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We study with Monte Carlo methods an ensemble of ¢= —5 gravity graphs,
generated by coupling a conformal field theory with central charge c= —5 to
two-dimensional quantum gravity. We measure the fractal properties of the
ensemble, such as the string susceptibility exponent y, and the intrinsic fractal
dimension d. We find y,= —1.5(1) and dy=3.36(4), in reasonable agreement
with theoretical predictions. In addition, we study the critical behavior of an
Ising model on a quenched ensemble of the ¢= —5 graphs and show that it
agrees, within numerical accuracy, with theoretical predictions for the critical
behavior of an Ising model coupled dynamically to two-dimensional quantum
gravity, with a total central charge of the matter sector ¢ = —5.
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1. INTRODUCTION

Randomness in statistical systems arises in a variety of situations and is a
very rich and complex subject. Quenched randomness is frequently used in
studying the role of impurities and inhomogeneities in real physical systems
where the characteristic time-scale of the disorder is much longer than
other dynamics of the system. Annealed randomness, on the other hand,
arises naturally in studies of fluctuating geometries, such as two-dimen-
sional quantum gravity or fluid membranes, where the disorder is dynami-
cally modified by interaction between the geometry and matter fields living
on the surfaces.

For a statistical system coupled to random disorder, either in a
quenched or annealed approach, the main question is to assess the effect
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randomness has on the critical behavior of the pure system. One prediction
in this direction is the Harris conjecture!’) which states that randomness
changes the values of critical exponents only if the specific heat exponent
o of the pure system is positive. This conjecture has been studied in many
models with quenched disorder, such as the 2d Ising model® (where the
Harris criterion is ambiguous as «=0) and the Potts model.”® For both
models a change in the critical behavior is observed.

All the above mentioned studies deal with weak disorder. More
recently the critical behavior of systems on lattices with fractal structure
very different from a flat surface has been investigated. Such systems arise
naturally when matter, in the form of conformal field theories, is coupled
to two-dimensional quantum gravity. These models can be studied either in
a continuum formulation, by Liouville field theory, or using discretized
approaches like, for example, models of dynamical triangulations, for-
mulated either as matrix models or studied with numerical simulations. For
these systems the disorder is, however, different from the one discussed
above in that it is annealed, i.e., the models couple dynamically to fluctua-
tions in the geometry.

A remarkable degree of universality does emerge for models coupled
to two-dimensional quantum gravity. Namely, the change in the critical
behavior of the systems, and their back-reaction on the geometry, only
depends on the total central charge of the matter sector. This manifests
itself in the so-called KPZ scaling relation which describe how the scaling
dimensions of conformal operators are changed by the interaction with
gravity. Moreover, this universality also extents to the fractal structure of
the surfaces, from which we derive the string susceptibility exponent y, and
the fractal dimension dy.

In view of this universality it is tempting to conjecture that the critical
behavior of a particular system, when coupled to a fluctuating geometry,
only depends on the (average) fractal structure of the surface. Details of the
interaction between the system and the geometry, or the geometrical fluctua-
tions, are not important as such—they only serve the purpose of defining the
average fractal geometry. If this conjecture is true it implies that how the
average over disorder is performed, i.e., that the disorder is annealed, is not
essential. In particular, predictions of the KPZ scaling relation for the
change in the critical behavior should just as well apply to models with
quenched disorder, provided the quenched average is taken over the same
ensemble of disorder as is generated in the annealed approach.

There are some recent simulations that have addressed the question of
the critical behavior of spin models on a quenched ensemble of graphs
generated by two-dimensional quantum gravity. Both the Ising model®®
and the 10-state Potts model® have been studied on an ensemble of pure
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gravity graphs (¢ =0). For the Ising model a critical behavior compatible
with an Ising model coupled dynamically to gravity was found, although
the accuracy of the results is not sufficient to rule out the conjecture dis-
cussed above.

The goal of this paper is two-fold. First, we want to investigate the
fractal geometry of two-dimensional quantum gravity coupled to a confor-
mal field theory with central charge ¢ = —5. More precisely, we want to
determine the fractal dimension of the corresponding surfaces, using
recently developed finite-size scaling methods”® and to compare it to the
(contradictory) theoretical predictions that exist.*:'? Second, we want to
investigate the critical behavior of an Ising model on a quenched ensemble
of ¢ = —5 graphs and to compare it with predictions from Liouville theory,
for the critical behavior of an Ising model coupled dynamically to two-
dimensional quantum gravity. Our motivation for choosing ¢ = —5 is that
both its predicted fractal structure and the critical behavior of the Ising
model is substantially different from both a flat space and for a pure two-
dimensional quantum gravity. This makes these different critical behavior
easier to distinguish in numerical simulations.

The paper is organized as follows: In Section 2 we study the fractal
properties of a ¢ = —5 conformal field theory coupled to two-dimensional
gravity. We define the model in Section 2.1 and discuss the details of the
simulations in Section 2.2. In Sections 2.3 and 24 we present our
measurements of the string susceptibility exponent y, and of the fractal
dimension dy. And in Section 2.5 we comment on how this particular
ensemble of graphs differs from other types of graphs frequently used in
studying disordered system. The second part of the paper deals with an
Ising model on the ¢ = —5 graphs in a quenched approach. In Section 3.1
we discuss the prediction from Liouville theory for the critical behavior of
an Ising model coupled dynamically to two-dimensional gravity. In Sec-
tion 3.2 we discuss details of the simulations and the observables we use to
probe the critical behavior. In Sections 3.3 and 3.4 we determine the critical
temperature of the Ising model and the corresponding critical exponents.
Finally, in Section 4 we summarize and discuss our results.

