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We propose a metShod for Monte Carlo simulations of systems with a complex act,ion. The method has the 
advantages of being in principle applicable to a.ny such system and provides a solution to the overlap problem. 
In some cases, like in the IKKT matrix model, a finite size scaling extrapolation can provide results for systems 
whose size would make it prohibitive to simulat,e directly- 

1. INTRODUCTION 

There exist many interesting systems in high 
energy physics whose action contains an imag- 
inary part, such as QCD at finite baryon den- 
sity, Chern-Simons theories, systems with topo- 
logical terms (like the &term in &CD) and sys- 
tems with chiral fermions. This imposes a severe 
technical problem in the simulations, requiring an 
exponentially large amount of data for statisti- 
cally significant measurements as the system size 
is increased or the critical point is approached. 
Furthermore, the overlap problem appears when 
standa.rd reweighting techniques are applied in 
such systems and it becomes exponentially hard 
with system size to visit the relevant part of the 
configuration space. In [l] it was proposed to take 
advantage of a factorization property of the dis- 
tribution functions of the observables one is in- 
terested to measure. This approach can in prin- 
ciple be applied to any system and it eliminates 
the overlap problem completely. In some cases 
it is possible to use finite size scaling to extrap- 
olate successfully to large system sizes where it 
would have been impossible to measure oscillat- 
ing factors directly. The method has been applied 
successfully in matrix models of non perturbative 
st,ring theory (IKKT) [l], random matrix theory 
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of finite density QCD (RMT) [2] as well as the 
2d CP3 model, the Id antiferromagnetic model 
with imaginary B and the 2d compact U(1) with 
topological charge [3]. 

In this pa.per we present our resuhs [1,2] for 
IKKT and RMT. In the first case we study the 
space-time dimensionality hoping to dynamically 

recover our 4d space-time and in the second to 
test the factorization method against known an- 
alytical results. In all cases we will be deal- 
ing with a system defined by a pa.rtition func- 
tion 2 = s dAeeSo eir and the corresponding 
phase quenched model Zo = s dAewSO where 
S = So-X is the action of the system with its real 
and imaginary parts. A represents collectively the 
degrees of freedom of the model and in our case it 
corresponds to a set of N x N matrices. In case 
we are interested in measuring some observable 
8, we consider the distribution functions PO(X) = 

(??(~-a)) andpg)(z) = (S(z-6))o where (. . . )o 
refers to Zo. Then we define t#he’ fiducial sys- 
tem Zo,, = s dA e- ‘~&(a: - 0), the weight fac- 
tor wg(z) = (e”‘) D,~ and the distribution PO(X) 
factorizes po (g) = & po (x) WC?(Z) where C = 
(eir)o. Then (8) = -& s-“, dz 2 ,o$‘(x) ~~(2). 
The b-function constraint is implemented in our 
simulations by considering the system Za,v = 
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s dAeeSo ev(u) where V(Z) = i~(2-t)~ and r,[ 
are parameters which control the constraining of 
the simulation. The results are insensitive to the 
choice of y as long as it is large enough. Then we 
have that wo(1(: = (O)i,v) = (eir)i,li. The distri- 
bution of 0 in Zi,v has a pea,k z and the quan- 

tity V’(Z) is the value of f:‘(x) = -&lnpg)(z) 

at x = 2. The function pg’(z) can be obtained 
by integrating an analytic function to which we 
fit the fg’(x) data points. 

By applying this method we force the system 
to sample configurations which give the essential 
contributions to (O), something that would be in- 
crea,singly difficult with system size in the pha.se 
quenched model, eliminating this way the over- 
lap problem. This alrea.dy allows us get close to 
the thermodynamic limit with modest computer 
resources. Furthermore we obtain direct knowl- 
edge of wa(z) and PO(Z) which allows us to un- 
derstand the effect of J?. This is important for 
understanding the properties of the system when 
!Z plays a crucial role. Using the generic scaling 
properties of the weight factor uji(x), one may 
extrapolate the results obtained by direct Monte 
Carlo evalua.tions to larger system size. Such an 
extrapolation is expected to be particularly use- 
ful in cases where the distribution function turns 
out to be positive definite. In those cases we can 
actually even avoid using the reweighting formula 
by reducing the question of obtaining the expec- 
tation value to that of finding the minimum of 
the free energy, which is (minus) the log of the 
distribution function. Here, the error in obtain- 
ing the scaling function propagates to the final 
result without significant magnifications. There- 
fore, the extrapolation can be a powerful tool to 
probe the thermodynamic limit from the accessi- 
ble system size. 

