 20 40 60 80)
 
set beta   = 0.4407
 
set tmax   = 2000
 
foreach L ($Ls)
 
 set N     = ‘awk -v L=$L ’BEGIN{print L*L}’‘
 
 set rand  = ‘perl -e ’srand();print int(3000000*rand())+1;’‘
 
 set out   = outL${L}b${beta}
 
 echo "Running L${L}b${beta}"
 
 ./is -L $L -b $beta -s 1 -S $rand -n $nmeas > $out
 
 echo "Autocorrelations L${L}b${beta}"
 
 grep -v ’#’ $out | \
 
  awk -v N=$N ’NR>100000{print ($2>0)?($2/N):(-$2/N)}’|\
 
  autoc -t $tmax  > $out.rhom
 
end


 Then we give the gnuplot commands:
                                                                          

                                                                          


   
gnuplot>   plot  "outL5b0.4407.rhom" u 1:2 w lines title "5"
 
gnuplot> replot "outL10b0.4407.rhom" u 1:2 w lines title "10"
 
gnuplot> replot "outL20b0.4407.rhom" u 1:2 w lines title "20"
 
gnuplot> replot "outL40b0.4407.rhom" u 1:2 w lines title "40"
 
gnuplot> replot "outL60b0.4407.rhom" u 1:2 w lines title "60"
 
gnuplot> replot "outL80b0.4407.rhom" u 1:2 w lines title "80"


 The plots in figure 13.17 are constructed in a similar way.

   For the calculation of [image: τm  ] we do the following:
                                                                          

                                                                          


   
gnuplot> f(x) = c * exp(-x/t)
 
gnuplot> set log y
 
gnuplot> plot [:1000] "outL40b0.4407.rhom" u 1:2 with lines
 
gnuplot> c = 1 ; t = 300
 
gnuplot> fit [150:650] f(x) "outL40b0.4407.rhom" u 1:2 via c,t
 
gnuplot> plot [:1000] "outL40b0.4407.rhom" u 1:2 w lines,f(x)
 
gnuplot> plot [:]     "outL40b0.4407.rhom" u 1:3 w lines


 where in the last line we compute [image: τint,m  ]. The fit command is just
an example and one should try different fitting ranges. The first plot
command shows graphically the approximate range of the exponential
falloff of the autocorrelation function. We should vary the upper and
lower limits of the fitting range until the value of [image: τ
 m  ] stabilizes and
the40  [image:   2
χ  ∕dof  ]
is minimized41 .
The [image: χ2∕dof  ] of the fit can be read off from the output of the command
fit
                                                                          

                                                                          


   
.....
 
degrees of freedom   (FIT_NDF)                     : 449
 
rms of residuals     (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.000939201
 
variance of residuals(reduced chisquare) = WSSR/ndf: 8.82099e-07
 

 
Final set of parameters            Asymptotic Standard Error
 
=======================            ==========================
 

 
c               = 0.925371         +/- 0.0003773    (0.04078%)
 
t               = 285.736          +/- 0.1141       (0.03995%)
 
.....


 from the line “variance of residuals”. From the next
lines we read the values of the fitted parameters with their
errors42 
and we conclude that [image: τm = 285.7 ± 0.1  ]. We stress that this is the statistical error
of the fit for the given fitting range. But usually the largest contributions to the error
come from systematic errors, which, in our case, are seen by varying the fitting
range43 .
By trying different fitting ranges and using the criterion that the minimum
[image: χ2 ∕dof  ] doubles its minimum value, we find that [image: τm =  285(2)  ].

   In our case the largest systematic error comes from neglecting the effect of
smaller autocorrelation times. These make non negligible contributions for small
[image: t  ].

   By fitting to


                                                                          

                                                                          
   	
   
[image:          −t∕τ
f (t) = ce    ,
]
	(13.50)



we have taken into account only the largest autocorrelation time.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 13.22:   Fit   of   the   autocorrelation   function   [image: ρ (t)
 m  ]   to   the   functions
[image:         −t∕τ
f(t) = ce  ] and [image:          −t∕τ1     −t∕τ2     −t∕τ3
h(t) = a1e    + a2e    + a3e   ]. For large times [image: f(t) ≈ h (t)  ],
but [image: h(t)  ] is necessary in order to capture the small [image: t  ] behavior. This choice results in
[image: τm = τ = τ1  ]. The values of the parameters are given in the text. The vertical axes are
in logarithmic scale. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 13.23: The plot of figure 13.22 for small times where the effect of smaller
autocorrelation times is most clearly seen. 



                                                                          

                                                                          
   


   One should take into account also the smaller autocorrelation times. In this
case we expect that [image: ρm (t) ∼ a1e −t∕τ1 + a2e−t∕τ2 + ...  ]. We find that the data for
the autocorrelation function fit perfectly to the function


   	
   
[image:            −t∕τ1      −t∕τ2      −t∕τ3
h (x ) = a1e    +  a2e     + a3e    .
]
	(13.51)



As we can see in figures 13.22 and 13.23, the small [image: t  ] fit is excellent and the
result for the dominant autocorrelation time is [image: τm ≡ τ1 = 286.3(3)  ]. The
secondary autocorrelation times are [image: τ2 = 57(3)  ], [image: τ3 = 10.5(8)  ] which are
considerably smaller that [image: τ1   ].

   The commands for the analysis are listed below:
                                                                          

                                                                          


   
gnuplot> h(x) = a1*exp(-x/t1) + a2*exp(-x/t2) + a3*exp(-x/t3)
 
gnuplot> a1 = 1;    t1 = 285; a2 = 0.04; t2 = 56; \
 
         a3 = 0.03; t3 = 10
 
gnuplot> fit [1:600] h(x) "outL40b0.4407.rhom" \
 
         using 1:2 via a1,t1,a2,t2,a3,t3
 
...
 
Final set of parameters            Asymptotic Standard Error
 
=======================            ==========================
 
a1              = 0.922111         +/- 0.001046     (0.1135%)
 
t1              = 286.325          +/- 0.2354       (0.08221%)
 
a2              = 0.0462523        +/- 0.001219     (2.635%)
 
t2              = 56.6783          +/- 2.824        (4.982%)
 
a3              = 0.0300761        +/- 0.001558     (5.18%)
 
t3              = 10.5227          +/- 0.8382       (7.965%)
 
gnuplot> plot [:150][0.5:]   "outL40b0.4407.rhom" using 1:2 \
 
         with lines notit,h(x) ,f(x)
 
gnuplot> plot [:1000][0.01:] "outL40b0.4407.rhom" using 1:2 \
 
         with lines notit,h(x) ,f(x)
 






   13.8    Appendix: Error Analysis




   13.8.1    The Jackknife Method

In this section we present a program that calculates the errors using the jackknife
method discussed in section 13.6.2. Figure 13.21 shows the division of the data
into bins. For each bin we calculate the average value of the quantity [image: 𝒪 ] and then
we use equation  (13.43)  in order to calculate the error. The program is in the file
jack.f90 which you can find in the directory Tools in the accompanying
                                                                          

                                                                          
software. The program calculates [image: ⟨𝒪⟩ ], [image: δ𝒪 ], [image:                2
χ ≡  ⟨(𝒪  − ⟨𝒪 ⟩)⟩ ] and
[image: δχ  ].
                                                                          

                                                                          


   
!======================================================
 
!file: jack.f90
 
MODULE jack_function
 
 implicit none
 
 SAVE
 
 integer                 :: JACK,MAXDAT
 
 character(200)          :: prog
 
 CONTAINS
 
!------------------------------------------------------
 
!jackknife function:
 
  subroutine jackknife(ndat,jack,x,&
 
       avO,erO,avchi,erchi)
 
   integer               :: ndat,jack !local jack...
 
   real(8),dimension(0:) :: x
 
   real(8)               :: avO,erO,avchi,erchi
 
   integer               :: i,j,binw,bin
 
   real(8),allocatable   :: O(:),chi(:)
 
!--------------------------------------
 
   ALLOCATE(O(0:jack-1));ALLOCATE(chi(0:jack-1))
 
   O=0.0D0;chi=0.0D0;
 
   binw=ndat/jack
 
   if(binw<1)call locerr(’jackknife: binw < 1’)
 
!Average value:
 
   do i=0,ndat-1
 
    do j=0,jack-1
 
     if((i/binw) /= j) &
 
          O  (j) = O  (j) + x(i)
 
    enddo
 
   enddo
 
   O   = O  /(ndat-binw) !normalize
 
!Susceptibility:
 
   do i=0,ndat-1
 
    do j=0,jack-1
 
     if((i/binw) /= j) &
 
          chi(j) = chi(j) + (x(i)-O(j))*(x(i)-O(j))
 
    enddo
                                                                          

                                                                          
 
   enddo
 
   chi   = chi/(ndat-binw) !normalize
 
!---------------
 
   avO   = SUM(O)/jack;avchi=SUM(chi)/jack
 
   erO   = sqrt(SUM((O  -avO  )*(O  -avO  )))
 
   erchi = sqrt(SUM((chi-avchi)*(chi-avchi)))
 
!---------------
 
   DEALLOCATE(O);DEALLOCATE(chi)
 
  end subroutine jackknife
 
!------------------------------------------------------
 
  subroutine locerr(errmes)
 
   implicit none
 
   character(*) :: errmes
 
   write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’
 
   stop 1
 
  end subroutine locerr
 
END MODULE jack_function
 
!======================================================
 
program jackknife_errors
 
 use jack_function
 
 implicit none
 
 integer             :: ndat,chk
 
 real(8)             :: O,dO,chi,dchi
 
 real(8),allocatable :: x(:)
 
 MAXDAT=1000000;JACK=10
 
 call get_the_options
 
 ALLOCATE(x(0:MAXDAT-1),STAT=chk)
 
 if(chk > 0) call locerr(’Not enough memory for x’)
 
 ndat=0
 
 do while ( ndat < MAXDAT)
 
  read(*,*,END=101)x(ndat)
 
  ndat = ndat+1
 
 enddo
 
101 continue
 
 if(ndat >= MAXDAT) write(0,’(3A,I14,A,I14)’) &
 
      ’# ’,TRIM(prog),                        &
 
      ’: Warning: read ndat=’, ndat,          &
 
      ’ and reached the limit: ’,MAXDAT
 
 call jackknife(ndat,JACK,x,O,dO,chi,dchi)
 
 print ’(A,I14,A,I12,A)’,’#  NDAT = ’,ndat,   &
 
       ’ data. JACK = ’,JACK,’ groups’
                                                                          

                                                                          
 
 print ’(A)’,’# <o>, chi= (<o^2>-<o>^2)’
 
 print ’(A)’,’# <o> +/- err                chi +/- err’
 
 print ’(4G28.17)’,O,dO,chi,dchi
 
end program jackknife_errors
 
!======================================================
 
subroutine get_the_options
 
 use jack_function
 
 use getopt_m    !from getopt.f90
 
 implicit none
 
 call getarg(0,prog)
 

 
 do
 
  select case( getopt( "-hj:d:" ))
 
  case( ’j’ )
 
   read(optarg,*)JACK
 
  case( ’d’ )
 
   read(optarg,*)MAXDAT
 
  case( ’h’ )
 
   call usage
 
  case( ’?’ )
 
   print *, ’unknown option   ’, optopt
 
   stop
 
  case( char(0)) ! done with options
 
   exit
 
  case( ’-’ )    ! use -- to exit from options
 
   exit
 
  case default
 
   print *, ’unhandled option ’, optopt
 
  end select
 
 enddo
 

 
end subroutine get_the_options
 
!=============================================
 
subroutine usage
 
 use jack_function
 
 implicit none
 
 print ’(3A)’,’Usage: ’,TRIM(prog),’  [options]’
 
 print ’( A)’,’       -j  : No. jack groups Def. 10’
 
 print ’( A)’,’       -d  : Max. no. of data points read’
 
 print ’( A)’,’Computes <o>, chi= (<o^2>-<o>^2)’
 
 print ’( A)’,’Data is in one column from stdin.’
                                                                          

                                                                          
 
 stop
 
end subroutine usage


 For the compilation we use the command
                                                                          

                                                                          


   
> gfortran -O2 getopt.f90 jack.f90 -o jack


 If we assume that our data is in one column in the file data, the command that
calculates the jackknife errors using 50 bins is:
                                                                          

                                                                          


   
> cat data | jack -j 50


 The program has set a maximum of MAXDAT=1,000,000 measurements. If we need
to analyze more data, we have to use the switch -d. For example, for 2,000,000
measurements, use -d 2000000. The program reads data from the stdin and we
can construct filters in order to do complicated analysis tasks. For example, the
analysis of the magnetization produced by the output of the Ising model program
can be done with the command:
                                                                          

                                                                          


   
> ./is -L 20 -b 0.4407 -s 1 -S 342 -n 2000000 | grep -v #  | \
 
  awk  -v L=20 ’{print ($2>0)?($2/(L*L)):(-$2/(L*L))}’     | \
 
  ./jack -j 50 -d 2000000                     | grep -v #  | \
 
  awk  -v b=0.4407 -v L=20 ’{print $1,$2,b*L*L*$3,b*L*L*$4}’


The command shown above can be written in one line by removing the
backslashes (’∖’) at the end of each line. Let’s explain it in detail: The first line
runs the program is for the Ising model with [image: N  = L ×  L = 20 × 20  ] lattice sites
(-L 20) and [image: β = 0.4407  ] (-b 0.4407). It starts the simulation from a hot
configuration (-s 1) and makes 2,000,000 measurements (-n 2000000). The
command grep -v filters out the comments from the output of the program,
which are lines starting with a #. The second line calls awk and defines the awk
variable L to be equal to 20 (-v L=20). For each line in its input, it prints the
absolute value of the second column ($2) divided by the number of lattice sites
L*L. The third line makes the jackknife calculation of the average values of [image: ⟨m ⟩ ]
and [image: ⟨(m  − ⟨m ⟩)2⟩ ] with their errors using the program jack. The comments of
the output of the command jack are removed with the command grep -v. The
fourth line is needed only for the calculation of the magnetic susceptibility,
using equation  (13.30) . There, we need to multiply the fluctuations
[image:            2
⟨(m −  ⟨m ⟩) ⟩ ] and their error by the factor [image:          2
βN  = βL   ] in order to obtain
[image: χ  ].




   13.8.2    The Bootstrap Method



In this subsection we present a program for the calculation of the errors using the
bootstrap method according to the discussion in section 13.6.3. The program is in
the file boot.f90:  
                                                                          

                                                                          


   
!======================================================
 
!file: boot.f90
 
MODULE boot_function
 
 implicit none
 
 SAVE
 
 integer                 :: SAMPLES,MAXDAT
 
 character(200)          :: prog
 
 integer                 :: seed
 
 CONTAINS
 
!------------------------------------------------------
 
!jackknife function:
 
  subroutine bootstrap(ndat,samples,x,&
 
       avO,erO,avchi,erchi)
 
   integer               :: ndat,samples !local samples...
 
   real(8),dimension(0:) :: x
 
   real(8)               :: avO,erO,avchi,erchi
 
   integer               :: i,j,k
 
   real(8),allocatable   :: O(:),O2(:),chi(:)
 
!--------------------------------------
 
   ALLOCATE(O(0:samples-1));ALLOCATE(O2(0:samples-1));
 
   ALLOCATE(chi(0:samples-1))
 
   O=0.0D0;O2=0.0D0;chi=0.0D0;
 
   do  j=0,samples-1
 
    do i=0,ndat   -1
 
     k  = INT(ndat*drandom()) !0,...,ndat-1
 
     O (j) = O (j) + x(k)
 
     O2(j) = O2(j) + x(k)*x(k)
 
    enddo
 
    O  (j) = O(j)/ndat; O2(j) = O2(j)/ndat
 
    chi(j) = O2(j)-O(j)*O(j)
 
   enddo
 
!---------------
 
   avO   = SUM(O)/samples;avchi=SUM(chi)/samples
 
   erO   = sqrt(SUM((O  -avO  )*(O  -avO  ))/samples)
 
   erchi = sqrt(SUM((chi-avchi)*(chi-avchi))/samples)
 
!compute the real avO:
                                                                          

                                                                          
 
   avO   = SUM(x(0:ndat-1))/ndat
 
!---------------
 
   DEALLOCATE(O);DEALLOCATE(chi)
 
  end subroutine bootstrap
 
!------------------------------------------------------
 
  real(8) function drandom()
 
   implicit none
 
   integer,parameter :: a = 16807
 
   integer,parameter :: m = 2147483647
 
   integer,parameter :: q = 127773
 
   integer,parameter :: r = 2836
 
   real(8),parameter :: f = (1.0D0/m)
 
   integer           :: p
 
   real(8)           :: dr
 
101 continue
 
   p       = seed/q
 
   seed    = a*(seed- q*p) - r*p
 
   if(seed .lt. 0) seed = seed + m
 
   dr      = f*seed
 
   if( dr .le. 0.0D0 .or. dr .ge. 1.0D0) goto 101
 
   drandom = dr
 
  end function drandom
 
!------------------------------------------------------
 
  subroutine locerr(errmes)
 
   implicit none
 
   character(*) :: errmes
 
   write(0,’(A,A)’),TRIM(prog),’:’,TRIM(errmes),’ Exiting....’
 
   stop 1
 
  end subroutine locerr
 
END MODULE boot_function
 
!======================================================
 
program bootstrap_errors
 
 use boot_function
 
 implicit none
 
 integer             :: ndat,chk
 
 real(8)             :: O,dO,chi,dchi
 
 real(8),allocatable :: x(:)
 
 MAXDAT=1000000;SAMPLES=1000
 
 call get_the_options
 
 ALLOCATE(x(0:MAXDAT-1),STAT=chk)
 
 if(chk > 0) call locerr(’Not enough memory for x’)
                                                                          

                                                                          
 
 ndat=0
 
 do while ( ndat < MAXDAT)
 
  read(*,*,END=101)x(ndat)
 
  ndat = ndat+1
 
 enddo
 
101 continue
 
 if(ndat >= MAXDAT) write(0,’(3A,I14,A,I14)’) &
 
      ’# ’,TRIM(prog),                        &
 
      ’: Warning: read ndat=’, ndat,          &
 
      ’ and reached the limit: ’,MAXDAT
 
 open (28, file="/dev/urandom", access="stream",&
 
  form="unformatted")
 
 read (28) seed
 
 seed = ABS(seed)
 
 close(28)
 
 call bootstrap(ndat,SAMPLES,x,O,dO,chi,dchi)
 
 print ’(A,I14,A,I12,A)’,&
 
  ’#  NDAT = ’,ndat,’ data. SAMPLES = ’,SAMPLES,’ groups’
 
 print ’(A            )’,&
 
  ’# <o>, chi= (<o^2>-<o>^2)’
 
 print ’(A            )’,&
 
  ’# <o> +/- err                             chi +/- err’
 
 print ’(4G28.17)’,O,dO,chi,dchi
 
end program bootstrap_errors
 
!======================================================
 
subroutine get_the_options
 
 use boot_function
 
 use getopt_m    !from getopt.f90
 
 implicit none
 
 call getarg(0,prog)
 

 
 do
 
  select case( getopt( "-hs:d:" ))
 
  case( ’s’ )
 
   read(optarg,*)SAMPLES
 
  case( ’d’ )
 
   read(optarg,*)MAXDAT
 
  case( ’h’ )
 
   call usage
 
  case( ’?’ )
 
   print *, ’unknown option   ’, optopt
                                                                          

                                                                          
 
   stop
 
  case( char(0)) ! done with options
 
   exit
 
  case( ’-’ )    ! use -- to exit from options
 
   exit
 
  case default
 
   print *, ’unhandled option ’, optopt
 
  end select
 
 enddo
 

 
end subroutine get_the_options
 
!=============================================
 
subroutine usage
 
 ...
 
end subroutine usage
 
!=============================================


 For the compilation we use the command
                                                                          

                                                                          


   
> gfortran -O2 getopt.f90 boot.f90 -o boot


 If our data is in one column in the file data, then the command that calculates
the errors using 500 samples is:
                                                                          

                                                                          


   
> cat data | boot -s 500


 The maximum number of measurements is set to 1,000,000 as in the jack
program. For more measurements we should use the -d switch, e.g. for 2,000,000
measurements use -d 2000000. For the analysis of the magnetization from the
output of the program is we can use the following command:
                                                                          

                                                                          


   
>  is -L 20 -b 0.4407 -s 1 -S 342 -n 2000000 | grep -v #  | \
 
  awk  -v L=20 ’{print ($2>0)?($2/(L*L)):(-$2/(L*L))}’   | \
 
  boot -s 1000  -d 2000000                  | grep -v #  | \
 
  awk  -v b=0.4407 -v L=20 ’{print $1,$2,b*L*L*$3,b*L*L*$4}’





   13.8.3    Comparing the Methods

In this subsection we will compute errors using equation  (13.40) , the jackknife
method  (13.43)  and the bootstrap method  (13.47) . In order to appreciate the
differences, we will use data with large autocorrelation times. We use the
Metropolis algorithm on the Ising model with [image: L = 40  ], [image: β =  0.4407  ≈ βc  ] and
measure the magnetization per site  (13.28) . We take [image: 1, 000,000  ] measurements
using the commands:
                                                                          

                                                                          


   
> ./is -L 40 -b 0.4407 -s 1 -S 5434365 -n 1000000 \
 
                              > outL40b0.4407.dat &
 
> grep -v # outL40b0.4407.dat | \
 
  awk -v L=40 ’{if($2<0){$2=-$2};print $2/(L*L)}’ \
 
                              > outL40b0.4407.m
 
> cat outL40b0.4407.m | autoc -t 10000 -n 1000000 \
 
                              > outL40b0.4407.rhom


 The file outL40b0.4407.m has the measurements of the magnetization in one
column and the file outL40b0.4407.rhom has the autocorrelation function
and the integrated autocorrelation time as described after page 1429. We
obtain [image: τm =  286.3(3)  ]. The integrated autocorrelation time is found to be
[image: τ     = 254(1)
 int,m  ].

   The expectation value is [image: ⟨m ⟩ = 0.638682  ]. The application of equation
(13.39) , valid for independent measurements, gives the (underestimated) error
[image: δcm  = 0.00017  ]. Using equation  (13.40)  we obtain [image:       √ -------
δm =    1 + 2τδcm ≈  0.004  ].
The error of the magnetic susceptibility cannot be calculated this way.


   	
   
[image: ⟨m⟩ = 0.639 ± 0.004 ≡ 0.639 (4 )
]
	(13.52)
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Figure 13.24: The error [image: δm  ] calculated using the bootstrap method as a function of
the number of samples [image: nS  ]. We observe a very fast convergence to the value obtained by
equation  (13.39)  [image: δcm  = 0.00017  ]. 
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Figure 13.25:  The  error  [image: δχ  ] of  the  magnetic  susceptibility  calculated  using  the
bootstrap method as a function of the number of samples [image: nS  ]. We observe convergence
for [image: nS > 1000  ] to the value [image: δcχ = 0.0435  ]. 



                                                                          

                                                                          
   


   For the calculation of the error of the magnetic susceptibility we have to resort
to the jackknife or to the bootstrap method. The latter is applied initially using a
variable number of samples [image: nS  ] so that the optimal number of samples is
be determined. Figure 13.24 shows the results for the magnetization.
We observe a very fast convergence to [image: δcm  = 0.00017  ] for quite small
number of samples. The analysis could have safely used [image: nS = 100  ]. In the
case of the magnetic susceptibility, convergence is slower, but we can
still use [image: nS = 500  ]. We obtain [image: χ =  20.39  ] and [image: δcχ =  0.0435  ]. The error
assumes independent measurements, something that is not true in our case.
We should use the correction factor [image: √ --------
  1 + 2τm  ] which gives [image: δχ = 1  ].
Therefore


   	
   
[image: χ = 20 ± 1 ≡ 20 (1)
]
	(13.53)



We note that the error is quite large, which is because we have few independent
measurements: [image: n ∕(2τm) ≈ 1,000, 000∕(2 × 286) ≈ 1750  ]. The a priori knowledge
of [image: τm  ] is necessary in this calculation. 
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Figure 13.26: The error [image: δm  ] calculated using the jackknife method as a function of the
number of bins [image: nb  ]. Convergence is observed for [image: 100 < nb < 800  ] to [image: δm  = 0.0036  ]. The
plot shows that as we approach the limit [image: nb = n  ], the error approaches the value calculated
by equation  (13.39)  [image: δcm = 0.00017  ]. The horizontal lines correspond to the values [image: δcm  ]
and [image: √1-+-2τmδcm ≈ 0.004  ] where [image: τm = 286.3  ]. The ratio [image: δm∕δcm ≈ √1-+-2τm-  ]. 
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Figure 13.27: Figure 13.26 magnified in the region of the plateau in the values of [image: δm  ].
The horizontal lines correspond to the values [image: δcm  ] and [image: √ -------
  1+ 2τmδcm ≈ 0.004  ] where
[image: τm = 286.3  ]. The ratio [image:           √-------
δm ∕δcm  ≈  1 + 2τm  ]. 
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Figure 13.28: The error [image: δχ  ] calculated using the jackknife method as a function of
the number of bins [image: nb  ]. Convergence is observed for [image: 100 < nb < 800  ] to [image: δχ = 0.86  ].
The plot shows that as we approach the limit [image: nb = n  ], the error approaches the same
value  [image: δcχ = 0.0421  ]  that  would  have  been  obtained  if  we  had  falsely  considered  the
measurements to be independent. These values are very close to the ones obtained using the
bootstrap method. The values [image: δχ  ] and [image: δ χ
 c  ] are shown in the plots by the two horizontal
lines. The ratio [image:         √ -------
δχ∕δcχ ≈   1+ 2τm  ]. 
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Figure 13.29: Figure 13.28 magnified in the region of the plateau in the values of [image: δχ  ].
Convergence is observed for [image: 100 < nb < 800  ] to [image: δχ = 0.86  ]. The values [image: δχ  ] and [image: δcχ  ]
are shown in the plots by the two horizontal lines. The ratio [image:          √-------
δχ∕δcχ ≈  1 +2τm  ]. 



                                                                          

                                                                          
   


   In the case of the jackknife method, the calculation can proceed without an
priori knowledge of [image: τm  ]. The errors are calculated for a variable number of bins
[image: nb  ]. Figure 13.26 shows the results for the magnetization. When [image: nb =  n  ] the
samples consist of all the measurements except one. Then the error is equal to the
error calculated using the standard deviation formula and it is underestimated by
the factor [image: √ --------
  1 + 2τm  ]. This is shown in figure 13.26, where we observe a slow
convergence to the value [image: δcm =  0.00017  ]. The effect of the autocorrelations
vanishes when we delete [image: (bin width ) ≈ 2τm  ] measurements from each bin. This
happens when [image: n  ≈ n∕(bin width ) = n∕(2τ  ) = 1,000,000∕572 ≈  1750
 b                         m  ]. Of
course this an order of magnitude estimate and a careful study is necessary in
order to determine the correct value for [image: nb  ]. Figure 13.26 shows that the error
converges for [image: 100 < nb < 800  ] to the value [image: δm  = 0.0036  ], which is quite close to
the value [image: √1-+--2τmδcm  ≈ 0.004  ]. We note that, by using a small number
[image: nb ≈ 20 − 40  ], we obtain an acceptable estimate, a rule of the thumb that can be
used for quick calculations.

   Similar results are obtained for the magnetic susceptibility [image: χ  ], where the
error converges to the value [image: δχ =  0.86  ], in accordance with the previous
estimates. For [image: n  → n
 b  ] the error converges to the underestimated error
[image: δcχ = 0.0421  ].

   We can use the bootstrap method, in a similar way to the jackknife method, in
order to determine the real error [image: δm  ], [image: δχ  ] without calculating [image: τm  ] directly. The
data is split into [image: nb  ]  bins, whose bin width is [image: (bin width) = n∕nb  ]. Each
jackknife bin contains [image: n − n ∕n
        b  ] data elements and we apply the bootstrap
method on this data, by taking [image: nS  ] samples of [image: n − n ∕nb  ] random data. Then
each jackknife bin gives a measurement on which we apply equation  (13.43)  in
order to calculate errors.