2. GEOMETRICAL PROPERTIES OF ¢= -5 GRAPHS

2.1. Dynamical Triangulations Coupled to Scalar Matter Fields

The model we study, and use to define our ensemble of random sur-
faces, is a discretization of a free bosonic string theory embedded in
D-dimensions (for an excellent review see e.g., ref. 11). In the continuum
formulation (Liouville theory) the partition function of two-dimensional
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quantum gravity coupled to a conformal field theory, with central charge c,
is defined as

Z(ﬂ)=f<@[g] G eI EEVE— Sl ©) (1)

where g is the cosmological constant, the integration is over equivalence
classes of metrics [ g], and S,,(¢, g) is the matter Lagrangian. For a free
bosonic string, embedded in D-dimensions, S,,=(1/87) | d*¢ \/é g?0,X
9, X, where X are the embedding coordinates of the string.

Discretizing the model Eq.(1) using the simplicial gravity
approach,!? alias dynamical triangulations, the integration over metrics is
replaced by a summation over all triangulations 7" constructed by gluing
equilateral triangles together along their edges into a simplicial manifold of
a given topology.('? The discretized (grand-canonical) partition function
becomes

Z =Y e Y [dIx]o(xe,) e~ Z0 5 (2)

A Te{T}

where A4 is the area of the triangulation (number of vertices), x is the
embedding of a vertex in a D-dimensional space, and {ij) indicates that
the sum is over adjacent vertices in the triangulation. The center of mass
X, 18 kept fixed to eliminate the translational zero mode.

The integration over the Gaussian fields in Eq. (2) can be carried out
explicitly and the canonical (fixed area) partition function becomes

Zy= Y (detCyp)~PP (3)

TeT(A)

where C; is the adjacency matrix of the triangulation T:

qi if i=j
Cr=1 —c¢y if 7andjare adjacent (4)
0 otherwise

Here ¢, is the order of vertex i and c¢; is the number of edges connecting
the adjacent vertices i and j. Note that as we use degenerate triangulations,
which are defined below, there can be more than two edges connecting the
vertices i and j and the order of vertices is defined excluding self-loops. In
calculating the determinant of C; one vertex is excluded from the graph in
order to eliminate the zero mode.
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In the partition function Eq.(3) the embedding dimension D now
appears as a free parameter and is no longer restricted to positive integer
values. In particular, it can be taken to be negative; this corresponds to
coupling a conformal field theory with a negative central charge ¢=D to
two-dimensional gravity.

The sum over triangulations 7" in Eq. (2) is over an appropriate class
of triangulations 7 of area A and with fixed topology. Different classes
amount to different discretization of the manifolds. By universality
arguments different choices of 7~ should yield the same critical behavior as
long as they only differ at the level of the discretization. This statement is
known to be true for two commonly used classes of triangulations,
degenerate (7p) and combinatorial () triangulations. Combinatorial tri-
angulations are defined by forbidding self-loops (an edge starting and
ending at the same vertex) and vertices connected by more than one edge.
These pathologies are, on the other hand, allowed in the class of degenerate
triangulations. For these particular classes of triangulations the model
Eq. (2) has been solved for some special values of ¢.!*) This universality
holds even if curvature fluctuations of the triangulation, i.e., the vertex
orders ¢;, are maximally restricted, to ¢;=6 + 1, as shown by numerical
simulations."

Finite-size effects do, however, depend on the discretization; in par-
ticular, for degenerate triangulations they are substantially smaller (one
order of magnitude) than for combinatorial.'> In the work presented in
this paper we use degenerate triangulations of spherical topology.

It is possible to get some insight into the behavior of the model in the
limits D — + oo by looking at what triangulations dominate the sum in
Eq. (3)."® As the determinant of C is related to the number of spanning
trees on a particular graph, the graphs dominating in the limit D —» + o0
are those with a minimal number of spanning trees. This corresponds to
triangulations with a branched polymer structure. In the limit ¢ > — o0, on
the other hand, we expect the determinant C; to take its largest value for
triangulations with a maximal number of spanning trees. This implies that
the dominant triangulations in this limit will be flat with ¢, =6 (apart from
few defects ¢; # 6 needed to form a closed spherical surface).

2.2. Simulating a ¢= —5 Gravity Theory

We have studied numerically the partition function Eq. (3) for c= —5
using Monte Carlo simulations. The space of all triangulations is explored
using the so-called edge-flip algorithm"® in which an edge /,;, common to
two triangles 7, and f;;, is removed (or flipped) and replaced by the edge



326 Anagnostopoulos et al.

- This algorithm is known to be ergodic (for fixed area). Unfortunately,
the determinant in Eq. (3) corresponds to a non-local action making the
simulations very difficult. Every time a flip of an edge is proposed the whole
determinant has to be recalculated, an operation requiring on the order of
N? floating point operations. We can exploit the locality of the flip and
using standard techniques'” to reduce this to N2 floating point operations
per flip, but this still limited our simulations to triangulations consisting of
up to 1600 vertices. Nevertheless, those triangulations are considerably
larger than have been simulated before with this method."®

In the simulations we stored triangulations after every 10 to 20 Monte
Carlo sweeps, were each sweep consisted of flipping, approximately, an area
worth of edges. With the auto-correlations present, which are relatively
modest on such small surfaces, the stored graphs were more or less inde-
pendent. In Table 1 we show the total number of graphs we generated, and
analyzed, for each area.

