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1. Introduction

LargeN reduced models have been proposed as the non-perturbafiaé@ion of superstring
theory. Especially, the 11B matrix modd] [1] is one of the rhsisccessful proposals. The 1B matrix
model is formally obtained by the dimensional reductioneasf-timensional#” = 1 super-Yang-
Mills theory to zero dimensions. In the [IB matrix model, spime is dynamically generated from
the degrees of freedom of the bosonic matrices, despitattdhfat it does not exist a priori in the
model. Superstring theory is well-defined only in ten-disienal spacetime, and it is an important
guestion how our four-dimensional spacetime dynamicaiherges. Monte Carlo studies of the
IIB matrix model have a possibility to shed light on this gties from a first principle calculation.

The Euclidean version of the [IB matrix model is obtaine@a#t Wick rotation of the temporal
direction. It has a manifest SO(10) rotational symmetryclthif spontaneously broken, yields a
spacetime compactified to lower dimensions. However, itserical simulation has been hindered
by the “complex action problem”, because the Pfaffian olehiafter integrating out the fermions
is complex in general.

Apart from the matrix models of superstring theory, there many interesting systems that
are plagued by the “complex action problem”. Lattice gaugmties with a non-zero chemical
potential are the ones that have attracted most of the iatteimt this context. In this work, we
apply the “factorization method”, which was originally pased in ref. [[2] and generalized in
ref. [@], to the Monte Carlo studies of the Euclidean versidrihe [IB matrix model. The 1IB
matrix model has also been studied analytically by the Gangsxpansion Method (GEM}]4] 5].
Preliminary results of our Monte Carlo simulation are cetesit with the GEM results and provide
evidence that the factorization method is a successfubagprto studying interesting systems that
suffer from the complex action problem.

2. Factorization method

Generally, it is difficult to numerically simulate the coraplaction system
7= / dAe ST 2.1)

Sincee %1l s not real positive, we cannot view it as a sampling proliighih the Monte Carlo
simulation. One way to calculate the vacuum expectationev@V/EV) of an observabl& is to
use the reweightingo’) = <‘Zér;2°. Here,(---) and(---)o are the VEV's for the original partition
function Z and the phase-quenched partition functtyn= [ dAe =, respectively. This is not an
easy task since the phaSenay fluctuate wildly. In order to comput®’) with given accuracy one
needs Qe*°"Y) configurations, wher¥ is the system size. This is called the “sign problem” or
the “complex action problem”.

Yet another problem is that the important configurationsdiiferent for different partition
functions. This is called the “overlap problem”. We are pled with this overlap problem in
trying to obtain the VEV( &) through the simulation of the phase-quenched partifign

The factorization method was proposed in order to reducevbdap problem and achieve an
importance sampling for the original partition functiéig, B]. We select the set of the observables

z:{ﬁk“(:lvzv 7n}7 (22)
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which are strongly correlated with the phdsen the following, we define the normalized observ-
ablesdy = Ox/{0k)o. We employ the factorization property of the density ofes@t(xy, - -+ ,X):

p(xlv"' >Xﬂ) = <I£| 5(Xk_ ék» = ép(O)(Xb'" 7Xn)W(le"' >Xﬂ) (23)
k=1

The constan€ = (€")g is irrelevant in the followingp© (x4, -+ ,Xn) = ([Te_1 6 (X% — Oi))o is the
density of states in the phase-quenched maalety,---x,) = (€7 )y is the VEV in the constrained
system

7, = / dAeS EES o). 2.4)

When the system si2¢ goes to infinity, the VEV's are given b{i) = X, where(Xq, -+ ,Xn) is
the position of the peak gf(xs,--- ,X,). This can be obtained by solving the saddle-point equation

J (1 7} 1
im —{ = O (x,--- -~ lim =
V|l>+oo d:: {V Iogp (X17 7X|"I)} d}: {Vll>+oov IOgW(X17 7Xn)} . (25)

When we properly choose the maximal set of the observahlege achieve effective importance
sampling for the original partition functiof [[].

3. Euclidean version of the | 1B matrix model

We study the 11B matrix mode[]1], which is defined by the feliog partition function:

Z— /dAdwe—<5b+5f>, (3.1)
where the bosonic pa8, and the fermionic pai% are respectively
1
S = —@tr[A“,Av]z, (3.2)
1

The boson®\; (1 =1,2,---,10) and the Majorana-Weyl spinogg, (a =1,2,---,16) areN x N
traceless hermitian matrices. In the following, withousdaf generality we sef?N = 1. The
indices are contracted by the Euclidean metric after thek\Witation. ", are the 16< 16 Gamma
matrices after the Weyl projection, ard is the charge conjugation matrix. This model has the
SO(10) rotational symmetry. In reff][6], it is shown that hertition function is positive definite
without cutoffs.

