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1. Introduction

One Matrix Models are quantum mechanical systems whose partition function is de-

fined by an integral of the form:
N
Tng = / AM exp{~2 ¥ (M)} (1)

where M is an N x N matrix and the potential V(M) is a polynomial in M. In the last few
years, there has been tremendous progress [1-4] in matrix models through the discovery of
a connection of a certain class of these models to two dimensional gravity coupled to (p, q)
minimal conformal matter. This happens when M is a hermitian matrix (HMM) or when
one considers generalizations to a (¢ — 1) hermitian multi-matrix model (MHMM), where
(¢ — 1) hermitian matrices are coupled linearly to each other [5]. In the former simpler
case, the Feynman graphs of the zero dimensional field theory are viewed as being dual to
a discrete dynamical polygonation of an oriented two dimensional Riemann surface. Then

the perturbation series can be summed in the form

0o
Zy =Y  NXZ, (2)

h=0
where Y = V — E + L is the Euler character of the corresponding surface and A is its genus
given by x = 2 — 2h. Since the number of vertices V', edges F and loops L of the Feynman
graph correspond respectively to the number of faces F', edges F and vertices V' of the
dual graph, the above series can be shown to correspond to the discretized version of the

partition function of pure two dimensional gravity

1 1
Zere = 3 amy 44 ). @

In (3) A is the area of the surface, pp and G p the bare cosmological and Newton’s constant
and C(T) is the symmetry factor of the polygonation corresponding to dividing by the
volume of the diffeomorphism group of the surface. The equality of (2) and (3) is achieved
by identifying A = e™#5 and N = ™55 . The action in (3) can also be viewed as the

action of a string theory embedded in zero dimensional spacetime

Setr = log ki / d?¢\/gR + pg / d?¢\/g. (4)

1



Then (2) gives the genus perturbation expansion with kg = %, the bare string coupling.
The naive continuum theory is taken by letting N — oo. In this case the area A diverges
and the polygonated surface is thought to approach a smooth Riemann surface. For a
critical value p. of pup the increasing entropy of large surfaces compensates the Boltzmann
factor and the system undergoes a (third order) phase transition. If the critical point is
approached in an arbitrary way, only the sphere Z, contributes to (2). The remarkable
observation [1-4] was that since the singular part of Zy ~ (up — peo)X(*2%) with k a
positive integer, one can obtain contributions from all genera by simultaneously taking
the large N-limit and letting pp approach its critical value p. in a coordinated way. The
integer k labels a series of multicritical points reached by tuning k£ parameters in the
potential V(M). Introducing a cutoff a in the theory, we define the string coupling ko and
renormalized cosmological constant ugr to be

a_(2+%) _ HB — He

N 3 HR (5)

kg =
a2

The double scaling limit is defined by taking N — co and pup — p. while keeping k¢ and

pr fixed. Then the continuum limit of (2) becomes
o0
Lstr = Z KX Zp (6)
h=0

with £ = 2. The series (6) is horribly divergent. It is non-Borel summable since every
term increases as (2h)!. This reflects our ignorance in summing the perturbation series of
string theory although the fixed genus partition function Zj can be calculated and is well
defined. Happily, the theory is exactly solvable at the multicritical points and its dynamical
content is given by a single differential equation, the string equation. The string equation
is a differential equation in the variable z satisfied by the specific heat —9?log Z, with
k2 = z~(2+%). It possesses solutions that in the weak coupling limit £ — 0 are asymptotic
to (6) and we say that the double scaling limit provides a non-perturbative definition of
Zsir. Indeed comparison with calculations directly from the continuum theory indicates
that Zg,. corresponds to two dimensional gravity coupled to (2k — 1, 2) minimal conformal
matter. Even more interesting is the discovery that the double scaling limit of (¢ — 1)
MHMM gives two dimensional gravity coupled to (p,¢) minimal conformal matter [5].
Unitary One Matrix Models (UMM) form another interesting class of matrix models.