   The above calculations can be reversed and used for the calculation of the
autocorrelation time. By computing the underestimated error [image: δc𝒪 ] and the true
error [image: δ𝒪 ] using one of the methods described above, we can calculate [image: τm  ] using
the relation [image:            √ --------
δ𝒪 ∕δc𝒪  =   1 + 2τ𝒪 ]. Therefore


   	
   
[image:        ( (     )2     )     ( (    )2     )
τ  =  1-   δm--   − 1   =  1-   δχ--   − 1  =  ...
 m    2    δcm             2    δcχ
]
	(13.54)



By calculating [image: τm  ] using all the methods described here, these relations can also
be used in order to check the analysis for self-consistency and see if they agree.
This is not always a trivial work since a system may have many autocorrelation
times which influence each observable in a different way (fast modes, slow
modes).


   13.9    Problems


      

      	 Prove that equation  (13.22)  satisfies the detailed balance condition.
      

      	 Write a program that prints the memory used by variables of the
      type  character, integer, integer(8), real, real(8) in  bytes.
      Calculate the amount of memory needed for an array of size 2,000,000
      for each of the above types of variables.
      

      	 Make the appropriate changes in the Ising model program so that it
      measures the average acceptance ratio [image: ¯A  ] of the Metropolis steps. I.e.
      compute the ratio of accepted spin flips to the number of attempted
      spin flips. Compute the dependence of [image: A¯  ] on the temperature and
      the size of the system. Take [image: L = 20  ] and [image: β = 0.20,  ] [image: 0.30,  ] [image: 0.40,  ]
      [image: 0.42,  ] [image: 0.44,  ] [image: 0.46,  ] [image: 0.48,  ] [image: 0.50  ]. Then take [image: β = 0.20  ], [image: L = 10,  ] [image: 20,  ]
      [image: 40,  ] [image: 80,  ] [image: 100  ]. Repeat for the same values of [image: L  ] for [image: β =  0.44  ] and
      [image: β = 0.48  ].
      

      	 Reproduce the plots in figure 13.12 and compute [image: τm  ]. Repeat for [image: τe  ].
      Compare your results with [image: τint,m   ] and [image: τint,e   ].
      

      	 Reproduce the plots in figure 13.15 and repeat your calculation for the
      energy.
                                                                          

                                                                          
      

      	 Reproduce the plots in figure 13.17. Repeat your calculation for the
      energy. Then, construct similar plots for [image: τint,m   ] and [image: τint,e   ] as a function
      of [image: tmax   ] (see figure 13.14).
      

      	 Reproduce the plots in figures 13.19 and 13.20. Repeat your calculation
      for the energy. Then, construct similar plots for [image: τint,m   ] and [image: τint,e   ] as a
      function of [image: tmax   ] (see figure 13.14).
      

      	 Modify  the  Ising  model  program  presented  in  the  text  so  that  it
      can simulate the Ising model in the presence of an external magnetic
      field [image: B  ] (see equation  (13.2) ). Calculate the magnetization per site
      [image: m (β,B )  ] for [image: L  = 32  ] and [image: B =  0.2, 0.4,0.6,0.8,1.0  ] at an interesting
      range of temperatures. Use different initial configuration in order to
      study the thermalization of the system as [image: B  ] increases: Cold state with
      spins parallel to [image: B  ], cold state with spins antiparallel to [image: B  ] and hot
      state. Study the dependence of the critical temperature separating the
      ordered from the disordered state on the value of [image: B  ].
      

      	 Hysteresis: In the previous problem, the Ising model with [image: B ⁄= 0  ] has a
      first order phase transition, i.e. a discontinuity in the value of the order
      parameter which in our case is the magnetization as a function of [image: B  ]. Near
      a first order transition we observe the phenomenon of hysteresis. In order to
      see it, set [image: L = 32  ] and [image: β =  0.55  ] and
           
           	thermalize the system for [image: B  = 0  ]
           

           	simulate the system for [image: B  = 0.2  ] using as an initial state the last
           one coming from the previous step. Do 100 sweeps and calculate
           [image: ⟨m ⟩ ].
           

           	continue by increasing each time the magnetic field by [image: δB =  0.2  ].
           Stop when [image: ⟨m ⟩ ≈ 0.95  ].
           

           	using  the  last  configuration  from  the  previous  step,  repeat  by
           decreasing the magnetic field by [image: δB  = − 0.2  ] until [image: ⟨m ⟩ ≈ − 0.95  ].
                                                                          

                                                                          
           

           	using  the  last  configuration  from  the  previous  step,  repeat  by
           increasing the magnetic field by [image: δB =  0.2  ] until [image: ⟨m ⟩ ≈ 0.95  ].


      Make the plot [image: (B, m )  ]. What do you observe?
      
For systems near a first order phase transition, the order parameter can
      take two different values with almost equal probability. This means
      that the free energy has two local minima. Only one of them is the
      true, global minimum. This is depicted in figure 12.2 where two
      equally probable values of the order parameter are shown. This
      happens exactly at the critical point. When we move away from the
      critical point, one of the peaks grows and it is favored corresponding
      to the global minimum of the free energy. The local minimum is
      called a metastable state and when the system is in such a state, it
      takes a long time until a thermal fluctuation makes it overcome the
      free energy barrier and find the global minimum. In a Monte Carlo
      simulation such a case presents a great difficulty in sampling states
      correctly near the two local minima. Repeat the above simulations, this
      time making [image: 100,000  ] sweeps per point. Plot the time series of
      the magnetization and observe the transitions from the metastable
      state to the stable one and backwards. Compute the histogram of
      the values of the magnetization and determine which state is the
      metastable in each case. How is the histogram changing as [image: B  ] is
      increased?
      


      	 Write a program that simulates the 2 dimensional Ising model on a
      triangular lattice using the Metropolis algorithm. The main difference is
      that the number of nearest neighbors is [image: z = 6  ] instead of [image: z = 4  ]. Look into
      chapter 13.1.2 of Newman and Barkema (esp. figure 13.4). Compute the
      change in energy for each spin flip for the Metropolis step. Calculate the
      maxima of the magnetic susceptibility and of the specific heat and see if
      they are close to the expected critical temperature [image: βc ≈ 0.274653072  ].
      Note that even though [image: βc  ] is different than the corresponding value
      on the square lattice, the critical exponents are the same due to
      universality.
      

      	 Write a program that simulates the three dimensional Ising model on a
      cubic lattice using the Metropolis algorithm. Use helical boundary
      conditions (all you need in this case is to add a parameter ZNN=L*L together
      with the XNN=1 and YNN=L).
                                                                          

                                                                          
      

      	 Write a program that simulates the three dimensional Ising model on a
      cubic lattice using the Metropolis algorithm. Use periodic boundary
      conditions. (Hint: Use a one dimensional array s(N). During initialization,
      compute the arrays XNN(-N:N), YNN(-N:N), ZNN(-N:N) which store the
      nearest neighbors of the position i on the lattice in XNN(i), XNN(-i),
      YNN(i), YNN(-i), ZNN(i), ZNN(-i).)
      

      	 Simulate the antiferromagnetic two dimensional Ising model on a square
      lattice using the Metropolis algorithm. You may use the same code that you
      have and enter negative temperatures. Find the ground state(s) of the
      system.
      Define the staggered magnetization [image: ms  ] to be the magnetization per site of
      the sublattice consisting of sites with odd [image: x  ] and [image: y  ] coordinate. Set
      [image: L = 32  ] and compute the energy, the [image: ms  ], the specific heat, the
      magnetic susceptibility [image: χ  ] and the staggered magnetic susceptibility
      [image: χs = βN ∕4 ⟨(ms  − ⟨ms ⟩)2⟩ ].
      
[image: χ  ] has a maximum in the region [image: β ≈ 0.4407  ]. Compute its value at this
      temperature for [image: L = 32 − 120  ]. Show that [image: χ  ] does not diverge as [image: L →  ∞ ],
      therefore [image: χ  ] does not show a phase transition.
      
Repeat the calculation for [image: χs  ]. What do you conclude? Compare the
      behavior of [image: ⟨ms ⟩ ] for the antiferromagnetic Ising model with [image: ⟨m ⟩ ] of the
      ferromagnetic.
      


      	 Modify the program in boot.f90 so that it bins its input data. Reproduce
      the plots in figures ?? and ??. (Hint: See the file boot_bin.f90)
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Figure 13.30: Horizontal motion on the [image: L = 5  ] square lattice with periodic boundary
conditions. The trajectory is a circle.
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Figure 13.31: Horizontal motion on the [image: L = 5  ] square lattice with helical boundary
conditions. The trajectory is a spiral.
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Figure 13.32: Spin configurations for the Ising model with [image: L = 400  ], [image: β = 0.4292  ]
after 4000, 9000, 12000 and 45000 sweeps respectively. We observe the formation of large
clusters of same spin. This makes hard to form a new independent configuration with the
Metropolis algorithm and results in large autocorrelation times. 



                                                                          

                                                                          
   


                                                                          

                                                                          
   


Chapter 14
Critical Exponents
  In the previous chapters, we saw that when a system
undergoes a continuous phase transition as [image: β →  βc  ], or equivalently as the reduced
temperature1 
   	
   
[image:     βc-−-β-
t ≡   βc   →  0,
]
	(14.1)



the correlation length [image: ξ ≡ ξ(β, L = ∞ )  ], calculated in the thermodynamic limit
diverges according to the relation 


   	
   
[image:       −ν
ξ ∼ |t|       (ν = 1 for 2d -Ising).
]
	(14.2)



The behavior of such systems near the phase transition is characterized by
critical exponents, such as the exponent [image: ν  ], which are the same for all
systems in the same universality class. The critical exponents describe the
leading non analytic behavior of the observables in the thermodynamic
                                                                          

                                                                          
limit2 
[image: L →  ∞ ], when [image: t →  0  ]. Systems with the same long distance behavior, but which
could possibly differ microscopically, belong to the same universality class. For
example, if we add a next to nearest neighbor interaction in the Hamiltonian
of the Ising model or if we consider the system on a triangular instead
of a square lattice, the system will still belong to the same universality
class. As [image: ξ → ∞ ] these details become irrelevant and all these systems
have the same long distance behavior. Microscopic degrees of freedom of
systems in the same universality class can be quite different, as is the
case of the liquid/vapor phase transition at the triple point and the Ising
model.

The critical exponents of the 2d Ising model universality class are the Onsager
exponents:   


   	
   
[image: χ ∼  |t|−γ ,    γ = 7∕4,
]
	(14.3)





   	
   
[image:       −α
c ∼ |t|   ,    α =  0    and
]
	(14.4)





   	
   
[image:          β
⟨m ⟩ ∼ |t|      t < 0,    β =  1∕8.
]
	(14.5)



This behavior is seen only in the thermodynamic limit [image: L →  ∞ ]. For a finite
lattice, all observables are analytic since they are calculated from the
analytic3 
partition function [image: Z (β)  ] given by equation  (13.4) . When [image: 1 ≪ ξ ≪  L  ] the
model behaves approximately as the infinite system. As [image: β ≈  βc  ] and [image: ξ ∼ L  ]
finite size effects dominate. Then the fluctuations, e.g. [image: χ  ] and [image: c  ], on the finite
lattice have a maximum for a pseudocritical temperature [image: βc(L)  ] for which we have
that4 


   	
                                                                          

                                                                          
   
[image:  lim  βc(L) = βc.
L→ ∞
]
	(14.6)



For the Ising model on the square lattice, defined by  (13.14) , we have that
[image:              √ --
βc = log(1 +   2)∕2  ].

   Because of  (14.2) , when on the finite lattice we take [image: β = βc(L)  ], we have
that [image: ξ(t,L) ∼ L ⇒  |t| =  ] [image: |(β  − β (L))∕β |
   c    c      c ][image: ∼ L −1∕ν  ], therefore equations
(14.3) – (14.5)  become   


   	
   
[image: χ ∼  Lγ∕ν,
]
	(14.7)





   	
   
[image:       α∕ν
c ∼ L    ,
]
	(14.8)


                                                                          

                                                                          



   	
   
[image: m  ∼ L −β∕ν.
]
	(14.9)



The left hand sides of the above relations are normally evaluated at [image: β = βc(L )  ], but
they can also be evaluated at any temperature in the pseudocritical region. Most of
the times, one calculates the observables for [image: β = βc(L )  ], but one can also use e.g.
[image: β =  βc  ]5.
In the next sections we will show how to calculate the critical exponents by using
the scaling relations  (14.3) – (14.5)  and  (14.7) – (14.9) .


   14.1    Critical Slowing Down

The computation of critical exponents is quite involved and requires accurate
measurements, as well as simulations of large systems in order to reduce finite size
effects. The Metropolis algorithm suffers from severe critical slowing down, i.e.
diverging autocorrelation times with large dynamic exponent [image: z  ] according
to  (13.36) , near the critical region, which makes it impossible to study
large systems. In this section we will discuss the cause of this effect whose
understanding will lead us to new algorithms that beat critical slowing down.
These are the cluster algorithms and, in particular, the Wolff algorithm. The
success of these algorithms is based on the dynamics of the system and, therefore,
they have a more specialized range of applications. In contrast, the Metropolis
                                                                          

                                                                          
algorithm can, in principle, be applied on any system studied with the Monte
Carlo method.

   According to the discussion in section 13.5, the Ising model simulation using
the Metropolis algorithm near the critical region exhibits an increase in
autocorrelation times given by the scaling relation  (13.36) 


   	
   
[image: τ ∼ ξz.
]
	(14.10)



The correlation length of the finite system becomes [image: ξ ∼ L  ] in this region, and we
obtain equation  (13.36) , [image:       z
τ ∼ L  ]. When [image: z > 0  ] we have the effect of critical
slowing down.

   Critical slowing down is the main reason that prohibits the
simulation of very large systems, at least as far as CPU time [image: tCPU   ] is
concerned6 .
The generation of a given number of configuration requires an effort [image:          d
tCPU ∼  L  ].
But the measurement of a local quantity, like [image: ⟨m ⟩ ], for a given number
of times requires no extra cost, since each configuration yields [image: Ld  ]
measurements7 .
In this case, measuring for the largest possible [image: L  ] is preferable, since it reduces
finite size effects. We see that, in the absence of critical slowing down, the cost of
measurement of [image: ⟨m ⟩ ] is [image: t⟨CmPU⟩ ∼ L0   ].

   Critical slowing down, however, adds to the cost of production of independent
configurations and we obtain [image: t⟨m⟩ ∼  Lz
 CPU  ], making the large [image: L  ] simulations
prohibitively expensive. For the Metropolis algorithm on the two dimensional
Ising model we have that [image: z ≈ 2.17  ]; and the problem is severe. Therefore, it is
                                                                          

                                                                          
important to invent new algorithms that beat critical slowing down. In the case of
the Ising model and similar spin systems, the solution is relatively easy. It is
special to the specific dynamics of spin systems and does not have a universal
application.

   The reason for the appearance of critical slowing down is the divergence of the
correlation length [image: ξ  ]. As we approach the critical temperature [image: β →  βc  ] from the
disordered phase, the typical configurations are dominated by large clusters of
same spins. The Metropolis algorithm makes at most one spin flip per step and
the acceptance ratios for spins inside a cluster are small. For example, a spin with
four same neighboring spins can flip with probability [image: e− 8βc ≈ 0.029  ],
which is quite small. The spins that change more often are the ones with
more neighbors having opposite spins, therefore the largest activity is
observed at the boundaries of the large clusters. In order to obtain a
statistically independent configuration, we need to destroy and create
many clusters, something that happens very slowly using the Metropolis
algorithm who realizes this process mostly by moving the boundaries of the
clusters.


   14.2    Wolff Cluster Algorithm

Beating critical slowing down requires new algorithms so that at
each step a spin configuration is changed at the scale of a spin
cluster8 .
The cluster algorithms construct such regions of same spins in a way that the
proposed new configuration has all the spins of the clusters flipped. For such an
algorithm to be successful, the acceptance ratios should be large. The most
famous ones are the Swendsen-Wang  [63] and the Wolff  [64] cluster algorithms.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.1: Two spin configurations that differ by the flip of a Wolff cluster. The
bonds that are destroyed/created during the transition belong to the boundary of the
cluster.



                                                                          

                                                                          
   


   The process of constructing the clusters is stochastic and depends on the
temperature. Small clusters should be favored for [image: β ≪  βc  ], whereas large clusters
of size [image: ∼ L  ] should dominate for [image: β ≫  β
      c  ].

   The basic idea of the Wolff algorithm is to choose a site randomly, a so called
seed of the cluster, and construct a spin cluster around it. At each step, we add
new members to the cluster with probability [image: Padd = Padd(β)  ]. If [image: Padd(β )  ] is
properly chosen, the detailed balance condition  (12.59)  is satisfied and the new
configuration is always accepted. This process is depicted in figure 14.1. In the
state [image: μ  ], the cluster is enclosed by the dashed line. The new state [image: ν  ] is obtained
by flipping all the spins in the cluster, leaving the rest of the spins to be the
same.

   The correct choice of [image: Padd   ] will yield equation  (12.60)


   	
   
[image: P-(μ-→--ν) = e− β(Eν−E μ).
P (ν →  μ)
]
	(14.11)



The discussion that follows proves  (14.11)  and can be found in the book by
Newman and Barkema  [4]. The crucial observation is that the change in
energy in the exponent of the right hand side of  (14.11)  is due to the
creation/destruction of bonds on the boundary of the cluster. The structure of the
bonds in the interior of the cluster is identical in the two configurations [image: μ  ] and
[image: ν  ]. This can be seen in the simple example of figure 14.1. By properly choosing
the selection probability [image: g(μ → ν )  ] of the new state [image: ν  ] and the acceptance ratio
[image: A (μ →  ν)  ], so that


   	
                                                                          

                                                                          
   
[image: P (μ → ν ) = g(μ → ν )A(μ →  ν),
]
	(14.12)



we will succeed in satisfying  (14.11)  and maximize the acceptance ratio. In fact
in our case we will find that [image: A (μ →  ν) = 1  ]!

   The selection probability [image: g(μ →  ν)  ] is the probability of constructing a
particular cluster and can be split in three factors:


   	
   
[image: g(μ →  ν) = p    × pint× pborder.
             seed    yes    no
]
	(14.13)




   The first term is the probability to start the cluster from the particular seed.
By choosing a lattice site with equal probability we obtain


   	
   
[image:         1
pseed = ---.
       N
]
	(14.14)




   Then the cluster starts growing around its seed. The second term [image:  int
pyes   ] is the
probability to include all cluster members found in the interior of the cluster. This
probability is complicated and depends on the size and shape of the cluster.
Fortunately, it is not important to calculate it. The reason is that in the
opposite transition [image: ν →  μ  ], the corresponding term is exactly the same since
the two clusters are exactly the same (the only differ by the value of the
spin)!


   	
   
[image: pinytes(μ →  ν) = pinytes(ν →  μ) ≡ C μν.
]
	(14.15)




   The third term is the most interesting one. The cluster stops growing when we
are on the boundary and say “no” to including all nearest neighbors with same
spins, which are not already in the cluster (obviously, the opposite spins are not
included). If [image: Padd   ] is the probability to include a nearest neighbor of same spin to
the cluster, the probability of saying “no” is [image: 1 − Padd   ]. Assume that we have [image: m  ]
“bonds”9 
of same spins on the boundary of the cluster in the state [image: μ  ], and that we have [image: n  ]
such bonds in the state [image: ν  ]. In figure 14.1, for example, we have that
[image: m  = 5  ] and [image: n = 7  ]. Therefore, the probability to stop the cluster in
the state [image: μ  ] is to say “no” [image: m  ] times, which happens with probability
                                                                          

                                                                          
[image:           m
(1 − Padd)  ]:


   	
   
[image: pbnoorder(μ →  ν ) = (1 − Padd)m.
]
	(14.16)



Similarly, the cluster in the state [image: ν  ] stops at the same boundary with
probability


   	
   
[image: pborder(ν → μ ) = (1 − Padd )n.
 no
]
	(14.17)



Therefore


   	
   
[image:               1C   (1 − P   )mA (μ →  ν)
P-(μ-→--ν) =  N--μν------add-------------= e−β(Eν−E μ).
P (ν →  μ)    1N-Cμν(1 − Padd)nA (ν → μ )
]
	(14.18)



The right hand side of the above equation depends only on the number of bonds
on the boundary of the cluster. The energy difference depends only on the
creation/destruction of bonds on the boundary of the cluster and the internal
bonds don’t make any contribution to it. Each bond created during the transition
[image: μ →  ν  ] decreases the energy by 2 and each bond destroyed increases the energy
by 2:


   	
   
[image: E ν − Eμ = (− 2n ) − (− 2m ) = 2(m − n),
]
	(14.19)



which yields


   	
   
[image:           m− nA (μ →  ν )    −2β(m −n)    A(μ →  ν)   [ 2β          ]n−m
(1 − Padd)    ----------=  e         ⇒  ----------=  e  (1 − Padd)     .
              A (ν →  μ )                A(ν →  μ)
]
	(14.20)


                                                                          

                                                                          

From the above relation we see that if we choose


   	
   
[image:              −2β               − 2β
1 − Padd =  e   ⇒  Padd = 1 − e    ,
]
	(14.21)



then we can also choose


   	
   
[image: A(μ →  ν) = A (ν → μ ) = 1!
]
	(14.22)



Therefore, we can make the condition  (14.11)  to hold by constructing a cluster
using the [image: Padd   ] given by  (14.21) , flipping its spins, and always accepting the
resulting configuration as the new state.




   Summarizing, the algorithm for the construction of a Wolff cluster consists of
the following steps:
                                                                          

                                                                          
      

      	Choose a seed by picking a lattice site with probability [image:         1
pseed = N-  ].
      This is the first new member of the cluster
      

      	Repeat: For each new member of the cluster, visit its nearest neighbors
      that do not already belong to the cluster. If they have the same spin,
      add them to the “new members” of the cluster with probability [image: Padd   ].
      The original spin is not a “new member” anymore
      

      	When there are no more “new members”, the construction of the cluster
      ends
      

      	Flip the spin of all the members of the cluster.


The algorithm is ergodic, since every state can be obtained from any other state
by constructing a series of clusters of size 1 (equivalent to single flips).







[image: pict]

 
Figure 14.2: The Wolf cluster size as a function of the temperature. The plot shows the
average cluster size as a fraction of the lattice size [image: N  ]. In the high temperature regime,
[image: β ≪ βc  ], this is [image: ∼ 1∕N  ], and in the low temperature regime, [image: β ≫ βc  ], it becomes [image: ∼ 1  ].
The data is for the Ising model on the square lattice for [image: L = 40  ]. 



   


   The probability [image: Padd   ] depends on the temperature [image: β  ]. It is quite small for
[image: β ≪  βc  ] and almost 1 for [image: β ≫  βc  ]. Therefore, in the first case the algorithm
favors very small clusters (they are of size 1 for [image: β =  0  ]) and in the second
case it favors large clusters. In the high temperature regime, we have
almost random spin flips, like in the Metropolis algorithm. In the low
temperature regime, we have large probability of flipping the dominant cluster of
the lattice. This is clearly seen in figure 14.2, where the fraction of the
average cluster size to the lattice size [image: ⟨n ⟩∕N  ] is plotted as a function of the
temperature. For small [image: β  ], [image: ⟨n⟩∕N →  1∕N  ] whereas for large [image: β  ], [image: ⟨n⟩∕N  →  1  ].



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

 
Figure 14.3: A typical spin configuration in the disordered phase (left, [image: β = 0.25  ]) and
in the ordered phase (right, [image: β = 0.5556  ]) for the Ising model on the square lattice for
[image: L = 100  ]. 



                                                                          

                                                                          
   


   Figure 14.3 shows typical spin configurations in the high and low temperature
regimes. For small [image: β  ], most of the time the algorithm chooses a lattice site
randomly and constructs a small cluster around it and flips its spins. The
Metropolis algorithm picks a lattice site randomly and flips it most of the
times. In both cases, the two algorithms function almost the same way and
construct the high temperature disordered spin configurations. For large [image: β  ],
a typical spin configuration is a “frozen” one: A large cluster of same
spins with a few isolated thermal fluctuations of different spins. Most of
the times, the Wolff algorithm picks a seed in the dominant cluster and
the new cluster is almost the same as the dominant cluster: Most of its
sites are included with few ones excluded, which upon flipping of the
spins, they will form the new thermal fluctuations. After the flips, the old
thermal fluctuations have the same spin as the dominant cluster and they
become part of the new dominant cluster. The Metropolis algorithm picks
lattice sites randomly: When they belong to the dominant cluster they are
seldomly flipped, whereas the thermal fluctuations are flipped most of the
time. Both algorithms function similarly and have the same efficiency.



                                                                          

                                                                          

                                                                          

                                                                          




[image: pict] [image: pict]

  
Figure 14.4:   Two   typical   spin   configurations   in   the   (pseudo)critical   region
([image: β = 0.4348  ])  for  the  Ising  model  on  the  square  lattice  for  [image: L = 100  ].  The  two
configurations differ by 5000 Metropolis steps. 



                                                                          

                                                                          
   


   Figure 14.4 shows typical spin configurations in the critical region. These are
dominated by large clusters whose size, shape and position are random. The Wolff
algorithm constructs large clusters easily, therefore, large clusters are easily
created and destroyed in a few steps (figure 14.2 shows that [image: ⟨n ⟩∕N ≈  0.5  ]). In
contrast, the Metropolis algorithm modifies clusters by slowly moving their
boundaries and large clusters are destroyed/created very slowly. Autocorrelation
times are expected to reduce drastically when using the Wolff algorithm in the
critical region.

   The expectation value of the size of the Wolff clusters is a dynamical quantity.
In order to see this, we will show that in the disordered phase ([image: β <  βc  ]) we have
that


   	
   
[image: χ =  β⟨n⟩.
]
	(14.23)




   We take the discussion from Newmann and Barkema  [4]: Create
a bond on each link of the lattice connecting two same spins with
probability [image: Padd = 1 − e−2β  ]. In the end, the lattice will be divided in [image: Nc  ]
Wolff10 
clusters. Each one will consist of [image: ni  ] sites, whose spin is [image: Si  ]. Choose a lattice site
randomly and flip the spins of the cluster it belongs to. Destroy the bonds and repeat the
                                                                          

                                                                          
process11 .
The total magnetization is:


   	
   
[image:      ∑Nc
M  =     Sini,
      i=1
]
	(14.24)



and


   	
   
[image:          (  Nc     ) ( Nc      )
    2      ∑           ∑             ∑                ∑    2 2
⟨M  ⟩ = ⟨      Sini       Sjnj   ⟩ = ⟨   SiSjninj⟩ + ⟨    Sini⟩.
           i=1         j=1            i⁄=j               i
]
	(14.25)



The values [image: Si =  ±1  ] are equally probable due to the symmetry of the model,
therefore the first term vanishes. Since [image: S2 = 1
 i  ], we obtain


   	
                                                                          

                                                                          
   
[image:         1           1  ∑
⟨m2 ⟩ = --- ⟨M 2⟩ = ---⟨    n2i⟩.
       N 2         N 2  i
]
	(14.26)




   In the Wolff algorithm, the creation of a cluster is equivalent to the choice of
one of the clusters we created by following the procedure described above. The
probability of selecting the cluster [image: i  ] is


   	
   
[image:      ni
pi = --,
     N
]
	(14.27)



therefore the average value of the size of the Wolff clusters will be


   	
   
[image:        ∑           ∑   n
⟨n⟩ = ⟨   pini⟩ = ⟨    -ini⟩ = N ⟨m2 ⟩.
        i           i  N
                                                                          

                                                                          
]
	(14.28)



By using equation  (14.26)  and the fact that for [image: β <  βc  ] we have that
[image: ⟨m ⟩ = 0  ]12,
therefore


   	
   
[image:             2       2
χ =  βN (⟨m  ⟩ − ⟨m ⟩ ) = β⟨n⟩.
]
	(14.29)





   14.3    Implementation

In order to create a cluster around a seed, we need a memory buffer for storing
the new members of the cluster. We draw cluster sites from this buffer, and
examine whether to add their nearest neighbors to the cluster.