This model is formally obtained by the dimensional reduttéten-dimensionaly” = 1 super
Yang-Mills theory to zero dimensions. The IIB matrix modakithe /" = 2 supersymmetry

S Ay =IET . 3w =S ATve, P A =0, sPy=e. (3.4)
For the linear combinatioﬁé1> = 6§1> + 6§2> andSE(Z) = i(5€(1) — 55(2)), we have

8,87, = —2i5%eT €, (87 8P =0, (ab=12) (3.5)
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This leads to the interpretation of the eigenvalues of treobiw matrices\; as the spacetime co-
ordinates. Hence, the spontaneous symmetry breakdown) (88 SO(10) rotational symmetry
is identified with the dynamical compactification of the extiimensions.

The order parameters of the SSB of the SO(10) rotational sstnynare the eigenvaluek,
(n=1,2,---,10) of the “moment of inertia tensor”

1

which are ordered a¥ > A, > - -- > A1g before taking the expectation value (M), -, (Aq) grow
and (Aq+1),- -+, (A10) shrink in the largeN limit, this suggests the SSB of the SO(10) rotational
symmetry to S@d) and hence the dynamical compactification of ten-dimensigpacetime tal
dimensions. This scenario has been studied via GEM in[@f. T[Be results of the studies of the
SO(d) symmetric vacua for £ d < 7 are summarized as follows:

1. The extent of the shrunken directions= limy_evAn (N=d+1,---,10) isr? ~ 0.155,
which does not depend ah(universal compactification scale).

2. The ten-dimensional volume of the Euclidean spacetines dot depend od exceptd = 2
(constant volume property). For the extent of the extendiestibnsR = limy_,e vAn (N =
1,2,---.d), the volume i8/ = RAr10-d — |10 with |2 ~ 0.383.

3. The free energy takes the minimum valud at 3, which suggests the dynamical emergence
of threedimensional spacetime.

In ref. [B], the six-dimensional version of the EuclideaB tatrix model was studied via GEM,
and the six-dimensional version also turns out to have ttilese properties. The same model was
studied numerically in ref[]7], and the results are coesistvith the GEM results.

Next, we review the mechanism of the dynam- 16 ‘ ‘
ical compactification of spacetime in the Euclidean 14 |
IIB matrix model [8]. Integrating out the fermions, 12|
we have o 17 T

A s
g < 087 - " 1
/ dye S =Pz, @7 ¥ osl gie"
0.4 ke e i
where . Zaq pp = —ifand(6T ) aphs is a 16N? — 0.2t
1) x 16(N? — 1) anti-symmetric matrix. The in- 0 : —
0 0.05 0.1 0.15 0.2

dicesa,b,c run over 12,--- ;N2 —1, and fap. are
the structure constants of $N). Aj, are the co-

1N
) Figure 1. The VEV (Aq)o with respect to
efficients in the expansioAy, = 3¢ A T® with e phase-quenched partition fucnti@up to
respect to the SUN) generatorsT®. Under the N =32.
transformationA;g — —A19, PL.# becomes com-
plex conjugate. We define the phase of the Pfaffiams Pf# = |Pf.#|€". Pi is real for the
nine-dimensional configuratiofy o = 0. When the configuration g-dimensional (X d < 9), we
find ﬁ% =0form=12---,9—d, because the configuration is at most nine-dimensional
up to the(9—d)-th order of the perturbations. Thus, the phase offRfecomes more stationary
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for the lower dimensions. The numerical results in rgf. [8pasuggest that there is no SSB of the
rotational symmetry in the phase-quenched model. We @e(,)o numerically, wheré- - - )q is
the VEV with respect to the phase-quenched partition foncti

Zo:/ﬁA€%PD%L (3.8)

We use the Rational Hybrid Monte Carlo (RHMC) algorithm, whaletails are presented in Ap-
pendix A of ref. [J]. The result in fig[] 1 shows th&,)o converge td? ~ 0.383 at largeN for all
n=12---,10. This suggests that there is no SSB of the SO(10) rotatsynametry, and that the
result is consistent with the constant volume property.

4. Results

The model [3]1) suffers from a strong complex action probkend we apply the factorization
method to this system. It turns out to be sufficient to comstoaly one eigenvalud,; namely the
choice of the sek in eq. (2.) should b& = {A,}. This is because the larger eigenvalues do not
affect much the fluctuation of the phase. This choic& &f similar to that of the six-dimensional
version of the 11B matrix mode[]J7]. When we constralp, the eigenvaluedn, A1, -- A1 take
the small value, which corresponds to the(80symmetric vacuum, withh = d + 1. This leads us
to simulate the partition function of the constrained syste

Ax:/dA€%PD%6W—X@, 4.1)

which is simulated via the RHMC algorithm. The raﬁg: An/{An)o corresponds to the square
of the ratio of the extents of the extended and shrunkentibirex(r /1)2, in the SAd) vacua with
n=d+ 1. The saddle-point equatioh (2.5) is now simplified as

1 d 1

NE fr@(x) =~ x\2 logwn(x), where (4.2)
d x ,

f” (x) = = 10g(8(x— An))o. Wn(x) = (" )nx = (COS)nx. (4.3)

in the largeN limit. (---)nx is the VEV of the partition functio@y x. We have(eir>n7x = (cosl )nx,
because under the transformatiyy — —Aso the Pfaffian Pf# becomes complex conjugate while
the bosonic action[(3.2) and the eigenvalues of the tefis@y &e invariant. The solution of the
saddle-point equatior[ (4.2, gives the VEV(Xn> = X, in the SAd) vacuum withn =d + 1.
Solving this saddle-point equation amounts to finding theimiim of the free energy

Fso@(X) = 5100pa(x), wherepn(x) = (5(x— ). (4.9

in the S@d) vacuum withn =d+ 1. The GEM result suggests that the free energy takes the
minimum for the SO(3) vacuum. In order to reduce the CPU castsfocus on then = 3,45
cases, which correspond to the SO(2), SO(3), SO(4) vacsiecdvely.

In fig. @ (LEFT) we plot logn,(x) for n= 4 up toN = 16, where we observe a good scaling
behavior at smalk

1 _
~2 109Wn (X) ~ —axH" — by (4.5)
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The coefficients, andb, are obtained for eadN, by fitting the data. Then, we extrapolate the co-
efficientsa,, b, and obtain the largét limit, which corresponds t&®,(x) = limy_, 4w % logWwn(X).
This is represented by the solid line in f[§. 2 (LEFT).

The functionf (© (x) has a scaling behavior aroundte< x < 1

% £2(X) ~ gn(X), Wheregn(x) = cn(X— 1)+ dn(x— 1)2. (4.6)

Subtracting this effect in order to reduce finlieeffects, we plot,\% f,ﬁo) (X) — g”N—(XX) forn=4infig. B
(RIGHT). We find that the results scale reasonably well ul te 24 in the smallx regionx < 0.4.
This implies the hard-core potential structure at smalh the six-dimensional version of the 11B
matrix model, this effect is absent in the one-loop appration [2], but is observed in the full
model without one-loop approximatiof] [7]. The intersestiof £9(x) — g’,‘\f;() and — L Pn(x)
represents the solution of the saddle-point equafiof.(#i8) [2 (RIGHT) shows that the solution
X, IS close to[—j ~ %gg =0.404--- for n=4. Forn= 3,5, too, we have obtained similar results,
and the solutiorx, is close to 0.404. This is consistent with the “universal paniification scale”

property.

0 1.2
o [ . N6 ="
I z 1 L [ N=8 :0--
-0.005 W =
z ’ £ o8 °, || N=16
= 001t < 067
; (@]
=2 o 0.4
L L 2
-0.015 < o2
-0.02 LN ‘ - g" 0 -
0 0.004 0.008 0012 © g2 ‘ ‘ ‘ ‘ ‘
7 0O 02 04 06 08 1

Figure 2: (LEFT) logws(x) againsix” at smallx. (RIGHT) le f£§0> (x) — g;‘\,—(? up toN = 24. Its intersection
with — & @, (x) gives the solutions.

Next, we compare the free enerdy [4.4) for the 0 e
SO(d) vacuum. The free energy at= X, is -0.005 | -m:z“ 020 N
1 > 0oLy J%;" . ‘Om
Feaw = | X 100 — 5 10gWn (), (4.7) : oo i o
_ _ _ S 0.025 | n=3N=12 —5 i
with n=d+ 1. Due to the scaling behaviof (4.6), © o3 | n=3N-16 -= - %
the first term of the r.h.s of eq.[ (}.7) vanishes at -0.035 | N=4N=16 =
large N.  Thus we comparel, logw(X,). From 004 LNEONF2 e ‘
fig. @, we see that the free energsq2) is much ° 01 0z 03 04 05

higher thanZsq3) and 5oy aroundx ~ 0.4. It . o
is still difficult to determine whether the SO(3) or T19Ures: gz logwn(x) forn=3,4,N=12,16
the SO(4) vacuum is energetically favored. More andn=5,N =12.

analysis will be reported elsewhere.
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5. Conclusion

In this work, we have performed Monte Carlo simulations af Euclidean version of the
IIB matrix model using the factorization method, in ordestady the dynamical compactification
of the extra dimensions. The results turn out to be congistéh the GEM predictions. We
have seen that in the phase-quenched model there is no S&B 8f1(10) rotational symmetry,
and that the volume of spacetime is consistent with the GEdlt® The functionf,” (x) has
a hard-core potential structure, and as a result of thatcdmeputed shrunken dimensions are
found to be consistent with the GEM results. Also, we haveseded in finding that the SO(2)
vacuum is energetically disfavored, compared to the SO(H@(4) vacuum. The results of the
Lorentzian version of the 11B matrix model, where (3+1)-@insional spacetime is found to expand
dynamically [Ip], and the scenario discussed in this wauggest that the physical interpretation
of the Euclidean [IB matrix model needs to be further ingesid.
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