These are defined by (1) with M being a unitary matrix U. The interest in those models
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arose a long time ago when Gross and Witten [6] showed that the partition function of
two dimensional U(N) QCD on a lattice is given by Zgep = (ZU)aL2 and that the theory
undergoes a third order phase transition in the large N limit (V is the volume of the two
dimensional world and a is the lattice cutoff). The theory was also shown to posses a

double scaling limit N — 00 and A = A with ¢ = (1 — Z)N 7 and y = (1 - 2)N#*5

held fixed [7,8]. The string equation is a 2k'® order differential equation of the function
v in the variable z = t + y, with v2 = —9%log Z. It has solutions that are asymptotic to
(6) in the limit z — oo with k2 = z=(2+%). The identifications of those solutions with
conformal field theories coupled to two dimensional gravity or other interesting systems
is still, however, an interesting open problem. Some interesting suggestions have been
made in [9]. Moreover, the surface interpretation of UMM is not as clear as in the case of
HMM. In [10] Neuberger views the unitary matrix as U = e*™ where M is hermitian and
introduces N x N hermitian fermionic matrices ¢ and 1 to exponentiate the Haar measure
dU — dM det(g—ﬂri,). The resulting surfaces contain an infinite number of types of bosonic
vertices forming bosonic “webs” and fermionic loops forming their boundaries that might
allow a stringy interpretation of the UMM. For another interesting suggestion see [11]. It
is also interesting to note that UMM belong to the same universality class as the HMM
in a different class of multicritical points, the double-cut HMM [9,12]. This is expected
since the critical behaviour is governed by the scaling of the density of the eigenvalues at
the edge of its support [13] and the eigenvalues of the two models models scale identically
there.

The continuum theory obtained in the double scaling limit has a very rich mathemat-
ical structure. When one considers perturbations by the scaling operators < g3 > with
sources tg, the dependence of the specific heat (or its square root for the UMM) on the
“times” t, is given by KdV flows [5,14] for the HMM and mKdV flows for the (symmetric)
UMM. The partition functions of the theory are found to be given by the corresponding
7-functions [15-17] which can be thought as sections of a line bundle over the Universal
Grassmannian. Furthermore the 7-functions that solve the string equation are annihilated
by constraints which for the one matrix model are the Virasoro constraints [15-18]. All
of those results have counterparts in the discrete theory. The integrable flows are now
with respect to the couplings in the potential V(M). For the UMM these are given by
Toda flows on the half line [19] and the partition function is given by the product of two

Toda-chain 7-functions. The Virasoro constraints L, have the simple interpretation of
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corresponding to invariance of the partition function under specific transformations, which
for the UMM are given by 6U = ¢, (U™ — U1—").

An interesting observation is that the string equation can be written in the form
[P, Q] = 1 where P and @ are differential operators for the HMM [5] and 2 X 2 matrices of
differential operators of specific order for the UMM [20]. They correspond to the continuum
limits of operators acting on the space of orthonormal functions used to solve the model.
One can use this form of the string equation to determine easily the points in the Universal
Grassmannian that solve the string equation [21]. For the UMM these are found to
correspond to a pair of points V; and V3 in the (big cell of the) Sato Grassmannian
satisfying certain invariance conditions. It is very important that the mKdV evolution of
V1 and V; gives new solutions to the string equation. The 7-functions that correspond to
V1 and V3 are shown to satisfy the Virasoro constraints in this formalism [22] since the
constraints are derived from the same invariance conditions that solutions to the string
equation satisfy [23-26].

This article is organized as follows. In section 2 we review the discrete formulation
of the symmetric UMM. The method of the orthogonal polynomials in the trigonometric
basis is summarized and the Toda flows and Virasoro constraints are discussed. In section
3 we describe the double scaling limit and describe how the mKdV flows arise. In section 4
we give a non-rigorous approach to the connection between the Sato Grassmannian and the
mKdV flows starting from the finite dimensional Grassmannians. In section 5 we describe

the connection of the Sato Grassmannian to the solutions to the string equation.
2. The Symmetric Unitary Matrix Model

In this paper we will study the UMM defined by the one matrix integral
N
Z}{,:/DUexp{—XTrV(U—i-UT)}, (1)

where U is a 2N X 2N or a (2N + 1) X (2N + 1) unitary matrix, DU is the Haar measure
for the unitary group and the potential

k>0
is a polynomial in U. As standard we first reduce the above integral to an integral over

the eigenvalues [6,27] z; of U which lie on the unit circle in the complex z plane.

