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The type IIB matrix model was proposed as a non-perturbative formulation of superstring theory

in 1996. We simulate a model that describes the late time behavior of the IIB matrix model by

applying the complex Langevin method to overcome the sign problem. We clarify the relationship

between the Euclidean and the Lorentzian versions of the type IIB matrix model in a recently

discovered phase. By introducing a constraint, we obtain a model where the spacetime metric is

Euclidean at early times, whereas it dynamically becomes Lorentzian at late times.
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1. Introduction

Superstring theory is the most promising candidate for a unified theory of all interactions,

including quantum gravity. The appearance of extra dimensions has led to the proposal of their

compactification to small, unobservable internal spaces, resulting in a vast string landscape of

equivalent vacua. Therefore, it is interesting to study whether non-perturbative effects will lift

this degeneracy and allow us to determine the true vacuum of the theory. Furthermore, other

outstanding problems, such as the resolution of the cosmic singularity [1–4], may find their solution

by properly taking account of non-perturbative effects. The IIB matrix model [5] has been proposed

as a non-perturbative definition of superstring theory and provides a promising context to study

such questions.

The IIB matrix model is formally obtained by the dimensional reduction of ten-dimensional

N = 1 Super Yang-Mills (SYM) to zero dimensions. The theory has maximalN = 2 supersymmetry

(SUSY), where translations are realized by the shifts �` → �` + U`1, ` = 0, . . . , 9. It is possible

to interpret the eigenvalues of the bosonic matrices �` as defining spacetime points of the target

space and the scenario of the emergence of spacetime from the dynamics of the theory becomes

viable. One may study questions, such as the appearance of time, cosmological expansion, and

the compactification of extra dimensions, as a dynamical effect of the model. For example, in the

Euclidean version of the model, dynamical compactification of extra dimensions results from the

Spontaneous Symmetry Breaking (SSB) of the SO(10) rotational symmetry down to SO(3), giving

a three-dimensional macroscopic universe. The application of the Gaussian Expansion Method

(GEM) [6–9], and Monte Carlo calculations [10–13] provide strong evidence in support of this

scenario.

There have been several attempts to study the IIB matrix model via Monte Carlo simulations.

The problem is hard due to the appearance of a strong complex action problem. In [14], an

approximation was used to eliminate it, and it was found that a continuous time emerges from

the dynamics of the model, with respect to which the universe is expanding. The expansion is

exponential at short times and power–like at late times [15–18], and space has three large dimensions,

resulting from the SSB of SO(9) rotational symmetry down to SO(3). Space is noncommutative, but

at late times classical solutions dominate giving smooth space and phenomenologically consistent

matter content at low energies [19–31]. In [32], however, it was shown that SSB comes from

singular configurations associated with the Pauli matrices, in which only two eigenvalues are large.

Therefore, it becomes necessary to study the model without the approximation used in [14]. To make

the model well-defined, the authors in [33] proposed a two-parameter deformation of the model,

corresponding to two independent Wick rotations, on the worldsheet and target space, respectively.

The parameters are B and :, respectively, and the model is defined in the B, : → 0 limit.

Even the deformed model has a strong complex action problem. In [33], the Complex Langevin

Method (CLM) [34, 35] was used successfully. Although the CLM is known to lead to wrong

results in some cases, the application of new techniques and easy–to–compute criteria of correct

convergence [36–42], make the method possible to use in a region of parameter space that was

not possible to do before. In particular, the singular drift problem [39] often appears when one

studies the effects of dynamical fermions. Using special deformation techniques [42] that shift

the eigenvalues of the effective fermionic action away from zero made the application of the CLM
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successful, at the expense of introducing a new parameter that must be extrapolated to zero in the

end. Such techniques have been applied successfully to the Euclidean version of the IIB matrix

model, which were found to agree with the GEM [12, 13].

In this work we study the bosonic version of the IIB matrix model using the CLM. The model is

obtained by quenching the fermionic degrees of freedom, and it is a simplified model that describes

the late time behavior of the IIB matrix model cosmology. The model is Wick-rotated as in [33],

using the parameter D = B = :, with 0 ≤ D ≤ 1. When D = 0, we have the original IIB matrix model,

whereas when D = 1, we obtain the Euclidean version of the IIB matrix model, which is equivalent

to the one studied in [12, 13]. We find that the parameter D smoothly interpolates between the

two models and expectation values can be obtained by analytic continuation from one model to

the other. The two models are equivalent and spacetime in the Lorentzian model turns out to be

Euclidean. In order to study the possibility of the dynamical change of signature from Euclidean to

Lorentzian, we introduce a constraint that breaks the equivalence between the two models. We find

some evidence that the signature of spacetime, although Euclidean at early times, may turn out to

be Lorentzian at later times.

2. The type IIB matrix model

2.1 Definition

The action of the type IIB matrix model is given as follows:

( = (b + (f , (1)

(b = − 1

462
Tr

(

[�`, �a] [�` , �a]
)

, (2)

(f = − 1

262
Tr

(

Ψ̄(CΓ`) [�`,Ψ]
)

, (3)

where �` (` = 0, . . . , 9) and Ψ are # × # Hermitian matrices, and Γ
` and C are 10-dimensional

gamma matrices and the charge conjugation matrix, respectively, which are obtained after the

Weyl projection. The �` and Ψ transform as vectors and Majorana-Weyl spinors under SO(9,1)

transformations. In this study, we omit (f to reduce the computational cost. The resulting model is

expected to describe the late-time behavior of the matrix model cosmology.

The partition function is given by

/ =

∫

3�48(b . (4)

Due to the phase factor 48(b , the model is not well-defined, and we have to define it via analytic

continuation. We perform a double Wick rotation onto the complex plane, using two parameters B

and :. The parameter B corresponds to a Wick rotation on the worldsheet, and : to a Wick rotation

in target space:

(̃b = −8#V48
c

2
B

[

−1

2
4−8: c Tr(�08)2 +

1

4
Tr

(

�8 9
)2

]

, (5)

/ =

∫

3�4−(̃b , (6)
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Figure 1: We plot the expectation values of 1
#

Tr �2
0

(Left), and 1
#

Tr �2
8 (Right). Those of the Euclidean

model are represented by the triangle and the letter “E”, and those of the Lorentzian model are represented

by the square and the letter “L”. The angle between
〈

1
#

Tr �̃2
0

〉

E
and

〈

1
#

Tr �2
0

〉

L
is −3c/4, in agreement with

Eq. (10), and the angle between
〈

1
#

Tr �̃2
8

〉

E
and

〈

1
#

Tr �2
8

〉

L
is c/4, in agreement with Eq. (11).

where #V = 1/62 and �`a = 8
[

�`, �a

]

. The model (4) is obtained in the (B, :) → (0, 0) limit.

(B, :) = (1, 1) is the Euclidean version of the IIB matrix model and (B, :) = (−1, 0) is the simplified

model studied in [14].

2.2 Equivalence between the Euclidean and Lorentzian models

The Wick–rotated matrices �̃` are given be the relations

�0 = 48
c

8
B−8 c

2
: �̃0 = 4−8

3c
8
D �̃0 , (7)

�8 = 48
c

8
B �̃8 = 48

c

8
D �̃8 , (8)

where we introduce the parameter D by setting B = : = D. D = 0 corresponds to the Lorentzian

model and D = 1 to the Euclidean one.

For (B, :) = (1, 1), the Wick-rotated action is given by

(̃ = #V

[

1

2
Tr

(

�̃08

)2 + 1

4
Tr

(

�̃8 9
)2

]

, (9)

where �̃`a = 8
[

�̃`, �̃a

]

. This is the action of the bosonic Euclidean IIB matrix model.

