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We report the status of a high-statistics Monte Carlo simulation of non-self-avoiding crystalline surfaces with 
extrinsic curvature on lattices of size up to 1282 nodes. We impose free boundary conditions. The free energy is a 
gaussian spring tethering potential together with a normal-normal bending energy. Particular emphasis is given 
to the behavior of the model in the cold phase where we measure the decay of the normal-normal correlation 
function. 

1. I N T R O D U C T I O N  

In recent years there has been a lot of interest in 
the statistical mechanics of crystalline and fluid 
surfaces [1]. The former is believed to describe 
physical polymerized membranes [2] and the lat- 
ter may be a regularization of string theory. 

We focus our study on crystalline surfaces with 
bending rigidity embedded in R 3. It is conjec- 
tured that  this model has a second order phase 
transition driven by the competition between en- 
tropy and the bending energy [3]. The high tem- 
perature phase is characterized by crumpled con- 
figurations. In the low temperature phase the 
system is no longer isotropic and the surfaces are 
roughly flat. 

One may wonder what stabilizes the flat phase. 
The theoretical argument is that the in-plane 
elastic constants prevent the surface from fluc- 
tuating arbitrarily in the embedding space. This 
leads to an effective long wave stiffening of the 
surface [1,3]. 

The crumpling transition has been studied nu- 
merically with simulations explicitly incorporat- 
ing 2-d elastic constants [4-6]. There have also 
been simulations with a simple gaussian spring 
potential playing the role of the tethering poten- 
tial [7-12]. In both cases evidence has been pre- 
sented for a continuous phase transition. 

In the latter class of models the equilibrium 
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spring length is taken to be zero, and a simple 
calculation indicates that  the microscopic elastic 
constants vanish [13]. It is tempting to argue, 
therefore, that the flat phase of these models is 
not truly stable, even in the limit of large bending 
rigidity. 

Our ultimate aim is to carefully compare the 
behavior of the appropriate observables in the 
cold phase as a function of the equilibrium spring 
length. 

2. T H E  M O D E L  

Consider a system of particles connected to 
form a triangular 2-d mesh embedded in 3 di- 
mensions. Let each particle be labeled by an 
internal discrete coordinate system x = (xl ,x2)  
denoting its position on the mesh. Its actual po- 
sition in the embedding space is given by the 3 
dimensional vector r(xl ,X2).  The action has a 
tethering potential and a bending energy term. 
Our choice is to use simple gaussian springs be- 
tween the vertices as a tethering potential and a 
normal-normal interaction as the bending energy 
term. Therefore the action is 

S =  ~ - ~ ( / x x , ) 2 A - A Z ( 1 - f f ~ - f f Z ) .  (1) 
{x×'} (~p) 

Here the subscripts x, x' label the vertices and lxx, 
is the distance between the vertices x and x' in 
the embedding space. The subscripts ~, fl label 
the faces (triangles) of the surface, ff is the unit 
normal to the face and A is the bending rigidity. 
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The sums extend to nearest neighbours. Eq. 1 de- 
scribes phantom surfaces since it does not include 
self-avoidance. The surface is a rhombus with free 
boundaries cut out of a triangular lattice. In the 
case of a spring of length a, (lxx,) has to be re- 
placed by (lxx, - a). In this case our model would 
closely resemble the one of [4] discussed above. 

We focused our analysis on the following ob- 
servables: the specific heat, 

Co = V ((S~) - (So)~). (2) 

Here Se is the bending energy term considered 
above and V is the total number of vertices. 

The radius of gyration, 

1 
R~ = ~ ( ~ r , . r ~ ) .  (3) 

Here r~ is the position of the node i in the embed- 
ding space referred to the center of mass. This ob- 
servable measures the physical extent of the sur- 
face and its scaling behavior with system size de- 
fines the size (Flory) exponent u, via the relation 
R a c~ L ~. The exponent u is related to the Haus- 
dorff dimension dH via the relation u = 2/dH. 

The eigenvalues of the inertia tensor; these 
eigenvalues give information on the shape of the 
surface and how it scales with system size. They 
are obtained by diagonalizing the anisotropic part 
of the inertia tensor 

Aab = Z r'a(i)r~b(i) (4) 
i 

where a, b refer to the components of the vector 
r ] " 

The normal-normal correlation function, 

1 
G ( n )  = ( ~  ~ ( f ro .no)>.  (5 / 

t-I=n 

Here the sum extends to all triangles of the sur- 
face which have a geodesic distance R from the 
center of the surface O. The angle brackets rep- 
resent the Monte-Carlo average. 