2. NON-PERTURBATIVE STRING 
THEORY 

The so-called IKKT matrix model [4] has 
been conjectured to be a definition for non 
perturbative string theory. A pa,rt,icularly inter- 
esting feature of the model is that the eigenval- 
ues of the bosonic matrices A, generatIe space- 

time dynamically. In our case we work with a 
reduced model where y = 1, . . ,6. The observ- 
ables that we study are the normalized eigenva.l- 
ues Xr/(Ar)e > . > Xs/(Xs)e of the space-time 
“moment, of inertia” T = ITrA,A,. An in- 
t#eresting scenario to iL:estig%e would be that 
the O(6) symmetry is spontaneously broken with 
some of the eigenvalues (possibly 4) grow large 
and the rest remain sma,ll, providing a. mecha- 
nism for dynamical compactification of extra di- 
mensions. 
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Fig. 1: logps(x) for N=l2R, 11 = 16. 

The IKKT model is a, good example where fi- 
nite size scaling for the oscillating factor wi(x) 
works well (the index i corresponds t,o Xi/(&),). 
For i > 1 we find fast convergence to a scal- 
ing function @i(g), where We = exp{N2+i(z)} 
Cl]. We compute @i(x) for small matrix size n <_ 
20 and the pha,se quenched distribution function 
,LJ,‘“‘(z) for larger size N. Then the factorization 
formula can be used in order to compute pi(x). 
Note that in the computation of (Xi) the errors 
do not propagate exponentially with system size 
since (Xi) can be determined from the minimum 
of the “free energy” F;(Z) = -&logpi(x). In 
Fig. 1 we show our results for pj(x) for n = 16 
a.nd N = 128. A double peak structure of ps(x) 
is evident and it is expected tha,t the peak for 
small x will increase with system size [l]. One 
hopes that, this peak will be dominant for i = 5,6 
and that, the large z peak will be dominant for 
i = 4,3,2, 1 a.nd this will realize the SSB sce- 
nario. Note the hea.vy suppression of the 2 = 1 
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region caused by l? which is the peak of the phase 
quenched model distribution of X;. 
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va,lues of N 5 48 to obtain the thermodynamic 
limit. Unfortunately, the function WR(Z) is not 
positive definite and the important contributions 
come from the region where it changes sign. As 
expected, we find that finite size scaling does not 
work a.s well as in the case of the IKKT model 
(although we obtain agreement up to order of 
magnitude for the values of N 5 96 that we 
explored). We a,lso find it very difficult to ex- 
plore the crossover region near the phase transi- 
tion point pc = 0.527.. . for N > 8 since \w~(x)\ 
becomes very small. Since RMT is a schematic 
model of finite density &CD, we expect that the 
factorization method will be useful to explore the 
phase diagram of &CD. 
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Fig. 2: PR(Z) and PI(Z) for p = 0.2. Fig. 3: (v) for N = 8. 

3. RMT OF FINITE DENSITY QCD REFERENCES 

We consider RMT with one quark flavour and 
zero quark mass [5]. The model is chosen in or- 
der to study the correctness and effectiveness of 
the factorization method, since one can compare 
results with known analytical solutions even for fi- 
nite N. The observable we measure is the “quark 
number density” u as a function of the chemi- 
cal potential ~1, and we consider the distribution 
functions pi(z), where i = R, I corresponds to 
the real and imaginary pa.rts of v respectively. 
Notice that the effect of I? is dramatic, causing a 
discontinuous tr&sition in v. In [2] our results 
nicely reproduce the exact results known for fi- 
nite N and we are able to achieve large enough 
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