ZN—/{H AP (= SV i+ ). ©
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where A(z) = [ (#x — #;) is the Vandermonde determinant. The Vandermonde determi-
k<j
nant is conveniently expressed in terms of trigonometric orthogonal polynomials [28]
imaw
ct(z)=2"+27" + Z ain_i( P AL
=1

(10)
— Lt
where for U(2N +1) n is a non-negative integer and imq, = n and for U(2N) n is a positive

half-integer and émqs = n— 3 . The polynomials cif(z) are orthogonal with respect to the

inner product

(k) = § o exp{=3 Vet 20} e ()" eh(2)

2miz
_ ot
=e€ 6n,m s (11)
(CnsCrm) = €% By
(cryem) =0,

The expression for the Vandermonde determinant is

det<c7_,i_(z.7)>
ci (2)
where j=1,...,2N,i=3,3, ... N—1forU@2N)and j=1,...,2N+1,i=0,1,...,N

2999
for U(2N + 1) (where the line ¢; (z) = 0 is understood to be omitted). Then the partition

2

A2)|* = : (12)

function of the model is given by the product of the norms of the orthogonal polynomials

Z](\J, = He‘l’:e‘l’; = T](\,+)T](\,_) . (13)
n
The functions 7" and 7{~) are Toda chain 7-functions on the half line [19]
O%pE £ 4 £+
an — e9+1 ¢n _ e¢n g’—l , (]_4)
E= T(:I:)
with solutions e?n» = "t .

The orthogonal basis of polynomials chosen is especially useful for constructing the

operator formalism of the theory. When acting on the basis of orthonormal functions

nE(2) = e, j2, -V EE(2) (15)
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such that

(16)
(m (2), 7 (2)) = 5n,
(my (2), T (2)) =0,
the operators zo. = z + % and zd, give finite term recursion relations
+ _+
Z+7T =y n+17Tn+1 -T 777:5(2) nT_1(2)
:F
/ 2 Q4 /o
= Q7T+17T:LF+1(Z) Ri T (2) — Ti_1(2),
k (17)
N Qf N
0.7 ) = = 35 S0 T () + {1y [ L = e 0F)n 13
r=1
k
N
ﬁ Z Jnn—rTa_p(2)
r=1
£ £ _,F 9ot Q% —-QH)+(RT ,—RY)
where RE = e%n ~%n-1, QF = P 951 pF = %gl , gf = il E,T +1 , and
+ dz * +
(s = § 5T, () {20V (20)} T (2) -
Then the discrete string equation is given by the relation [20,, z4] = 2.
Invariance of the partition function under the transformations
U =€ —U™) n>1,
implies that the partition function is annihilated by the Virasoro constraints
n_zkgk T D (18)
a Jk+n 2 1<k<n agkagn—k

In [19] it was argued that the string equation can be viewed as a consistency condition of

the integrable hierarchy and the Virasoro constraints.

3. The Double Scaling Limit

6



The continuum limit of (7) is taken by letting N — oco. Then the eigenvalues «;,
where z; = €'® become continuously distributed over the unit circle |2| = 1 and their
distribution is described by the density of eigenvalues

ds 1
pay=22, s L
do N
ac (19)
/ pla)da=1 0<a.<m.
—a,
If p(c) is given, quantities of physical interest, like the free energy Fypn = w5 log Z, can
be calculated. For example the saddle point approximation of (7) gives

a—f
2

a

Fopp = 2 /ac dap(a)V(2cosa) + P ) dadBp(a)p(B) log | sin

)\ —Gc —Gc

| + const., (20)

where P denotes the principal value of the integral. Then one can think of the eigenvalues
as a Dyson gas of electric charges on the unit circle subject to their mutual Coulomb
repulsion and an external potential V. In the weak coupling limit A — oo the eigenvalues
tend to distribute uniformly on the circle, whereas in the strong coupling limit A — 0 the
charges are localized, say at the point z = 1. The system undergoes a phase transition
precisely when the eigenvalue distribution develops a cut at z = —1 and it happens when