3. T H E O R E T I C A L  P R E D I C T I O N S  

A self-consistent perturbation theory analysis 
of the continuum model [14] yields predictions for 
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Figure 1. The specific heat as a function of the 
bending rigidity. 

the critical exponents. The exponents of interest 
are the size (Flory) exponent u and the roughness 
exponent ~. The roughness exponent is defined 
by the scaling of the minimum eigenvalue of the 
inertia tensor (4), 

A c( L 2~. (6) 

At the critical point the theory predicts 
u = ~ = 0.732 while in the cold p h aseu  = 1 
and ~ = 0.59. 

As far as the normal-normal correlation is con- 
cerned the only analytical result is for A = 0 
(gaussian model). In this case the correlation 
function follows a decay law G(R) o¢ - 1 / R  4. 

4. N U M E R I C S  A N D  R E S U L T S  

We performed Monte-Carlo simulations of sys- 
tems of sizes 16 ~ to 128 e vertices. We used the 
single hit Metropolis algorithm. The largest lat- 
tice was simulated on a MASPAR MP1 massively 
parallel processor, while all other sizes were sim- 
ulated on workstations. We gathered statistics of 
the order of 30-50 × l06 sweeps per data point for 
the largest lattices (64 and 128). Our statistics 
are comparable for the smaller lattices. 
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Figure 2. The scaling of the radius of gyration 
squared with system size in the cold phase(A = 
1.1. The fit gives a value of u = 1.05(4). 

As can be seen in Fig. 1 the specific heat C~ 
shows a growing peak with system size. Presently 
our statistics are not yet sufficient to allow a re- 
liable est imate of the exponent a which charac- 
terizes the growth. Prel iminary fits indicate a 
value of a ~ 0.5 consistent with the value ob- 
tained in [10,11] using the same method.  Our best 
est imate for the critical value of the coupling is 
around A ~_ 0.79. Work is currently under way to 
gather bet ter  statistics and perform a Ferrenberg- 
Swendsen type analysis. 

Fig. 2 shows the radius of gyrat ion versus sys- 
tem size at a fixed value of A (1.1). The data 
fits well to a scaling ansatz with u = 1.06(4), 
as expected in the flat phase. In the crumpled 
phase the da ta  does not fit a power law behav- 
ior, indicating, as expected [4,5], a log-like scaling 
(dH = cx)). Our est imate of the critical coupling 
is not precise enough to allow for a fit to Rg at 
the transition. 

Figures 3 and 4 show the normal-normal  cor- 
relation around and above the phase transition 
respectively. Fig. 3 demonstrates  the effect of 
finite-size corrections to the value of the critical 
coupling. For the smaller volume L -- 32 the cor- 
relation decays to zero with r, but fits indicate a 
non-zero asymptot ic  value for L = 64. One possi- 
ble reason is that ,  due to the volume dependence 
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3. The normal-normal  correlation function 
0.8 (around the phase transition). 

of the pseudo-critical coupling, the smMler vol- 
ume is in the crumpled phase while the larger is 
in the cold (flat) phase. Note that  for large r the 
correlations will always decay to zero because of 
our choice of boundary conditions. This is a finite 
size effect and the da ta  close to the boundary has 
to be excluded from the fits. 

Figure 4 shows the correlation in the cold 
phase. The data for L = 64 fits well to a be- 
havior 

1 
G ( n ) ~ + b  (7) 

with a = 0.51(1) and b = 0.3(1). Da ta  for higher 
values of A and of the system size L show a con- 
sistent behavior. 

This is very i m p o r t a n t - - t h e  presence of a non- 
zero asymptote  for the normal-normal  correlation 
function indicates that  the normals remain or- 
dered on a macroscopic scale. 

This result supports the existence of a stable 
flat phase. Our present focus is on the precise 
nature of this phase; in particular we would like to 
know if there is a well defined roughness exponent 

and if so how it depends on the bending rigidity. 
The existence of a flat phase with a roughness 
exponent independent of A would indicate that  
the entire flat phase A > A¢ is critical and that  
this model is in the same universality class as [15- 
17]. 
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Figure 4. The normal-normal correlation function 
at A = 1.1 (in the cold phase). 

Another possibility is that the roughness expo- 
nent will depend on A. In this case the flat phase 
would still be stable but not critical. 

A possible interpretation of the stability of the 
flat phase is that the model discussed here dy- 
namically generates a non-zero length scale which 
can serve to define non-zero renormalized elastic 
constants. This simple model could then be used 
to study the properties of physical (polymerized) 
membranes in regimes in which self-avoidance is 
irrelevant. 
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