   There are two data structures that can be used in this job. The first one is the
stack (or LIFO: last in – first out) and the second one is the queue (or FIFO: first
in – first out). They are both one dimensional arrays, the only difference is how
we draw data from them. In the case of a stack, we draw the last element that we
stored in it. In the case of the queue, we draw the first element that we stored in
it.

   The stack is implemented as a one dimensional array
                                                                          

                                                                          
stack(0:N-1)13 
in which we “push” a new value that we want to store and we “pop” one
that we want to retrieve. We use an integer m as a pointer to the last
value that we stored in the position stack(m-1). m is also the number of
active elements in the stack. In order to push a value e into the stack
we:
      

      	check if there exist available positions in the stack (i.e. if m<N)
      

      	set stack(m) = e
      

      	increase m by 1.


In order to pop a value and store it in the variable e we:
      

      	check if the stack is non empty (i.e. if m>0)
      

      	reduce m by 1
      

      	set e = stack(m)


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.5:  Data  topology  in  a  queue.  In  the  array  depicted  here,  we  have  8
elements stored in queue(N-3) ... queue(4). We have that m=5, n=N-3, m-n = 8 mod
N. An element is added to the queue(m)=queue(5) and an element is popped by calling
queue(n)=queue(N-3). 



                                                                          

                                                                          
   


   The queue implementation is different. The data topology is cyclic, as
shown in figure 14.5. We use an array queue(0:N-1) and two integers m, n
which point at the beginning and at the end of the buffer. The beginning
of the data is the element queue(m-1) and the end of the data is the
element queue(n). When the queue is empty, we have that m=n and the
same is true when it is full. Therefore we need a flag that flags whether
the queue is empty or full. In the beginning we set flag=0 (queue is
empty)14 .
The number (m-n) mod N is the number of stored
elements15 .
When the queue has data, we set flag=1. In order to store a value e into the
queue we:
      

      	check whether the queue is full (m=n and flag=1)
      

      	set flag=1
      

      	set queue(m) = e
      

      	increase m by [image: 1  modN  ].


In order to pop a value and store it in the variable e we:
      

      	check whether the queue is empty (m=n and flag=0)
      

      	set e = queue(n)
      

      	increase n by [image: 1  modN  ]
                                                                          

                                                                          
      

      	if m=n set flag=0.


   Summarizing, the algorithm for constructing a Wolff cluster for the Ising
model is the following:
      

      	choose a seed by randomly picking a site with probability [image: 1∕N  ]
      

      	check its nearest neighbors. If they have the same spin, add them to
      the cluster with probability [image:             −2β
Padd = 1 − e  ]. The new members of
      the cluster are pushed into the stack stack(0:N-1) according to the
      previous discussion
      

      	pop a site from the stack stack(0:N-1). If the stack is empty we stop
      the construction and move on to the next step. If not, we check the
      site’s nearest neighbors. If they are not already in the cluster and they
      have the same spin, we add them to the cluster with probability [image: Padd   ]
      

      	record the size of the cluster and flip the spin of its members.


   The choice between stack or queue is not important. The results are the
same and the performance similar. The only difference is the way that the
clusters are constructed (for the stack, the cluster increases around the
seed whereas for the queue it increases first in one direction and then in
another). The careful programmer will try both during the debugging phase
of the development. Bad random number generators can be revealed in
such a test, since the Wolff algorithm turns out to be sensitive to their
shortcomings.


   14.3.1    The Program

The heart of the algorithm is coded in the
subroutine16 
wolff() in the file wolff.f90. Each call to wolff() constructs a Wolff cluster,
flips its spin and records its size.
                                                                          

                                                                          

   The buffer stack(0:N-1) is used in order to store the new members of the
cluster. We call the function ALLOCATE for dynamically allocating the necessary
memory and use DEALLOCATE before returning to the calling program in
order to return this memory back to the system - and avoid memory
leaks.
                                                                          

                                                                          


   
 ALLOCATE(stack(0:N-1),STAT=chk)
 
 if(chk>0) call locerr(’allocation failure for stack in wolff’)
 
  ....
 
 DEALLOCATE(stack)!free memory of stack


 If the requested memory is not available, then chk>0 and the subroutine
locerr() stops the program.

   The seed is chosen randomly by a call to ranlux:
                                                                          

                                                                          


   
 call ranlux(r,1)
 
 cseed    =  INT(N*r)+1
 
 stack(0) =  cseed
 
 nstack   =  1          !the stack has 1 member, the seed
 
 sold     =  s(cseed)
 
 snew     = -s(cseed)   !the new spin value of the cluster
 
 s(cseed) =  snew       !we flip all new members of cluster
 
 ncluster =  1          !size of cluster=1


 The seed is stored in cseed which is immediately added to the cluster
(stack(0)=cseed). The variable nstack records the number of elements
in the stack and it is originally set equal to 1. The variable ncluster
counts the number of sites in the cluster and it is originally set equal to 1.
sold=s(cseed) is the old value of the spin of the cluster and snew=-sold
is the new one. The value of the spin of a new member of the cluster
is immediately changed (s(cseed)=snew)! This increases the efficiency
of the algorithm. By checking whether the spin of a nearest neighbor
is equal to sold, we check whether the spin is the same as that of the
cluster and if it has already been included in the cluster during a previous
check.

   The loop over the new members of the cluster is summarized below:
                                                                          

                                                                          


   
 do while(nstack > 0)
 
!pull a site off the stack:
 
  nstack  = nstack     - 1; scluster = stack(nstack)
 
!check its four neighbors:
 
!-------------scluster + XNN:
 
  nn       =  scluster + XNN; if(nn > N) nn = nn - N
 
  if(s(nn) == sold)then
 
   call ranlux(r,1)
 
   if(r<padd)then
 
    stack(nstack)=nn; nstack = nstack + 1
 
    s(nn)        =snew
 
    ncluster     =ncluster+1
 
   endif
 
  endif
 
! ... check other 3 nearest neighbors ...
 
 enddo


 The loop do while(nstack > 0) is executed while nstack>0, i.e. as long as the
stack is not empty and there exist new members in the cluster. The variable
scluster is the current site drawn from the stack in order to check its nearest
neighbors. The line nn = scluster + XNN; if(nn > N) nn = nn - N
chooses the nearest neighbor to the right and stores it in the variable nn. If
the spin s(nn) of nn is equal to sold, then this neighbor has the same
spin as that of the cluster and it has not already been included to the
cluster (otherwise its spin would have been flipped). The variable padd is
equal to [image: Padd   ](it has been set in init) and if r<padd (which happens
with probability [image: Padd   ]), then we add nn to the cluster: We add nn to the
stack, we flip its spin (s(nn)=snew) and increase the cluster size by 1.
We repeat for the rest of the nearest neighbors. The full code is listed
below:
                                                                          

                                                                          


   
subroutine wolff
 
 use global_data
 
 implicit none
 
 integer             :: cseed,nstack,sold,snew,scluster,nn,chk
 
 integer             :: ncluster
 
 real(8)             :: r
 
 integer,allocatable :: stack(:)
 
!allocate stack memory:
 
 ALLOCATE(stack(0:N-1),STAT=chk)
 
 if(chk>0) call locerr(’allocation failure for stack in wolff’)
 
!choose a seed for the cluster, put it on the stack and flip it
 
 call ranlux(r,1)
 
 cseed    =  INT(N*r)+1
 
 stack(0) =  cseed
 
 nstack   =  1          !the stack has 1 member, the seed
 
 sold     =  s(cseed)
 
 snew     = -s(cseed)   !the new spin value of the cluster
 
 s(cseed) =  snew       !we flip all new members of cluster
 
 ncluster =  1          !size of cluster=1
 
!start the loop on spins in the stack:
 
 do while(nstack > 0)
 
!pull a site off the stack:
 
  nstack  = nstack     - 1; scluster = stack(nstack)
 
!check its four neighbors:
 
!-------------scluster + XNN:
 
  nn       =  scluster + XNN; if(nn > N) nn = nn - N
 
  if(s(nn) == sold)then
 
   call ranlux(r,1)
 
   if(r<padd)then
 
    stack(nstack)=nn; nstack = nstack + 1
 
    s(nn)        =snew
 
    ncluster     =ncluster+1
 
   endif
 
  endif
 
!-------------scluster - XNN:
 
  nn       =  scluster - XNN; if(nn < 1) nn = nn + N
                                                                          

                                                                          
 
  if(s(nn) == sold)then
 
   call ranlux(r,1)
 
   if(r<padd)then
 
    stack(nstack)=nn; nstack = nstack + 1
 
    s(nn)        =snew
 
    ncluster     =ncluster+1
 
   endif
 
  endif
 
!-------------scluster + YNN:
 
  nn       =  scluster + YNN; if(nn > N) nn = nn - N
 
  if(s(nn) == sold)then
 
   call ranlux(r,1)
 
   if(r<padd)then
 
    stack(nstack)=nn; nstack = nstack + 1
 
    s(nn)        =snew
 
    ncluster     =ncluster+1
 
   endif
 
  endif
 
!-------------scluster - YNN:
 
  nn       =  scluster - YNN; if(nn < 1) nn = nn + N
 
  if(s(nn) == sold)then
 
   call ranlux(r,1)
 
   if(r<padd)then
 
    stack(nstack)=nn; nstack = nstack + 1
 
    s(nn)        =snew
 
    ncluster     =ncluster+1
 
   endif
 
  endif
 
 enddo !do while(nstack > 0)
 
 print ’(A,I14)’,’#clu ’,ncluster
 
!--------------------------------------
 
 DEALLOCATE(stack)!free memory of stack
 
!--------------------------------------
 
end subroutine wolff


 In order to link the subroutine with the rest of the program so that we construct one cluster
per “sweep”17 ,
                                                                          

                                                                          
we modify main() accordingly:
                                                                          

                                                                          


   
!============== main.f90    ==================
 
program Ising2D
 
 use global_data
 
 implicit none
 
 integer :: isweep
 

 
 call init
 
 do isweep = 1, nsweep
 
  if(algorithm .eq. 1)then
 
   call wolff
 
  else
 
   call met
 
  endif
 
  call measure
 
 end do
 
 call endsim
 
end program Ising2D


 The (global) variable algorithm controls whether the
Wolff18 
or the Metropolis algorithm will be used for the spin updates. The (global)
variable padd[image: ≡ P    =  1 − e− 2β
    add  ] is defined in init(). The following lines are
added: into the file global_data.f90
                                                                          

                                                                          


   
 real(8)                :: padd
 
 integer                :: algorithm


 The following lines are added to the file init.f90
                                                                          

                                                                          


   
 algorithm=0            !default is metropolis,1 is wolff
 
 padd     = 1.0D0 - exp(-2.0D0*beta)


 The following lines are added to the file options.f90
                                                                          

                                                                          


   
  .....
 
  select case(getopt("-hL:b:s:S:n:r:uw"))
 
  case( ’w’ )
 
   algorithm = 1
 
  .....


 in order to add the option -w to the command line. This option sets
algorithm=1, which makes the program run the Wolff algorithm instead of the
Metropolis. Some extra info must also be added to the help message printed by
usage and simmessage and ... we are ready! For the compilation we use the
Makefile
                                                                          

                                                                          


   
FC     =  gfortran
 
OBJS   =  global_data.o getopt.o main.o init.o met.o wolff.o \
 
          measure.o end.o options.o ranlux.o
 
FFLAGS = -O2
 

 
is: $(OBJS)
 
$(FC) $(FFLAGS) $^ -o $@
 

 
$(OBJS):   global_data.f90
 
options.o: getopt.f90
 
%.o: %.f90
 
$(FC) $(FFLAGS)   -c -o $@ $<


 The commands
                                                                          

                                                                          


   
> make
 
> ./is -h
 
Usage: ./is [options]
 
       -L: Lattice length (N=L*L)
 
       -b: beta  (options beta overrides the one in config)
 
       -s: start (0 cold, 1 hot, 2 old config.)
 
       -S: seed  (options seed overrides the one in config)
 
       -n: number of sweeps and measurements of E and M
 
       -w: use wolff algorithm for the updates
 
       .......
 
> ./is -L 20 -b 0.44 -s 1 -S 34235322 -n 5000 -w > outL20b0.44


 do the compilation, print the usage instructions of the program and perform a
test run for [image: L =  40  ], [image: β = 0.44  ], by constructing 5000 clusters, starting from a
hot configuration and writing the data to the file outL20b0.44.


   14.4    Production

In order to study the Ising model on a square lattice of given size [image: N  ], we have to
perform simulations for many values of [image: β  ]. Then, we want to study the finite
size properties and extrapolate the results to the thermodynamic limit,
by repeating the process for several values of [image: N  ]. The process is long
and ... boring. Moreover, a bored researcher makes mistakes and several
bugs can enter into her calculations. Laziness is a virtue in this case and
it is worth the trouble and the time investment in order to learn some
techniques that will make our life easier, our work more efficient, and
our results more reliable. Shell scripting can be used in order to code
repeated tasks of the command line. In its simplest form, it is just a series of
commands written into a text file. Such an example can be found in the file
run1:
                                                                          

                                                                          


   
# ################### run1 ########################
 
./is -L 20 -b 0.10 -s 1 -n 5000 -w -S 3423 > outL20b0.10
 
./is -L 20 -b 0.20 -s 2 -n 5000 -w > outL20b0.20
 
./is -L 20 -b 0.30 -s 2 -n 5000 -w > outL20b0.30
 
./is -L 20 -b 0.40 -s 2 -n 5000 -w > outL20b0.40
 
./is -L 20 -b 0.42 -s 2 -n 5000 -w > outL20b0.42
 
./is -L 20 -b 0.44 -s 2 -n 5000 -w > outL20b0.44
 
./is -L 20 -b 0.46 -s 2 -n 5000 -w > outL20b0.46
 
./is -L 20 -b 0.48 -s 2 -n 5000 -w > outL20b0.48
 
./is -L 20 -b 0.50 -s 2 -n 5000 -w > outL20b0.50
 
./is -L 20 -b 0.60 -s 2 -n 5000 -w > outL20b0.60
 
./is -L 20 -b 0.70 -s 2 -n 5000 -w > outL20b0.70


 The first line is a comment, since everything after a # is ignored by the shell. The
second line starts a simulation from a hot configuration (-s 1), lattice size L=20
(-L 20) and temperature [image: β = 0.10  ] (-b 0.10). The seed for the random number
generator is set equal to 3423 (-S 3423) and we measure on 5000 Wolff clusters
(-n 5000 -w). The results, printed to the stdout, are redirected to the file
outL20b0.10 (> outL20b0.10).

   The next ten lines continue the simulation for [image: β =  0.20  ] – [image: 0.70  ]. Each
simulation starts from the configuration stored in the file conf at the end of the
previous simulation.

   In order to run these commands, the file run1 should be given execute
permissions (only once, the permissions ... stay after that) using the command
chmod:
                                                                          

                                                                          


   
> chmod a+x run1


 Then run1 can be executed like any other command:
                                                                          

                                                                          


   
> ./run1


 Not bad... But we can do better! Instead of adding one line for each simulation,
we can use the programming capabilities of the shell. Let’s see how. The file run2
contains the commands:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 
# ################### run2 ################################
 
set L       = 20
 
set betas   = (0.10 0.20 0.30 0.40 0.42 0.44 0.46 0.48 0.50\
 
               0.60 0.70)
 
set start   = "-s 1 -S 3423"
 
set nsweeps = 5000
 

 
foreach beta ($betas)
 
 echo "L= $L beta= $beta"
 
 ./is -L $L -b $beta -n $nsweeps -w $start > outL${L}b${beta}
 
 set start = "-s 2"
 
end




   The first line19 
calls the shell tcsh in order to interpret the script. This was not necessary in
run1, since every shell can interpret the commands that it contains. But in this
case we use syntax which is special to the shell tcsh.

   The second line is a comment.

   The third line defines a shell variable whose name is L. Its value is set after the
= character equal to the string "20". This value is accessible by adding a $ in
front of the name of the variable. Therefore, whenever we write $L (or ${L}), the
shell substitutes the string of characters 20. For example, in place of outL${L}b
the shell constructs the string outL20b.

   The fourth line defines an array, whose name is betas. The different elements
of the array can be accessed by using the syntax $betas[number], where
“number” is the array element starting from 1. In the example shown above
$betas[1]= 0.10, $betas[2]= 0.20, ..., $betas[11]= 0.70. The special
variable $#betas is the number of elements in the array, which is equal to
11. When we write $betas, the shell expands it to all the values in the
                                                                          

                                                                          
array20 .

   The fifth line defines the variable start to be equal to the string of characters
"-s 1 -S 3423". The quotes have been put because we want it to be treated as a
single string of characters. If we omit them, then the shell treats -s, 1, -S and
3423 as separate words, and we obtain a syntax error. Everything after the
character # is a comment.

   The command foreach is a way to construct a loop in tcsh. The commands
between the foreach and end repeat once for every word in the parentheses in the
foreach line. Each time, the loop variable, whose name is put after the keyword
foreach, is set equal to the next word in the parenthesis. In our case, these words
are the values of the array betas, and the loop will execute 11 times, once for
each value [image: 0.10  ], [image: 0.20  ], ... , [image: 0.70  ], each time with $beta set equal to one of those
values.

   The next three lines are the commands that are repeated by the foreach loop.
The command echo “echoes” its arguments to the stdout and informs us about
the current value of the parameters used in the simulation (quite useful, especially
when the simulations take a long time). The command ./is runs the program,
each time using a different value of beta. Notice that the name of the file in which
we redirect the stdout changes each time that beta changes value. Therefore
our data will be stored in the files outL20b0.10, outL20b0.20, ...,
outL20b0.70. The third command forces the program to read the initial
configuration from the file conf. The first time that the loop is executed,
the value of start is "-s 1 -S 3423" (hot configuration, seed equal to
3423), whereas for all the next simulations, start is equal to "-s 2" (old
configuration).

   We can also include a loop over many values of L as follows:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 

 
set Ls      = (10 20 40)
 
set betas   = (0.10 0.20 0.30 0.40 0.42 0.44 0.46 0.48 0.50\
 
               0.60 0.70)
 
set nsweeps = 5000
 

 
foreach  L    ($Ls   )
 
 set start   = "-s 1 -S 3423"
 
 foreach beta ($betas)
 
  echo "L= $L beta= $beta"
 
  ./is -L $L -b $beta -n $nsweeps -w $start > outL${L}b${beta}
 
  set start = "-s 2"
 
 end
 
end


 The array variable Ls stores as many L as we wish. Note that the definitions of
start are put in a special place (why?).


   14.5    Data Analysis

Data production must be monitored by looking at the time histories of properly chosen
observables. This will allow us to spot gross mistakes and it will serve as a qualitative
check of whether the system has thermalized and how long are the autocorrelation
times. It is easy to construct time histories using gnuplot. For example, the
commands21 :
                                                                          

                                                                          


   
gnuplot> plot "<grep -v ’#’            outL40b0.44" \
 
                u 1         with lines title "E"
 
gnuplot> plot "<grep -v ’#’            outL40b0.44" \
 
                u (abs($2)) with lines title "|M|"
 
gnuplot> plot "<awk ’/#clu/{print $2}’ outL40b0.44" \
 
                u 1         with lines title "n"


 show us the time histories of the energy, of the (absolute value of the)
magnetization and of the size of the clusters in a simulation with [image: L = 40  ] and
[image: β =  0.44  ].

   The expectation values of the energy per link [image: ⟨e⟩ = 21N-⟨E⟩ ] and the
magnetization per site [image: ⟨m ⟩ = 1⟨M  ⟩
       N ] with their errors can be calculated by the
jackknife program, which can be found in the file jack.f90 in the directory Tools
(see appendix 13.8). We compile the program into an executable file jack which
we copy into the current working directory. The expectation value [image: ⟨e ⟩ ] can be
calculated using the command:
                                                                          

                                                                          


   
> grep -v # outL40b0.44 |\
 
  awk  -v L=40 ’NR>500{print $1/(2*L*L)}’ | ./jack


We pass the value L=40 to the program awk by using the option -v, therefore making
possible the calculation of the ratio of the first column $1 by [image:          2
2N  = 2L   ]. The condition
NR>500 makes the printing command to be executed only after awk reads the first 500
lines22 .
This way we can discard a number of thermalization sweeps. The result of the
above command is printed to the stdout as follows:
                                                                          

                                                                          


   
# NDAT = 4500 data. JACK = 10 groups
 
# <o>, chi= (<o^2>-<o>^2)
 
# <o> +/- err                  chi +/- err
 
-0.71091166666 0.0024162628283 0.0015719190590 7.819205433e-05


 The first three lines are the comments printed by the program jack, which
inform the user about the important parameters of the analysis. The last line
gives [image: ⟨e⟩ ] and its error and then the fluctuations [image: ⟨e2⟩ − ⟨e⟩2   ] and their error.
The latter must be multiplied by [image:  2
β N  ], in order to obtain the specific
heat [image: c  ] and its error according to  (13.29) . By adding a few more lines
to the command shown above, this multiplication can be done on the
fly:
                                                                          

                                                                          


   
> set L = 40; set b = 0.44 ;               \
 
  grep -v # outL${L}b${b}                | \
 
  awk -v L=$L ’NR>500{print $1/(2*L*L)}’ | \
 
  ./jack | grep -v #                     | \
 
  awk -v L=$L -v b=$b                      \
 
   ’{print "e",L,b,$1,$2,b*b*L*L*$3,b*b*L*L*$4}’


 Well, why all this fuzz? Notice that all the commands shown above can be given
in one single line in the command line (by removing the trailing ∖  of each line).
By recalling the command, it is easy to obtain the results for a different value of
[image: L  ] and/or [image: β  ], by editing the values of the variables L and/or b. The result
is
                                                                          

                                                                          


   
e 40 0.42 -0.619523333 0.00189807 0.311391 0.0228302


 i.e. [image: ⟨e ⟩ = − 0.6195(19 )  ] and [image: c = 0.311(23)  ].

   We can work in a similar way for computing the magnetization. We have to
calculate the absolute value of the second column of the stdout of the command
./is, for every line that does not start with a #:
                                                                          

                                                                          


   
> set L = 40 ; set b = 0.42 ;                           \
 
  grep -v # outL${L}b${b}                             | \
 
  awk -v L=$L ’NR>500{m=($2>0)?$2:-$2;print m/(L*L)}’ | \
 
  ./jack | grep -v #                                  | \
 
  awk -v L=$L -v b=$b                                   \
 
   ’{print "m",L,b,$1,$2,b*L*L*$3,b*L*L*$4}’


 The absolute value is calculated by the expression ($2>0)?$2:-$2, and it is
stored in the variable m, which in turn is printed after being divided by [image:        2
N  = L   ].
The result is
                                                                          

                                                                          


   
m 40 0.44 0.6250527778 0.00900370 21.8345 1.39975


 which gives [image: ⟨m ⟩ = 0.6251 (90)  ] and [image: χ =  21.8(14)  ].

   Similarly we can calculate [image: ⟨n⟩∕N  ]:
                                                                          

                                                                          


   
> set L = 40 ; set b = 0.44 ;            \
 
  grep ’#clu’ outL${L}b${b}            | \
 
  awk -v L=$L ’NR>500{print $2/(L*L)}’ | \
 
  ./jack | grep -v #                   | \
 
  awk -v L=$L -v b=$b ’{print "n",L,b,$1,$2}’


 The result is
                                                                          

                                                                          


   
n 40 0.44 0.4257476389 0.01302602


 which gives [image: ⟨n⟩∕N  = 0.426(13)  ].


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.6: The results of the simulations performed by the shell script in the file
run3. The expectation value of [image: ⟨m⟩ ] is shown to decrease as [image: 1∕L  ] at high temperatures
[image: β ≪ βc  ]. 
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Figure 14.7: The results of the simulations performed by the shell script in the file
run3. The magnetic susceptibility [image: χ  ] is shown to be almost independent of the lattice
size when [image: β  ] takes values away from the critical region. In the critical region, its value
increases as shown in equation  (13.10) . 
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Figure 14.8: The results of the simulations performed by the shell script in the file
run3. The plot shows the expectation value [image: ⟨e⟩ ]. 
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Figure 14.9: The results of the simulations performed by the shell script in the file
run3. The plot shows the specific heat [image: c  ] which is shown to be almost independent of
[image: L  ] away from the critical region, whereas in the critical region it increases according to
equation  (13.8) . 
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Figure 14.10: The results of the simulations performed by the shell script in the file
run3. The plot shows [image: ⟨n ⟩∕N  ]. 



                                                                          

                                                                          
   


   All of the above commands can be summarized in the script in the file
run3:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 
set Ls      = (10 20 40 60 80 100)
 
set betas   = (0.00 0.10 0.20 0.25 0.30 0.34 0.38 \
 
               0.40 0.42 0.43 0.44 0.45 0.46 0.48 \
 
               0.48 0.50 0.55 0.60 0.65 0.70 0.80 )
 
set nsweeps = 100000
 

 
foreach  L    ($Ls   )
 
 set start   = "-s 1 -S 3423"
 
 foreach beta ($betas)
 
  ./is -L $L -b $beta -n $nsweeps -w $start > outL${L}b${beta}
 
  set start = "-s 2"
 
  # Calculate <e> = <E>/(2N and c=beta^2*N*(<e^2>-<e>^2):
 
  grep -v ’#’ outL${L}b${beta}           | \
 
  awk -v L=$L ’NR>500{print $1/(2*L*L)}’ | \
 
  ./jack | grep -v ’#’                   | \
 
  awk -v L=$L -v b=$beta                   \
 
   ’{print "e",L,b,$1,$2,b*b*L*L*$3,b*b*L*L*$4}’
 
  # Calculate <m> = <|M|>/N and chi=beta*N*(<m^2>-<m>^2)
 
  grep -v ’#’ outL${L}b${beta}                        | \
 
  awk -v L=$L ’NR>500{m=($2>0)?$2:-$2;print m/(L*L)}’ | \
 
  ./jack | grep -v ’#’                                | \
 
  awk -v L=$L -v b=$beta                                \
 
   ’{print "m",L,b,$1,$2,b*L*L*$3,b*L*L*$4}’
 
 end
 
end


 The script is run with the command
                                                                          

                                                                          


   
> ./run3 > out &


 Then, we can plot the results using
gnuplot23 :
                                                                          

                                                                          


   
set xlabel "beta"
 
set ylabel "<m>"
 
plot   "<grep ’^m 10 ’  out" u 3:4:5 with errorbars title " 10"
 
replot "<grep ’^m 20 ’  out" u 3:4:5 with errorbars title " 20"
 
replot "<grep ’^m 40 ’  out" u 3:4:5 with errorbars title " 40"
 
replot "<grep ’^m 60 ’  out" u 3:4:5 with errorbars title " 60"
 
replot "<grep ’^m 80 ’  out" u 3:4:5 with errorbars title " 80"
 
replot "<grep ’^m 100 ’ out" u 3:4:5 with errorbars title "100"


 The above commands plot the magnetization.
                                                                          

                                                                          


   
set ylabel "chi"
 
set log y
 
plot   "<grep ’^m 10 ’  out" u 3:6:7 with errorbars title " 10"
 
replot "<grep ’^m 20 ’  out" u 3:6:7 with errorbars title " 20"
 
replot "<grep ’^m 40 ’  out" u 3:6:7 with errorbars title " 40"
 
replot "<grep ’^m 60 ’  out" u 3:6:7 with errorbars title " 60"
 
replot "<grep ’^m 80 ’  out" u 3:6:7 with errorbars title " 80"
 
replot "<grep ’^m 100 ’ out" u 3:6:7 with errorbars title "100"
 



 The above commands plot the magnetic susceptibility.
                                                                          

                                                                          


   
set ylabel "<e>"
 
plot   "<grep ’^e 10 ’  out" u 3:4:5 with errorbars title " 10"
 
replot "<grep ’^e 20 ’  out" u 3:4:5 with errorbars title " 20"
 
replot "<grep ’^e 40 ’  out" u 3:4:5 with errorbars title " 40"
 
replot "<grep ’^e 60 ’  out" u 3:4:5 with errorbars title " 60"
 
replot "<grep ’^e 80 ’  out" u 3:4:5 with errorbars title " 80"
 
replot "<grep ’^e 100 ’ out" u 3:4:5 with errorbars title "100"



                                                                          

                                                                          


   


 The above commands plot the energy.
                                                                          

                                                                          


   
set ylabel "c"
 
plot   "<grep ’^e 10 ’  out" u 3:6:7 with errorbars title " 10"
 
replot "<grep ’^e 20 ’  out" u 3:6:7 with errorbars title " 20"
 
replot "<grep ’^e 40 ’  out" u 3:6:7 with errorbars title " 40"
 
replot "<grep ’^e 60 ’  out" u 3:6:7 with errorbars title " 60"
 
replot "<grep ’^e 80 ’  out" u 3:6:7 with errorbars title " 80"
 
replot "<grep ’^e 100 ’ out" u 3:6:7 with errorbars title "100"


 The above commands plot the specific heat.
                                                                          

                                                                          


   
set ylabel "<n>/N"
 
plot   "<grep ’^n 10 ’  out" u 3:4:5 with errorbars title " 10"
 
replot "<grep ’^n 20 ’  out" u 3:4:5 with errorbars title " 20"
 
replot "<grep ’^n 40 ’  out" u 3:4:5 with errorbars title " 40"
 
replot "<grep ’^n 60 ’  out" u 3:4:5 with errorbars title " 60"
 
replot "<grep ’^n 80 ’  out" u 3:4:5 with errorbars title " 80"
 
replot "<grep ’^n 100 ’ out" u 3:4:5 with errorbars title "100"


 The above commands plot [image: ⟨n⟩∕N  ].


   14.6    Autocorrelation Times

In the case of the Metropolis algorithm, the “unit of time” in the Monte Carlo
simulation is one “sweep”, which is equal to [image: N  ] attempted spin flips. In the case
of the Wolff algorithm, the size of the clusters is a stochastic variable, which
depends on temperature. Therefore,  flipping the spins of a cluster is not a
convenient unit of time, and we define:


   	
   
[image: (1 sweep ) = -N--(Wolff cluster updates)
            ⟨n ⟩
]
	(14.30)



This definition of a sweep can be compared to a Metropolis sweep defined as [image: N  ] accepted
                                                                          

                                                                          
spin flips24 .
For convenience, we also use the [image: β  ]–dependent unit of time equal to one Wolff
cluster update. We use the notation [image: τW𝒪 ] when the autocorrelation time of [image: 𝒪 ]is
measured in Wolf cluster updates, and [image: τ𝒪 ] when using the definition  (14.30) .
Their relation is:


   	
   
[image:         ⟨n ⟩
τ𝒪 = τW𝒪 ----.
         N
]
	(14.31)




   We simulate the Ising model for [image: L =  10,20,40,60,80  ] and [image: 100  ] at
[image: β =  0.4407  ] using the Wolff algorithm. We construct [image: 5 × 106   ] Wolff clusters. The
results are written to files with names outL${L}b0.4407. We also perform
simulations using the Metropolis algorithm with [image: 10 × 106   ] sweeps. The results are
written to files with names outL${L}b0.4407met. The following shell script makes
life easier:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 
set Ls      = (10 20 40 60 80 100)
 
set beta    = 0.4407
 
set nsweeps = 5000000
 
set start   = "-s 1 -S 3423"
 
# Wolf cluster algorithm:
 
foreach  L    ($Ls)
 
 ./is -w -L $L -b $beta -n $nsweeps $start > outL${L}b${beta}
 
 # Mean cluster size <n>/N
 
 grep ’#clu’ outL${L}b${beta}             | \
 
 awk -v L=$L ’NR>10000{print $2/(L*L)}’   | \
 
 ./jack -d $nsweeps | grep -v ’#’         | \
 
 awk -v L=$L -v b=$beta ’{print "n",L,b,$1,$2}’
 
end
 
# Metropolis algorithm
 
set nsweeps = 10000000
 
foreach  L    ($Ls)
 
 ./is -L $L -b $beta -n $nsweeps $start   > outL${L}b${beta}met
 
end




   We compile the file autoc.f90 from the Tools directory and the executable
file is named autoc and copied to the current working directory. Then, the
following shell script calculates the autocorrelation functions [image: ρm (t)  ]:
                                                                          

                                                                          


   
#!/bin/tcsh -f
 
set Ls = (10 20 40 60 80 100)
 
set b  = 0.4407
 
# Wolff
 
set tmax  = 1000
 
set ndata = 5000000
 
foreach L ($Ls)
 
 set f = outL${L}b${b}
 
 grep -v ’#’ $f | \
 
 awk -v L=$L      \
 
  ’BEGIN{N=L*L}NR>100000{print  ($2>0)?($2/N):(-$2/N)}’|\
 
 ./autoc -t $tmax -n $ndata> $f.rhom
 
end
 
# Metropolis
 
set tmax  = 8000
 
set ndata = 10000000
 
foreach L ($Ls)
 
 set f = outL${L}b${b}met
 
 grep -v ’#’ $f | \
 
 awk -v L=$L      \
 
  ’BEGIN{N=L*L}NR>100000{print  ($2>0)?($2/N):(-$2/N)}’|\
 
 ./autoc -t $tmax  -n $ndata> $f.rhom
 
end


 We throw away [image: 100000  ] sweeps for thermalization. The results are
written to files whose names have file extension .rhom. The function
[image: ρm (t)  ] is fitted to  (13.51)  using three autocorrelation times according
to the discussion in appendix 13.7. The results are shown in table
14.125 


                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	

	[image: L  ]	[image: τWm  ]    	[image: ⟨n⟩∕N  ]  	[image: τm  ]    	[image: τm,Metropolis   ]

	
	
	
	
	

	 10 	2.18(2)	0.6124(2)	1.33(1)	16.1(1)       

	 20 	3.48(5)	0.5159(1)	1.80(3)	70.7(4)       

	 40 	5.10(6)	0.4342(2)	2.21(3)	330(6)        

	 60 	6.12(6)	0.3927(2)	2.40(2)	795(5)        

	 80 	7.33(7)	0.3653(3)	2.68(3)	1740(150)   

	100	8.36(6)	0.3457(1)	2.89(2)	2660(170)   

	
	
	
	
	

	   





 Table 14.1: The autocorrelation times for the magnetization calculated as described
in the text. The second column contains the autocorrelation time [image:  W
τm  ]  for the Wolff
algorithm, using one cluster update as the unit of time. The fourth column contains [image: τm  ]
in sweeps according to  (14.30)  and we have that [image: τm = τWm ⟨n⟩∕N  ] (see  (14.31) ). The
fifth column contains the autocorrelation times for the Metropolis algorithm in units of
sweeps defined as [image: N  ] attempted spin flips.

                                                                          

                                                                          
   


   

   From  (14.10)  we expect that [image: τm ∼ Lz  ] where [image: z  ] is the dynamic exponent.
[image: z  ] can be calculated by the gnuplot commands:
                                                                          

                                                                          


   
gnuplot> tau(x) = c*x**z
 
gnuplot> fit tau(x) "autoc.dat" u 1:2:3 via c,z
 
gnuplot> plot "autoc.dat" u 1:2:3 w e t "W steps   ", tau(x)
 
gnuplot> fit tau(x) "autoc.dat" u 1:6:7 via c,z
 
gnuplot> plot "autoc.dat" u 1:6:7 w e t "W sweeps  ", tau(x)
 
gnuplot> fit tau(x) "autoc.dat" u 1:8:9 via c,z
 
gnuplot> plot "autoc.dat" u 1:8:9 w e t "Metropolis", tau(x)


 The exponent [image: z  ] is calculated for the Wolff algorithm in Wolff steps and Wolff
sweeps. The results are


   	
   
[image: τWm  ∼ LzW ,    zW  = 0.54 ± 0.02
]
	(14.32)





   	
   
[image: τm ∼ Lz,     z = 0.29 ± 0.02
                                                                          

                                                                          
]
	(14.33)





   	
   
[image: τ          ∼ Lz,     z = 2.21 ± 0.02
 m,Metropolis
]
	(14.34)






                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.11:  Autocorrelation  times  [image: τW
 m  ]  for  the  magnetization  using  the  Wolff
algorithm at [image: β = 0.4407  ]. The unit of time is one Wolff cluster update. The dynamic
exponent is calculated from the fit to [image:    W
cLz  ] which gives [image: zW  = 0.54(2)  ]. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.12:  Autocorrelation  times  [image: τ
 m  ]  for  the  magnetization  using  the  Wolff
algorithm at [image: β = 0.4407  ]. The unit of time is one Wolff sweep. The dynamic exponent is
calculated from the fit to [image: cLz  ], which gives [image: z = 0.29(2)  ]. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.13: Autocorrelation times [image: τ
 m,Metropolis  ]  for the magnetization using the
Metropolis algorithm at [image: β = 0.4407  ]. The unit of time is a Metropolis sweep defined by
[image: N  ] attempted spin flips. The dynamic exponent is calculated from the fit to [image: cLz  ], which
gives [image: z = 2.21(2)  ]. 



                                                                          

                                                                          
   


   The plots are shown in figures 14.11-14.13. The values of [image: z  ] reported in the
bibliography are [image: 0.50(1)  ], [image: 0.25 (1 )  ] and [image: 2.167(1)  ] respectively  [4, 60, 67]. We
can obtain better results by increasing the statistics and the lattice size and this is
left as an exercise for the reader.

   We also mention the relation between the dynamic exponents given by
equations  (14.32)  and  (14.33) . From  (14.29)  [image: χ = β ⟨n⟩ ],  (13.10)  [image:       −γ
χ ∼ |t|  ],
and  (13.6)  [image: ξ ∼ |t|−ν  ] and using [image: ξ ∼ L  ], valid in the critical region, we
obtain


   	
   
[image:          ⟨n⟩      W Lγ∕ν     W
τm =  τWm ----∼ Lz   -----= Lz  +γ∕ν−2,
         L2         L2
]
	(14.35)



where we assumed that [image:  W     zW
τm ∼  L   ], [image:  W
z  ≡  0.54(2)  ] and [image:        z
τm ∼  L  ]. Therefore


   	
   
[image:           γ
z = zW  + --− 2.
          ν
]
	(14.36)



Using the values given in  (13.12) , [image: γ =  7∕4  ], [image: ν = 1  ], we obtain


   	
                                                                          

                                                                          
   
[image:           1
z = zW −  -,
          4
]
	(14.37)



which is in agreement, within error, with the calculated values and the values in
the bibliography. 

                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	

	[image: L  ]	[image: γ(t < 0)  ] 	[image: γ (t > 0)  ] 

	
	
	

	 40 	1.7598(44)	1.730(17)  

	 60 	1.7455(24)	1.691(14)  

	 80 	1.7409(21)	1.737(12)  

	100	1.7420(24)	1.7226(75)

	120	1.7390(15)	1.7725(69)

	140	1.7390(23)	1.7354(72)

	160	1.7387(10)	1.746(17)  

	200	1.7380(11)	1.759(15)  

	500	1.7335(8)  	1.7485(83)

	
	
	

	   





 Table 14.2: Calculation of the critical exponent [image: γ  ] from fitting the data shown in
figures 14.14 and 14.15. The second column contains the results for [image: β > β (t < 0)
     c  ] and
the third one for [image: β < βc(t > 0)  ]. The parentheses report the statistical errors of the fits
and not the systematic. We expect that [image: γ = 7∕4  ].

                                                                          

                                                                          
   


   

   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.14: The magnetic susceptibility [image: χ(t,L )  ] in the scaling region according to
equation  (14.3) . The straight line is the fit to this relation for the largest lattice. We
observe that finite size effects decrease as [image: L  ] increases and that the range of temperatures
included in the fit extends to smaller [image: |t| ]. The data is for [image: β > βc(t < 0)  ] and the critical
point is approached from the ordered phase. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.15: The magnetic susceptibility [image: χ(t,L )  ] in the scaling region according to
equation  (14.3) . The straight line is the fit to this relation for the largest lattice. We
observe that finite size effects decrease as [image: L  ] increases and that the range of temperatures
included in the fit extends to smaller [image: |t| ]. The data is for [image: β < βc(t > 0)  ] and the critical
point is approached from the disordered phase. Finite size effects are larger for [image: t < 0  ] due
to the larger fluctuations at the pseudocritical point [image: β (L) < β
 c       c  ]. 



                                                                          

                                                                          
   


   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	

	[image: L  ]	[image: β(t < 0)  ] 	[image: β+ (t > 0)  ]

	
	
	

	 40 	0.1101(7)  	0.1122(29) 

	 60 	0.1129(5)  	0.1102(19) 

	 80 	0.1147(5)  	0.1118(21) 

	100	0.1175(3)  	0.1170(11) 

	120	0.1167(4)  	0.1172(16) 

	140	0.1190(2)  	0.1187(19) 

	160	0.1191(4)  	0.1134(20) 

	200	0.1205(10)	0.1138(24) 

	500	0.1221(2)  	0.1294(50) 

	
	
	

	   





 Table 14.3: The calculation of the critical exponent [image: β  ] from fitting the data shown
in figures 14.16. The second column contains the results for [image: β > β (t < 0)
     c  ] and the third
for [image: β < βc(t > 0)  ]. The parentheses report the statistical errors of the fits and not the
systematic. We expect that [image: β = β+ = 1∕8  ]. 

                                                                          

                                                                          
   


   

   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.16: The magnetization [image: ⟨m ⟩(t,L)  ] in the scaling region according to equation
(14.5) . The straight line is the fit to this relation for the largest lattice. We observe that
finite size effects decrease as [image: L  ] increases and that the range of temperatures included
in the fit extends to smaller [image: |t| ]. The data is for [image: β > βc(t < 0)  ] and the critical point is
approached from the ordered phase. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.17: The magnetization [image: ⟨m⟩(t,L )  ] in the scaling region fitted to equation
(14.40) . The straight line is the fit to this relation for the largest lattice. We observe that
finite size effects decrease as [image: L  ] increases and that the range of temperatures included
in the fit extends to smaller [image: |t| ]. The data is for [image: β < βc(t > 0)  ] and the critical point is
approached from the disordered phase. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.18: The specific heat [image: c(t,L )  ] in the scaling region fitted to equation  (14.44)
. Only the [image: |t| ] axis is in logarithmic scale. The data is for [image: β > βc(t < 0)  ] and the critical
point is approached from the ordered phase. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.19: The specific heat [image: c(t,L )  ] in the scaling region fitted to equation  (14.44)
. Only the [image: |t| ] axis is in logarithmic scale. The data is for [image: β < βc(t > 0)  ] and the critical
point is approached from the disordered phase. The exponent [image: ν  ] is set equal to 1. 



                                                                          

                                                                          
   


   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	

	  [image: L  ]   	[image: γ∕ν  ]   	[image: β ∕ν  ]    

	
	
	

	 40–100  	1.754(1)	0.1253(1)

	140–1000	1.740(2)	0.1239(3)

	 40–1000 	1.749(1)	0.1246(1)

	
	
	

	        





 Table 14.4: The critical exponents [image: γ∕ν  ] and [image: β∕ν  ] given by the finite size scaling
relations  (14.7)  and  (14.9) . The first column contains the range in [image: L  ] included in the
fits of [image: χ(βc,L )  ] and [image: ⟨m⟩(βc,L )  ] to [image:   g
aL  ].

                                                                          

                                                                          
   


   

   14.7    Temperature Scaling

In this section we will discuss the extent to which relations  (14.3) – (14.5)  can be used
for the calculation of the critical exponents [image: γ  ], [image: α  ] and [image: β  ]. The result is that, although
using them it is possible to compute correct results, these relations are not the best
choice26 .
In order to see clear scaling and reduce finite size effects, we have to consider [image: t ≪ 1  ]
and large [image: L  ]. The results depend strongly on the choice of range of the data included
in the fits. The systematic errors are large and the results in some cases plain
wrong27 .

   We simulate the Ising model for [image: L = 40  ], [image: 60  ], [image: 80  ], [image: 100  ], [image: 120  ], [image: 140  ], [image: 160  ],
[image: 200  ] and [image: 500  ]. The temperatures chosen correspond to small enough [image: t  ] in order
to observe scaling. For the values of [image: β  ] used in the simulations, see the shell
scripts in the accompanying software.

   First we compute the exponent [image: γ  ] from the relation  (14.3) . For
given [image: L  ], we fit the data for [image: χ (t)  ] for an appropriate range of [image: |t| ] to
the function [image: a |t|−γ  ], which has two fitting parameters, [image: γ  ] and [image: a  ]. We
determine the range of [image: t  ] where [image: χ(t)  ] gives a linear plot in a log–log
scale28 .
For large [image: |t| ], we observe deviations from the linear behavior and for very small
[image: |t| ] we observe finite size effects when [image: ξ ≈ L  ]. As [image: L  ] increases, finite size effects
decrease, and the data get closer to the asymptotic behavior [image: |t|−γ  ] for even
smaller [image: |t| ]. The results are more clear for [image: β > βc(t < 0)  ], because for [image: t > 0  ] the
fluctuations near the pseudocritical temperature [image: βc(L ) < βc  ] are larger and the
                                                                          

                                                                          
finite size effects are larger.

   Table 14.2 shows the results for the exponent [image: γ  ] for all the measured values of
[image: L  ]. The errors reported are the statistical errors of the fits, which are smaller
than the systematic errors coming from the choice or range of [image: t  ] of the data
included in the fits. One has to vary this range as long as the [image: χ2∕  ]dof of the fit
remains acceptable, and the resulting variation in the values of the parameters has
to be included in the estimate of the error. Sometimes, this method gives an
overestimated error, and it is a matter or experience to decide which parameter
values to include in the estimate. For example, figures 14.14 and 14.15 show that
the acceptable range of fitting becomes more clear by studying [image: χ(t)  ] for
increasing [image: L  ]. As [image: L  ] increases, the points approach the asymptotic curve
even closer. Even though for fixed [image: L  ] one obtains acceptable power fits
over a larger range of [image: t  ], by studying the large [image: L  ] convergence, we can
determine the scaling region with higher accuracy. Another point to consider is
whether the parameters of the fits have reasonable values. For example, even
though the value of [image: a  ] is unknown, it is reasonable to expect that its
value is of order [image: ∼  1  ]. By taking all these remarks into consideration we
obtain


   	
   
[image: γ =  1.74 ± 0.02     (t < 0),
]
	(14.38)





   	
   
                                                                          

                                                                          
[image: γ = 1.73 ± 0.04     (t > 0).
]
	(14.39)



Next, we compute the critical exponent [image: β  ] using relation  (14.5) . This relation is
valid as we approach the critical point from the low temperature phase, [image: β > βc  ]
or [image: t < 0  ]. In the thermodynamic limit, the magnetization is everywhere zero for
all [image: β <  βc  ]. For a finite lattice [image: ⟨m ⟩ > 0  ], and it is reasonable to expect a scaling
of the form


   	
   
[image: ⟨m ⟩ ∼ |t|β+− 1,     t > 0,
]
	(14.40)



where [image: β+   ] is defined so that


   	
   
[image: β  =  β = 1∕8.
 +
]
	(14.41)



                                                                          

                                                                          

   By following the same procedure, we calculate the exponents [image: β  ] and [image: β+   ]
shown in table 14.3. By taking the systematic errors described above into
consideration, we find that


   	
   
[image: β =  0.121 ± 0.003     t < 0,
]
	(14.42)





   	
   
[image: β+  = 0.120 ± 0.007     t < 0,
]
	(14.43)



which should be compared to the expected values [image: β = β+ =  1∕8  ].

   The calculation of the exponent [image: α  ] needs special care. The expected
value is [image: α = 0  ]. This does not imply that [image: c ∼ ] const. but that
29


                                                                          

                                                                          
   	
   
[image: c ∼ |log |t||.
]
	(14.44)



In this case, we find that the data is better fitted to the above relation instead of
being fitted to a power. This can be seen pictorially by making a log–log plot and
comparing it to a [image: c − |log |t|| ] plot. We see that the second choice leads to a
better linear plot than the first one. A careful study will compute the quality of
the fits and choose the better model this way. This is left as an exercise for the
reader.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.20: The magnetic susceptibility [image: χ(β ,L )
   c  ] at the critical temperature for
different values of [image: L  ]. The axes are in a logarithmic scale and the linear plots are consistent
with the power fit [image: χ (βc,L) = cLg  ]. The value of [image: g  ] computed by the fits is consistent
with the critical exponent [image: γ ∕ν  ] given by equation  (14.7) . 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.21: The magnetization [image: ⟨m ⟩(β ,L)
     c  ] at the critical temperature for different
values of [image: L  ]. The axes are in a logarithmic scale and the linear plots are consistent with
the power fit [image: ⟨m ⟩(βc,L) = cLg  ]. The value of [image: g  ] computed by the fits is consistent with
the critical exponent [image: β∕ν  ] given by equation  (14.9) .



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.22: The specific heat [image: c(β,L )
   c  ] at the critical temperature for different values
of [image: L  ]. The horizontal axis is in a logarithmic scale and the linear plot is consistent with the
scaling relation [image: c(βc,L) = c logL  ]. The result is consistent with the expectation [image: α = 0  ]
(see equation  (14.8) ).



                                                                          

                                                                          
   


   14.8    Finite Size Scaling

In this section we will calculate the critical exponents by using relations  (14.7) -
(14.9) , i.e. by using the asymptotic scaling of [image: χ(β = βc,L )  ], [image: c(β  = βc,L)  ] and
[image: ⟨m ⟩(β = βc,L )  ] with increasing system size [image: L  ]. This is called “finite size
scaling”.

   In order to calculate the exponent [image: γ∕ν  ] given by equation  (14.7) , we
calculate the magnetic susceptibility at the known [image: βc  ] for increasing values of [image: L  ].
We fit the results [image: χ(βc,L )  ] to the function [image:    g
aL  ] and calculate the fitting
parameters [image: a  ] and [image: g  ]. Then, we compare the computed value of [image: g  ] to
the expected value of [image: γ∕ν =  7∕4 = 1.75  ]. In this procedure we have to
decide which values of [image: L  ] should be included in the fits. The most obvious
criterion is to obtain reasonable [image:   2
χ ∕dof ≲  1  ] and that the error in [image: g  ] and
[image: a  ] be small. This is not enough: Table 14.4 shows small variations in
the obtained values of [image: γ∕ν  ], if we consider different fit ranges. These
variations give an estimate of the systematic error which enters in the
calculation. Problem 9 is about trying this calculation yourselves. Table
14.4 shows the results, and figure 14.20 shows the corresponding plot.
The final result, which includes also an estimate of the systematic errors,
is


   	
   
[image: γ
ν-=  1.748 ± 0.005.
]
	(14.45)




   For the calculation of the exponent [image: β∕ν  ] given by equation  (14.9) , we
compute the magnetization [image: ⟨m ⟩(βc,L )  ] at the critical temperature and repeat the
same analysis. The result is
                                                                          

                                                                          


   	
   
[image: β-=  0.1245 ±  0.0006.
ν
]
	(14.46)




   Equation  (14.9)  gives the exponent [image: α ∕ν  ]. But the expected value [image: α =  0  ]
leads, in analogy with equation  (14.44) , to


   	
   
[image: c(βc,L ) ∼ log L.
]
	(14.47)




   This relation is shown in figure 14.22. The vertical axis is not in a logarithmic
scale whereas the horizontal is. The linear plot of the data shows consistency with
equation  (14.47) . Problem 9 asks you to show whether the logarithmic fit is
better than a fit to a function of the form [image: cLa + b  ] and appreciate the difficulties
that arise in this study. By increasing the statistics, and by measuring for
larger [image: L  ], the data in table 14.8 will improve and lead to even clearer
conclusions.
                                                                          

                                                                          

   We observe that, by using finite size scaling, we can compute the critical
exponents more effectively, than by using temperature scaling as in section 14.7.
The data follow the scaling relations  (14.7) – (14.9)  suffering smaller finite size
effects30 .


   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	

	 [image: L  ]	[image: βc(L )  ]      	[image: χmax   ]     	[image: β′c(L)  ]     	[image: cmax   ]         

	
	
	
	
	

	  40	0.4308(4)   	30.68(4) 	0.437(1)   	0.5000(20)

	  60	0.4342(2)   	62.5(1)  	0.4382(7)  	0.5515(15)

	  80	0.4357(2)   	103.5(1) 	0.4388(5)  	0.5865(12)

	 100	0.4368(1)   	153.3(2) 	0.4396(2)  	0.6154(18)

	 120	0.4375(1)   	210.9(2) 	0.4396(4)  	0.6373(20)

	 140	0.43793(13)	276.2(4) 	0.4397(5)  	0.6554(18)

	 160	0.4382(1)   	349.0(5) 	0.4398(4)  	0.6718(25)

	 200	0.43870(7)  	516.3(7) 	0.4399(2)  	0.6974(17)

	 500	0.43988(4)  	2558(5)  	0.44038(8)	0.7953(25)

	1000	0.44028(4)  	8544(10)	0.44054(8)	0.8542(36)

	
	
	
	
	

	    





 Table 14.5: The pseudocritical temperatures [image: βc(L)  ] and [image: β′c(L)  ] calculated from the
maxima of the magnetic susceptibilities [image: χ
  max  ] and the specific heat [image: c
 max  ] respectively.
The values of the maxima are also shown.

                                                                          

                                                                          
   


   

   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.23: Calculation of the critical temperature [image: β
 c  ] and the critical exponent
[image: ν  ] using relation   (14.50) . By using the pseudocritical temperatures [image: βc(L)  ] of table
14.5,  we  fit  the  data  to  [image: a − c(1∕L)b  ].  From  the  calculated  values  of  [image: a  ],  [image: b  ] and  [image: c  ]
we  calculate  [image: βc = a  ]  and  [image: 1∕ν = b  ].  The  horizontal  line  is  the  exact,  known  value
[image: βc = log(1+ √2 )∕2 = 0.44069...  ]. 
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Figure 14.24: Calculation of the critical temperature [image: β
 c  ] and the critical exponent
[image: ν  ] using relation   (14.50) . By using the pseudocritical temperatures [image:  ′
βc(L)  ] of table
14.5,  we  fit  the  data  to  [image: a − c(1∕L)b  ].  From  the  calculated  values  of  [image: a  ],  [image: b  ] and  [image: c  ]
we  calculate  [image: βc = a  ]  and  [image: 1∕ν = b  ].  The  horizontal  line  is  the  exact,  known  value
[image: βc = log(1+ √2 )∕2 = 0.44069...  ]. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.25:  Calculation  of  the  critical  exponent  [image: γ∕ν  ] from  the  maxima  of  the
magnetic susceptibility using the asymptotic scaling  (14.9) . The values [image: χmax(L)  ] are
taken from table  (14.5)  and are fitted to a function of the form [image: aLb  ]. The result of the
fit is [image: γ∕ν = 1.749(1)  ]. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.26: Calculation of the critical exponent [image: α∕ν  ] from the maxima of the specific
heat using the asymptotic scaling (14.8) . The values [image: cmax(L)  ] are taken from table (14.5)
and are fitted to a function of the form [image: alogL + b− c∕L  ]. We obtain [image: a = 0.107(3)  ],
[image: b = 0.13(1)  ] and [image: c = 1.2(3)  ] with [image: χ2∕dof = 0.9  ] by fitting for [image: L = 40,...,500  ]. The fit
to [image: aLd + b− c∕L  ] gives [image: d = 0.004(97)  ], i.e. an exponent consistent with 0 and somehow
weird values for the parameters [image: a  ] and [image: b  ]. We conclude that the data is consistent with
[image: α∕ν = 0  ]. 