2.3. The String Susceptibility Exponent y,

To determine the critical behavior of the model Eq. (3), with ¢ = —35,
we measured two critical exponents: the string susceptibility exponent y,
and the fractal or Hausdorff dimension . The latter will be discussed in
the next section, here we consider y,.

Table 1. The Number N, of
c¢= —5 Graphs of Area A
Generated by Simulating the
Model Equation (3)“

A N, N,
100 3000 200
150 3000
200 3000 200
300 3000
400 2000 130
600 2500
800 700 60
1200 196 178
1600 96 96

% Also shown is the number N, of dif-
ferent replicas (graphs), for each area,
on which we simulated the Ising model
(Section 3).
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The string susceptibility exponent is defined by the singular behavior
of the grand-canonical partition function Eq. (2) as the cosmological con-
stant u approaches its critical value:

Z() X Zyeg + (—p1)* 7 (5)
This implies that the canonical partition function behaves asymptotically as
Z(A) ~ e qn=3 Ao (6)

The value of y, can be calculated from the Liouville field theory:®
ys=1ale—1—=/(c=25)(c—1)) (7)

For ¢>1 this implies a complex critical exponent and the corresponding
theory is not well defined—this is related to the existence of tachyons in
string theories in embedding dimension larger than two. For ¢ <1, on the
other hand, the theory is well defined and, specifically, for c= —5 Eq. (7)
predicts y,= —1.618...

In order to measure y, for the ensemble of triangulations, generated in
our simulations, we study the distribution of so-called minbus (minimal
neck baby universes).("” A minbu is a part of the triangulation connected
to the rest through a minimal neck; for a degenerate triangulation a mini-
mal neck is simply a self-loop. By counting in how many ways a minbu of
size B can be connected to a surface of size (4 — B), the size distribution
of minbus can be written as:

()= B Z(B)(Az—(j)) Z(A— B)

~[(4—B)B]"? 9)

(8)

In the last step we have used the asymptotic behavior of the partition func-
tion, Eq. (6)—in this way the leading exponential behavior cancels out and
we can directly access the sub-leading corrections governed by y..

The distribution n,(B) is easily measured in numerical simulations
and vy, extracted by a fit to Eq. (9). In practice, though, one has to impose
a lower cut-off on the size of minbus included in the fit as there are finite-
size corrections to the asymptotic form Eq.(6). This can be done in a
systematic way; small minbus are thrown away in the fitting procedure
until one gets a stable value of y, and an acceptable y>-value for the fit.?®
Unfortunately, the large negative value of y, for the ¢ = —5 graphs makes
this measurements more difficult than for previously studied ensembles of
triangulations, as the distribution falls off very rapidly.
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We have measured y, for surfaces of area up to 300 vertices; for the
larger surfaces our statistics was not sufficient for a reliable determination
of the minbu distribution. Although these are very small surfaces, our
experience in measuring y, for other models of dynamical triangulations
shows that they are large enough, provided one is using degenerate tri-
angulations.”" In this particular case the lack of statistics is much more of
a problem than the smallness of the triangulations. But as determining y,
is of secondary interest for us, we did not deem it worthwhile to invest too
much CPU-power in increasing the statistics. We get the following values
of y,:

A Vs

100 —1.52(17)
150 —1.42(15)
200 —1.37(22)
300 —1.71(19)

Those values are in reasonable agreement with the theoretical value
y,= —1.618...

2.4. The Vertex-Vertex Correlation Function and d,,

Another exponent that characterizes the fractal structure of the sur-
faces is the (intrinsic) fractal dimension d. It can be defined from the
behavior of the vertex—vertex (or two-point) correlation function g 4(r):

1
eatr) = (Totd,—n ) (10)

T

where d;; is the (minimal) geodesic distance between two vertices 7 and j
and the statistical average is performed over all triangulations 7. This
correlation function simply counts the number of vertices (or the area of
the manifold) at a geodesic distance r from a marked vertex i, averaged
over all vertices i. We expect its short distance behavior to be g (r) ~
rfu=1 provided r << A",

On a triangulation we define the geodesic distance between two ver-
tices as the shortest path between them traversed along links. Alternatively,
one can define a triangle—triangle correlation function ¢ 4(r), analogous to
Eq. (10), in which case the geodesic distance is defined as the shortest path
between two triangles traversed through the center of triangles. Although
those two definitions will result in very different correlation functions for a
particular triangulation, they should define the same fractal dimension.
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To extract the fractal dimension from the measurements of the correla-
tion function Eq. (10) it is convenient to use methods of finite-size scaling.
Assuming that the only relevant length-scale in the model is defined by
A4, general scaling arguments”® imply that

galr) ~ A1~V F(x) (11)
where we have introduced the scaling variable

r

x:Al/dH

(12)

In fixing the prefactor in Eq. (11) we have used that Y, g ,(r) = 4.