By using Eqs. (7) and (8), one can derive relationships between the expectation values of Tr �2
0

and Tr �2
8 in both models:

〈

1

#
Tr �2

0

〉

L

= 4−8
3c
4

〈

1

#
Tr �̃2

0

〉

E

, (10)

〈

1

#
Tr �2

8

〉

L

= 48
c

4

〈

1

#
Tr �̃2

8

〉

E

, (11)

where 〈 · 〉L and 〈 · 〉E denote the expectation values in the Lorentzian and Euclidean models,

respectively. In Fig. 1 (Left),
〈

1
#

Tr �2
0

〉

is shown, and the angle between
〈

1
#

Tr �̃2
0

〉

E
and

〈

1
#

Tr �2
0

〉

L
is −3c/4. In Fig. 1 (Right),

〈

1
#

Tr �2
8

〉

is shown, and the angle between
〈

1
#

Tr �̃2
8

〉

E

and
〈

1
#

Tr �2
8

〉

L
is c/4. These angles are in agreement with Eqs. (10) and (11).
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These results are consistent with the fact that the Lorentzian and the Euclidean models are

equivalent. Expectation values in the Lorentzian model can be obtained by analytic continuation

of the expectation values in the Euclidean model. In particular,
〈

1
#

Tr �2
`

〉

L
are complex and the

emergent spacetime should be interpreted to be Euclidean.

2.3 The time evolution

As mentioned in Sec. 1, time does not exist a priori, and we may define it as follows. We

choose a basis, where �0 is diagonal and its eigenvalues are in ascending order:

�0 = diag(U1, U2, . . . , U# ) , U1 ≤ U2 ≤ . . . ≤ U# . (12)

Then, we define Ū: as

Ū: =
1

=

=
∑

8=1

U:+8 , (13)

and the time Cd as

Cd =

d
∑

:=1

|Ū:+1 − Ū: | . (14)

Here, we introduce the = × = matrices �̄8 (C) as

(

�̄8

)

01
(C) = (�8):+0,:+1 , (15)

which represent space at time C.

After deforming the integration contour of the eigenvalues U0, we introduce the constraint

U# =
√
^ ∈ C in order to obtain real time in the Lorentzian model. This constraint is implemented

numerically by adding a term WU (U# − √
^)4/4 to the effective action and taking WU sufficiently

large. Note that once we introduce the above constraint, Eqs. (10) and (11) do not hold anymore.

3. Complex Langevin method

The complex Langevin method (CLM) [34, 35] is a stochastic process that can be applied

successfully to many systems with a complex action problem. One writes down stochastic differen-

tial equations for the complexified degrees of freedom, which can be used to compute expectation

values under certain conditions. Consider a model given by the partition function

/ =

∫

3G F (G) , (16)

where G ∈ R= and F (G) is a complex-valued function. In the CLM, we complexify the variables

G ∈ R= −→ I ∈ C= , (17)

and solve the complex Langevin equation

3I:

3f
=

1

F (I)
mF (I)
mI:

+ [: (f) , (18)

5



Euclidean and Lorentzian versions of type IIB matrix model Kohta Hatakeyama

where f is the Langevin time. The first term of the R. H. S of Eq. (18) is the drift term, and the

second one is real Gaussian noise with probability distribution

P([: (f)) ∝ exp

(

−1

4

∫

3f
∑

:

[[: (f)]2

)

. (19)

In order to ensure that the CLM will give correct solutions, we apply the criterion that the drift term

should be exponentially suppressed for large values [41].

3.1 Application of the CLM to the type IIB matrix model

To apply the CLM to the type IIB matrix model, we a make change of variables [33]:

U1 = 0 , U8 =

8−1
∑

:=1

4g: (for 2 ≤ 8 ≤ #) , (20)

where we introduce new real variables g: . In this way, the ordering of U8 is automatically realized.

Initially, U8 are real, and �8 are Hermitian matrices. To apply the CLM, we complexify g: and take

�8 to be SL(#,C) matrices. The CLM equations are given by

3g:

3f
= −m(eff

mg:
+ [: (f) , (21)

3 (�8):;
3f

= − m(eff

m (�8);:
+ ([8):; (f) , (22)

where (eff is obtained from (̃b in Eq. (5), by adding the appropriate gauge fixing and change of

variable terms.

In our simulations, we set V = 1 and add the term

WU

4
(U# −

√
^)4 , (23)

in order to enforce the constraint U# =
√
^, where ^ ∈ C.