Ac = 1. Near the cut p(«) scales as

pi(c) ~ cx(1 — sin? g)k a—T, (21)

and we obtain a third order phase transition with F ~ (A—\¢)2*% [6]. The & multicritical

point is obtained by tuning %k couplings in the potential V(U) to their critical values.
The double scaling limit [7,8] corresponding to the k" multicritical point is defined

by N — co and A = A, with ¢ = (1 — Z)N#1, y = (1 — 2 )N+ held fixed. It was

shown in [20] that the operators z4 and zd, have a smooth continuum limit given by

2y 2+ N"%T Q,, 2_ — —2N" % Q_,

22
28, — N7 Py, | 22)
where Q4 are given by
_ 0 O0+w
Q- = (8—1} 0 ) ’
_(©@+v)(0-v) 0 (23)
Q+—< 0 (8—11)(8-1—11))
=92,



and Py by
0 Py
P =< ) 24
AP 0 (24)

o) 2

Here 0 = 5 and x = { +y. The scaling function v* is proportional to the specific heat
—0%1n Z of the model. The operators P, are differential operators of order 2k. The same
assertions hold if we introduce sources tagx41(f1 = z) and deform the £*® multicritical

potential Vi to Vi(z) — >t 1Vi(2)N %7, From [20,, z_] = z4 it follows that
1

[P,O_]1=1, (25)

where P = — 3" (20 + 1)t911P; — z with P, = P; + 2. The function v(z) becomes a
I>1
function of  and the times {¢2;4+1} and obeys the string equation

> (2 + 1)ty DRy[u] = —vz. (26)
I>1

where D = 8+ 2v, u = v —v', and Ry [u] are the Gel’fand-Dikii potentials defined through

the recursion relation
1., 1 1
ORpy1[u] = 18 — 5(8u +ud) | Rg[u], Rolu] = 3" (27)

The dependence of v on the times {¢941} is given by the mKdV flows

ov
Otok+1

= —9DRy[u]. (28)

It is very important that (28) is compatible with the string equation. It can be shown (see
also section 5) that solutions to the string equation flow with (28) to other solutions of

(26). The k' multicritical point is reached when g1 = and all other times are

— %%
2k+1
zero. In this case the string equation becomes

DRy [u] = apvz. (29)

This is a 2k order differential equation which as z — oo has asymptotic solutions of the

form

o0
vzt (14 Y upT D) (30)
=1

8



which upon the identification k2 = 7= (2+5) gives the genus expansion of the specific heat
) o0

v~k (14 far?), (31)
h=1

where fn, = 2vp + 3 4 Vi V-
The connection to the 7-function formalism of the mKdV hierarchy is shown by noting

that the specific heat v? can be written in the form [17]
v? = —0? log (1172) (32)

with 7y and 75 the 7-functions of the mKdV hierarchy (28). These are simply connected to
the Miura transformed functions u; = v24+v’ and uy = v2—v' by u; = —202 log7;, i = 1, 2.

Then the partition function is given by
Z=r 1 T2, (33)

which is the continuum analog of (13).
The Virasoro constraints [17] are obtained by first substituting (28) into (26) and then
using (32). The result is
Lo = pti, (34)

with Lo = Y o o(k + %)t2k+1%k+l + i= and p an arbitrary constant. The flows and the

recursion relations relate L, to L,, and one obtains

L, =0 with n>1, (35)

N 1 3 1N\ 8> . .
where L'n, = Zk:O(k+ §)t2k+1m -+ 5 Zk:l Btan_10ta(n_mysl We will further discuss

the Virasoro constraints in section 5.
4. The mKdV Hierarchy and the Sato Grassmannian