                                                                          

                                                                          
   


   
14.9    Calculation of [image: βc  ]

In the previous sections we discussed scaling in [image: t  ] and [image: L  ] in the critical region.
In the calculations we used the exact value of the critical temperature
[image:              √ --
βc = log(1 +   2)∕2  ]. When [image: βc  ] is not known, the analysis becomes harder and
its computation contributes to the total error in the value of the critical
exponents. When doing finite size scaling using the scaling relations  (14.7) –
(14.9) , one has to choose the values of the temperature at which to calculate the
left hand sides. So far, these values were computed at [image: βc  ]. What should we do
when [image: βc  ] is not a priori known? A good choice is to use the pseudocritical
temperature [image: βc(L)  ], the temperature where the fluctuations of the order
parameter [image: χ(β )  ] are at their maximum. Otherwise, we can compute [image: βc  ]
according to the discussion in this section and use the computed [image: βc  ] in the finite
size scaling analysis.

   Both choices yield the same results in the large [image: L  ] limit, even though the
finite size effects are different. In fact any value of [image: β  ] in the critical region can be
used for this calculation. The reason is that as we approach the critical region for
given [image: L  ], the correlation length becomes [image: ξ ∼ L  ] and finite size effects become
important. This is the behavior that characterizes the pseudocritical region of the
finite [image: L  ] system. The pseudocritical region becomes narrower as [image: L  ] becomes
larger. Any value of [image: β  ] in this region will give us observables that scale at large
[image: L  ], but the best choice is


   	
   
[image: χ(βc(L ),L ) ≡ χmax(L ).
]
	(14.48)



In this case, the values on the left hand sides of  (14.7) – (14.9)  should be taken
at [image: β = βc(L )  ].
                                                                          

                                                                          

   The definition of [image: βc(L)  ] in not unique. One could use, for example, the
maximum of the specific heat


   	
   
[image: c(β′(L),L ) ≡ cmax(L),
   c
]
	(14.49)



which defines a different [image:  ′
βc(L)  ]. Of course [image: limL → ∞ βc(L )  ] [image:             ′
=  limL → ∞ βc(L)  ]
[image: = βc  ] and both choices will yield the same results for large [image: L  ]. The speed of
convergence and the errors involved in the calculation of the pseudocritical
temperatures are different in each case and there is a preferred choice, which in
our case is [image: βc(L )  ].

   First we calculate [image: βc  ]. When we are in the pseudocritical region we have that
[image: ξ ≈ L  ], therefore  (14.2)  gives


   	
   
[image:      |           |
     |βc − βc(L) |   − 1     − 1                 c
|t| = ||----------|| ∼ ξ ν ∼ L  ν ⇒  βc(L) = βc − --1.
          βc                                    L ν
]
	(14.50)



The calculation is straightforward to do: First we measure the magnetic
susceptibility. For each [image: L  ] we determine the pseudocritical region and
we calculate [image: βc(L)  ] and the corresponding maximum value [image: χmax   ]. In
order to do that, we should take many measurements around [image: βc(L )  ]. We
                                                                          

                                                                          
have to be very careful in determining the autocorrelation time (which
increases as [image:       z
τ ∼  L  ]), so that we can control the number of independent
measurements and the thermalization of the system. We use the relation
(14.50)  and fit the results to [image: a − c∕Lb  ], and from the calculated parameters
[image: a,b  ] and [image: c  ] we compute [image: β =  a
 c  ], [image: ν = 1∕b  ]. In cases where one of the
parameters [image: βc  ], [image: ν  ] is known independently, then it is kept constant during the
fit.

   The results are shown in figure 14.23 where we plot the numbers contained in
table 14.5. The final result is: 

   
[image: βc  =   0.44066 ± 0.00003

 1- =   1.006 ± 0.017.
 ν
]


This can be compared to the known values [image:              √--
βc = log(1 +  2 )∕2 ≈  0.44069  ] and
[image: 1∕ν =  1  ].
   This process is repeated for the pseudocritical temperatures [image:  ′
βc(L)  ] and the
maximum values of the specific heat [image: cmax   ]. The results are shown in figure 14.24.
The final result is: 

   
[image: βc  =   0.44062 ± 0.00008
 1
 -- =   1.09 ± 0.18.
 ν
]


Figure 14.24 and the results reported above show that the calculation using the
                                                                          

                                                                          
specific heat gives results compatible with  (14.51) , but that they are less
accurate. The values of the specific heat around its maximum are more spread and
more noisy than the ones of the magnetic susceptibility.
   From the maxima of the magnetic susceptibility [image: χmax (L )  ] we can calculate the
exponent [image: γ∕ν  ]. Their values are shown in table 14.5. The data are fitted to [image: aLb  ],
according to the asymptotic relation  (14.9) , with [image: a  ] and [image: b  ] being fitting
parameters. We find very good scaling, therefore our data are in the asymptotic
region. The result is


   	
   
[image: γ-= 1.749 ± 0.001,
ν
]
	(14.51)



which is consistent with the analytically computed value [image: 7 ∕4  ].

   From the maxima of the specific heat we can calculate the exponent [image: α∕ ν  ].
Since [image: α =  0  ], the form of the asymptotic behavior is given by  (14.47) . We find
that our results are not very well fitted to the function [image: a log L  ] and it is possible
that the discrepancy is due to finite size effects. We add terms that are subleading
in [image: L  ] and find that the fit to the function [image: a log L + b − c∕L  ] is very
good31 .
If we attempt to fit the data to the function [image:    d
aL  + b − c∕L  ], the quality of the fit
is poor and the result for [image: d  ] is consistent with zero. The results are shown in
figure 14.26.


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.27: Collapse of the plots [image: χ (β,L )  ] for several values of [image: L  ] according to
equation  (14.59) . The known values [image:           √ -
βc = ln(1+   2)∕2  ], [image: ν = 1  ] and [image: γ∕ν = 7∕4  ] have
been used. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.28: Collapse of the plots [image: ⟨m ⟩(β,L )  ] for several values of [image: L  ] according to
equation  (14.60) . The known values [image:           √ -
βc = ln(1+   2)∕2  ], [image: ν = 1  ] and [image: β∕ν = 1∕8  ] have
been used. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.29: Collapse of the plots [image: c(β,L)  ] for several values of [image: L  ] according to
equation  (14.61) . The known values [image:           √-
βc = ln(1+ 2)∕2  ] and [image: ν = 1  ] have been used. 



                                                                          

                                                                          
   


   14.10    Studying Scaling with Collapse

The scaling relations   (14.3) – (14.9)   are due to the
appearance of a unique, dynamical length scale, the correlation
length32 
[image: ξ  ]. As we approach the critical point, [image: ξ  ] diverges as [image: ξ ∼ |t|−ν  ], and we obtain
universal behavior for all systems in the same universality class. If we consider the
magnetic susceptibility [image: χ (β,L )  ], its values depend both on the temperature [image: β  ],
the size of the system [image: L  ] and of course on the details of the system’s degrees of
freedom and their dynamics. Universality leads to the assumption that the
magnetic susceptibility of the infinite system in the critical region depends only on
the correlation length [image: ξ  ]. For the finite system in the pseudocritical region, finite
size effects suppress the fluctuations when [image: ξ ∼ L  ]. The length scales
that determine the dominant scaling behavior [image: χ ∼  ξγ∕ν  ] are [image: ξ  ] and [image: L  ],
therefore the dimensionless variable [image: L∕ ξ  ] is the only independent variable in
the scaling functions. In order to obtain the scaling relation [image: χ ∼ ξγ∕ν  ],
valid for the infinite system, we only need to assume that for the finite
system33 


   	
   
[image:                γ∕ν  (0)
χ = χ(β, L) = ξ   Fχ  (L∕ξ),
]
	(14.52)


                                                                          

                                                                          

where [image:  (0)
Fχ  (z)  ] is a function of one variable, such that


   	
   
[image: F(0)(z ) = const.    z ≫ 1,
 χ
]
	(14.53)



and


   	
   
[image: F(0)(z ) ∼ zγ∕ν     z →  0.
 χ
]
	(14.54)



Indeed, when [image: 1 ≪  ξ ≪ L  ] ([image: z ≫  1  ]) the magnetic susceptibility takes values very
close to those of the infinite system, and  (14.53)  gives [image: χ ∼ ξγ∕ν  ]. As [image: ξ ∼ L  ],
finite size effects enter and  (14.54)  gives [image: χ ∼  ξγ∕ν(L ∕ξ)γ∕ν = Lγ∕ν  ]. The latter is
nothing but  (14.7)  for the maxima of the magnetic susceptibility of the finite
system that we studied in figure 14.25. Therefore the function [image:   (0)
F χ (z)  ] describes
how the magnetic susceptibility deviates from scaling due to finite size
effects.

   The function [image: F (0)(z)
 χ  ] can be calculated using the measurements coming from
the Monte Carlo simulation. Since the correlation length is not directly calculated,
but appears indirectly in the measurements, we define the dimensionless
                                                                          

                                                                          
variable


   	
   
[image: x = L1 ∕νt,
]
	(14.55)



where [image:            1∕ν
|x| ∼ (L ∕ξ)  ] since34 
[image: ξ ∼ |t|− ν  ]. We define [image: Fχ(x ) ∝ x−γF (0χ)(xν)  ] so that  (14.52)  becomes


   	
   
[image: χ =  Lγ∕νFχ (x ) = Lγ∕νFχ(L1 ∕νt).
]
	(14.56)



The asymptotic properties of the scaling function [image: F χ(x)  ] are determined by the
relations  (14.53)  and  (14.54) . When [image:       1∕ν
x = L   t ≫  1  ], equation  (14.53)  is
valid for [image: F (χ0)(xν)  ] and we obtain [image: Fχ(0)(xν) = const.  ] From the definition
[image: F  (x) = x−γF (0)(xν)
  χ           χ  ] we obtain [image: F (x) ∼ x −γ = (L∕ξ)− γ∕ν
 χ  ] and we confirm the
scaling property of the magnetic susceptibility in the thermodynamic limit
[image: χ ∼  Lγ∕νFχ(x ) ∼ Lγ∕ν(L∕ξ)− γ∕ν = ξγ∕ν  ]. Therefore
                                                                          

                                                                          


   	
   
[image:           − γ
F χ(x) ∼ x       x ≫  1.
]
	(14.57)




   When [image: x →  0  ],  (14.54)  is valid and we have that [image: F (0)(xν) ∼ (xν)γ∕ν = xγ
  χ  ].
Then we obtain [image:           − γ (0)  ν     −γ γ
F χ(x) ∝ x   Fχ  (x  ) ∼ x  x  = const.  ] Therefore, we
confirm that, when finite size effects are dominant ([image: x →  0  ]), we have that
[image: χ =  Lγ∕νFχ(x ) ∼ Lγ∕ν  ]. Therefore


   	
   
[image: F (x) ∼ const.     |x| ≪  1.
 χ
]
	(14.58)




   By inverting equation  (14.56) , we can calculate the scaling function from the
measurements of the magnetic susceptibility


   	
                                                                          

                                                                          
   
[image:      1∕ν      −γ∕ν
F χ(L   t) = L     χ(β, L),
]
	(14.59)



where [image: χ(β,L )  ] are measurements for temperatures in the pseudocritical
region for several values of [image: L  ]. When equation  (14.59)  is valid, then
all the measurements fall onto the same curve [image: F χ(x)  ] independently of
the size [image: L  ]! Of course deviations due to finite size effects are expected,
especially when [image: L  ] is small. But, as we will see, convergence is quite
fast.

   Using the above procedure, we can determine the critical temperature [image: βc  ], the
exponent [image: ν  ] and the ratio [image: γ∕ν  ] simultaneously! In order to check  (14.59) , we
have to compute the variable [image: x = L1∕νt  ], for which it is necessary to
know [image: βc  ] ([image: t = (βc − β)∕βc  ]) and the exponent [image: ν  ]. For the calculation of
[image: F χ  ] it is necessary to know [image: γ∕ ν  ] that appears on the right hand side of
(14.59) . Relation  (14.59)  depends quite sensitively on the parameters
[image: βc  ], [image: ν  ] and [image: γ∕ ν  ] and this way we obtain an accurate method for their
calculation.

   In order to do the calculation, we set initial values for the parameters
[image: (βc,ν,γ ∕ν)  ]. Using [image: L  ], [image: β  ], [image: βc  ] and [image: ν  ], we calculate the scaling variable
[image: x =  L1∕νt = L1 ∕ν(βc − β )∕βc  ]. Using [image: χ(β, L)  ] and [image: γ∕ν  ], we calculate
[image: F  =  χ(β,L )∕L γ∕ν
  χ  ] and plot the points [image: (x ,F (x ))
  i  χ  i  ] near the critical region
[image: t ≈ 0  ]. Then we vary [image: (βc,ν,γ∕ ν)  ] until the curves for different [image: L  ] collapse onto
each other. The optimal collapse determines [image: (βc,ν,γ ∕ν)  ].

   The collapse of the curves that are constructed from the points
[image: (L1∕ν(β  − β )∕β ,L− γ∕νχ (β ,L ))
   i   c    i   c  i       i  i  ] for different [image: L  ] is the most efficient
method for studying scaling in the critical region. Figure 14.27 shows the
function [image: F χ(x )  ] for the known values of the parameters [image: (βc,ν,γ ∕ν) =  ]
[image:         √ --
(ln(1 +   2)∕2,1,7∕4)  ]. Small variations of the parameters lead to a sharp change
of the quality of the collapse. We can make a quick and dirty estimate of the
accuracy of the method by varying one of the parameters, and look for a
visible deviation from all data collapsing onto a single curve. The result is


                                                                          

                                                                          
   
[image: β   =   0.44069 ± 0.00001
  c
 ν  =   1.00 ± 0.01
 γ- =   1.750 ± 0.002,
 ν
]


Notice that, this crude estimate yields results whose accuracy is comparable to
the previously calculated ones!
   A similar procedure can be followed for other scaling observables, like the
specific heat and the magnetization. Equations  (14.8)  and  (14.9)  generalize
to35 


   	
   
[image:               −β∕ν     1∕ν
⟨m ⟩(β, L) = L     Fm (L   t),
]
	(14.60)



and


   	
                                                                          

                                                                          
   
[image:            α∕ν     1∕ν                1∕ν
c(β,L ) = L   Fc(L   t) = log(L)Fc(L   t),
]
	(14.61)



since [image: α = 0  ]. The results are shown in figures 14.28 and 14.29 respectively.

   Below, we list a gnuplot program in order to construct plots like the ones shown in
figures 14.27–14.29. If we assume that the data are in a file named all in the following
format36 :
                                                                          

                                                                          


   
# ##########################################################
 
# e L beta <e>   +/- err c   +/- err
 
# m L beta <m>   +/- err chi +/- err
 
# n L beta <n>/N +/- err
 
# ----------------------------------------------------------
 
....
 
e 1000 0.462721 -0.79839031 7.506e-07 0.290266 0.00027
 
m 1000 0.462721  0.82648701 1.384e-06 2.137    0.00179
 
....


 where the lines starting with the character m contain [image: (L, β,⟨m ⟩,δ⟨m ⟩,χ, δχ)  ]
whereas the ones starting with e contain [image: (L, β,⟨e⟩,δ⟨e⟩,c,δc)  ]. The program can
be found in the file scale_gamma.gpl:
                                                                          

                                                                          


   
# Usage:
 
# Ls = "40 60 80 100 120 140 160 200 500 1000"
 
# bc = bcc; nu = 1 ; gnu = 1.75; load "scale_gamma.gpl";
 
# Ls:  the values of L used in the collapse
 
# bc:  the critical temperature used in the calculation of
 
#      t=(beta_c-beta)/beta_c
 
# nu:  the exponent used in the calculation of x=L^{1/nu} t
 
# gnu: the exponent used in the calculation of
 
#      F_chi = L^{-gnu} chi(beta,L)
 

 
#the exact critical temperature (use bc=bcc is you wish):
 
bcc   = 0.5*log(1.0+sqrt(2.0));
 
NLs   = words(Ls);  # The number of lattice sizes
 
LL(i) = word (Ls,i);# Returns the i_th lattice size
 
cplot(i) = sprintf("\
 
   <grep ’m %s ’ all|\
 
   sort -k 3,3g|\
 
   awk -v L=%s -v bc=%f -v nu=%f -v gnu=%f \
 
   ’{print L^(1.0/nu)*(bc-$3)/bc,L^(-gnu)*$6,L^(-gnu)*$7}’\
 
                   ",LL(i),LL(i),bc,nu,gnu);
 

 
set macros
 
set term wxt enhanced
 

 
set title sprintf("b_c= %f nu= %f g/n= %f",bc,nu,gnu)
 
set xlabel "x=L^{1/nu} t"
 
set ylabel "F(x) = L^{-g/n} chi({/Symbol b},L)"
 

 
plot for[i=1:NLs] cplot(i) u 1:2:3 w e t sprintf("L=%s",LL(i))
 

 



In order to use the above program, we give the gnuplot commands
                                                                          

                                                                          


   
gnuplot> Ls = "40 60 80 100 120 140 160 200 500 1000"
 
gnuplot> bc = 0.4406868; nu = 1 ; gnu = 1.75;
 
gnuplot> load "scale_gamma.gpl"


 The first two lines define the parameters of the plot. The variable Ls contains
all the lattice sizes that we want to study, each value of [image: L  ] separated
from another by one or more spaces. The variables bc, nu, gnu are the
parameters [image: βc  ], [image: ν  ] and [image: γ ∕ν  ] that will be used in the scaling relation  (14.59) .
The third command calls the program that makes the plot. If we need to
vary the parameters, then we redefine the corresponding variables and ...
repeat.

   In order to dissect the above program, look at the online help manual of
gnuplot37 .
We will concentrate on the construction of the awk filter that computes the points
in the plot properly normalized. The value of the function cplot(i) is a string of
characters which varies with [image: L  ] (the index i corresponds to the i-th
word of the variable Ls). For each i, this string is substituted in the plot
command, and it is of the form "< grep ... L[image: ^
(  ]-gnu)*$7}’". The values of
the parameters are passed using the function sprintf(), which is called
each time with a different value of i. The dirty work is done by awk,
which calculates each point (columns 6 and 7: $6, $7 are [image: χ  ] and its
error [image: δχ  ]). For a given value of [image: L  ], the grep component of the filter
prints the lines of the file all which contain the magnetization. The sort
component sorts data in the order of increasing temperature (column 3:
-k3,3g)

   Can we make the above study more systematic and apply quantitative criteria
for the quality of the collapse, which will help us estimate the error in the results?
One crude way to estimate errors is to split the data in [image: nb  ] bins and work
independently on each set of data. Each bin will give an optimal set of
parameters [image: (βc,ν,γ∕ν )  ] which will be assumed to be an independent
measurement. The errors can be calculated using equation  (13.39)  (for
[image: n =  nb  ]).

   In order to provide a quantitative measure of the quality of the collapse, we
                                                                          

                                                                          
define a [image:  2
χ ∕dof  ] similar to the one used in data fitting, as discussed in appendix
13.7. When the distance between the collapsing curves increases, this [image:  2
χ ∕dof  ]
should increase. Assume that our measurements consist of [image: NL  ] sets of
measurements for [image: L =  L1,L2, ...,LNL   ]. After setting the parameters
[image: p ≡  (β ,ν,γ∕ν)
       c  ] and an interval [image: Δx  ≡ [x   ,x   ]
        min  max  ], we calculate the data sets
[image: {(xi,k,Fχ(xi,k;p, Li))}k=1,...,ni   ], for all [image: xi,k ∈ ΔX  ], using our measurements.
The data sets consist of [image: ni  ] points of the data for [image: L = Li  ], for which
the [image: xk  ] are in the interval [image: Δx  ]. For each point [image: xk  ], we calculate the
scaling function [image: F χ(xi,k;p,Li) = L −iγ∕νχ(βi,k,Li)  ], which depends on the
chosen parameters [image: p  ] and the lattice size [image: L
  i  ]. Then, we have to choose
an interpolation method, which will define the interpolation functions
[image: F χ(x;p,Li)  ]38,
so that we obtain a good estimate of the scaling function between two data points.
Then, each point [image: { (x   ,F (x  ;p, L ))}
    i,k  χ  i,k     i   i  ] in a data set has a well defined distance
from every other data set [image: j  ] ([image: j = 1,...,NL  ] and [image: j ⁄=  i  ]), which is defined by the
distance from the interpolating function of the other sets. This is equal
to39 
[image: |Fχ(xi,k;p,Li) − Fχ(xi,k;p, Lj)| ]. We define the quantity 

   
[image: χ2(p; Δx ) =   --------1---------                               (14.62)
               NL (NL  − 1)npoints
                    N∑L   ∑NL   ∑ni                                2
                 ×                 (Fχ(xi,k;p,-Li) −-Fχ(xi,k;p,-Lj))-,
                    i=1                    (δF χ(xi,k;p, Li))2
                       {j=1,j⁄=i}k=1
]

                                                                          

                                                                          

where [image:         ∑NL
npoints =   i=1 ni  ] is the number of terms in the sum. The normalization
constant [image: NL (NL  − 1)  ] is used, because this is the number of pairs of curves in the
sum. Each term is weighted by its error [image: δFχ(xi,k;p, Li)  ], so that points with
small error have a larger contribution than points with large error. This is
the definition used in  [71], but you can see other approaches in  [4],
 [69].
   The [image: χ2(p; Δx )  ] depends on the parameters [image: p  ] and the interval [image: Δx  ]. Initially,
we keep [image: Δx  ] fixed and perform a minimization with respect to the parameters
[image: p  ]. The minimum is given by the values [image: pmin   ] and these values are the
estimators that we are looking for. In order to calculate the errors [image: δp  ] we can bin
our data according to the discussion on page 1663. Alternatively, we may assume
a [image: χ2   ] distribution of the measurements, and if the minimum [image: χ2 ≲  1  ], then the
intervals of the parameter values that keep [image: χ2 ≲ 2  ] give an estimate of the errors
in the parameters.

   The results depend on the chosen interval [image: Δx  ]. Usually  [69], this is chosen so
that its center is at the maximum of [image: F χ(x)  ] so that [image: Δx  =  [xmax − δx, xmax + δx]  ]. If
[image: δx  ] is larger than it should, then [image: χ2 (pmin;Δx )  ] is large and we don’t have good
scaling. If it is too small, then the errors [image: δp  ] will be large. By taking the limit
[image: δx →  0  ], we calculate [image: p  ] by studying the convergence of [image: pmin   ] to stable, optimal
with respect to error, values (see figure 8.7, page 238 in  [4] as well as
 [69]).


   14.11    Binder Cumulant

Up to now, we have studied fluctuations of observables by computing second order
cumulants40 .
The calculation of the critical temperature, the order of the phase transition
and the critical exponents can also be done by computing higher order
cumulants and sometimes this calculation gives more accurate and clear
results.The most famous one is the Binder cumulant which is a fourth order
cumulant41 ,
                                                                          

                                                                          
and its name derives from Kurt Binder who studied it first  [72, 73],


   	
   
[image:           ⟨m4⟩
U  = 1 − ----2-.
         3⟨m  ⟩
]
	(14.63)



Appendix 14.12 discusses its properties in detail. For a continuous phase
transition


   	
   
[image:      (
     |  0   β ≪  βc
     |{  U ∗ β =  β
U =     2         c  ,
     ||(  3   β ≫  βc
]
	(14.64)



where for the Ising model on a square lattice [image:  ∗
U  = 0.610690 (1)  ]  [73]. The value
[image: U  = 0  ] corresponds to the Gaussian distribution, whereas the value [image: U = 2 ∕3  ]
corresponds to two Gaussian distributions of small width around two symmetric
values [image: ±  ⟨m ⟩ ] (see problems 14 and 15).

   It practice, it is found that finite size corrections to [image: U ∗ ] are small,
therefore the calculation of [image: U(β, L)  ] gives an accurate measurement of
the critical temperature [image: βc  ]. The curves [image: U (β,L)  ] intersect at the point
                                                                          

                                                                          
([image: βc  ], [image:   ∗
U ]) for different [image: L  ] and this point gives a very good estimate of
[image: βc  ].


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

  
Figure 14.30:  Binder  cumulant  for  the  Ising  model  on  the  square  lattice  for
different  temperatures  and  lattices  sizes.  The  horizontal  line  is  the  expected  value
[image: U ∗ = 0.610690(1)  ]  [73]. 



                                                                          

                                                                          
   


   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	

	     [image: L  ]
      	[image: βc  ]          	[image: U ∗ ]     

	
	
	
	
	

	 40	 60	  80	0.44069(4)	0.6109(5)  

	 60	 80	 100	0.44069(4)	0.6108(7)  

	 80	100	 120	0.44068(4)	0.6108(7)  

	100	120	 140	0.44069(4)	0.6108(11)

	120	140	 160	0.44069(4)	0.6109(20)

	140	160	 200	0.44067(3)	0.6102(12)

	160	200	 500	0.44067(2)	0.6105(10)

	200	500	1000	0.44068(1)	0.6106(9)  

	
	
	
	
	

	   





 Table 14.6:  The  calculation  of  [image: βc  ]  and  [image: U ∗ ] from  the  intersection  of  the  curves
[image: U (β, L)  ] for fixed [image: L  ] shown in figure 14.30. Each calculation uses three values of [image: L  ]. The
expected values from the theory and the bibliography  [73] are [image: βc = 0.44068679...  ] and
[image:   ∗
U  = 0.610690(1)  ] respectively. 

                                                                          

                                                                          
   


   

   Figure 14.30 shows our measurements for [image: U(β, L)  ]. The intersection of the
curves in the figure at a single point ([image: βc  ], [image: U ∗ ]) is impressively accurate. Table
14.6 shows an attempt to calculate [image: β
 c  ] systematically by computing the critical
temperature from the intersection of the curves [image: U (β,L )  ] for three values of [image: L  ].
By taking into account all the measurements for [image: L =  100  ] – [image: 1000  ] the computed
result is


   	
   
[image: β =  0.440678(9)     U∗ = 0.6107(4),
 c
]
	(14.65)



which is in a very good agreement with the expected values [image: βc = 0.44068679 ...  ],
[image: U ∗ = 0.610690(1)  ]. Notice that, in the calculation of [image: U ∗ ] the systematic error
due to finite size effects decreases with increasing [image: L  ], whereas the statistical error
increases due to the increase of the slope of the curves [image: U (β,L )  ] near the point
[image: β =  βc  ]. But the accuracy of the calculation of [image: βc  ] turns out to be better with
increasing [image: L  ].


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.31: Scaling of the Binder cumulant for [image: 1∕ν = 1  ] and by using the exactly
known critical temperature [image: βc  ] in [image: t = (βc − β)∕βc  ]. The inset zooms in the critical region.
The horizontal line is the expected result [image: U ∗ = 0.610690(1)  ]  [73]. 



                                                                          

                                                                          
   


   Finite size scaling can also be applied to the Binder cumulant in order to
calculate [image: βc  ] and [image: 1∕ν  ]. From equation  (14.90)   (14.119)  of appendix 14.12, we
expect that [image: U  ] scales as


   	
   
[image: U  = FU (x) = FU (L1 ∕νt).
]
	(14.66)



This is confirmed in figure 14.31. From the value [image: FU (x = 0)  ], we obtain
[image: U ∗ = 0.6107(4)  ], which is consistent with the result  (14.65) .

   The numerical calculation of critical exponents, and especially [image: 1∕ν  ], can be
hard in the general case. Therefore it is desirable to cross check results using
several observables which have known scaling behavior. We discuss some of them
below42 .
They involve the correlations of the magnetization with the energy.

   The derivative of the Binder cumulant is


   	
   
[image:       ∂U     ⟨m4E  ⟩⟨m2 ⟩ + ⟨m4 ⟩(⟨m2 ⟩⟨E ⟩ − 2⟨m2E ⟩)
DU =  ----=  ---------------------------------------.
      ∂β                     3⟨m2 ⟩3
]
	(14.67)






                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.32: Scaling of the derivative of the Binder cumulant [image: D
  U  ] (see equation
(14.67) ) for [image: 1∕ν = 1  ] and [image: βc  ] equal to its known value in [image: t = (βc − β)∕βc  ]. 



                                                                          

                                                                          
   


   Its scaling is given by equation  (14.120)


   	
   
[image:         1∕ν            1∕ν       1∕ν
DU  = L   FDU (x) = L   FDU (L   t),
]
	(14.68)



which us plotted in figure 14.32. Notice that [image: DU  ] defines a pseudocritical region
around its maximum. The scaling of the maximum as well as the scaling of its
position can be used in order to compute [image: 1∕ν  ], as we did in figures 14.23 and
14.25 for the magnetic susceptibility.