4. Results

4.1 Expectation value of the time coordinate

When WU = 0, Eq. (7) holds, and we expect that

〈U8〉L = 4−8
3c
8 〈Ũ8〉E . (24)

This is true because the Euclidean and the Lorentzian models are equivalent, and time corresponds

to the Euclidean time. We measure the time differences

(ΔU8)L = (U8+1)L − (U8)L . (25)

If (ΔU8)L ∝ exp(−83c/8), the emergent time is Euclidean, while if (ΔU8)L ∈ R, the Lorentzian

model gives real time with Lorentzian signature.

In Fig. 2, we plot the expectation values of the time coordinates 〈U8〉L on the complex plane.

Different symbols denote different sets of parameters (^, WU). The 〈U8〉L close to the origin lie on

the exp(−83c/8) line, which implies that the emergent time is Euclidean. On the other hand, as we

move further from the origin, some of 〈(ΔU8)L〉 are almost real and the emergent time is Lorentzian.

The metric signature change occurs dynamically.

6
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I
m

Re

Figure 2: Expectation values of the eigenvalues U8 of �0 for # = 128. The WU = 0 case (inverted triangles)

corresponds to the Euclidean model, where the complex phase of the expectation values 〈U8〉L is exp(−83c/8).
Those points lie, as expected, on the purple line. When (^, WU) = (4.5, 50), (3.5, 100), (2.5, 200), (1.5, 200),
we obtain the curves that go through the circles, the squares, and the triangles, respectively. The points near

zero lie on the purple line, which implies that the emergent time is Euclidean. On the other hand, as we move

further from zero, we obtain almost real (ΔU8)L, which implies the emergence of Lorentzian time.

4.2 Time evolution of space

The time evolution of the extent of space is given by

'2(C) =
〈

1

=
tr

(

�̄8 (C)
)2

〉

= 428\
�

�'2(C)
�

� . (26)

The matrices �̄8 are complex; therefore '2(C) is also complex. The time C is defined in Eq. (14).

From Eq. (11) we see that when \ ∼ c/8, we obtain Euclidean space, and when \ ∼ 0, we obtain real

space from the Lorentzian model. Therefore, the signature of spacetime can change dynamically in

this model.

In Fig. 3, \ (C) is plotted against C for # = 128 and (^, WU) = (4.5, 50). The green line

represents \ = c/8, and all values of \ (C) are on this line. Therefore, space is the same as the one

obtained by the Euclidean model for all times.

In Fig. 4, |
〈

'2(C)
〉

|/Λ2 is plotted against C/Λ for # = 128 and various sets of parameters

(^, WU), where Λ =
�

�

〈

'2(0)
〉�

�

1/2
. We observe a nice scaling behavior of the plots for all the

parameters chosen. Furthermore, we observe a slight expansion of the extent of space with time, as

we move away from the origin.

5. Conclusions

In this work, we successfully applied the CLM to the bosonic type IIB matrix model to

overcome the sign problem. This was made possible by Wick–rotating the model using a parameter

7
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Figure 3: \ (C) is plotted against C for # = 128 and (^, WU) = (4.5, 50). All values of \ (C) are on the \ = c/8
line, which implies that the emergent space is Euclidean.

Figure 4: |
〈

'2(C)
〉

|/Λ2 is plotted against C/Λ for # = 128 and (^, WU) = (4.5, 50), (3.5,100), (2.5,200),

(1.5,200), where Λ =
�

�

〈

'2(0)
〉�

�

1/2
. The symbols are the same as in Fig. 2. We observe scaling behavior and

a slight expansion of space as C/Λ moves away from zero.

0 ≤ D ≤ 1, which interpolates smoothly between the Euclidean (D = 1) and the Lorentzian (D = 0)

models. These simulations avoid the approximation used in [14], which yields a singular spacetime

[32]. We find that the model is in a new phase, where smooth time emerges from the dynamics of

the model and (noncommutative) space is continuous. The D = 0 model was simulated for the first

time, and results were obtained without a D → 0 extrapolation. We showed that the Lorentzian and

the Euclidean models are equivalent, and expectation values can be analytically continued from one

model to the other. The expectation values (10) and (11) in the Lorentzian model are complex, and

spacetime is Euclidean.

We studied a scenario for the dynamical emergence of the Lorentzian signature by introducing

a constraint U# =
√
^ ∈ C. Then, the Euclidean and the Lorentzian models are not equivalent
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anymore, and time in the Lorentzian model, arising from the expectation values of �0, may turn out

to be real. We defined time from the differences (ΔU8)L and showed that, although complex near

the origin, they turn out to be real at later times. This provides the context for a scenario where the

signature of the metric changes dynamically from Euclidean to Lorentzian.

We also studied the evolution of the extent of space with time. In this model, space turns out

to be Euclidean for all times and exhibits a slight expanding behavior with time.

We expect that supersymmetry will play an essential role in obtaining a phenomenologically

viable theory. We are currently investigating its effect, which we will report in a future publication.

Acknowledgments

T. A., K. H., and A. T. were supported in part by Grant-in-Aid (Nos. 17K05425, 19J10002,

and 18K03614, 21K03532, respectively) from Japan Society for the Promotion of Science. This

research was supported by MEXT as “Program for Promoting Researches on the Supercomputer

Fugaku” (Simulation for basic science: from fundamental laws of particles to creation of nuclei, JP-

MXP1020200105) and JICFuS. This work used computational resources of supercomputer Fugaku

provided by the RIKEN Center for Computational Science (Project ID: hp210165) and Oakbridge-

CX provided by the University of Tokyo (Project IDs: hp200106, hp200130, hp210094) through

the HPCI System Research Project . Numerical computation was also carried out on PC cluster in

KEK Computing Research Center. This work was also supported by computational time granted by

the Greek Research and Technology Network (GRNET) in the National HPC facility ARIS, under

the project IDs SUSYMM and SUSYMM2.

References

[1] A. Lawrence, On the Instability of 3-D null singularities, JHEP 11 (2002) 019

[hep-th/0205288].

[2] H. Liu, G.W. Moore and N. Seiberg, Strings in time dependent orbifolds, JHEP 10 (2002)

031 [hep-th/0206182].

[3] G.T. Horowitz and J. Polchinski, Instability of space - like and null orbifold singularities,

Phys. Rev. D66 (2002) 103512 [hep-th/0206228].

[4] M. Berkooz, B. Craps, D. Kutasov and G. Rajesh, Comments on cosmological singularities

in string theory, JHEP 03 (2003) 031 [hep-th/0212215].

[5] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A Large N reduced model as

superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115].

[6] J. Nishimura and F. Sugino, Dynamical generation of four-dimensional space-time in the IIB

matrix model, JHEP 05 (2002) 001 [hep-th/0111102].

[7] H. Kawai, S. Kawamoto, T. Kuroki, T. Matsuo and S. Shinohara, Mean field approximation

of IIB matrix model and emergence of four-dimensional space-time, Nucl. Phys. B 647

(2002) 153 [hep-th/0204240].

9

http://arxiv.org/abs/hep-th/0205288
http://arxiv.org/abs/hep-th/0206182
http://arxiv.org/abs/hep-th/0206228
http://arxiv.org/abs/hep-th/0212215
http://arxiv.org/abs/hep-th/9612115
http://arxiv.org/abs/hep-th/0111102
http://arxiv.org/abs/hep-th/0204240


Euclidean and Lorentzian versions of type IIB matrix model Kohta Hatakeyama

[8] T. Aoyama and H. Kawai, Higher order terms of improved mean field approximation for IIB

matrix model and emergence of four-dimensional space-time, Prog. Theor. Phys. 116 (2006)

405 [hep-th/0603146].

[9] J. Nishimura, T. Okubo and F. Sugino, Systematic study of the SO(10) symmetry breaking

vacua in the matrix model for type IIB superstrings, JHEP 10 (2011) 135

[arXiv:1108.1293].

[10] K.N. Anagnostopoulos, T. Azuma and J. Nishimura, Monte Carlo studies of the spontaneous

rotational symmetry breaking in dimensionally reduced super Yang-Mills models, JHEP 11

(2013) 009 [arXiv:1306.6135].

[11] K.N. Anagnostopoulos, T. Azuma and J. Nishimura, Monte Carlo studies of dynamical

compactification of extra dimensions in a model of nonperturbative string theory, PoS

LATTICE2015 (2016) 307 [arXiv:1509.05079].

[12] K.N. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura and S.K. Papadoudis, Complex

Langevin analysis of the spontaneous symmetry breaking in dimensionally reduced super

Yang-Mills models, JHEP 02 (2018) 151 [arXiv:1712.07562].

[13] K.N. Anagnostopoulos, T. Azuma, Y. Ito, J. Nishimura, T. Okubo and

S. Kovalkov Papadoudis, Complex Langevin analysis of the spontaneous breaking of 10D

rotational symmetry in the Euclidean IKKT matrix model, JHEP 06 (2020) 069

[arXiv:2002.07410].

[14] S.W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3+1)-dimensional universe from a

Lorentzian matrix model for superstring theory in (9+1)-dimensions, Phys. Rev. Lett. 108

(2012) 011601 [arXiv:1108.1540].

[15] Y. Ito, S.W. Kim, J. Nishimura and A. Tsuchiya, Monte Carlo studies on the expanding

behavior of the early universe in the Lorentzian type IIB matrix model, PoS LATTICE2013

(2014) 341 [arXiv:1311.5579].

[16] Y. Ito, S.W. Kim, Y. Koizuka, J. Nishimura and A. Tsuchiya, A renormalization group

method for studying the early universe in the Lorentzian IIB matrix model, PTEP 2014

(2014) 083B01 [arXiv:1312.5415].

[17] Y. Ito, J. Nishimura and A. Tsuchiya, Power-law expansion of the Universe from the bosonic

Lorentzian type IIB matrix model, JHEP 11 (2015) 070 [arXiv:1506.04795].

[18] Y. Ito, J. Nishimura and A. Tsuchiya, Large-scale computation of the exponentially

expanding universe in a simplified Lorentzian type IIB matrix model, PoS LATTICE2015

(2016) 243 [arXiv:1512.01923].

[19] S.W. Kim, J. Nishimura and A. Tsuchiya, Expanding universe as a classical solution in the

Lorentzian matrix model for nonperturbative superstring theory, Phys. Rev. D 86 (2012)

027901 [arXiv:1110.4803].

10

http://arxiv.org/abs/hep-th/0603146
http://arxiv.org/abs/1108.1293
http://arxiv.org/abs/1306.6135
http://arxiv.org/abs/1509.05079
http://arxiv.org/abs/1712.07562
http://arxiv.org/abs/2002.07410
http://arxiv.org/abs/1108.1540
http://arxiv.org/abs/1311.5579
http://arxiv.org/abs/1312.5415
http://arxiv.org/abs/1506.04795
http://arxiv.org/abs/1512.01923
http://arxiv.org/abs/1110.4803


Euclidean and Lorentzian versions of type IIB matrix model Kohta Hatakeyama

[20] S.W. Kim, J. Nishimura and A. Tsuchiya, Late time behaviors of the expanding universe in

the IIB matrix model, JHEP 10 (2012) 147 [arXiv:1208.0711].

[21] A. Chaney, L. Lu and A. Stern, Matrix Model Approach to Cosmology, Phys. Rev. D 93

(2016) 064074 [arXiv:1511.06816].

[22] A. Stern and C. Xu, Signature change in matrix model solutions, Phys. Rev. D 98 (2018)

086015 [arXiv:1808.07963].

[23] H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction,

Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134].

[24] A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Orbifolds, fuzzy spheres and chiral

fermions, JHEP 05 (2010) 100 [arXiv:1002.2606].

[25] A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Intersecting branes and a standard

model realization in matrix models, JHEP 09 (2011) 115 [arXiv:1107.0265].

[26] H.C. Steinacker, Quantized open FRW cosmology from Yang-Mills matrix models,

Phys. Lett. B 782 (2018) 176 [arXiv:1710.11495].

[27] H. Aoki, Chiral fermions and the standard model from the matrix model compactified on a

torus, Prog. Theor. Phys. 125 (2011) 521 [arXiv:1011.1015].

[28] H. Aoki, J. Nishimura and A. Tsuchiya, Realizing three generations of the Standard Model

fermions in the type IIB matrix model, JHEP 05 (2014) 131 [arXiv:1401.7848].

[29] M. Honda, Matrix model and Yukawa couplings on the noncommutative torus, JHEP 04

(2019) 079 [arXiv:1901.00095].

[30] K. Hatakeyama, A. Matsumoto, J. Nishimura, A. Tsuchiya and A. Yosprakob, The emergence

of expanding space–time and intersecting D-branes from classical solutions in the

Lorentzian type IIB matrix model, PTEP 2020 (2020) 043B10 [arXiv:1911.08132].

[31] H.C. Steinacker, Gravity as a Quantum Effect on Quantum Space-Time,

arXiv:2110.03936.

[32] T. Aoki, M. Hirasawa, Y. Ito, J. Nishimura and A. Tsuchiya, On the structure of the emergent

3d expanding space in the Lorentzian type IIB matrix model, PTEP 2019 (2019) 093B03

[arXiv:1904.05914].

[33] J. Nishimura and A. Tsuchiya, Complex Langevin analysis of the space-time structure in the

Lorentzian type IIB matrix model, JHEP 06 (2019) 077 [arXiv:1904.05919].

[34] G. Parisi, ON COMPLEX PROBABILITIES, Phys. Lett. B 131 (1983) 393.

[35] J.R. Klauder, Coherent State Langevin Equations for Canonical Quantum Systems With

Applications to the Quantized Hall Effect, Phys. Rev. A 29 (1984) 2036.

11

http://arxiv.org/abs/1208.0711
http://arxiv.org/abs/1511.06816
http://arxiv.org/abs/1808.07963
http://arxiv.org/abs/1003.4134
http://arxiv.org/abs/1002.2606
http://arxiv.org/abs/1107.0265
http://arxiv.org/abs/1710.11495
http://arxiv.org/abs/1011.1015
http://arxiv.org/abs/1401.7848
http://arxiv.org/abs/1901.00095
http://arxiv.org/abs/1911.08132
http://arxiv.org/abs/2110.03936
http://arxiv.org/abs/1904.05914
http://arxiv.org/abs/1904.05919


Euclidean and Lorentzian versions of type IIB matrix model Kohta Hatakeyama

[36] G. Aarts, F.A. James, E. Seiler and I.O. Stamatescu, Adaptive stepsize and instabilities in

complex Langevin dynamics, Phys. Lett. B 687 (2010) 154 [arXiv:0912.0617].

[37] G. Aarts, E. Seiler and I.O. Stamatescu, The Complex Langevin method: When can it be

trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360].

[38] G. Aarts, F.A. James, E. Seiler and I.O. Stamatescu, Complex Langevin: Etiology and

Diagnostics of its Main Problem, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270].

[39] J. Nishimura and S. Shimasaki, New Insights into the Problem with a Singular Drift Term in

the Complex Langevin Method, Phys. Rev. D 92 (2015) 011501 [arXiv:1504.08359].

[40] K. Nagata, J. Nishimura and S. Shimasaki, Justification of the complex Langevin method with

the gauge cooling procedure, PTEP 2016 (2016) 013B01 [arXiv:1508.02377].

[41] K. Nagata, J. Nishimura and S. Shimasaki, Argument for justification of the complex

Langevin method and the condition for correct convergence, Phys. Rev. D 94 (2016) 114515

[arXiv:1606.07627].

[42] Y. Ito and J. Nishimura, The complex Langevin analysis of spontaneous symmetry breaking

induced by complex fermion determinant, JHEP 12 (2016) 009 [arXiv:1609.04501].

12

http://arxiv.org/abs/0912.0617
http://arxiv.org/abs/0912.3360
http://arxiv.org/abs/1101.3270
http://arxiv.org/abs/1504.08359
http://arxiv.org/abs/1508.02377
http://arxiv.org/abs/1606.07627
http://arxiv.org/abs/1609.04501

	1 Introduction
	2 The type IIB matrix model
	2.1 Definition
	2.2 Equivalence between the Euclidean and Lorentzian models
	2.3 The time evolution

	3 Complex Langevin method
	3.1 Application of the CLM to the type IIB matrix model

	4 Results
	4.1 Expectation value of the time coordinate
	4.2 Time evolution of space

	5 Conclusions