As we already mentioned in the introduction, the analysis of the solutions of the
string equation in the Sato Grassmannian Gr depends crucially on the association of the
mKdV 7-functions 7 and 7> to points V; and V5 in the big cell of the Sato Grassmannian
Gr(®. In this section we take a pedestrian approach to explaining this association and the
reader familiar with the subject might want to skip to the next section. For more rigorous

treatments on the subject see [22] and the references therein.
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Since the Sato Grassmannian is an infinite dimensional generalization of finite dimen-
sional Grassmannians, we start by reviewing the relevant concepts in the finite dimensional
case. For a nice review along these lines see [29]. The Grassmannian Gr(k, N) consists
of all k-dimensional linear subspaces of CN. A point V € Gr(k,N) is described by a
basis {v;} with ¢ = 1,...,k and a basis of the orthogonal complement of V {w;} with
i =k+1,...,N. Then the pair (v,w) specifies a point in Gr(k,N). A pair (v/,w'),

however, gives the same point if

)= (5 o)

Then
Gr(k,N) ~ GL(N)/P

0 C
considering the GL(IV) representation on a fermionic Fock space F defined by the vacua

with P = {(A B) } The relation between Gr(k, N) and fermions is established by

k>=e1A...Neg <kl=ie...0e, <ilk>=0bi, (36)

where {e;} is a basis of CV and i.,(e;) = 6;; is the inner product operator. The fermionic

operators are defined by
pl=enlx> ¢ =ilx>, (37)
and satisfy canonical anticommutation relations
(i, 9]} =65, {vi 4} = {¢], 9]} =0. (38)
The vacua |k > carry charge k and wg (1;) create a charge +1(—1). Then

Plk>=0 i=1,....,k ilk>=0 i=k+1,...,N

(39)
<klgl=0 i=k+1,....N  <klgy=0 i=1,...,k,
The Plucker embedding is defined by assigning to every point V' € Gr(k, N) a state
lv>=cuvi A...ANvg with vi=Zvijej, (40)

where {v;} is a basis of V and c¢ is an arbitrary constant. A change of basis v; — a;;v;

corresponds to ¢ — (det a) ¢ and the state |v > is well defined. The condition
Yivg)lv >=0 Vi, (41)
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with ¢1[v;] = Zviﬂp} defines equivalently the state |v > up to the constant c.
Then a € gl(N) acts on F by

alx >=> ylaiilx>  |x>€F, (42)

and on the space of operators on F by
(3, 8] = Z ainte, [6,%]]= vlak. (43)
k
The action of g € GL(N) is defined by exponentiation of (42). For example

with (fg); = w}gﬁ and (gv); = gi;%;. Then a gl(IV) operator a acting on V € Gr(k, N)
by av = 3 (aijv;)e; corresponds to a fermionic operator & = Y ¢Ja;j9;. Then if d; > as

and a2 ¢ a2, equations (43) give
[&1, &2] — [al, az] . (45)

Moreover note that if

alv >= const.|lv > aV C V. (46)

The state |v > belongs to the GL(N) orbit of the state |k >. Since for |[v >= v A. . .Auvg
every vector v; can be written in the form v; = ge; for some fixed g € GL(N), we have
that |[v >= g|k > as defined in (44). Therefore the image of Gr(k, N) under the Plucker
embedding can be identified with the orbit GL(N)|k >.

The 7-functions are given by fermion correlators
8 =< O >y=< k|OJv >, (47)

with O a zero charge operator. Since the topology of Gr(k, N) is non-trivial, we divide
it into cells (U,,a € I). A point V € U, is represented by a basis {v(a)} and the state
lv >(@)= vga) Ao A v,(:). Then if V € U, N U, we have v,(c 9 = a,(;zb) ® and

Z

T‘?(a) = det a(®®) T‘?(b)