   It could also turn out to be useful to study correlation functions of the
form


   	
   
[image:           ∂ ln⟨mn-⟩         ⟨Emn--⟩
Dln mn =    ∂ β    = ⟨E ⟩ −  ⟨mn ⟩ ,
]
	(14.69)



whose scaling properties are given by equation  (14.126)  of appendix
14.12,


   	
                                                                          

                                                                          
   
[image:            1∕ν              1∕ν         1∕ν
Dln mn = L   FDlnmn (x) = L   FDlnmn (L    t).
]
	(14.70)



In particular we are interested in the case [image: n = 1  ]


   	
   
[image:          ∂ ln⟨|m |⟩          ⟨E|m |⟩
Dln |m | =--------- = ⟨E ⟩ − -------,
            ∂ β              ⟨|m |⟩
]
	(14.71)



and [image: n = 2  ]


   	
   
[image:                2                2
D    2 = ∂-ln⟨m--⟩-= ⟨E ⟩ − ⟨Em--⟩-.
  lnm        ∂β              ⟨m2 ⟩
]
	(14.72)






                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.33: Scaling of [image: D
 ln|m| ] (see equation  (14.71) ) for [image: 1∕ν = 1  ] using the exact
value of [image: βc  ] in [image: t = (βc − β )∕βc  ]. 



                                                                          

                                                                          
   


   

                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.34: Scaling of [image: D   2
 lnm   ] (see equation  (14.72) ) for [image: 1∕ν = 1  ] using the exact
value of [image: βc  ] in [image: t = (βc − β )∕βc  ]. 



                                                                          

                                                                          
   


   We also mention the energy cumulant [image: V  ]


   	
   
[image:          -⟨e4⟩-
V  = 1 − 3⟨e2⟩2.
]
	(14.73)






                                                                          

                                                                          

                                                                          

                                                                          




[image: pict]

 
Figure 14.35: The energy cumulant defined by equation  (14.73) . As [image: L  ] is increased,
its value converges to [image: 2∕3  ], as expected for a second order phase transition. The position
of the minima converge to the critical temperature as [image: L−1∕ν  ]



                                                                          

                                                                          
   


   In  [76], it is shown that for a second order phase transition [image:   ∗
V   = 2∕3  ],
whereas for a first order phase transition, we obtain a non trivial value. Therefore,
this parameter can be used in order to determine whereas a system undergoes a
first order phase transition. This is confirmed in figure 14.35. The minima of the
curves [image: V (β,L )  ] converge to the critical temperature according to  (14.50)
.


   14.12    Appendix: Scaling




   14.12.1    Binder Cumulant

In section 14.11, we studied the scaling properties of the Binder cumulant


   	
   
[image:           ⟨m4 ⟩
U  = 1 − ----2-2
         3⟨m  ⟩
]
	(14.74)



numerically. In this appendix, we will use the general scaling properties of a
system that undergoes a continuum phase transition near its critical temperature,
in order to derive the scaling properties of [image: U  ] and its derivatives. For more
details, the reader is referred to  [73],  [6].

   The values of [image: U  ] are trivial in two cases: When the magnetization follows a
Gaussian distribution, which is true in the high temperature, disordered phase, we
have that [image: U  = 0  ]. When we are in the low temperature, ordered phase, we have
that [image: U =  2∕3  ]. The proof is easy and it is left as an exercise (see problems 14 and
                                                                          

                                                                          
15).

   According to the discussion in chapter 14, when the critical temperature [image: βc  ]
of a continuum phase transition is approached, the system exhibits scaling
properties due to the diverging correlation length [image: ξ  ]. If we approach [image: βc  ] from the
high temperature phase, then we expect that the distribution function of the
magnetization per site [image: s  ] (not its absolute value) is approximately of the
form


   	
   
[image:                                     1
              1     − -s2--  ( βLd ) 2  −s2Ldβ
P (L,s) =  ∘-----2-e  2⟨s2⟩ =  ----    e   2χ ,
             2π⟨s ⟩           2π χ
]
	(14.75)



which is a Gaussian with standard deviation [image: σ2   ] [image: =  ⟨s2⟩ ][image: =  χ∕(βLd )  ]. We have
temporarily assumed that the system is defined on a [image: d  ]–dimensional hypercubic
lattice of edge [image: L  ].

   When the critical temperature is approached, the distribution function
[image: P (L,s)  ] scales according to the relation  [73]


   	
   
[image:            x        y  L
P(L, s) = L p0P˜(aL  s,--),
                       ξ
]
	(14.76)


                                                                          

                                                                          

where [image: ξ =  ][image: ξ(t)  ][image: =  limL → ∞ ξ(β,L )  ], [image: t = (βc − β)∕βc  ], is the correlation
length in the thermodynamic limit. As we approach the critical point,
[image: limt→0 ξ(t) = + ∞ ], in such a way that [image: ξ ∼ |t|−ν  ]. Equation  (14.76)  is a
scaling hypothesis which plays a fundamental role in the study of critical
phenomena.

   In order to calculate the exponents in equation  (14.76) , we apply the
normalization condition of a probability distribution function 

   
[image:        ∫ +∞

1  =    ∞   dsP (L, s)
            ∫ +∞
   =   Lxp0      ds ˜P(aLys, L-)
             ∞              ξ
             1  ∫ +∞         L
   =   Lxp0 --y-     dz ˜P(z, -)
            aL ∫ ∞           ξ
        x−y   1-  +∞    ˜   L-
   =   L   p0 a      dzP (z, ξ ),             (14.77)
                 ∞
]


where we set [image: z =  aLys  ]. For the left hand side to be equal to one, we must have
that [image: x = y  ],
   	
   
[image:       ∫ +∞         L
C0 ≡        dz ˜P (z,--) < ∞,
       ∞           ξ
]
	(14.78)


                                                                          

                                                                          

and [image: p0 = a∕C0   ]. [image: C0 =  C0(L ∕ξ)  ], [image: p0 = p0(L∕ξ)  ] and [image: p0C0 = a  ] is a constant
independent of [image: L  ] and [image: ξ  ]. Finally, we obtain


   	
   
[image:            a   y     y  L
P (L, s) = --L  ˜P (aL  s,--).
           C0            ξ
]
	(14.79)



The moments of the distribution of the spins [image: ⟨sk⟩ ] are 

   
[image:   k      ∫  +∞    k
⟨s ⟩  =        dss P (L,s)
           ∞   ∫
         -a-  y  + ∞    k ˜   y   L-
      =  C0 L        dss P (aL s, ξ )
                ∞         ∫  +∞
      =  -a-Ly -----1-----      dzzk ˜P(z, L)
         C0    ak+1L (k+1)y  ∞             ξ
                 ( L)
      =  L −kyFk   -- ,                             (14.80)
                   ξ
]


where the last line is the definition of the function [image: Fk(x)  ]. When we first take the
thermodynamic limit [image: L →  ∞ ] and then approach the critical temperature
[image: t →  0  ], the correlation length [image: ξ →  ∞ ] diverges in such a way that [image: L∕ξ →  ∞ ].
In the region [image: β < βc  ] ([image: ⟨m ⟩ = 0  ]) we have that [image: χ =  βLd ⟨s2⟩ ], and by using the
                                                                          

                                                                          
relations
   	
   
[image:             }
χ =  χ+t −γ           χ+   γ∕ν    γ∕ν
ξ =  ξ  t− ν   ⇒  χ =  -γ∕νξ   ∼  ξ   ,
      +               ξ+
]
	(14.81)



we obtain


   	
   
[image:   2     −1  −d       χ+     γ∕ν     γ∕ν
⟨s ⟩ = β  L   χ =  ---d-γ∕ν-ξ   ∼ ξ   .
                   βL  ξ+
]
	(14.82)



In the above equations, we introduced the universal amplitudes [image: χ+   ] and [image: ξ+   ],
which are universal constants (i.e. they are the same within a universality class)
and they are defined from equation  (14.81) . In this limit, in order for
(14.80)  to have consistent scaling for [image: k = 2  ] on the right and left hand
sides43 ,
we obtain (compare with equation  (14.57) )


   	
                                                                          

                                                                          
   
[image:    (   )   (   ) −γ∕ν
     L-      L-                  L-
F2   ξ   ∼   ξ           for     ξ ≫  1.
]
	(14.83)



In order to compute the [image: L  ]-scaling, we substitute the above equations to  (14.80)
for [image: k = 2  ], and we obtain


   	
   
[image:     +               (  ) −γ∕ν
---χ----ξγ∕ν ∼ L− 2y   L-      .
βLd ξγ∕ν              ξ
     +
]
	(14.84)



Then, we obtain


   	
   
[image:   −d    − 2y  −γ∕ν             γ        d ν − γ   β
L   ∼  L   L      ⇒ d =  2y + --⇒  y = ------- = --,
                              ν          2 ν     ν
]
	(14.85)


                                                                          

                                                                          

where we used the known44 
hyperscaling relation


   	
   
[image: dν = γ + 2β.
]
	(14.86)



Finally, we obtain the equations [image: β <  βc  ],


   	
   
[image:            a   β∕ν     β∕ν  L
P (L,s ) = --L    ˜P(aL    s,--),
           C0               ξ
]
	(14.87)





   	
                                                                          

                                                                          
   
[image:                 (  )
⟨s2⟩ = L −2β∕νF  L-  ,
              2   ξ
]
	(14.88)





   	
   
[image:                 (L )
⟨s4⟩ = L −4β∕νF4 --  ,
                  ξ
]
	(14.89)



which are valid in the disordered phase [image: β < β
      c  ]. From equation  (14.74) , we find
that the critical behavior of the Binder cumulant is


   	
   
[image:                    (  )             (  )
          L− 4β∕νF    L-           F   L-
U ∼  1 − ---------4--ξ---=  1 − 1--4--ξ--.
            −4β∕ν   ( L)2        3   ( L)2
         3L     F2   ξ           F2   ξ
                                                                          

                                                                          
]
	(14.90)



Finite size effects dominate in the pseudocritical region, in which case we
take the thermodynamic limit [image: L →  ∞ ] keeping [image: L ∕ξ  ] finite, and the
fluctuations get suppressed, rendering the functions [image: F  (x)
  k  ] finite. Therefore, we
obtain45 


   	
   
[image:  lim  U(t = 0,L ) ≡ U∗ = 1 − 1-F4-(0)-= const.,
L→ ∞                        3 F2(0)2
]
	(14.91)



which shows why the value of [image: U  ] at the critical temperature turned out to be
almost independent of the system size [image: L  ]. [image: U∗ ] is found to depend on the
boundary conditions and on the anisotropy of the interaction. For the Ising model
on the square lattice we have that  [73] (Kamieniarz+Blöte)


   	
   
[image:  ∗
U  = 0.610690 (1)
]
	(14.92)


                                                                          

                                                                          



   14.12.2    Scaling

Consider a change of length scale on a lattice so that


   	
   
[image: ξ →  ξ-,
     b
]
	(14.93)



where [image: ξ  ] is the dimensionless correlation length in the thermodynamic
limit and [image: b  ] is the scaling factor. Then, the basic assumption for the
scaling of thermodynamics quantities in the region of a continuous
phase transition is that the free energy is changed according to
46


   	
   
[image: f(t,h) = b−df(tbyt,hbyh ),
                                                                          

                                                                          
]
	(14.94)



where [image: t  ] is the reduced temperature and [image: h  ] is the external magnetic
field47 .
The above relation summarizes the scaling hypothesis, and it is a relation similar
to  (14.76) . This relation can be understood through the renormalization group
approach, and the fundamental assumption is the appearance of a unique
dynamical length scale that diverges as we approach the critical point. The
arguments [image: tbyt   ] and [image: hbyh   ] give the change in the coupling constants [image: t  ] and
[image: h  ] under the change in length scale in order that the equation remains
valid.

   By applying the above relation [image: n  ] times we obtain


   	
   
[image:           − nd    nyt   nyh
f (t,h ) = b   f(tb  ,hb   ).
]
	(14.95)



If we take [image: n → ∞ ], [image: t → 0  ], keeping the product [image: tbnyt = t0 = 𝒪 (1)  ] fixed, we
obtain 

   
[image:             d∕yt      − yh∕yt
f(t,h)  =  t   f (t0,ht      )
        ≡  td∕ytΨ (ht−yh∕yt)
            2−α     −yh∕yt
        =  t   Ψ (ht     ),                 (14.96)
]


where we substituted [image: bn ∼ t− 1∕yt   ] and defined the scaling function [image: Ψ(z)  ] and the
critical exponent
   	
   
[image: α =  2 − d-.
         yt
]
	(14.97)



By applying the same reasoning to  (14.93)  for the correlation length we
obtains


   	
   
[image: ξ(t,h ) = b− 1ξ(tbyt,hbyh) = ...= b− nξ(tbnyt,hbnyh).
]
	(14.98)



By taking the limit [image: n →  ∞ ], [image: t → 0  ], keeping the product [image: tbnyt ∼ 𝒪(1)  ], the left
hand side will give a finite value, e.g. [image: ξ0 < ∞ ] whereas the right hand side will
give
                                                                          

                                                                          


   	
   
[image:      1∕y       − y∕y
ξ0 = t  tξ(t0,ht  h  t).
]
	(14.99)



By considering the case [image: h = 0  ], and by comparing to the known relation  (14.4)
[image:      −ν
ξ ∼ t  ], we obtain


   	
   
[image: ξ = ξ0t−1∕yt ⇒ ν = -1.
                   yt
]
	(14.100)




   By taking the derivative of  (14.96)  with respect to the temperature, we
obtain


   	
   
                                                                          

                                                                          
[image: ∂f-∼ t1−αΨ (ht−yh∕yt) + t2−αht− yh∕yt− 1Ψ′(ht−yh∕yt).
∂t
]
	(14.101)



We use the notation [image: ∼ ] whenever we neglect terms that are not related to the
scaling properties of a function.

   By taking the derivative once more, and by setting [image: h = 0  ], we obtain the
specific heat


   	
   
[image:      ∂2f-   −α
c ∼  ∂t2 ∼ t   Ψ(0).
]
	(14.102)



Therefore, the critical exponent [image: α  ] is nothing but the critical exponent of the
specific heat defined in equation  (14.4) .

   The magnetic susceptibility can be obtained in a similar way by taking the
derivative of  (14.96)  with respect to [image: h  ]


   	
   
[image: ∂f- ∼ td∕ytt−yh∕ytΨ ′(ht −yh∕yt) ∼ tνd− νyhΨ ′(ht −νyh ).
∂h
                                                                          

                                                                          
]
	(14.103)



By taking the derivative once more time and by setting [image: h =  0  ] we obtain the
magnetic susceptibility


   	
   
[image:     ∂2f     νd−2νy  ′
χ ∼ ∂h2- ∼ t     hΨ  (0),
]
	(14.104)



and, by comparing to  (14.3)  [image: χ ∼ t−γ  ], we obtain


   	
   
[image:                        1      γ        β    β + γ
γ =  2νyh − νd ⇔  yh = 2-(d +  ν) = d − ν-=  --ν---
]
	(14.105)



In the last two equations we used the hyperscaling relations


   	
                                                                          

                                                                          
   
[image: νd = γ + 2β.
]
	(14.106)





   14.12.3    Finite Size Scaling


We will now extend the analysis of the previous section to the case of a system of
finite size. We will assume that the system’s degrees of freedom are located on a
lattice whose linear size is [image: l = La  ] (the volume is [image:      d
V = l  ], [image: d  ] is the number of
dimensions), where [image: L  ] is the (dimensionless) number of lattice sites and [image: a  ] is the
lattice constant. We consider the limit [image: L →  ∞ ] and [image: a →  0  ], so that [image: l  ] remains
constant. By changing the [image: L  ]-scale


   	
   
[image:       L
L →   --⇔  L− 1 → bL −1,
      b
]
	(14.107)



and


   	
                                                                          

                                                                          
   
[image: a →  ba,
]
	(14.108)



equation  (14.94)  generalizes to


   	
   
[image: f (t,h, L−1) = b−ndf (tbnyt,hLnyh,bnL −1).
]
	(14.109)



By taking the limit [image: t → 0  ], [image: n →  ∞ ] and [image:   ny
tb t = t0 < ∞ ][image: ⇒ ][image:  n    −1∕y
b ∼  t   t   ]
(approach of the critical point), the above relation becomes


   	
   
[image:         −1     d∕y       −y ∕y  − 1∕y  − 1    d∕y     −y ∕y  −1∕y  −1
f (t,h, L  ) = t  tf (t0,ht  h  t,t   tL  ) = t   tΨ (ht  h  t,t    tL  ).
]
	(14.110)


                                                                          

                                                                          


   By differentiating and setting [image: h =  0  ] as in the previous section we
obtain48 


   	
   
[image:               2 |
χ (t,L −1) = ∂--f||    = t−γϕ (L −1t−ν) = t−γϕ (ξ-),
            ∂h2 |h=0       2                2 L
]
	(14.111)



where we set [image: yt = 1∕ ν  ], [image: ϕ2(x) = Ψ (2,0)(0,x)  ] [image: =  ∂2Ψ (z, x)∕∂z2|z=0   ].

   The thermodynamic limit is obtained for [image: L ≫  ξ  ] where [image: ϕ2(-ξ) → ϕ2(0) < ∞
   L ],
which yields the known relation [image: χ ∼  t− γ  ].

   When [image: L  ] is comparable to [image: ξ  ], finite size effects dominate. The large
fluctuations are suppressed and the magnetic susceptibility has a maximum at
a crossover (pseudocritical) temperature [image: tX  ≡ (βc − βc(L))∕βc  ], where
[image: tX ∼  L−1∕ν  ]. The last relation holds because [image: L ∼  ξ ∼ t− ν  ] by assumption. We
obtain


   	
   
[image:         − γ    −1 −ν      γ∕ν    −1       γ∕ν          γ∕ν
χmax ∼  tX  ϕ2(L  tX ) ∼ L    ϕ2(L  L ) ∼ L   ϕ2(1) ∼ L   .
]
	(14.112)



In the region of the maximum, we obtain the functional form


   	
   
[image: χ(t,L −1) = Lγ∕νFχ(L1 ∕νt),
]
	(14.113)



which is nothing but equation  (14.59) . The function [image: F  (x)
  χ  ] is analytic in its
argument [image:       1∕ν
x = L    t  ], since for a finite system [image:      − 1
χ(t,L   )  ] is an analytic function of the
temperature49 .
In the thermodynamic limit ([image: L →  ∞ ] and [image: |t| > 0  ], therefore [image: x → ∞ ])


   	
   
[image:           −γ
F χ(x) ∼ x       x ≫  1,
]
	(14.114)


                                                                          

                                                                          

so that [image:       −1
χ(t,L   )  ] [image:     γ∕ν     1∕ν
=  L   F χ(L   t)  ] [image:     γ∕ν  1∕ν  γ   − γ
∼  L   (L   t) ∼  t  ]. Near the
pseudocritical point


   	
   
[image: F (x ) = F   + F   x + F   x2 + ...    x ≪  1,
 χ        χ,0     χ,1     χ,2
]
	(14.115)



and we expect that for [image: L1 ∕νt ≪  1  ] we have that


   	
   
[image:                 (                           )
χ(t,L−1) = L γ∕ν 1 + χ1L1∕νt + χ2L2∕νt2 + ... .
]
	(14.116)




   The above relations lead to the following conclusions: 

      
      	The pseudocritical point shifts as [image: ∼ L −1∕ν  ] (equation  (14.50) )
      

      	The peak of the magnetic susceptibility increases as [image: χmax  ∼ L γ∕ν  ]
                                                                          

                                                                          
      

      	The direction of the shifting of the maximum of the magnetic susceptibility
      depends on the boundary conditions:
           
           	Periodic   boundary   conditions   suppress   the   effects   of   the
           fluctuations, since the wave vectors are limited by [image: 2π-
L n  ]. This
           increases  the  pseudocritical  temperature  [image: Tc(L)  ]  ([image: βc(L) < βc  ]
           [image: ⇒  c > 0  ] in  (14.50) ).
           

           	Free  boundary  conditions  lead  to  free  fluctuations  on  the
           boundary, which decrease the pseudocritical temperature [image: Tc(L)  ]
           ([image: βc(L) > βc  ] [image: ⇒  c < 0  ] in  (14.50) )
           

           	Frozen (fixed) spins on the boundary lead to increased order in
           the system. This increases the pseudocritical temperature [image: Tc(L)  ]
           ([image: βc(L) < βc  ] [image: ⇒  c > 0  ] in  (14.50) ).


      


We conclude that [image: Fχ(L1∕νt)  ] depends on the boundary conditions and the geometry
of the lattice.

   Similarly, we obtain


   	
   
[image:            ∂kf                                              ( ξ)
⟨mk⟩ ∼ L −d---k ∼ L −dtd∕yt−kyh∕ytϕk(L −1t−ν) ∼ L− dtνd−kνyhϕk   -- ,
           ∂h                                                 L
]
	(14.117)



and by following similar arguments leading to  (14.113) , we obtain


   	
                                                                          

                                                                          
   
[image:                                   β+γ-
⟨mk ⟩ ∼ L −dL −d+kyhFk(L1∕νt) ∼ Lk ν Fk(L1∕νt).
]
	(14.118)




   For the Binder cumulant we obtain


   	
   
[image:         -⟨m4-⟩-      --L4yhF4-(L1-∕νt)--             1∕ν         1∕ν 2
U =  1− 3⟨m2 ⟩2 ∼ 1− 3(L2yhF  (L1 ∕νt))2 ∼ U ∗+U1 ⋅(L   t)+U2 ⋅(L   t) +...,
                             2
]
	(14.119)



where in the last equality we expanded the analytic functions [image: F2,4(L1∕νt)  ] for
small [image: L1∕νt  ]. Then, we see that


   	
   
[image: ∂U--∼  ∂tU  ∼ L1 ∕ν.
∂ β
                                                                          

                                                                          
]
	(14.120)




   By differentiating  (14.110)  with respect to the temperature we obtain


   
[image: ∂f       d∕yt− 1    y ∕yt  −1 −1∕yt
---  ∼   t     Ψ(ht h  ,L   t    )
∂t         d∕yt  yh∕yt−1   (1,0)  yh∕yt  −1 −1∕yt
         +t   (ht      )Ψ    (ht    ,L   t    )
         +td∕ytL −1t−1∕yt−1Ψ (0,1)(htyh∕yt,L −1t−1∕yt)
         νd−1     νyh  −1 −ν
     ∼   t   Ψ (ht   ,L  t  )
         +htνd+νyh−1Ψ (1,0)(htνyh,L −1t− ν)
            −1 νd− 1−ν  (0,1)   νyh  −1 −ν
         +L   t      Ψ    (ht   ,L  t  ),            (14.121)
]


where we used the notation [image: Ψ (n,m)(x,z) = ∂n+m Ψ (x,z)∕∂xn ∂zm  ]. The term
proportional to [image: h  ] vanishes when we set [image: h = 0  ]. In the pseudocritical region,
where [image:        −1∕ν
tX  ∼ L  ], the first and third term are of the same order in [image: L  ] and we
obtain
   	
   
[image:    |
∂f-||   =  L− d+ 1νF 1(L1∕νt),
∂t |h=0
]
	(14.122)



and by successive differentiation
                                                                          

                                                                          


   	
   
[image:     |
∂kf |       −d+ k k   1∕ν
--k-||   = L     νF (L   t).
∂t  h=0
]
	(14.123)



The derivatives


   	
   
[image:      |
-∂2f-||       − d+yh+ 1  1  1∕ν      1−β  1  1∕ν
∂t∂h |   =  L       νF1 (L   t) = L ν F 1(L   t),
      h=0
]
	(14.124)





   	
   
[image: ∂1+kf ||               1
------|   =  L−d+kyh+ νF1k(L1 ∕νt).
∂t∂hk |h=0
]
	(14.125)



In particular


   	
   
[image:                |
           ∂1+kf|                1
⟨Emk--⟩   -∂t∂hk||h=0-   L−d+kyh+-ν-    1∕ν
 ⟨mk ⟩ =   ∂kf|     ∼   L− d+kyh   ∼ L
           ∂hk|h=0
]
	(14.126)





   	
   
[image:                  |
           − d ∂4f|            4
⟨e4⟩-   --L----∂t4|h=0--    -L−-ν--
⟨e2⟩2 = (     ∂2f||   )2 ∼  (L − 2ν )2 ∼ const.
         L −d ∂t2|
                  h=0
]
	(14.127)



                                                                          

                                                                          


   14.13    Appendix: Critical Exponents















   14.13.1    Definitions

   	
   
[image:          −α             α∕ν             α∕ν  2  1∕ν
α : c ∼ t β,   cmax ∼ −Lβ∕ν ,  c(t,L ) = L − Fβ∕ν (L  1t∕)ν
β : m  ∼ t ,   m  ∼ L     ,   m (t,L ) = L    F1 (L   t)
γ : χ ∼  tγ,   χmax  ∼ Lγ∕ν,  χ(t,L) = L γ∕νF2 (L1∕νt)
ν : ξ ∼ t−ν,   ξ ∼  L,
δ : M  ∼  h1∕δ
          z
z : τ ∼  ξ
]
	(14.128)



The scaling relation


   	
                                                                          

                                                                          
   
[image: f(t,h) = td∕ytΨ (htyh∕yt),
]
	(14.129)



defines the exponents [image: yt  ], [image: yh  ]. The relation


   	
   
[image: G (r,t = 0) ∼ ---1---,
              rd−2+η
]
	(14.130)



defines the exponent [image: η  ] coming from the two point correlation function
[image: G (r,t) = ⟨s(r) ⋅ s(0)⟩ ].