In practice there are strong finite-size corrections to this scaling
behavior. The measurements of dy can be improved, considerably, by
including the simplest finite-size correction to Xx, i.e., by introducing the so-
called shift:®

r
x="1 (13)
where the shift parameter ¢ will in general depend on the particular observ-
able we consider. This scaling correction has been applied successfully to
all geometric and matter correlation functions, even with quite different
functional dependence on x.?V Its possible geometric origin has been
investigated analytically for ¢ =0 in ref. 22. The shift was also found and
calculated analytically in correlation functions on branched polymers
where it has been shown to contain the singularity responsible for the
crumpling phase transition.®

It is possible to generalize Eq. (10) to higher moments of the correla-
tion function. Introducing the loop-length distribution p ,(r,[), which
counts the number of loops of length / at geodesic distance r from a
marked vertex i, we define the k-th moment of / as1% 2122

P =1 pa(r.1) (14)

1

Note that g ,(r) =1%(r). On a triangulation loops are defined as a connected
(by links) subset of the vertices that are at distance r from i.* However, the

4In a similar way we can define a loop-length distribution for the triangles at a distance r from
a marked triangle. In that case we define a loop as a connected subset of triangles sharing at
least one vertex. If we define loops as triangles sharing at least one link, then those loops always
stay at the level of the lattice cut-off.
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generalization of the scaling hypothesis Eq. (11) is more subtle, as it depends
on how the boundary length / scales with the radius r.?? If we assume that
dim[ 2] = dim[ /] = dim[ A%¥9#], then we have for the moments:

1%(r) = A% Fi(x), k>1 (15)
Alternatively, if we assume that dim[/?]=dim[ 4] = dim[ %], we get:
15(r) = A¥2 Fy(x) (16)

Our measurements clearly favor the former scaling form Eq. (15); this is
compatible with results recently obtained for a ¢= —2 theory.®® This
implies, from dimensional analysis, that the boundary length / acquires an
anomalous scaling dimension with the area; at present the origin of this
behavior is still not understood. Note that in the only soluble case, ¢ =0,
both scaling forms agree.

We have measured the moments /% (r) for k <4, together with the tri-
angle—triangle correlation function ¢ ,(r). The scaling behavior, Egs. (11)
and (15), is analyzed by “collapsing” the distributions corresponding to dif-
ferent area onto a single curve. For this purpose it is convenient to inter-
polate between the (discrete) values of x—this we do using a cubic-spline
(see ref. 22 for details). The collapse depends on only two free parameters,
a and d;; their optimal values are determined by minimizing the y*-value
for the collapse, where the y2-value is defined by the difference between the
curves after rescaling. The results are shown in Table 2. We used triangula-
tions of area 200 to 1600 in the analysis; if we included smaller graphs it

Table 2. The Fractal Dimension d, for an
Ensemble of ¢= —5 Graphs Determined by
Collapsing the Correlation Functions /%(r) onto a
Single Curve Using the Scaling Forms (11) and
(15) and the Shift (13)“

15(r) k dy a

g4(r) 1 3.36(16) 0.6(6)
2 3.33(5) 0.4(3)
3 3.36(4) 0.4(3)
4 3.36(4) 0.4(3)

t4(r) 3.07(24) 2.4(1.6)

“The corresponding (optimal) value of the shift parameter
a is included. Graphs of area 200 to 1600 were included
in the analysis. The corresponding values for the triangle—
triangle correlation function 7 4(r) are also included.
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was not possible to get an acceptable y>-value for the fit. We observe, as
has been observed before,'”"® that the finite-size effects are considerable
bigger for the triangle—triangle correlation function. This is also reflected in
much larger value of the shift parameter a.

To demonstrate how good this scaling behavior actually is, we show
in Fig. 1 the scaled curves for the vertex—vertex correlation function g ,(r).
These curves have been scaled using d,, =3.36(4), the average value of the
fractal dimension from Table 2, and the corresponding value of the shift.
The quality of the scaling for the higher moments, and for 7 ,(r), is equally
impressive.

Finally, we look at the loop-length distribution p ,(r, /). Although, in
principle, it contains the complete set of informations about the moments,
it is not very convenient for extracting the fractal dimension. Nevertheless,
we demonstrate that its scaling behavior is consistent with the measured
fractal dimension. Since our measurements show that for the higher
moments / ~ ? (see Eq. (15)), i.e., the same behavior as for ¢ =0, we expect
that

palr, 1) = r?F (I/r?) (17)

We show an example of this scaling in Fig. 2. The relation Eq. (17) is, of
course, exact only for p_(r,[), as is the case for ¢=0,"" and finite-size
effects are expected for small //r>. The deviation from the above scaling
behavior is, in principle, determined by the scaling corrections Egs. (11)
and (15).¢D

[ 1 L L L
r
gA( ) d, = 3.36(4) —o— 100
1] a=056(6)
0.8 1 -
0.6 1 L
—a— 1200
0.4 ] —=— 1600
0.2 A1
0 T T T T
0 0.5 1 1.5 2

Fig. 1. The scaled vertex—vertex correlation function g',(r)=g(r)/A'~ "4 vs. the scaling
variable x = (r 4 a)/4"“n. The measured value of the fractal dimension d,;=3.36 and a shift
a=0.6 were used in the scaling.
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Fig. 2. An example of the scaling behavior of the loop-length distribution function p ,(r, /)
for 4 =1600. The distributions for different choices of / are re-scaled in accordance with
Eq. (17).

As we mentioned in the Introduction, there exist several theoretical
predictions for the fractal dimension for theories of two-dimensional quan-
tum gravity coupled to matter. Using string field theory, or a transfer
matrix approach, with a modified definition of a geodesic distance, one
gets:®)

2 24
dy=—=
7sl 1=+ /(25—¢)(1—c¢)

(18)

An alternative expression is obtained by studying the diffusion on the sur-
face, within the framework of Liouville theory:‘'?

dH=2><\/25_c+\/49_c (19)

J25—c+./1—c

These two analytical predictions disagree, except in the case of pure
gravity; the only case where an exact solution exist.** For ¢ =0 we have
dy=4, this value is also obtained in numerical simulations using the
scaling methods described above.”"® On the other hand, both Egs. (18)
and (19) disagree with the results of extensive numerical simulations of
conformal field theories with 0 <c¢ <1 coupled to gravity.”-®2>2" The
numerical simulations indicate that the fractal dimension is 4 independent
of the coupling to matter. In ref. 26, the discrepancy for ¢ =1/2—one Ising
model coupled to gravity—has been attributed to the subtlety in how the
continuum limit should be taken in this model. An alternative proposal has
been made in ref. 27 where the authors suggest that a different scaling
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variable, related to the size of clusters, should be used in the derivation of
Eq. (18) instead of the geodesic distance. It should be emphasized,
however, that the present numerical accuracy is not enough to rule out
completely the prediction of Eq. (19) for ¢ > 0.

The only model with ¢<0 where the fractal dimension has been
measured numerically is ¢= —2 or topological gravity.*? This is a very
special case were it is possible to sample the space of triangulations recur-
sively; this allows simulations of very large graphs (graphs of up to 8 x 10°
triangles were used in ref. 22). The measured fractal dimension in this case
is d;=3.58(4), which agrees very well with the prediction from Liouville
theory, Eq. (19): d;=3.561...

Our result for ¢ = —5, dy=3.36(4), also agrees reasonably well with
Eq. (19), which predicts d,=3.236... for ¢= —5, especially given the
smallness of our graphs. On the other hand, it completely rules out the
prediction of Eq. (18): dy~1.236. Although the value 3.36(4) is slightly
larger than predicted by Eq.(19), we notice that the fractal dimension
obtained using the triangle—triangle correlation function: d = 3.07(24), is
somewhat smaller. This effect was also noticed for the ¢ = —2 model where
the two values converged to Eq. (18) on larger graphs. This is what we
observe in our simulations as well.

2.5. Comparison with Other Random Lattices

The fractal structure of the ¢= —5 graphs differ substantially from
other types of random lattices frequently studied. An ensemble of random
lattices, commonly used in the study of quenched disorder, is Poissonian
random lattices. They are constructed by distributing vertices uniformly on
a two-dimensional manifold and link them together to form a triangula-
tion, usually following a prescription by Dirichlet and Voronoi.®

We have compared the properties of our ensemble of graphs to that of
Voronoi triangulations by looking at the probability distribution of vertex
orders p,. In Fig.3 we plot this distribution for the ¢= —5 graphs,
Voronoi triangulations, and, for comparison, pure gravity (¢c=0) and
branched polymer (¢ =5) graphs. As in all cases the distributions are for
triangulations, they all have the mean value p, =6, but in other aspects
they differ. The distribution for Voronoi graphs is peaked sharply around
the mean value and falls off rapidly as » increases. The pure gravity dis-
tribution peaks at the smallest possible curvature (n=1 for degenerate
triangulations) and falls off much slower. The distribution for ¢ = —5 lies
in-between, as could be expected from its fractal dimension.’

51t is worth noting that the fractal dimension alone is not enough to characterize the graphs.
For example, both a flat lattice and branched polymers have dy=2.
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pn —o— ¢ =-
—&— Voronoi
0.4 1 ——c=0 I
—a—c=5
0.3 A [
0.2 1 -
0.1 1 L
0 T 7
0 5 10

n

Fig. 3. The (normalized) curvature distribution p, for an ensemble of graphs corresponding
to 2d-gravity coupled to matter with ¢ = —5, 0 and 5, respectively, and for Voronoi triangula-
tions. The interpolating curves are just to guide the eye.

As Fig. 3 indicates, the randomness of the Voronoi triangulations is only
at the local level, their global fractal structure, defined by, for example, the
fractal dimension or the string susceptibility exponent, will be the same as
of the underlying two-dimensional flat lattice used in constructing them. In
this respect their randomness is only a (small) local perturbation around
the flat background. This is also reflected in that the critical behavior of
spin models on such triangulations is the same as for a flat lattice.*® This
is contrary to the other ensembles of graphs shown in Fig. 3, which have
a genuinely different global fractal structure.

It should also be emphasized that although local observables such as
p, reveal something about the randomness of the graphs, they are not a
universal property and not a good indicator for the critical behavior of the
corresponding model. Within the context of 2d gravity the local properties
of a given model can be changed by adding an irrelevant operator to the
action in Eq. (2); for example, a term that couples to the local curvature.
But, except in extreme cases, this modification does not affect the critical
behavior of the model.!'* 3%

It is, however, possible to change the global fractal properties of the
graphs defined by the 2d-gravity model Eq. (3) by adjusting the embedding
dimension D. In particular, by taking D negative we can create an ensemble
of triangulations with any fractal dimension between 2 and 4. This makes
the model of Eq. (3) ideal for investigating how the fractal properties, like
the fractal dimension, affect the critical behavior of a spin model living on
the graphs. As will be demonstrated in the next section, in the case of the
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Ising model this results in critical exponents that are radically different
from those of the Ising model on a flat lattice.

3. THE ISING MODEL ON ¢= -5 GRAPHS

3.1. Predictions from the Continuum

In this second part of the paper we investigate how the critical
behavior of an Ising model is modified when it is defined on a quenched
ensemble of ¢ = —5 graphs. In the annealed case coupling a conformal field
theory to 2d-gravity results in dressing the dimensions of primary operators
of the theory. The dressed weights are given by the KPZ formula.*¥ From
those weights one can calculate the new critical exponents. As a dynamical
triangulation, the only case that has been solved explicitly is the one Ising
model coupled to gravity, formulated as a two-matrix model.!* In that
case the phase transition changes from second to third order and the criti-
cal exponents agree with the ones calculated using the KPZ formula.

All these calculations are, as emphasized above, for the Ising model on
an annealed ensemble of graphs. Now the conjecture, discussed in the
Introduction, is that the interaction between the Ising model and the
geometry is not important; the critical behavior is simply determined by
the average fractal structure of the triangulations. This implies that we can
also use the KPZ formula to calculate the critical behavior for an Ising
model on a quenched ensemble of graphs, provided they define the
appropriate fractal structure. If the conjecture is true the critical behavior
of an Ising model on a quenched ensemble of ¢ = —5 graphs is the same
as that of the Ising model coupled dynamically to gravity with additional
¢= —11/2 conformal field coupled to it.

Given a primary operator of conformal weight 4° in the original
theory, the KPZ formula gives its conformal weight after coupling to
gravity:

0
Azzx\/l—c+12A —J/1—c (20)

NG Eray

For the Ising model the relevant operators are the energy density ¢ and the
spin o; from the conformal weight of those operators we can calculate the
specific heat exponent « and the magnetization exponent f:

a:z; and p=-——2 (21)
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In flat space the conformal weights of the Ising operators are: 4%=1 and
A%2=1/8; hence the KPZ formula, together with Eq.(21), predicts o~
—0.452432 and f~0.234186 for an Ising model on ¢ = —5 graphs. The full
list of exponents is shown in Table 5. As those exponents are very different
from both the Ising model exponents on a flat lattice (the Onsager
exponents) and coupled dynamically to pure gravity (both sets of
exponents are included in the table) it should be relatively easy to dis-
tinguish them in numerical simulations.

3.2. The Ising Model Simulations

We have simulated the Ising model for several independent replicas of
the ¢ = —5 graphs we generated. We did this for graphs of size 100, 200,
400, 800, 1200 and 1600 vertices—for the number of replicas we sampled
see Table 1. We use the standard definition of the Ising model:

Zing(T) = 3, e =% (22)
{a}

where o, = +1 and <{ij) denotes adjacent vertices in the graph 7. The Ising
spins are placed on the vertices of the graphs; alternatively they could be
put on the triangles, but based on duality arguments we would expect the
same critical behavior (this is the case for an Ising model coupled dynami-
cally to 2d-gravity'®). Naively, one might expect that placing the spins on
the triangles was preferable as for a graph of a given area this yield twice
as many spins. But as the finite-size effects are dominated by the geometry
not the number of spins this not the case. In fact, it would only increase
the computational efforts in updating the spin configuration.

We simulated at several values of the inverse temperature f=J/kzT
for fe€[0.15,0.25]. A Swendsen—-Wang cluster algorithm was used to
update the spin configuration and typically about 200.000 measurements
taken at each f value; the measurements were separated by 10 to 20 cluster
updates. For each measurement we stored the total energy of the system,
E=3 ;5 0,0;, and the magnetization, M =3, o;; all other observables can
be constructed from the those two. To interpolate between measurements
at different temperatures we used standard multi-histogram methods.*"

All observables ¢ were calculated for each replica independently and
the average over the different replicas r performed afterwards:

]
T1=— Y0 2
0=+ 0 (23)

ror
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This is in accordance with the philosophy that the quenched average
should be performed at the level of the free energy, not at the level of the
partition function.®® The error on @ is estimated by a jackknife analysis
over different replicas.

To analyze the critical behavior of the Ising model we constructed
several standard observables. In addition to the energy density {e) and
magnetization {(m) per vertex we considered:

C,=B*A({e*y —ed?) ~rco+c A (specific heat)

7 =A(m?*> —{md?) ~ A" (magnetic suscept.)
4 (24)
U,= % R Ch (Binder’s cumulant)
(et
vV, :W (energy cumulant)
together with the various derivatives of the magnetization:
d{|m
D, = <(|1ﬁ|> =A(Cey{my —<e|m|)) ~ A" =P
d In{|m| Celm|) .
] G o R
(25)
d In{m? em?
Dlnmzzjﬁ>=/1 <<e> —<<m2>>>~A““’H
_dUA_ {m?e) <m4e>> 1/vd
Dy, = a7 =A(1 UA)<<e> 2 S +<m4> ~ A

In Egs.(24) and (25) we have included the expected finite-size scaling
behavior. For some of the observables this scaling behavior applies both at
the infinite-area critical temperature . and to the scaling of their extremal
values.

3.3. The Critical Temperature B,

To determine the critical temperature f. we use that the pseudo-criti-
cal temperature f.(A), defined by the location of peaks in the different
observables, approaches the infinite-area value like:

Co

Bl = e+, (26)



338 Anagnostopoulos et al.

The observables we have used for this purpose are: C,, 7, D,
Dia > Dinne2» and Dy, all of which have well resolved peaks. An example
of this is shown in Fig. 4 were we plot the specific heat and the magnetic
susceptibility. In the figure the curves shown are the averages over different
replicas of the model, Eq. (23). To determine f.(A), and to estimate the
corresponding error, we locate the peaks on each replica independently and
then take the averages over the replicas. In the infinite-area limit, were one
expects the triangulations to become self-averaging with respect to the frac-
tal structure, the distribution of f’(A4) should approach a delta-function

