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Problems in General Relativity
K.N. Anagnostopoulos
The Godel Universe

Consider the Godel spacetime:
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1. Determine whether J, are timelike, null, or spacelike. From the kind of J4, discuss if it is
possible to have (local future pointing) timelike geodesics moving in the negative ¢ direction.

2. Show that & = 0, & = 0y, &3 = 0., are Killing Vector Fields (KVF), and compute the
corresponding conserved quantities kg, k2, and k3 along a geodesic with tangent vector u* =
(£,7, ¢, 2).

3. Compute i ([) and 2 in terms of kg, ko, and k3.

4. Show that u*u, = K, k = 0, —1 for null/timelike geodesics yield
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where &, A, and L are constants, which you should calculate. Find conditions for motion
r1 <7 <7y, and compute r;  in terms of £, A, and L. (Notice that the problem of the radial

motion is similar to the 3-dimensional harmonic oscillator)

5. Compute an orthonormal basis {e,}. If u = u(¥e, = u#d,, compute u(*) in terms of u*, and
vice-versa.

6. Compute kg, ko, and k3 in terms of u(®), 50 that the u(®) can be used as initial conditions in
the geodesic equations.

7. Free massless particle goes through the local inertial frame {e, } with 4-velocity (u(?),u(1), 0, 0).
Write down the geodesic equations for (,7, ¢, 2) in terms of MUENON

8. Compute all the null vectors at a point with coordinate r (i.e. compute the lightcone). Give
expressions for both u(*) and u* (Hint: You will need a 3-parameter family of vectors, start
from «(¥) which is easier).

9. Compute the Christoffel symbols of the Levi-Civita connection of the metric. The nonzero
components of the inverse metric are
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The result is:
‘ T 1 ‘ 3 1 - T 1
rt = 5.9 . .27 Fr: ’ Frr:_777 (5)
Do)t T R () tat 1 (5)”
o T N v A% TV
Toe = V2a <1+ (2a) ) o Top =T (1+ (2a) ) (2 (Qa) 1) ’ 6)
1 1 1 1
/R S (N S 7)
TUrie(g) T Vaerig(g)°



10. Consider the massive particle moving on the trajectory with ¢t = 0, r = R, ¢ = w7, 2 = 0,
where R,w are constants. Determine when the 4-velocity of the particle is timelike, in which
case we have a closed timelike curve (CTC).

11. Compute the relation w = w(R).

12. Compute the 4-acceleration of the particle " = ## + ') i"#”, where i* = dx"/dr. Conclude
that the particle is not falling freely.

13. The vectors with components in the coordinate basis below are KVFs:
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Compute the corresponding conserved quantities k; and k4 along a geodesic with tangent
vector ut = (t,7, ¢, 2).
14. The KVF ¢, deforms isometrically the constant-¢, circular, closed CTC, to a closed CTC on

which the coordinate ¢ varies. Show that L¢(ufu,) = 0, so that the timelike kind of the curve
does not change under this deformation.

15. Verify that V&1, + V,.&1 = 0 for the KVF &;.
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