   14.13.2    Hyperscaling Relations


From the definitions and the hyperscaling relations we have that 

   
[image:  α +  2β + γ  =   2
      γ + 2β  =   νd

      2 − νd  =   α
α + β(1 + δ)  =   2

    ν(2 − η)  =   γ                    (14.131)
]



   	
   
[image:      1-  --d---          β-+-γ-   1(     γ)        β-
yt = ν = 2 − α     yh =    ν   =  2  d + ν  =  d − ν
]
	(14.132)





   	
   
[image:          d          d − yh         2yh − d           yh
α =  2 − --    β =  -------    γ = --------    δ = -------
         yt           yt              yt           d − yh
]
	(14.133)





   	
                                                                          

                                                                          
   
[image: η = d + 2 − 2yh ⇔  d − 2 + η = 2(d − yh)
]
	(14.134)





   
                                                                          

                                                                          
   


                                                                          

                                                                          




 	
	
	
	
	
	
	
	
	

	     Model       	  [image: ν  ]  	   [image: α  ]    	   [image: β  ]    	   [image: γ  ]    	  [image: δ  ]   	  [image: η  ]  	[image: yt  ]	[image: yh  ]

	
	
	
	
	
	
	
	
	

	 q=0 Potts (2d)  [66]   	 [image: ∞ ] 	 [image: −  ∞ ] 	   [image: 16   ]      	  [image: ∞ ]  	  [image: ∞ ] 	  [image: 0  ]   	[image: 0  ]	[image: 2  ] 

	
	
	
	
	
	
	
	
	

	 q=1 Potts (2d)  [66]   	  [image: 4
3   ]    	  [image: − 2
  3   ]    	   [image: -5
36   ]     	  [image: 2 7-
  18   ]    	 [image: 181
  5   ]   	 [image: -5
24   ]   	[image: 3
4   ]	[image: 91
48   ]

	
	
	
	
	
	
	
	
	

	   Ising (2d)  [66]      	  [image: 1  ]   	   [image: 0  ]     	   [image: 1
8   ]      	   [image: 7
4   ]      	  [image: 15  ]   	  [image: 1
4   ]    	[image: 1  ]	[image: 15
 8   ]

	
	
	
	
	
	
	
	
	

	 q=3 Potts (2d)  [66]   	  [image: 5
6   ]    	   [image: 1
3   ]      	   [image: 1
9   ]      	   [image: 13
 9   ]     	  [image: 14  ]   	 [image: -4
15   ]   	[image: 6
5   ]	[image: 28
15   ]

	
	
	
	
	
	
	
	
	

	q=4 Potts (2d)  [66, 78]	  [image: 2
3   ]    	   [image: 2
3   ]      	   [image: -1
12   ]     	   [image: 7
6   ]      	  [image: 15  ]   	  [image: 1
4   ]    	[image: 3
2   ]	[image: 15
 8   ]

	
	
	
	
	
	
	
	
	

	  classical (4d)  [77]    	  [image: 1
2   ]    	   [image: 0  ]     	   [image: 1
2   ]      	   [image: 1  ]     	  [image: 3  ]    	  [image: 0  ]   	[image: 2  ]	[image: 3  ] 

	
	
	
	
	
	
	
	
	

	  Spherical (3d)  [77]   	  [image: 1  ]   	  [image: − 1  ]   	   [image: 12   ]      	   [image: 2  ]     	  [image: 5  ]    	  [image: 0  ]   	[image: 1  ]	[image: 52   ] 

	
	
	
	
	
	
	
	
	

	   Ising (3d)  [77]      	 [image: − ] 	   [image: 1
8   ]      	   [image: -5
16   ]     	   [image: 5
4   ]      	  [image: 5  ]    	 [image: − ] 	[image: − ]	[image: − ]

	   Ising (3d)  [81]      	[image: 0.631  ]	[image: 0.108 (5 )  ]	[image: 0.327(4)  ]	[image: 1.237(4)  ]	[image: 4.77(5)  ]	[image: 0.039  ]	[image: − ]	[image: − ]

	
	
	
	
	
	
	
	
	

	 Heisenberg (3d) [79]   	[image: 0.70  ] 	 [image: − 0.1  ]  	  [image: 0.36  ]   	  [image: 1.4  ]   	  [image: 5  ]    	[image: 0.03  ] 	[image: − ]	[image: − ]

	
	
	
	
	
	
	
	
	

	   XY (3d)  [80]       	[image: 0.663  ]	   [image: − ]  	   [image: − ]  	[image: 1.327(8)  ]	  [image: − ] 	 [image: − ] 	[image: − ]	[image: − ]

	 AF q=3 Potts (3d) [82] 	[image: 0.66  ] 	[image: − 0.011  ]	 [image: 0.351  ]  	 [image: 1.309  ]  	 [image: 4.73  ]  	 [image: − ] 	[image: − ]	[image: − ]

	
	
	
	
	
	
	
	
	

	               





 Table 14.7: Critical exponents of the models referred to in the first column. Whenever
the value is shown as a floating point number, the exponents are approximate. For the
approximate values we don’t apply the hyperscaling relations, but we simply mention
the values reported in the bibliography. The values for the 3d Ising model in  [77] are
a conjecture. For the 3d Ising see also  [43] p. 244. 3d XY and 3d AF q=3 Potts are
conjectured to belong to the same universality class.

                                                                          

                                                                          
   


   

   14.14    Problems

The files all and allem in the accompanying software contain measurements
that you can use for your data analysis or compare them with your own
measurements.


      

      	Compute the average acceptance ratio [image: A¯  ] for the Metropolis algorithm
      as a function of the temperature for [image: L = 10  ], [image: 40  ], [image: 100  ]. Compute
      the average size [image: ⟨n ⟩ ] of the Wolff clusters at the same values of the
      temperatures. Then calculate the number of Wolff clusters that are
      equivalent to a Metropolis sweep. Make the plots of all of your results
      and connect the points corresponding to the same [image: L  ]. 
      

      	Make the plots in figures 14.6–14.10 and add data for [image: L  = 50  ], [image: 120  ],
      [image: 140  ], [image: 160  ], [image: 180  ], [image: 200  ].
      

      	Make the plots in figures 14.11–14.12 and add data for [image: L = 50  ], [image: 90  ],
      [image: 130  ], [image: 150  ], [image: 190  ], [image: 250  ]. Recalculate the dynamic exponent [image: z  ] using
      your data.
      

      	Make the plot in figure 14.13 and add data for [image: L = 30  ], [image: 50  ], [image: 70  ], [image: 90  ].
      Recalculate the dynamic exponent [image: z  ] using your data.
      

      	Reproduce the results shown in table 14.1. Add a 6th column computing
      [image:  A
τm,Metropolis   ][image:               ¯
=  τm,MetropolisA  ],  where  [image: ¯
A  ]  is  the  average  acceptance
      ratio of the Metropolis algorithm. This changes the unit of time to [image: N  ]
      accepted spin flips. These are the numbers that are directly comparable
      with [image: τm  ].
      

      	Simulate the 2d Ising model on the square lattice for [image: L  = 10  ], [image: 20  ],
      [image: 40  ], [image: 80  ], [image: 100  ]. Choose appropriate values of [image: β  ], so that you will be
      able to determine the magnetic susceptibility and the specific heat with
                                                                          

                                                                          
      an accuracy comparable to the one shown in table 14.5. In each case,
      check for the thermalization of the system and calculate the errors.
      

      	Make the fits that lead to the results  (14.38) ,  (14.39) ,  (14.41)  and
      (14.43)
      

      	Study the scaling of the specific heat as a function of the temperature.
      Compare the quality of the fits to the functions [image: a log |t| ] and [image:     α
a |t|  ] by
      computing the [image: χ2∕dof  ] according to the discussion in appendix 13.7
      after page 1429.
      

      	 Consider the table 14.8 showing the measurements of [image: χ(β ,L)
   c  ],
[image: ⟨m ⟩(βc, L)  ] and [image: c(βc,L )  ]. Use the values in this table in order to make the
      fits which give the exponents [image: γ∕ν  ], [image: β∕ν  ] and [image: α  ] as described in the
      text. For the exponent [image: α  ], try fitting to a power and a logarithm
      and compare the results according to the discussion in the text.
      
      






 	
	
	
	
	
	
	

	 [image: L  ]	 [image: χ(βc,L )  ]
  	 [image: ⟨m ⟩(βc,L)  ]
  	   [image: c(βc,L )  ]


	
	
	
	
	
	
	

	  40	20.50  	0.02	0.6364	0.0001	0.4883	0.0007
	 60	41.78 	0.08	0.6049	0.0002	0.5390	0.0008

	  80	69.15  	0.09	0.5835	0.0001	0.5743	0.0012
	 100	102.21	0.25	0.5673	0.0002	0.6026	0.0014

	 120	140.18	0.11	0.5548	0.0001	0.6235	0.0010

	 140	183.95	0.33	0.5442	0.0002	0.6434	0.0006

	 160	232.93	0.55	0.5351	0.0001	0.6584	0.0020

	 200	342.13	0.72	0.5206	0.0001	0.6858	0.0014

	 500	1687.2	4.4  	0.4647	0.0002	0.7794	0.0018

	1000	6245  	664 	0.4228	0.0040	–       	–       

	
	
	
	
	
	
	

	    




      
 Table 14.8: [image: χ (βc,L)  ], [image: ⟨m ⟩(βc,L)  ] and [image: c(βc,L)  ] at the critical temperature for
      different [image: L  ] used in problem 9. 

      


      

      

      	Consider the table 14.5 which gives the results of the measurements of [image: L  ],
      [image: βc(L)  ], [image: χmax   ], [image: β ′c(L )  ] and [image: cmax   ]. Make the appropriate fits in order to
                                                                          

                                                                          
      calculate the exponents [image: 1 ∕ν  ], [image: γ∕ν  ], [image: α ∕ν  ] and the critical temperature [image: βc  ]
      as described in the text. For the exponent [image: α  ], try fitting to a power and a
      logarithm and compare the results according to the discussion in the
      text.
      

      	Reproduce the collapse of the curves shown in figures 14.27-14.29. Use
      the data in the file all from the accompanying software. Set the
      appropriate values to the parameters and calculate the scaling functions
      [image: Fχ,m,c  ]. Vary each parameter separately, so that the collapse becomes
      not satisfactory and use its variation as an estimate of its error.
      Determine the range in [image:       1∕ν
x =  L   t  ] that gives satisfactory collapse of the
      curves. Repeat your calculation by performing measurements for
      [image: L = 10, 20  ], and using the data for [image: L =  10,20,40,80, 120  ]. Compare the
      new results with the previous ones and comment on the finite size
      effects.
      

      	Prove that for every observable [image: 𝒪 ] we have that [image: ∂ ⟨𝒪 ⟩∕∂ β =  ]
      [image: −  ⟨E𝒪 ⟩ + ⟨𝒪 ⟩⟨E ⟩ =  ] [image: − ⟨(E  − ⟨E ⟩)(𝒪  − ⟨𝒪 ⟩)⟩ ]. Using this relation
      calculate the derivative of the Binder cumulant [image: DU  ] and prove equation
      (14.67) .
      

      	Use the maximum of the derivative of the Binder cumulant [image: DU  ] in order to
      calculate the critical exponent [image: 1∕ν  ] according to the analysis shown in
      figures 14.23 and 14.25 for the magnetic susceptibility.
      

      	 Show that for a Gaussian distribution [image:           −x2∕2σ2
f (x) = ae   ]  we have that
      [image: ⟨x2⟩ = σ2   ] and [image: ⟨x4⟩ = 3σ4   ]. Conclude that [image: 1 − ⟨x2 ⟩∕ (3 ⟨x4 ⟩) = 0  ].
      

      	 Consider the distribution given by the probability density distribution
      
      [image:          (   (x−m-)2-    (x+m)2)
f(x) = a  e−  2σ2  + e−  2σ2    .
      ]
 Plot this function and comment on the fact that it looks, qualitatively, like
      the distribution of the magnetization in the low temperature phase
      [image: β ≫  βc  ]. Show that [image:    4     4      2 2      2
⟨x  ⟩ = m  + 6m  σ  + 3σ   ] and [image:   2      2    2
⟨x ⟩ = m  +  σ   ].
      Interpret your results, i.e. the meaning of each expectation value. Show
      that for [image: σ ≪  m  ] we obtain [image: U ≈ 2 ∕3  ]. Convince yourself that the
      approximation used concerns the system in the low temperature
      phase.
      

      	Calculate the derivative [image: ∂U ∕∂β  ] as a function of [image: ⟨em4⟩ ], [image: ⟨em2 ⟩ ], [image: ⟨m4⟩ ]
      and [image: ⟨m2 ⟩ ]. Apply finite size scaling arguments and prove equation  (14.120)
      .
      

      	Use equations  (14.131)  and [image: yt = 1∕ ν  ], [image: γ = (2yh − d)∕yt  ] in order to prove
      the other relations in  (14.132)  and  (14.133) .
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  book. Versions differing by major numbers have been altered substantially. Chapter numbers and
  page references are not guaranteed to match between different versions. The second number is the
  minor version. Versions differing by a minor version may have serious errors/typos corrected and/or
  substantial text modifications. Versions differing by only the last number may have minor typos corrected,
  added references etc. When reporting errors, please mention the version number you are referring
  to.
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         8A Perl moto!


      

      
         9Free Software Foundation, www.fsf.org.


      

        
          10Java and C++ have been popular choices in computational physics courses. But object
   oriented programming is usually avoided in the high performance part of a computation. So, one
   usually uses those languages in a procedural style of programming, cheating herself that she is
   actually learning the advantages of object oriented programming.


       

        
          11www.physics.ntua.gr/~konstant/ComputationalPhysics/


     

      
         1www.stallman.org


    

      
         2It is more popular to be called “the command line”, or the “terminal”, or the “console”,
  but in fact the user interaction is through a shell.


      

      
         3See www.tcsh.org. On Debian like systems, like Ubuntu, installation is very simple
  through the software center or by the command sudo apt-get install tcsh.


      

      
         4Some times two or more paths refer to the same file, or as we say, a file has two or more
  “links” in the same filesystem, but let’s keep it simple for the moment.


      

      
         5Of course, the capacity of the filesystem is finite, issue the command “df -i .” in order
  to see the number of inodes available in your filesystem. Every file corresponds to one and only
  one inode of the filesystem. Every path is mapped to a unique inode, but an inode maybe
  pointed to by more than one paths.


      

      
         6This gives a great sense of freedom, but historically this was a important factor that led
  the Unix operating systems, although superior in quality, not to win a fair share of the market!
  The Linux family tries to keep things simple and universal to a large extent, but one should be
  aware that because of this freedom files in different version of Linuxes or Unices can be in
  different places.


      

      
         7Remember that lines that begin with the > character are commands. All other lines refer
  to the output of the commands.


      

      
         8For a directory it means the number of its subdirectories plus 2 (the parent directory
  and itself). For a regular file, it shows how many paths in the filesystem point to this
  file.


      

      
         9See the “File system permissions” entry in en.wikipedia.org.


      

        
          10Of course it is the user’s responsibility to make sure the file with execute permission
   is actually a program that is possible to execute. An error results if this is not the
   case.


       

        
          11Actually it removes “links” from files. A file may have more than one links in the same
   partition of a filesystem. A file is deleted when its last link is removed.


       

        
          12This does not mean that its contents have been deleted from the disk. Deletion means
   marking for overwriting. Until the data is overwritten it can be recovered by the use of special
   tools. Shredding sensitive data can be tricky business...


       

        
          13A small mistake, like rm -rf * and your data is ... history!


       

        
          14The command setenv is special to the tcsh shell. For example the bash
  shell uses the syntax MYVAR=test-env in order to set the value of an environment
   variable.


       

        
          15This syntax is particular to the tcsh shell. For other shells (bash, sh, ...) read their
   documentation.


       

        
          16If you use the bash shell press [Tab] once or twice.


       

        
          17Use the same procedure to auto-complete the names of files in the arguments of
   commands.


       

        
          18The particular file, as well as most of the files in this section, can be found in the
   accompanying software of the chapter. It is highly recommended that you try all the commands
   in this section by using all the provided files.


       

        
          19http://www.gnu.org/software/emacs/ (main site), http://www.emacswiki.org/
  (expert tips), http://en.wikipedia.org/wiki/Emacs (general info)


     

        
          20Emacs is written in a dialect of the programming language Lisp, called Elisp. There is
   no need of an in-depth knowledge of the language in order to program simple functions, just see
   how others are doing it...


       

        
          21Quite handy when we edit files in a remote computer.


       

        
          22Actually, M- is the so called Meta key, usually bound to the Alt key. It is also
   bound to the Esc and C-[ keys. The latter can be our only choices available in dumb
   terminals.


       

        
          23The user can change the name of the buffer without affecting the name of the file it
   edits. Also, if we open more than one files with the same name, emacs gives each
   buffer a unique name. E.g. if we edit more than one files named index.html then the
   corresponding buffers are named index.html, index.html<2>, index.html<3>, ...
   .


       

        
          24Strictly speaking, the point lies between two characters and not on top of a character.
   The cursor lies on the character immediately to the right of the point. A point is assigned to
   every window, therefore a buffer can have multiple points, one for each window that displays its
   contents.


       

        
          25Press the Ctrl and spacebar keys simultanesouly.


       

   
     26If it is a two button mouse, try clicking the left and right buttons simultaneously.

 

        
          27Be careful not to start a new Emacs session each time that all you need is a new frame.
   A new Emacs process takes time to start, binds computer resources and does not communicate
   with a different Emacs process.


       

        
          28If you prefer books in the form of PDF visit the page www.gnu.org/software/emacs and
   click on Documentation. You will find a 600 page book that has almost everything!


       

        
          29It is possible to break long lines by putting a & at the end of each broken line and
   continue the same command in the next one. More on that later.


       

        
          30http://gcc.gnu.org/fortran/


     

        
          31Don’t confuse REAL variables with the real numbers. REAL variables take values that are
   finite approximations to real numbers and take values that are a subset of the rational numbers.
   This approximation becomes better with increasing the amount of memory allocated to REALs.
   In most computing environments, REALs are allocated 4 or 8 bytes of memory, in which
   case they approximate real numbers with, more or less, 7 or 17 significant digits,
   respectively.


       

        
          32Try adding the command print *,2/4, 2.0/4.0 and check the results.


       

        
          33The step can change by adding one more entry to the do line: do i=0,12,4 runs the
   loop for i=0,4,8,12, whereas do i=10,6,-2 for i=10,8,6.


       

        
          34That means that different compilers and/or runs can give different results.


       

        
          35Can you see the difference between the names pl1 and p11?


       

        
          36E.g., 5 is the stdin, 6 is the stdout and 0 is the stderr.


       

        
          37Try to see what happens when you write to a unit what has not been connected to a file
   via an open command!


       

        
          38We say that variables in Fortran are passed to subroutines by reference and not by value
   as in C.


       

        
          39Other operators are .lt., .ge. .le. (strictly less, greater or equal, less or equal),
   .ne. (not equal) and .or., .and., .not. (logical or, and and negation).


       

        
          40Common blocks are supposed to be obsolescent in Fortran and programmers are
   encouraged to avoid them and use modules instead. Due to their simplicity and popularity we
   will show their usage and also use them in this book.


       

        
          41Fortran allows up to seven indices in an array.


       

        
          42If we want to force a long output to be written in one line, then we must replace
   the * by an explicit format directive, e.g. print ’(100I6)’,( (c(i,j), i=1,10),
  j=1,10)


     

        
          43A the time of the writing of this book, there was a very nice site www.gnuplotting.org
  which shows how to create many beautiful and complicated plots.


       

        
          44You can change the symbol of the independent variable. For example, the command set
  dummy t sets the independent variable to be t.


       

        
          45By default, the [image: x  ] and [image: y  ] ranges are determined automatically. In order to force them
   to be automatic, you can insert a * in the brackets at the corresponding position(s). For example
   plot [1:*][*:5] sets the upper and lower limits of [image: x  ] and [image: y  ] to be determined
   automatically.


       
 

        
          46Use #!/bin/bash if you prefer the bash shell.


       

        
          47Their great advantage is that we can use variable and command substitution in them,
   therefore sending this information to the program that we want to run.


       

        
          48You will find it also in the accompanying software


       

      
         1The reader is reminded that REAL variables are stored in 4 bytes and have an accuracy
  of about 7 decimal digits.


      

      
         2This is done so that the used can check for typos and see the actual value read by the
  program. By redirecting the stdout of a file on the hard disk, the parameters can be saved for
  future reference and used in data analysis.


      

      
         3Note that there are more assumptions that need to be checked by the program. We leave
  this as an exercise for the reader.


      

      
         4Some numbers can be reserved for special files, like 5 for stdin, 6 for stdout and 0 for
  stderr. Using numbers larger than 99 can lead to portability problems.


      

      
         5If omitted, the executable file has the default name a.out.


      

      
         6The command help functions will show you all the available functions in
  gnuplot.


      

      
         7This can be done on the gnuplot command line as well.


      

      
         8Use the command show variables in order to see the current/default values of
  gnuplot variables.


      

      
         9You are most welcome to study the commands in the script and guess how it works of
  course!


      

        
          10It can be any file that has [image: (t,x,y)  ] in the 1st, 2nd and 3rd columns respectively.


       
 

        
          11Notice that we replaced the command “using 1:2 with lines title” with “u 1:2 w
  lines t”. These abbreviations can be done with every gnuplot command if an abbreviation
   uniquely determines a command.


       

        
          12I.e. [image: ⃗g =  ] const. and the Coriolis force can be ignored.


       
 

        
          13The proof of equations  (2.10)  is left as an exercise for the reader.


       

        
          14One has to choose appropriate initial conditions. Exercise: find them!


       

        
          15In the previous sections, our calculations had a small systematic error due to the
   approximate nature of numerical floating point operations which approximate exact real number
   calculations. But the algorithms used were not introducing systematic errors like in the cases
   discussed in this section. 


       

        
          16We still have this problem in the t=t+dt operation. See discussion in the next
   section.


       

        
          17See the file box1D_3.dat.


       

                
                    18Note the [image: ≈ ]!


                
 

        
          19Of course we know the answer: [image: x(95) = 5  ].


       
 

        
          20Try the command sed ’s/0.05/0.025/’ box1D_anal.in | ./box by changing 0.025
  with the desired value of [image: δt  ].


       
 

        
          21See the shell script box1D_anal.csh as a suggestion on how to automate this boring
   process.


       

        
          22Of course one expects [image:  2          2        2
R  = (x − xc) + (y − yc)  ], but because of systematic errors, we
   require [image: R  ] to be given.


       
 

        
          23Note that upon exit, the particle is also placed exactly on the circle.


       

        
          24See K.S. Thorne “Black Holes and Time Wraps: Einstein’s Outrageous Legacy”, W.W.
   Norton, New York for a popular review of these concepts.


       

        
          25This idea can be found as an exercise in the excellent introductory general relativity
   textbook J. B. Hartle, “Gravity: An Introduction to Einstein’s General Relativity”, Addison
   Wesley 2003, Ch. 7, Ex. 25.


       

      
         1Note that if [image: xn > 1  ] then [image: xn+1 < 0  ], so that if we want [image: xn ≥ 0  ] for each [image: n  ], then we
  should have [image: xn ≤ 1  ] for each [image: n  ].


      
 

      
         2In the bibliography, the term “splinter of [image: x
  0  ]” is frequently used.


      
 

      
         3E. Schrder, “ber iterierte Funktionen”, Math. Ann. 3 (1870) 296; E. Lorenz, “The
  problem of deducing the climate from the governing equations”, Tellus 16 (1964)
  1


      

      
         4Because, if [image:  ∗     ∗     (2) ∗        ∗       ∗    ∗
x = f (x ) ⇒ f  (x ) = f(f(x )) = f(x ) = x ] etc, the point [image:  ∗
x ] is also a
  solution of [image:  ∗    (n)  ∗
x  = f  (x )  ].


      
 

      
         5The chain rule [image: dh(g(x))∕dx = h′(g(x))g′(x )  ] gives that [image: f(2)′(x∗3) =  ] [image: df(f(x∗3))∕dx =  ]
  [image: f ′(f(x∗3))f′(x∗3) =  ] [image: f′(x∗4)f′(x∗3)  ] and similarly for [image: f(2)′(x∗4)  ]. We can prove by induction that
  for the [image: n  ] solutions [image: x∗n+1,x∗n+2,...,x∗2n  ] that belong to the [image: n  ]-cycle of the equation
  [image: x = f(n)(x)  ] we have that [image: f(n)′(xn+i) = f′(xn+1)  ] [image: f′(xn+2)...f′(x2n)  ] for every
  [image: i = 1,...,n  ].


      
 

      
         6The points [image: x∗
 α  ], [image: α = 1,...,4  ] are unstable fixed points and 2-cycle.


      
 

      
         7Generally, for [image: r(nc) < r < r(nc+1) < rc ≈ 3.56994567  ] we have [image: 2n  ] fixed points of the
  equation [image: x = f(2n−1)(x)  ] and stable [image: 2n−1  ]-cycles, which are attractors of almost all
  trajectories.


      
 

      
         8If we want to be more precise, the bifurcation diagram contains also the unstable
  points. What we really construct is the orbit diagram which contains only the stable
  points.


      

      
         9T.Y. Li, J.A. Yorke, “Period Three Implies Chaos”, American Mathematical Monthly 82
  (1975) 985.


      

        
          10The function [image: x exp(r(1− x))  ] has been used as a model for populations whose large
   density is restricted by epidemics. The populations are always positive independently of the
   (positive) initial conditions and the value of [image: r  ].


       
 

        
          11Sensitivity to the initial condition alone does not necessarily imply chaos. It is necessary
   to have topological mixing and dense periodic orbits. Topological mixing means that every open
   set in phase space will evolve to a set that for large enough time will have non zero intersection
   with any open set. Dense periodic orbits means that every point in phase space lies
   infinitesimally close to a periodic orbit.


       

   
     12D.A. Russel, J.D. Hanson, and E. Ott, “Dimension of strange attractors”, Phys. Rev. Lett.
   45 (1980) 1175. See “Hausdorff dimension” in Wikipedia.

 

      
         1We have [image: N  ] discrete time points [image: t ≡ t,...,t   ,t  ≡ t
i   1     N− 1 N    f  ]


      
 

      
         2See appendix 4.7 for retails.


      

      
         3See appendix 4.7 for details.


      

      
         4Numbers of type real have approximately seven significant digits. The accuracy of the
  operations described above is determined by the number [image: 𝜖  ], which is the smallest positive
  number such that [image: 1+ 𝜖 > 1  ]. For a variable x of some type, this number is given by a call to the
  Fortran intrinsic function epsilon(x). For variables of type real, [image: 𝜖 ≈ 1.2× 10−7  ] and for
  variables of type real(8) [image: 𝜖 ≈ 2.2× 10−16  ].


      
 

      
         5The command set dummy t sets the independent variable for functions to be t instead
  of x which is the default.


      

      
         6A small modification is necessary in order to plot the absolute value of the
  differences.


      

    
         7Not always though! Higher order does not necessarily mean higher accuracy, although
 this is true in the simple cases considered here.


    

      
         8The reader should confirm these claims, initially by looking at the figures 4.11-4.14 and
  then by reproducing these results. A particular time [image: t  ] can be chosen and the errors can be
  plotted against [image: Δt  ], [image: Δt2  ] and [image: Δt4  ] respectively.


      
 

      
         9These are easily obtained by substituting the ansatz [image:         −Ωt
x(t) = Ae  ] and solving for
  [image: Ω  ].


      
 

        
          10To be precise, phase space is the space of positions-momenta, but in our case the
   difference is trivial.


       

        
          11The command can be written in one line without the final [image: ∖ ] of the first and second
   lines.


       
 

        
          12The accuracy of this condition is limited by dt, which makes the points in the Poincaré
   diagram slightly fuzzy.


       

   
     13Remember that the acceleration [image: α(t)  ] is given, therefore [image: δα(t) = 0  ].

 
 

      
         1We refer the reader to  [38], chapter 4.


      

      
         2The so called hard core potential.


      

      
         3The number of particles crossing a surface perpendicular to the beam per unit time and
  unit area.


      

      
         4We assume that Nt, NEQ are positive and small enough so that the requested memory is
  available. It is better to use the call allocate(T(Nt),STAT=IERR). The non zero
  value of IERR after the call indicates a successful allocation and the following test
  stops the program otherwise: IF(IERR .eq. 0) STOP ’Memory allocation for T
 failed’


    

      
         5In the accompanying software you will find the files rkN.f90 and rkN_XXX.f90 which
  show you how to write the same program using static memory allocation.


      

      
         6The same program can be used for three equal charges exerting an electrostatic force on
  each other, which can be either attractive or repulsive.


      

      
         1R.W. Brankin, I. Gladwell, and L.F. Shampine, RKSUITE: a suite of Runge-Kutta
  codes for the initial value problem for ODEs, Softreport 92-S1, Department of Mathematics,
  Southern Methodist University, Dallas, Texas, U.S.A, 1992.


      

      
         2www.netlib.org


    

      
         3This is a simple text file which you can read with the command less rksuite.doc or
  with emacs.


      

      
         4These are lines that begin with a C as this is old fixed format Fortran code.


      

      
         5When UGLAG [image: ≤ 2  ], tstep=t and we will not worry about them being different with our
  program.


      
 

      
         6Note the declaration of the arrays Y, YP: real(8) :: Y(*),YP(*). These arrays are
  “assumed-size” arrays for the functions F, energy, i.e. arrays whose size is unknown to the
  procedure. For arrays of more than one dimension, only the last index is allowed to be *. In
  general it is recommended that assumed-size arrays be avoided and declare them as
  assumed-shape like in the program rkA.f90 of page 738. The declaration in this case is real(8)
 :: Y(:),YP(:)


    

      
         7Of course for lower speeds, the special relativity equations of motion are a better
  approximation to the particle’s motion, but the corrections to the non relativistic equations of
  motion are negligible.


      

      
         8Since [image: c = 1  ], the unit of time is the time that the light needs to travel distance equal to
  [image: RE  ] in the vacuum.


      
 

      
         1Since for every small displacement [image: d⃗r  ] along an equipotential surface the potential stays
  constant ([image: dV = 0  ]), we have that [image: 0 = dV = ⃗∇V ⋅d⃗r =  ] [image: − ⃗E ⋅d⃗r  ], which implies
  [image: E⃗⊥ d⃗r  ].


