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We discuss recent results obtained from simulations of high temperature, classical, real time dynamics of 
SU(2) Yang-Mills theory at temperatures of the order of the electroweak scale. Measurements of gauge covariant 
and gauge invariant autocorrelations of the fields indicate that the ASY-BSdecker scenario is irrelevant at these 
temperatures. 

High temperature baryon number non conser- 
vation in the electroweak theory caused by the 
anomaly of the baryonic current is important 
for the understanding of the origin of baryonic 
matter in the universe. After the work of Ref. 
[1] it was realized that  the baryon number non- 
conservation, caused by thermal field fluctua- 
tions between gauge-equivalent vacua with differ- 
ent winding numbers could be large in the un- 
broken phase of the electroweak theory. This can 
be tested by performing real time simulations of 
hot gauge theories, a task we still do not know 
how to perform from first principles. It is possi- 
ble, however, to use classical thermal gauge the- 
ory in order to address the question [2]. The re- 
sult is that  transitions between vacua with dif- 
ferent winding numbers is unsuppressed at high 
temperatures in the unbroken phase of the elec- 
troweak theory [3]. The effect of correctly incor- 
porating ultraviolet thermal fluctuations has been 
addressed in the the theory of hard thermal loops 
and the effective small-momentum, low frequency 
theory of B5deker (ASY-B) [4]. The soft classical 
fields (momentum k < gT) couple to hard cur- 
rents according to 

1~, = D x B - Jhard, (1) 

where Jhard : erE + ~, and where the effective 
noise term ~ is determined by the fluctuation- 

*Poster presented by J. Ambjcrn 

dissipation theorem (~ )  = 2T~. In (1) a de- 
notes the so-called color conductivity, which to a 

rn ~ leading log approximation is given by a = -~--, 
where m denotes the Debye screening mass and 
7 the hard gauge fields damping rate. High fre- 
quency magnetic modes couple to low frequency 
ones producing a new time scale for the magnetic 
fluctuations. Although their length scale is of or- 
der 1/g2T (non-perturbative) their lifetime is of 
order 1/g4Tln(g-1). This picture has been veri- 
fied in real time computer simulations [5] where 
hard currents have been implemented in vari- 
ous ways, by measuring primarily the sphaleron 
rate. The latter is believed to be dominated by 
classical thermal fluctuations and one can hope 
that  simulations of the classical theory, possibly 
corrected by ASY-B effective theory, can deter- 
mine it correctly. It is, however, possible that at 
the electroweak scale (c~ .~ 1/30, g ..~ 0.65) and 
at temperatures close to the electroweak phase 
transition the ASY-B theory cannot be applied. 
This can be checked in computer simulations by 
measuring real time gauge correlators and color 
conductivity and check whether their long wave- 
length, low frequency part shows the behavior 
predicted by ASY-B, this way making direct con- 
tact with perturbation theory. If we do not ob- 
tain agreement, one could be tempted to con- 
clude that the theory is valid at even higher tem- 
peratures and that  one should not try to match 
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the sphaleron rate to formulas based on the va- 
lidity of the ASY-B theory. Precisely because 
the sphaleron rate is a non-perturbative quan- 
tity, there is no easy way to disentangle the 
perturbative ASY-B damping from genuine non-  
perturbative effects. We also note that  topol- 
ogy on the lattice is ill-defined and requires spe- 
cial treatment.  In Ref. [6] we a t tempted to ad- 
dress this issue by precisely measuring objects 
like color conductivity and field autocorrelators. 
Our finding is that  we see no sign of the ASY- 
B scenario in high-temperature, classical SU(2) 
theory in a regime roughly corresponding to the 
electroweak scale. We stress that  our results are 
not in contradiction with the results by Moore 
and Rummukainen [5] which give zero continuum 
sphaleron rate, but do not rule out a finite clas- 
sical rate in the continuum. 
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Figure 2. Inverse integral autocorrelation time 
in units of g2T plotted against g2Ta for (D x 
B ( x , t )  • D x B(x,O)) (triangles), (B(x , t  • 
B(x ,  0)) (crosses), and ( B ~ ( x , t ) B ~ ( x , O ) ) -  
(B~(x, t))(B~(x, 0)) (squares). 

It 

0.8 

.6 

C(0)0. 4 

0.2 

0 o 

A 

0:4 0.8 1.2 1 . 6 - 2 - 2 : ' 4  2.8 ta/Z 

0.2i 

0.16 

o(t)%.12 
0.08 

0 

g 

m $ g 

I'0 15 2'0 
ta 

Figure 1. The autocorrelator (D x B ( x , t )  • D x 
B(x,  0)) versus t ime t in units of (g2T)- I  for 

= 8.33 (crosses), /3 = 10.0 (squares), /3 = 12.5 
(triangles), and/3 = 15.0 (stars). 

Simulations of the classical theory are per- 
formed by generating thermal field configurations 
for pure SU(2) Yang-Mills theory on a lattice for 
given temperature T and then lettting the system 
evolve according to the classical equations of mo- 
tion [7]. We worked in the temporal gauge where 
the electric field E(x,  t) is the conjugate momen- 
tum to A(x,  t). Since the cutoff of the classical 
theory is the lattice spacing whereas the thermal 
fluctuations of the full quantum theory are cut 

Figure 3. The color conductivity in lattice units 
versus time t in lattice units for/3 = 10 (crosses) 
and/3  = 12.0 (squares). 

off at Sc-c~le T, we need to filter out the large 
momentum components of the fields by cooling 
[8], which leads to an exponential decay of high- 
frequency modes. In our simulations we used 
cooling times r such that  (g2T)2~" = 3.84 (also 
2.56 for /3  = 10). Variance of r had very small 
effect on real t ime behavior of correlators. The 
lattice temperature /3 _= 4/(g2Ta) was chosen 
within a range such that  the perturbative Debye 
mass mD to g2T of the classical theory is close to 
that of the full SU(2) Yang-Mills theory at elec- 
troweak temperatures T ,~ 100GeV. Since we are 
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interested in the dynamics of fields with momenta 
of the order of g2T, the dimensionless combina- 
tion L/(/3a) should be large enough in order to 
avoid finite-size effects. Most of our simulations 
were performed at L/(/3a) = 2.4. We verified 
that variations of L/(/3a) around that value did 
not have a measurable effect. We measured un- 
equal time correlators of the fields of the form 
C12(t) - 1 f d 3 x  (Ol(X,t)O2(x ' 0)) where the 
Oi(x, t )  are D x B(x,t) or B(x , t ) .  In particu- 
lar we measured 

f d a x  (D x B ( x , O ) - D  x B(x , t ) )  
a(t) -- f d3x (D x B(x, 0)-E(x, t)) ' (2) 

where a(t) --* ~ for large enough t and cr is the 
color conductivity. We also studied plasmon ex- 
citations by measuring the color charge density 
p - D . E .  An equivalent gauge-invariant defi- 
nition for correlators of these adjoint objects re- 
quires introducing a straight Wilson line connect- 
ing (x, 0) to (x, t). This Wilson line becomes an 
identity in the temporal gauge. In order to test 
the effect of this Wilson line on the characteristic 
time scale of the correlators we also study a truly 
gauge-invariant object, B2(x, t), and we find no 
difference with gauge covariant quantities. Our 
definition of the color conductivity is similar to 
that of Arnold and Yaffe [4], which is also based 
on the effective theory in the temporal gauge. 

In Fig. 1 we show autocorrelators for the B- 
field, with time measured in units of (g2T)-l. 
We note that the curves corresponding to differ- 
ent values of/3 coincide as long as the correla- 
tots retain a substantial portion of their original 
value. We also introduce the integral autocorre- 
lation time defined for an autocorrelator C(t) as 
tf - (C(0)) -x (fo C(t)dt). In Fig. 2 we plot the 
dimensionless quantity 4/(g2Ttf) as a function of 
1//3 = g2Ta/4. Remarkably, in all three cases t f  
turns out to be of the order of g2T and shows lit- 
tle dependence on the lattice spacing throughout 
the range considered. There is therefore no evi- 
dence that in this range of the lattice spacings our 
cooled autocorrelators follow the ASY-B scenario, 
wherein the expected behavior is t f  oc 1/(g4T2a), 
up to logarithmic corrections. In the case of the 
color charge autocorrelator (D. E(x, t)D-E(x, 0)) 

the time scale for the color charge correlation is 
proportional to the lattice spacing and does not 
depend on g2T. This result can be contrasted 
with perturbative predictions. One would expect 
that the color-charge autocorrelator is dominated 
by the plasmon mode, whose frequency in the 
classical theory is of the order gv/T/a and whose 
decay rate is of the order g2T. We observe none 
of these properties in the range of lattice spacings 
considered. Finally, we attempted to determine 
color conductivity a. As Figure 3 demonstrates, 
this attempt failed in two ways. First of all, a(t) 
does not appear to approach a constant for times 
in excess of the expected autocorrelation time of 
the noise term ~ (and far in excess of the measured 
autocorrelation time of the noise). Secondly, the 
numerical value of a(t) is very small (less than 
0.25/a) compared to the value expected in the 
ASY scenario (act ~ 15). 
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