CA —o— 100
0.8 —8- 200

0.7 4
0.6 4
0.5 ]
0.4 4

0.3 3

0.2 T T T T
0.16 0.18 0.2 0.22 0.24 ,B

x —— 100
30 1
20 A

10 1

0 T T T
0.16 0.18 0.2 0.22 0.24 ﬁ

Fig. 4. (a) The specific heat C, for an Ising model on an ensemble of quenched ¢= —5
graphs. (b) The corresponding magnetic susceptibility y. For both observables the curves, for
each area A, are the averages over different replicas and the errors (dashed lines) are
estimated using jack-knifing over replicas.
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p r L ' L L L . L
ﬁc —o— 100
—a- 200
200 A —o— 400 |
—a— 800
—e— 1200
150 4 —a— 1600
100 4 +
50 - -
0 T T T T T T T
0.22 0.23 0.24 0.25 ﬁ

Fig. 5. Fits of the (normalized) distributions of the pseudo-critical temperature f’(A) to a
Gaussian distribution: p(f") = a exp(— (% — f.)?/b). This is for ’(A4) defined by peaks in the
specific heat C’;, for an Ising model simulated on different replicas r of ¢ = —5 graphs. Note
that the symbols are only to identify distributions corresponding to different area.

centered at f.. This we demonstrate in Fig. 5 where we show the (nor-
malized) distributions of pseudo-critical temperatures p(£”); in this case for
the specific heat. And, indeed, the distributions get narrower as the area is
increased. Similar behavior is observed for the other observables.

The fit to Eq.(26) is made considerably easier by an independent
determination of the critical exponent vd,. The peak values of the

0 0.04 0.08 0.12 0.16 L4
H

Fig. 6. Scaling of the pseudo-critical temperature f.(A4) vs. the scaled area 4~ '/"n, using

vd; =2.464. This is shown for all the different observables we considered. The approach to the
(infinite-area) critical temperature £, is demonstrated by a linear fit to Eq. (26) (excluding the
smallest system size).
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derivatives Dy, s, Dy 2, and Dy, all scale like 4. We have used this
to determine vdy by a linear fit; those exponents are shown in Table 4 and
the corresponding fits in Fig. 6. To demonstrate the finite-size effects we
have done the fits with both A4,,=100 and 4,,=200 as the smallest area
included in the fit. Although the exponents are not substantially altered by
excluding graphs of area 100, for most observables the y*-value of the fit
is, however, unacceptably large if they are included.

Using the average value vdy,;=2.464(19), we obtain the critical tem-
perature from a linear fit to Eq. (26). The result, for the different observables
we considered, is shown in Table 3. This yields the average value f,=
0.2187(9) (using A4,,, =200).

3.4. The Critical Exponents

We then proceed to determine the critical exponents of the model by
fitting the different observables to their expected finite-size scaling
behavior, Egs. (24) and (25), both at the critical temperature and, were
appropriate, also their peak values. The exponents, obtained from those
fits, are collected in Table 4.

The exponents have been determined both for A4,,=200 and 400,
except for the specific heat which is the most difficult quantity to analyze.
It requires a nonlinear 3-parameter fit to the scaling behavior Eq. (24) and,
in addition, as it does not diverge for this particular model the regular

Table 3. The Critical Temperature B, for the Ising Model on ¢= —5 Graphs
Determined from the Scaling of the Location of Peaks in the Different
Observables*

A e {100, 1600} A €e{200, 1600}

g Be 7 Be 7

Cy 0.2153(15) 19 0.2140(17) 79

Vi 0.2197(11) 6.7 0.2197(16) 7.9

U, 0.2233(12) 5.6 0.2214(10) 2.1

D m) 0.2187(5) 1.3 0.2183(7) 0.8

| D I 0.2188(7) 45 0.2186(10) 4.0

Dy 0.2184(5) 0.3 0.2185(4) 0.1

U, 0.2188(22) 15 0.2200(13) 2.0
Average 0.2188(9) 0.2187(9)

¢ This is for both 4,,=100 and 200 as the smallest area include in the linear fit to Eq. (26).
Also included is the y2-value (per d.o.f.) for the fits.
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Table 4. The Critical Exponents of the Ising Model on a Quenched Ensemble
of ¢= -5 Graphs Determined from the Scaling of Various Observables Both at
the Critical Temperature B,~0.2187 and, Where Appropriate, of Peak Values”

(A) Scaling of peaks (B) Scaling at f,

a A4,=200 7> A,=400 A4,=200 ;> A,=400 z*

vy  Dp  2414(20) 78 2469(37) 23 2413(15) 1.0 2451(28) 04
Dy,2  240523) 94 2456(23) 13 2399(22) 24 2431(35) 09

Dy, 2591(43) 24 2528(72) 1.7 250(12) 43 245(11) 33
Bivdy  |m| 0.1055(34) 3.0 0.1006(67) 0.5

D, 0.1001(69) 1.3 0.1070(58) 0.1 0.0967(52) 2.5 0.1064(79) 1.0
dy 7 0.7966(31) 2.9 0.7922(99) 2.6 0.7825(57) 6.8 0.7958(146) 4.0
aivdy  C, —0.266(90) 0.7 —0269(78) 0.4

¢ Graphs of area 4 > 4,,, with 4,, =200 and 400, are included in the fits to Eqgs. (24) and (25)
(except for C, where it was not possible to obtained a reliable fit if area 200 was excluded).

background term is all the more important. Thus we could not get a stable
fit if we excluded graphs smaller that 400 and, as is apparent from the
quoted errors, the estimate of this exponent is the least reliable. On the
other hand, for the other exponents, most determined from more that one
observable, we get very consistent estimates. In all cases graphs of area 100
had to be excluded in order to obtain an acceptable fit.

Although the triangulations we have employed in this study are smaller
than those usually used in simulations of two-dimensional gravity—due to
the difficulty in simulating the non-local action Eq. (3)—this is to a large
extent compensated by a smaller fractal dimension, which sets the relevant
length-scale that controls the finite-size effects. Hence we are able to obtain
reliable estimates of the critical exponents, even from graphs of such
modest size.

We have collected in Table 5 our numerical estimates of the exponents
of an Ising model on a quenched ensemble of ¢= —5 graphs. The
exponents shown are a weighted average over the values in Table 3 (corre-
sponding to 4,,=400). For comparison, we also included in the table the
critical exponents for the Ising model on a flat lattice (the Onsager
exponents), for the Ising model coupled dynamically to gravity (¢ =1/2),
and for the Ising model coupled dynamically to gravity and conformal
matter with central charge c,,= —11/2 (or ¢= —5). Comparing those
exponents it is clear that our result agrees very well with the last set of
exponents. That the critical behavior agrees so well with the predictions
from the KPZ scaling relation for ¢= —5 matter coupled to gravity,
strongly supports our conjecture about the effect of disorder on the critical
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Table 5. The Critical Exponents of the Ising Model on a Flat
Two-Dimensional Lattice (the Onsager Exponents) and
Coupled Dynamically to 2d Gravity Both for ¢=1/2 and ¢= -5“

vdy a/vdy Bivdy y/vdy Vs dy
Onsager 2 log 0.0625 0.875 — 0 2
c=—5 2452... —0.184... 0.0955... 0.809... —1.618... 3.236...
c=1/2 3 —0.333... 0.1666... 0.666... —0.333... 4042

Quenched 2464(19)  —027(8)  0.105(4) 0.793(8) —15(1)  3.36(4)

¢ This is compared to the results of our simulations for the Ising model on a quenched ensem-
ble of ¢ = —5 graphs. Also shown are the corresponding exponents for the fractal structure
of the graphs: y, and dy.

behavior. That is, the dynamical interaction between the matter and the
geometry is not important as such, only that they result in a well defined
(average) fractal structure for the surfaces.

4. DISCUSSION

The main results of the work presented in this paper can be sum-
marized as follows:

(a) The fractal dimension of surfaces, defined by a conformal field
theory with central charge ¢= —5 coupled to two-dimensional quantum
gravity, is d; = 3.36(4). This is in reasonable agreement with, and supports,
the theoretical prediction Eq. (19), whereas it definitely rules out Eq. (18).

(b) The critical behavior of an Ising model on a quenched ensemble
of ¢ = —5 graphs agrees well with the predictions, from the KPZ scaling
relation, for an Ising model on an annealed ensemble of graphs with identi-
cal fractal properties.

The first result, especially combined with the recent simulations of
2d-gravity for ¢ = —2,*» lends a strong support to Eq.(19) as a correct
description of the fractal structure of two-dimensional quantum gravity for
¢ <0. This makes, however, its disagreement with numerical simulations in
the region 0 <c¢<1 all the more surprising. What is it in derivation of
Eq. (19) that breaks down for ¢ >0? Or are the simulations dominated by
finite-size errors and simulations of larger systems will eventually agree
with Eq. (19)?
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The result for the Ising model is even more interesting. As the theoreti-
cal predictions, obtained for an Ising model coupled dynamically to the
disorder, agree with our numerical estimate of the critical exponents, our
results are consistent with the conjecture put forward in the Introduction
that the only thing relevant for the critical behavior of the Ising model are
the average fractal properties of graphs the spins “see.” We emphasize,
however, that this statement is based on a numerical investigation and as
such is only valid, of course, within the given numerical accuracy; agree-
ment with Ising models coupled dynamically to other systems with central
charge ¢, in the vicinity of —5, are not ruled out. Further analytical or
numerical investigations are needed to corroborate the conjecture.

It is also worth noting that we can continuously change the average
fractal properties of the graphs by changing the embedding dimension D in
Eq. (3). This allows a continuous interpolation between a flat surface and
surfaces corresponding to pure gravity. If the prediction of Liouville theory,
the KPZ formula, holds for all those models, this implies that the critical
behavior of the Ising model should change continuously in the process. In
the language of the renormalization group this implies a continuous line of
fixed points, rather than isolated points. There are well known examples of
this; the low-temperature phase of the two-dimensional XY-model or the
critical line of the Ashkin-Teller model. But is this statement also true for
very weak disorder? If we change the fractal dimension infinitesimally, from
2 to 2+¢, is that enough to change the critical behavior of the Ising
model? Or, alternatively, does there exist some central charge ¢’ < — 5 were
the geometrical disorder is not strong enough and we always get the
Onsager exponents? This point deserves further study.

One could also look at the examples of weak disorder that have been
studied recently, for example the site or bond-diluted Ising model, and ask
if that kind of disorder can also be classified according to some average
fractal properties of the lattices. And, moreover, if one could observe some
kind of universality in the critical behavior, depending on the fractal struc-
ture, akin to what we have presented in this paper.

In view of how dramatically the critical behavior of the Ising model
changes on surfaces with such strong disorder, one might ask if such
change could be observed in real physical systems. Possible candidates for
such systems could be, for example, electrons trapped on the interfaces
between two liquids, or on the surface of some porous material, were the
surfaces had some well defined non-trivial fractal structure. As our results
indicate, it is only the average geometry of the surfaces that is important
for the Ising model, not its fluid nature or curvature fluctuations. Thus the
relative time-scale between the interactions of the particles and the change
in the geometry should be irrelevant.
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