Therefore the 7-functions are really sections of a determinant line bundle over Gr(k, N)

whose transition functions are given by det a(®?).
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Most of the results carry over almost unchanged to the infinite dimensional case. For

the infinite dimensional vector space we consider the space of formal Laurent series
Hz{Zanz", a, =0 for n>0}
n

and its decomposition
H=H,oH_,

where Hy = {> anz"™, a, =0 for n > 0}. Then the big cell of the Sato Grass-
n>0

mannian Gr(® consists of all subspaces V € H comparable to H,, in the sense that the
natural projection 7y : V — H is an isomorphism. Then V admits a basis of the form
{¢i(2)}i>0 where ¢;(2z) = 2* + lower order terms. The Plucker embedding (40) is defined

by the semi-infinite wedge product
v >=coi(z) ANpa(2) A ... . (48)

Care has to be taken so that a GL(oco) change of basis ¢;(z) — a;;¢;(z) does not introduce
infinities, since det a can be infinite. We choose a set of admissible bases for V € Gr to
be those whose matrix relating {74 (¢i(2))}i>0 to {z*}i>0 differs from the identity by an
operator of trace class. Then the fermionic representation is defined on the Fock space

built on the vacuum state of zero charge
0>=1AzAZ2A..., (49)
by fermions wg and 1; defined as in (37). The states (m > 0)
im>=yb . 9l0>, |—m>=t¢_my1... %00 > (50)

are the filled states with charge m and —m respectively. The generalization of gl(N) is

given by gl(co) and is represented on F by its central extension gli*(oco) with

&=Zzz/)gaij¢j: (51)
,J
where t
RS S A t o Ji; 1>0
sl s = of— <l >_{—¢;«/JJ i< (52)
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is the normal ordering. The reason for introducing normal ordering is that the naive
operator ZZ j wg a;;%; maps an admissible basis to a non-admissible one.

The connection of the fermion representation of Gr(®) and the KP and mKP hierarchies
is made explicit by making use of the boson-fermion equivalence in two dimensions. The

fermionic currents

Jn=> il mez (53)

reZ

satisfy the bosonic commutation relations

[Im,, In] = MO, —n - (54)
By representing the bosonic Fock space by B & C[t1,ta,...,;u, u" "], the space of polyno-
mials in ¢1,%9,...,;u, u" "}, % and —nt_,, (with n > 0) act as creation and annihilation

operators on B satisfying the algebra (54). Then fermionic operators can be mapped to
operators acting on B and states in F to states in B by mapping the state |m > of F
to u™. Then the £*® modified KP hierarchy 7-functions correspond to correlators (47)
where O = ezpzlt”‘]” and the states |[v > correspond to the GL(oo) orbit of |¢ > with
1 =0,...,k — 1. In particular the solutions to the second mKP hierarchy is given by two

7-functions

7i(t) =<i—1lexp() tpplgli-1> (i=1,2), (55)
p>1

where g € GL(00). The modified KdV hierarchy that arises in UMM is the second reduced
mKP hierarchy of the above equation and it corresponds to eliminating from (55) the
dependence on the even times {¢2,}. Therefore every solution 7 (¢) and 72(t) of the mKdV
hierarchy corresponds to points Vi(t) and Va(t) in Gr(®) given by the states |v;(t) >=

exp{ > tpJp}gli — 1 >. Then the time dependence of V;(t) is given by
p21

87|’Ui(t) >= J2k+1|'l}i(t) > and J2k|'l}i(t) >=0, (56)
Lok+1

or by using the correspondence (45)

0

Vi(t) = 221 Vi(t) and 22FVi(t) C Vi(t). (57)
Otak+1

Then V;(t) = exp{)_ tor+122**t1}V; = v(t, 2) V;.
k
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5. The Solutions to the String Equation

Since to every solution of the mKdV hierarchy correspond points Vi (t) and Va(¢) in
Gr©® satisfying (57), one would like to determine those that are solutions to the string
equation (25). This is particularly easy because the commutator [P, Q_] is equal to a
constant [22].

Consider the space ¥ of pseudodifferential operators W = Z w;(2)d* where the
functions w;(z) are taken to be formal power series (i.e. w;(z) = