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In two space-time dimensions, there is a theory of Lorentzian quantum gravity which can be defined by a rigor- 
ous, non-perturbative path integral and is inequivalent to the well-known theory of (Euclidean) quantum Liouville 
gravity. It has a number of appealing features: i) its quantum geometry is non-fractal, ii) it remains consistent 
when coupled to matter, even beyond the c=l barrier, iii) it is closer to canonical quantization approaches than 
previous path-integral formulations, and iv) its construction generalizes to higher dimensions. 

1. MOTIVATION 

The ultimate aim of the work described below 
is to learn more about four-dimensional quan- 
tum gravity by relating non-perturbative canon- 
ical and covariant approaches, which so far have 
not been successful separately. 

By ‘covariant’ we do not mean semi-classical 
gravitational path integrals, but genuine “sums 
over all metrics”, which usually involve a dis- 
cretization of space-time. A prototype of this 
ansatz is quantum Regge calculus. With the help 
of numerical simulations, one tries to find a non- 
trivial fixed point and an associated continuum 
theory of quantum gravity. A great deal of nu- 
merical expertise has been gathered in the ap- 
proach of dynamical triangulations, a recent vari- 
ant of the Regge method. Unfortunately, all in- 
vestigations so far have concentrated on path in- 
tegrals for unphysical space-time metrics of Eu- 
&dean signature. Unlike for some fixed back- 
ground metrics, there is no prescription of how 
to “Wick-rotate” a general Euclidean metric to 
Lorentzian signature. 

On the other hand, a lot of progress has been 
made in the last ten years in an analytic formula- 
tion of canonical quantum gravity based on a re- 
formulation in terms of gauge-theoretic variables, 

called “loop quantum gravity”. Although u pri- 
ori based in the continuum, the quantum theory 
has a number of discrete features reminiscent of a 
generally covariant version of a lattice gauge field 
theory. However, in this approach some basic 
obstacles remain in defining a satisfactory quan- 
tum Hamiltonian evolution, and efficient numer- 
ical methods have not yet been developed. 

It is tempting to try to combine the positive 
aspects of both approaches, but one soon real- 
izes that in order to relate the two, a number of 
technical and conceptual difficulties have to be 
overcome. To narrow this gap, we want to de- 
fine a Lorentzian path integral where individual 
regularized space-time geometries in the sum are 
required to be causal, reflected in a local “light- 
cone structure” and the absence of closed time- 
like curves. It should be appreciated that it is 
relatively easy to write down Feynman sums of 
amplitudes 

c e 
&Sinstein (1) 

7 (1) 
causal geometries {I} 

but that it is very hard to construct concrete 
models with a suitable regularization, such that 
the sum can be performed and leads to a non- 
trivial continuum theory. 
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2. AN IDEAL TESTING GROUND: d=2 

The difficulties associated with defining the 

sum (1) can be overcome, at least in dimension 
d = 2. There exists already a rigorous discretized 

path integral for Euclidean geometries, obtained 
by the method of dynamical triangulations, where 

the path-integral sum is performed over all pos- 
sible triangulations T (i.e. gluings of equilat- 
eral triangles). The 2d gravity action for fixed 

space-time topology reduces to the cosmological- 

constant term 

S=X d2z,/m, 
s 

(2) 

for both Euclidean and Lorentzian metrics gPV. 
After the discretization, this term becomes pro- 
portional to AN(T), with N(T) counting the 

number of triangles contained in T. The Eu- 
clidean state sum is given by 

Z”“(X) = Ce-xlvZe”(N) = Ce-“” C 1. (3) 
N N T(N) 

With the help of ingenious combinatorial meth- 

ods the counting of all triangulations T(N) of vol- 
ume N in the sum on the right can be done ex- 
plicitly. Moreover, there is good evidence that the 

method is diffeomorphism-invariant, since it re- 
produces the results of continuum Liouville grav- 
ity in the continuum limit. How can this frame- 

work be adapted to the Lorentzian situation? 
We have substituted the fundamental equilat- 
eral building blocks (with squared edge lengths 

a2 = 1) by triangles with two time-like edges with 
a2 = -1 and one space-like edge with a2 = 1 [l]. 
To obtain allowed histories, these must be glued 

causally: consecutive spatial slices (consisting en- 
tirely of space-like edges) of variable length I are 
connected by sets of time-like edges. For simplic- 

ity, these slices are compactified to circles S1. A 

typical triangulated 2d Lorentzian geometry of t 
time-steps (t pointing up) is depicted in Fig.1. 
Note that the local geometric degrees of freedom 
(apart from the edge lengths) are encoded in the 
variable coordination numbers of edges meeting 
at vertices, giving a direct measure of curvature. 
It turns out that also in this discrete Lorentzian 
model, the combinatorics can be solved explic- 
itly and yields the Lorentzian analogue Zlor (X) of 

f 

Figure 1. A typical triangulated 2d Lorentzian 

space-time (of topology [0, l] x 9). 

(3). The partition function exhibits critical be- 

haviour as X + &it, where a continuum limit can 
be taken. After appropriate renormalization, one 
obtains a new quantum gravity theory inequiva- 

lent to Liouville gravity. It is rather surprising 
that there is a second universality class of models 
describing fluctuating two-geometries! 

The central dynamical quantity of the theory 
is the continuum propagator GA (LI, L2; T). It 
describes the transition from an initial spatial ge- 

ometry of length LI to a final one of length LZ in 
proper time T and takes the form [l] 

GA(J%, ~52; T) = e - coth(aT)fl(&+&) 

x xmmi Il 

sinh( fiT) c (4) 

where 11 denotes the modified Bessel function. 

In order to illustrate our claim that the 
Lorentzian quantum gravity theory differs from 

Liouville gravity, let us look at the behaviour of 

a simple observable. A good example is the so- 
called Hausdorff dimension dH, which contains in- 

formation about the bulk properties of the quan- 
tum geometry in the ground state of the theory. 
It is measured by looking at the volume V -@H 
of geodesic balls (discs in dimension 2) of radius 
T. Liouville gravity has a fractal Hausdorff dimen- 
sion dH = 4. This may be surprising at first, but 



R. Loll et al. /Nuclear Physics B (Proc. Suppl.) 88 (2000) 241-244 243 

has to do with the fact that the dominant contri- 

butions to the path integral are highly branched 

geometries, with many “baby universes”. By con- 
trast, in the Lorentzian theory we have dH = 2, 

which is the “canonical” dimension expected from 
naive semi-classical considerations. The differ- 

ence arises because there are no baby universes in 
Lorentzian gravity. At a point where a baby uni- 
verse branches off, the Lorentzian metric struc- 

ture must inevitably go bad, thereby violating 
causality. This also implies that in Lorentzian 

gravity the topology of the spatial slices cannot 
change. Note that this is exactly the situation 

described by canonical approaches to gravity. 

3. COUPLING MATTER TO LOREN- 
TZIAN GRAVITY 

The discussion of the previous section suggests 

that the geometry of Lorentzian quantum grav- 
ity is “better” behaved than its Euclidean coun- 
terpart. This is also illustrated by Fig.1 (taken 
from a Monte Carlo simulation of pure Lorentzian 
gravity). In spite of strong fluctuations (Al) of 
the length of spatial slices, the geometry is still 
effectively two-dimensional. The geometry of the 
Lorentzian model therefore lies somewhere in be- 

tween the wildly fluctuating and fractal quantum 
geometry of the Liouville model and that of a 
fixed classical two-dimensional space-time. 

It is an interesting question how matter will be- 
have under coupling to the Lorentzian model. To 
investigate this issue, we have considered a model 

of Ising spins with nearest-neighbour interaction. 
Coupling this to Euclidean dynamical triangula- 

tions yields an exactly soluble model of Euclidean 
gravity plus matter. Its matter behaviour is gov- 
erned by the critical exponents 

o=-1, p=o.5, y=2, (5) 

characterizing the singularity structure of the spe- 

cific heat, the spontaneous magnetization, and 
the magnetic susceptibility as functions of the 

bare Ising coupling constant PI. This should be 

contrasted with the Onsager values of these expo- 
nents found on fixed, flat lattices, which are given 

by 

o = 0, /3 = 0.125, y = 1.75. (6) 

The partition function for Lorentzian gravity 

coupled to Ising spins pi = f 1 is the sum 

2(&P,) = Ce-“” C ZTV)(PI), (7) 
N l’(N) 

where the partition function &(pI) of the Ising 

model on the Lorentzian triangulation T is 

We have investigated this model by means of a 

high-T (that is, small inverse temperature /?I) 
expansion and by Monte Carlo simulations [2]. 