      
 

 
    2Remember that field lines start at sources, end at sinks or extend to infinity.

 

 
    3Remember that the equipotential lines are closed.

 

      
         4See the file ELines_version0.f90.


      

      
         5The choice is not unique of course, you may also try e.g. rmin .lt. max_dist.


      

      
         6You may improve the program by checking whether [image: ri = 0  ].


      
 

      
         7Equivalent to the equation [image: ⃗   ⃗
∇ × E = 0  ].


      
 

 
    8A different choice would have been to store the value Vav in a temporary array Vnew(i,j).
  After the sweep, the potential V(i,j)=Vnew(i,j) is changed to the new values. Which method
  do you expect to have better convergence properties? Try...

 

      
         9Since [image:     ∫
Q =  ρdA ≈ ][image: ∑     2
  i,jρa  =  ] [image:       ∑
(1∕4π)  i,j ˜ρ  ]. Therefore [image: ∑
  i,jρ˜≈ 4πQ  ].


      
 

      
         1For a spherical particle of radius [image: R  ] in a Newtonian liquid with viscosity [image: η  ] we have
  that [image: γ = 6πηR  ].


      
 

      
         2[image: δ(x − x0)  ] is the Dirac delta “function”. It can be defined from the requirement that for
  every function [image: f(x)  ] we have that [image: ∫
 −+∞∞ f(x)δ(x − x0)dx = f(x0)  ]. Obviously we also have that
  [image: ∫+ ∞ δ(x − x0)dx = 1
 −∞  ]. Intuitively one can think of it as a function that is almost zero
  everywhere except in an infinitesimal neighborhood of [image: x0  ].


      
 

      
         3Alternatively, if [image: K (x,x0;t)  ] is interpreted as e.g. the mass density of a drop of ink of
  mass [image: mink  ] inside a transparent liquid, we will have that [image: ∫ +∞ K(x,x0;t)dx = mink
 −∞  ] and
  [image: K (x,x0;0) = minkδ(x− x0)  ].


      
 

      
         4Remember the analogy of an ink drop diffusing in a transparent liquid. After long
  enough time, the ink is homogeneously dissolved in the liquid.


      

      
         5[image: ∫         2                  n+1
 ∞0 drrne−r ∕4Dt = 2nΓ (n+21)(Dt)-2   ].


      
 

      
         6According to equation  (8.2)  this amounts to taking [image: t → Dt  ].


      
 

      
         7If the derivative [image: ∂u∕∂x  ] was given as a boundary condition instead, then we would have
  Neumann boundary conditions.


      
 

      
         1The library can be easily installed in many Linux distributions. For example in Ubuntu
  or other Debian like systems you may use the command apt-get install liblapack3
 liblapack-doc liblapack-dev.


      

      
         2A Google search “dsyev” will easily take you to the same page.


      

      
         3The number LDA is necessary because the matrix element A(i,j) is found after
  i+(LDA-1)*j memory positions from A(1,1).


      

      
         4The library BLAS contains the basic linear algebra subroutines used by Lapack. In some
  versions of the library, one has to only link to Lapack ignoring the link BLAS but in some other
  version, linking to BLAS is necessary.


      

      
         5If the .so files don’t exist in your system, try ar -t /usr/lib/libblas.a
 etc.


      

      
         6This is not necessary in our case, since /usr/lib is in the path that ld searches anyway.
  This option is useful for libraries located in non conventional paths.


      

      
         7The foreach loop construct is special to the tcsh shell. This is why an explicit tcsh
 command is shown. For other shells use their corresponding syntax.


      

      
         8For [image: x → λ−1∕6x  ], [image: H →  λ1∕3(p2∕2+ λ−2∕3x2∕2+ x4)  ], therefore in the limit [image: λ → ∞ ]
 the second term vanishes and we obtain equation  (9.29) .


      
 

      
         9You may convince yourselves by looking at the wave functions in figures 10.4 of chapter
  10 and by computing the relevant integrals.


      

      
         1The fact that the energy spectrum of the particle is bounded from below depends on the
  form of the potential. We assume that [image: V (x)  ] is such that [image: E0  ] is finite. Also, in one dimension,
  the energy spectrum of a particle for reasonable potentials is non degenerate (see, however, S.
  Kar, R. Parwani, arXiv:0706.1135.)


      
 

      
         2There are [image: m  ], [image: ℏ  ] and the coupling constants in the function [image: V (x)  ]. The range of the
  potential will determine [image: L  ] in some problems and it is given explicitly in potential wells. In
  potentials of real physical systems, however, this is also determined by the coupling
  constants.


      
 

      
         3If we normalize the solutions [image: ˜ψ(˜x)  ] of equation  (10.12)  according to the relation
  [image: ∫+∞
 −∞ ψ˜∗(˜x)ψ˜(˜x)d˜x = 1  ], we should also take [image:          √--
ψ(x) = (1∕ L )ψ˜(x ∕L)  ] in order to be properly
  normalized [image: ∫+−∞∞ ψ∗(x)ψ(x)dx = 1  ].


      
 

      
         4According to the dictionary mentioned in the previous section, for a potential well
  where [image: x ∈ [− L ∕2,L ∕2]  ] the dimensionless position variable has been chosen to be
  [image: x∕(L∕2) ∈ [− 1,1]  ]. Then [image:         ℏ2
En = 2m(L∕2)2𝜖n  ] [image:    ℏ2π2  2
=  2mL2-n  ] and [image:   (+)     ∘ ----
ψ n (x) =  2∕L cos(nπx ∕L)  ],
  [image:          ∘ ----
ψ (−n)(x) =  2∕L sin(nπx∕L )  ]. Note that [image: 𝜖n = p2n  ] according to equations  (10.13)  and  (10.14)
  .


      
 

       
          5The function in [image: [− 1,0)  ] is determined by the parity of the solution.

 
 

      
         6Careful: if the energy levels are too close, we should keep the initial energy constant and
  change the sign of parity.


      

      
         7If we are unlucky enough to pick a point where [image:  ′
ψ (xm ) = 0  ], this criterion will
  fail.


      
 

 
    8Note that this point changes when we vary [image:   𝜖  ]

 
 

      
         9The number of points [image: x  ] for which [image: ψ(x) = 0  ] and xmin [image: < x <  ] xmax. The relation
  [image: n = n0 + 1  ] sets [image: 𝜖1  ] to be the ground state for which [image: n0 = 0  ].


      
 

        
          10We do not consider ordering problems of operators formed by products of non
   commuting operators, e.g. [image: xp2  ].


       
 

        
          11See the files observables.f90, Derivatives.nb of the accompanying software. There
   you can find formulas that have errors of [image:     2
𝒪 (h)  ]. In the examples discussed below, the
   influence of the [image: 𝒪(h)  ] error on the results is approximately at the fourth significant
   digit.


       
 

        
          12The one read from the file. It is not calculated from the data.


       

        
          13In fact [image: ψn (x) ∼ xne−x2∕2  ] which we neglect. This does not influence the results
   for the values of [image: n  ] studied here. Examine if this is necessary for larger values of
   [image: n  ].


       
 

        
          14For [image: ψ(+ ∞ ) = ψ(0) = 0  ] and [image: ψ∗(x ) = ψ(x)  ] we have that [image:        ∫ +∞
i⟨p⟩∕ℏ = 0   ψ(x)(d∕dx)ψ(x)dx  ]
   = [image:   ∫
−  0+∞(d∕dx)ψ(x)ψ(x)dx = 0  ].


       
 

      
         1More precisely, the Hausdorff dimension of the simple random walk is [image: dH = 2  ].


      
 

      
         2We can’t define what a random process is, only what it isn’t. Outcomes which
  lack discernable patterns are assumed to be random. If there is no way to predict
  an event, we say it is random...Thus, there is no definition of what randomness is,
  only definitions of what it isn’t. See Chris Wetzel, “Can you behave randomly?”,
  http://faculty.rhodes.edu/wetzel/random/level23intro.html. 


      

      
         3There are online services which provide such sequences like www.random.org,
  www.fourmilab.ch/hotbits/ and others.


      

      
         4See Knuth  [46].


      

      
         5See the accompanying software in the Tools directory. Give the command histogram
 -- -h which prints short usage instructions. I hope you remember how to make the file
  histogram executable and put it in your path...


      

      
         6It can be shown that [image: xi  ], [image: xi+1  ] are statistically independent.


      
 

      
         7Read carefully the documentation of your compiler. For this reason, the number NSEEDS
 can be different among different implementations of Fortran.


      

      
         8The line before sets seeds(1)=seed, seeds(2)=seed+37, seeds(3)=seed+37*2, ...
  


      

      
         9The access=’stream’ argument in open is a Fortran 2003 and above feature. Make
  sure that your compiler accepts it.


      

        
          10You can also use the operating system in order to pass random seeds to your program.
   Try the commands set x = ‘< /dev/urandom tr -dc "[:digit:]" | head -c9
  | awk ’printf "%d",$1’‘ ; echo $x and set x = ‘perl -e ’srand();print
  int(100000000*rand());’‘ ; echo $x. Use the value of the variable x for a seed.


       

        
          11It could be e.g. thermally stimulated sound waves, the quantum tunneling effect
   etc.


       

        
          12I.e. after time [image: t = N τ  ], not the physical length of the path formed by the links that the
   particle has crossed. We also count the jumps to sites that the particle has already
   visited.


       
 

   
     13The command av+=$1 is equivalent to av=av+$1.

 

        
          14If there exist statistical correlations between measurements, they should be taken into
   consideration. This will be discussed in detail in the following chapters.


       

        
          15You can also execute a set of commands before the file is read by putting them between
   BEGIN{ ... }


    

      
         1For example, for the [image: d = 2  ], [image: L = 100  ] Ising model, we have [image: 2100×100 = 210000 ≈ 103010  ]
  states. A typical sample yielding a very accurate measurement consists of [image: ≈ 107  ] states, i.e. a
  fraction of [image: ≈ 10− 3003  ]! This fraction becomes many orders of magnitude smaller for realistic
  complex systems studied in today’s supercomputers.


      
 

      
         2For a gas formed by [image: 1022  ] molecules which has volume equal to 1 lt in room
  temperature and atmospheric pressure, the average velocity of its molecules is [image: ≈ 100ms−1  ].
  This means that the typical de Broglie wavelength of the molecules is [image: λ ≈ 10−10m  ]. If we
  estimate that the volume occupied by each molecule is of order [image: λ3  ], then the number of states
  that each molecule can be is [image: ≈ 1027  ]. Therefore the system can be in [image: ≈ (1027)1022   ]
  different states. If we assume that on the average the molecules collide [image: 109  ] times per
  second, then we have [image: ≈ 1031  ] changes of states per second. In order that the system
  visits all possible states, the time needed is [image: 101023   ]  times the age of the universe
   [4].


      
 

      
         3[image: E0  ] is the ground state energy of the system.


      
 

      
         4An isolated system always has constant energy. Such a system is studied in the
  microcanonical ensemble.


      

      
         5Note that equation  (12.2)  can be written in the form [image: dwμ(t)= ∑   ℛ  w  (t)
  dt      ν μν  ν  ], where
  the matrix [image: ℛ
 μν  ] has real, constant elements.


      
 

      
         6It is not a fundamental constant of nature like [image: c  ], [image: ℏ  ], [image: G  ], [image: ...  ]. Temperature is an
  energy scale and the fact that it is customary to measure it in degrees Kelvin or other, is a
  historical accident due to the ignorance of the microscopic origin of heat exchange at the times
  of the original formulation of thermodynamics.


      
 

      
         7E.g. for [image: N ∼ 1023  ] we have that [image: Δ𝒪 ∕𝒪 ∼ 10−11  ] and the measurements of [image: 𝒪 ]
 fluctuate at the 11th significant digit of their value. This is usually much smaller than other
  experimental errors.


      
 

      
         8In thermodynamics, [image: ⟨E⟩ ] corresponds to the internal energy [image: U  ] of the system.


      
 

      
         9For strict equality it is necessary that the ground state is not degenerate as it happens
  in the case of spontaneous symmetry breaking.


      

        
          10E.g. the random walker, two dimensional quantum gravity without matter.


       

        
          11The notation [image: Ω (E)  ] is also frequently used and it is referred to as the density of
   states.


       
 

        
          12[image: ˜p(E)  ] is proportional to [image: p(E)  ] for fixed [image: β  ]. It is only defined for convenience.


       
 

        
          13When there are many local maxima, the absolute maximum dominates in the
   thermodynamic limit [image: N  → ∞ ].


       
 

              
                  14Actually the two quantities are proportional to each other, but for simplicity we set the
           proportionality constant equal to 1.


              

        
          15There is also the possibility (not occurring in our discussion) that [image: si  ] and [image: sj  ] are
   strongly anti-correlated in which case [image: G (2c)(i,j)  ] is negative.


       
 

        
          16I.e. not of first order.


       

        
          17If we tune many parameters, this is a critical surface in the parameter space.


       

        
          18E.g. defined on square or triangular lattices, with nearest neighbor or next to nearest
   neighbor interactions.


       

        
          19For these statements to be well defined, we assume that the energy of all states is
   bounded and that the system has a finite number of degrees of freedom. Otherwise consider the
   overlap for two temperatures [image: β1 ≫ β2  ].


       
 

        
          20We can use the same sample for a range of temperatures by using the histogram method,
   see  [4].


       

        
          21There exist algorithms which are non-ergodic but the non reachable states are of
   “measure zero” in the space of states. These algorithms are formally non ergodic, but they are
   ergodic from a practical point of view. On the contrary, there exist algorithms that are formally
   ergodic but there are large regions of phase space where the probability of getting there is
   very small. This puts “ergodic barriers” in the sampling which will lead to wrong
   results. A common example is sampling a system in the neighborhood of a first order
   phase transition where, for large systems, it is very hard to sample states in both
   phases.


       

      
         1For a very nice proof of Onsager’s solution look at the book by T. Huang  [57] and the
  paper by C.N. Yang  [58].


      

      
         2This is only a convention. We could have picked 0 and 1 or any other pair of
  labels. The choice of labels affects only the expression of the Hamiltonian and related
  observables.


      

      
         3The opposite is true for the antiferromagnetic model.


      

      
         4It is easy to see that each vertex is in a one to one correspondence with a pair of links,
  say the east and north bound ones.


      

      
         5When [image: B = 0  ] the system has an “up–down” [image: Z2  ] symmetry. This means that states
  connected by the transformation [image: si → − si  ] for all [image: i  ] result in the same Hamiltonian. In this
  case we have two ground states and the system chooses one of them by spontaneously breaking
  the [image: Z2  ] symmetry.


      
 

      
         6The vacuum structure of the antiferromagnetic system [image: J < 0  ] for [image: B  = 0  ] is much
  richer.


      
 

      
         7In contrast, a first order phase transition is a transition where the order parameter itself
  is discontinuous. 


      

      
         8We mean the correlation length in the thermodynamic limit, i.e. we take the large [image: N  ]
 limit first.


      
 

      
         9i.e. at distances larger than the (diverging) correlation length.


      

        
          10An analytic function which is zero in an arbitrarily small interval, it is - by Taylor
   expanding around a point in this interval - everywhere zero.


       

        
          11The constant [image: J = 1  ] by choosing appropriate units for the [image: si  ].


       
 

        
          12The state [image: μ  ] is determined by a spin configuration [image: {si}i=1...N  ].


       
 

        
          13An example is the Hybrid Monte Carlo used in lattice QCD simulations.


       

        
          14On the bad side, helical boundary conditions introduce a small finite size effect due to
   the shift of lattice positions in neighboring copies of the lattice. If one has to study small
   lattices, especially in higher dimensions, the best choice is to use periodic boundary
   conditions. We are going to study large enough lattices that this finite size effect is
   negligible.


       

        
          15Different sequence of random numbers.


       

        
          16An important fact is that it does not increase with the system size.


       

        
          17For the uniform distribution [image: P (x < a) = a  ].


       
 

        
          18This does not show for very small temperatures in the simulation with the Metropolis
   algorithm. As we decrease the temperature [image: β ≫ βc  ], it takes many improbable steps to move
   from a state with [image: ∑
  isi = M1  ] to a state with [image: ∑
  isi = − M1  ]. The Monte Carlo simulation
   consists of a finite number of steps, therefore we may obtain a non zero [image:  ∑
⟨  isi⟩ ], an incorrect
   result.


       
 

        
          19This is given by the autocorrelation time, which will be discussed in detail
   later.


       

        
          20The basic ideas in the program are taken from the book by Newmann and Barkema
    [4].


       

        
          21Remember that for the uniform distribution, [image: P(x < a) = a  ]


      
 

        
          22Found in the file options.f90.


       

        
          23Assuming that the configuration in conf is thermalized, the simulations become
   statistically independent after time [image: 2τ  ], where [image: τ  ] is the autocorrelation time.


       
 

        
          24Note that we use the equivalent comparison operators ’>’[image: ⇔ ]’.GT.’, ’>=’[image: ⇔ ]’.GE.’,
   ’/=’[image: ⇔ ]’.NE.’, ’==’[image: ⇔ ]’.EQ.’ etc. 


       
 

        
          25Remember how the option -l changes the results of the command ls if executed as ls
  -l


     

        
          26Read the comments in the file getopt.f90 for more information.


       

        
          27Use the command info make or visit the www address
   www.gnu.org/software/make/manual/make.html


     

        
          28Beware: one of the quirks of the program make is that all executable commands in
   Makefile must be in a line that starts exactly with a TAB. In the example Makefile shown
   above, the empty space before such lines is one TAB and not 8 empty spaces.


       

        
          29Try the command make -p


     

        
          30At the time of the writing of this section, make had some problems with complicated
   Fortran compilations, which I hope they will be resolved in the future. You may also check out
   the program foray at code.google.com/p/foraytool or search the current “state of the
   art”.


       

        
          31The Metropolis algorithm changes the clusters mostly by modifying their boundaries,
   since it is less probable to change the value of a spin in the cluster where all its nearest
   neighbors have the same spin.


       

        
          32Autocorrelation times can be quite different for different [image: 𝒪 ].


       
 

        
          33In our calculations, we will see differences of the order of 10%. The actual values can be
   different but their scaling properties are same.


       

        
          34The actual value of [image: τ𝒪 ] is used in computing the number of independent configurations
   from  (13.33)  and the correction of the statistical error in  (13.47) . In both cases, the difference
   in the values of [image: τ𝒪 ] is not significant. For  (13.47) , this is because the concept of the error of
   the error is slightly fuzzy.


       
 

        
          35As we will see later, there are other, smaller autocorrelation times present as well. These
   are not taken into account in the definition of the integrated autocorrelation time and
   the detailed study of the autocorrelation function is necessary if more accuracy is
   desired.


       

        
          36See also chapter 4.1 in  [5]


       

        
          37Notice that the right hand side of equation  (13.46)  is not divided by [image:   1∕(ns − 1)  ].


       
 

        
          38Alternatively one can take [image: ⟨𝒪⟩ = ⟨𝒪 ⟩ = (1∕n)∑n    𝒪(t′)
   0     t         t′=0  ] without noticeable difference
   for [image: t ≪ n  ]. The choice in  (13.48)  results in a more accurate calculation and smaller finite sample
   effects. The choice  (13.48) , instead of [image:                  ∑n −1−t   ′   ′
ρ𝒪 (t) ∝ (1∕(n− t)) t′=0  𝒪(t)𝒪 (t + t)− ⟨𝒪 ⟩0⟨𝒪 ⟩t  ],
   has smaller roundoff errors.


       
 

        
          39The explicit interface of the function or the subroutine is known to all program
   units that use the module.


       

        
          40For the data [image: {(xi,yi)} ], [image: i = 1,...,n  ] with error [image: δyi  ] which are fitted to
   [image:             −x∕t
f (x;c,t) = ce  ], the [image:  2      ∑n                2  2
χ (c,t) =  i=1(yi − f (xi;c,t)) ∕δyi  ]. The [image:  2
χ ∕dof  ] is normalized to
   the number of degrees of freedom (dof = degrees of freedom= [image: n − 2  ]) which is the number of
   data points [image: n  ] used in the fit minus the number of fitting parameters (here [image: c  ], [image: t  ] which makes
   2 parameters).


       
 

        
          41The acceptable [image: χ2∕dof ∼ 1  ]. Since we don’t calculate the errors of the autocorrelation
   functions, the [image: χ2∕dof  ] is not properly normalized. The program sets [image: δyi = 1  ] [image: ∀i  ].


       
 

        
          42In the parentheses we see the confidence level. This is defined as the probability that the
   parameters are within the range defined by the error. For a correct calculation of the confidence
   level, every point should be weighted by its error - in our example this is not happening and this
   is the reason why the confidence level is so low. A value below 5% is too low and it
   indicates that the model needs corrections. It is also assumed that the distribution of
   the measurements is Gaussian and if not, the computed numerical values are only
   indicative.


       

        
          43For a careful calculation, one should also try more functions that include corrections to
   the asymptotic behavior.


       

      
         1You may also find the definition [image: t = (T − Tc)∕Tc  ] but as [image: t ≪ 1  ] the two definitions are
  almost equivalent (they differ by a term of order [image: ∼ t2  ]).


      
 

      
         2Beware: We first take [image: L → ∞ ] and then [image: t → 0  ].


      
 

      
         3It is a finite sum of analytic functions, therefore an analytic function.


      

      
         4Each observable may have a slightly different pseudocritical temperature, so we may
  write [image: βχc(L )  ], [image: βcc(L )  ] etc.


      
 

            
                 5In the limit [image: L → ∞ ] the difference is not important, it comes from analytic terms which
         don’t contribute to the non analytic behavior. In practice, the speed of convergence to the
         asymptotic behavior may differ.


            
 

      
         6Of course the amount of available memory can be another inhibiting factor.


      

      
         7Each site contributes one measurement!


      

      
         8A spin cluster is a subset of the lattice composed of connected lattice sites of same
  spins.


      

      
         9A link with same spins on both sides.


      

        
          10These are true Wolff clusters since the bonds have been activated with the correct
   probability. There are of course isolated sites with no activated bonds around them which are
   Wolff clusters of size 1.


       

        
          11The result is equivalent to performing one step of the Wolff algorithm, not a very
   efficient one of course...


       

               
                  12This is exactly true only in the thermodynamics limit. For a finite lattice of size [image: N  ], the
           two quantities differ by a factor of [image: βN ⟨m ⟩2 > 0  ], which vanishes in the large [image: N  ]
           limit.


              
 

        
          13stack(0:N-1) defines an array with elements stack(0), stack(1), ..., stack(N-1)


     

        
          14If we choose to store at most N-1 elements in queue(N) then the algorithm becomes
   slightly simpler (exercise).


       

        
          15Except if m=n in which case the number of stored elements is 0 or N according to the
   value of flag.


       

        
          16It is essentially the program in the book by Newman and Barkema  [4].


       

        
          17Beware: A Metropolis sweep is not the same as a cluster update. The average size
   of the cluster changes with [image: β  ] and it is quite small for large temperatures (small
   [image: β  ]).


       
 

        
          18Make the appropriate changes so that wolff() is called until the clusters constructed
   will have total size at least equal to N.


       

        
          19The syntax is very strict and the line has to start exactly with the characters #! The
   string following #! can be the name of any program in the filesystem, which will be used to
   interpret the script.


       

        
          20Try the command: echo $betas[3] $#betas $betas


     

        
          21The plot command accepts, in place of the name of a data file, the stdout of a
   command command using the syntax plot "<command".


       

        
          22NR is the number of lines (number of records) read by awk so far.


       

        
          23These are gnuplot commands, even though we do not follow the usual convention to
   show the prompt gnuplot> explicitly


       

        
          24The two definitions of a sweep in the Metropolis algorithm differ by a factor equal to the
   average acceptance rate. Both definitions are used in the bibliography, and the reader (as well as
   the author) of a scientific article should be aware of that.


       

        
          25Notice the difference between the results of the Metropolis algorithm and the ones
   shown in appendix 13.7. The difference is due to a fivefold increase in the statistics and shows
   that the real error in the calculation of [image: τ  ] includes systematic errors that have been neglected.
   


       
 

        
          26Note that for the Ising model on the square lattice, the critical temperature is exactly
   known. In a model where it is not known we have larger systematic errors than the ones
   discussed here. The numerical calculation of the critical temperature we will discussed in a
   following section.


       

        
          27In  [4] it is mentioned that the random field Ising model exhibits pseudoscaling for a
   range of [image: t  ] and for even smaller [image: t  ] there is a crossover to a different scaling that gives the
   correct critical exponent. See also  [68],  [69].


       
 

        
          28The fit can also be done by linearly fitting the points [image: (log|ti|,logχ (ti))  ] to a straight
   line.


       
 

     
         29This does not exclude more exotic behaviors of logarithmic powers or logarithms of
  logarithms etc. This needs to be studied carefully when the analytic result is not
  known.


     

        
          30Remember that the instability of the results with respect to the choice of the
   fitting range is large for the temperature scaling method. When the exact value of
   the critical temperature is not known, the superiority of finite size scaling is even
   higher.


       

        
          31Our ansatz is justified by the analytic calculations in  [70], which compute the
   corrections to the [image: logL  ] behavior. These corrections are shown to be given by integer powers of
   [image: 1∕L  ]: [image: c = alogL + ∑ ∞ ck∕Lk
             k=0  ].


       
 

        
          32Careful: [image: ξ = ξ(t)  ] is the correlation length of the infinite system at temperature [image: t  ] and
   not the correlation length at finite [image: L  ].


       
 

        
          33For more details see appendix 14.12. The [image: β  ] dependence in [image: χ(β,L)  ] enters through the
   dependence [image: ξ(β)  ] of the correlation length of the infinite system in [image: β  ].


       
 

        
          34The absolute value is dropped in the definition of [image: x  ] so that we have a convenient
   notation for temperatures above and below the critical temperature.


       
 

        
          35In this relation [image: β  ] on the left hand side is the temperature, whereas on the right hand
   side the critical exponent in  (14.5) .


       
 

        
          36This file can be found in the accompanying software, also named all.


       

        
          37In order to look for help from gnuplot’s online help system, use the commands help
  word, help words, help macros, help sprintf, help plot iteration


     

                  
                     38This can be a polynomial interpolation, a cspline interpolation or one of its
              generalizations or multihistogramming. The last one is slightly more involved but carries smaller
              systematic errors.


                 

        
          39You can see the necessity of the interpolation, since the value [image: xi,k  ] most likely doesn’t
   exist in the data set [image: j  ].


       
 

        
          40http://en.wikipedia.org/wiki/Cumulant,
    http://mathworld.wolfram.com/Cumulant-GeneratingFunction.html


     

        
          41In statistics, the 4th order cumulant of a random variable [image: x  ] is equal to
   [image: κ4 = ⟨(x − ⟨x⟩)4⟩− 3⟨(x − ⟨x⟩)2⟩ ] and [image: κ2 = ⟨(x − ⟨x ⟩)2⟩ ], so that [image: U  = − κ4∕3κ2  ] for [image: x = m  ]
   and [image: ⟨m ⟩ = 0  ].


       
 

        
          42These have been particularly successful in the study of the 3d Ising model
    [75].


       

        
          43i.e. both sides should scale w.r.t to the correlation length as [image: ∼ ξγ∕ν  ].


       
 

        
          44See e.g.  [74], equations 3.35, 3.36, 3.53.


       

        
          45At [image: t = 0  ] we have [image: ξ(0) = + ∞ ], therefore for finite [image: L  ] we have that [image: L ∕ξ = 0  ].


       
 

     
         46More precisely the singular part of the free energy.


     

        
          47See e.g. chapter 3 in  [74].


       

        
          48We stress again that [image: ξ ∼ t− ν  ] in  (14.111)  is the correlation length in the
   thermodynamic limit and not at finite [image: L  ].


       
 

        
          49This is because the partition function is an analytic function of the temperature.
   Therefore it is [image: x = L1∕νt  ] which is the scaling variable and not a power of it, such as [image: ˜x  ] used in
   (14.53)  and  (14.54) .
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