An exact solution has not yet been constructed. 
Note that eq. (7) describes the Euclidean sector 
of Lorentzian gravity plus matter, i.e. with real 
weights and therefore Euclidean values for the 
coupling constants. This is the form suitable for 

numerical simulations. What we have found is 
that both methods agree with good precision in 
their estimates of the critical matter exponents, 

which turn out to be the Onsager exponents. The 
Hausdorff dimension of the geometry is unaltered, 
dH = 2, and the typical Monte-Carlo-generated 
geometries look qualitatively similar to the ones 
in pure gravity. There are effects of the gravity- 

matter coupling at the discretized level, for exam- 

ple, on the distribution of coordination numbers, 
but we have not investigated whether this is re- 

flected in a change of universal properties of the 

geometry that would survive in the continuum 
limit. 

4. COUPLING MORE MATTER 

The previous picture is changed drastically 

when several Ising models instead of one are cou- 
pled to Lorentzian gravity. For the case of n Ising 
models, the partition function (7) is replaced by 

2(X, Pr) = C eeXN C z$cNj (PI). (9) 
N T(N) 

At the critical point, this model describes a con- 

formal field theory with central charge c = n/2 

coupled to gravity. Our motivation for coupling 
more matter is the fact that Euclidean 2d grav- 
ity becomes inconsistent for n > 2, that is, be- 
yond the so-called c = 1 barrier. In the pres- 
ence of Ising spins it is energetically favourable 
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to have short boundaries between regions of op- 
posite spins. In a theory of fluctuating geometry 
the effect of the spins is to try and “squeeze off’ 
parts of the space-time manifold. In Euclidean 
gravity, where the geometry is very branched to 
start with, this mechanism seems to be so effec- 
tive that for n > 2 the theory seizes to make 
sense. 

In order to get a clear picture of what goes 
on “well beyond the c = 1 barrier” in Lorentzian 
gravity, we have investigated its properties at 
n = 8 by numerical simulations [3]. One observes 
a very strong interaction of gravity and matter, 
to the extent that the geometry is now in a dif- 
ferent phase from before: time and space direc- 
tions acquire an anomalous relative scaling and 
the Hausdorff dimension is changed to dH = 3! 
This is illustrated by Fig.2. The effect of the 
matter on the geometry is reflected in the pres- 
ence of the long, stalk-like part of the space-time, 
which is effectively one-dimensional. All interest- 
ing physics (that survives the limit as N -+ 00) 
happens in the extended bulk phase. However, in 
spite of these drastic changes in the geometrical 
properties, we have found that the critical matter 
exponents retain their Onsager values! 

5. CONCLUSIONS 

There are a number of lessons to be learned 
from this two-dimensional model of quantum 
gravity. The choice of Lorentzian over Euclidean, 
which in our case consisted in the imposition of 
a causality condition on individual path-integral 
histories, made a big difference. In two dimen- 
sions, it led us to the discovery of a new univer- 
sality class of quantum gravity models, besides 
that of Liouville gravity. In Lorentzian gravity, 
the quantum geometry is much smoother, and 
better behaved in the sense that one can cross 
the infamous c= 1 barrier without any problems. 
Conversely, the coupled model with eight Ising 
models illustrated that the matter behaviour is 
rather robust: the geometry can undergo drastic 
changes without the critical matter behaviour be- 
ing affected. From this we also learn that Onsager 
exponents by no means imply that the underlying 
space-time is flat. 

Figure 2. Lorentzian gravity coupled to 8 Ising 
models (N=18816, t=168). 

The difference between the Euclidean and 
Lorentzian theories can be traced entirely to the 
presence of branchings or baby universes [1,3]. 
Since this is a purely kinematical effect which has 
to do with an a prior+ restriction on the sum-over- 
geometries, it will be present in higher dimensions 
as well. To date, the problem with dynamically 
triangulated path integrals for Euclidean geome- 
tries in d > 2 has been the dominance of highly 
degenerate geometries, including a proliferation 
of baby universes. Our hope is that also in these 
cases a causality requirement will lead to an effec- 
tive “smoothing out” of the quantum geometry. 
An investigation of the case d = 3 is under way. 
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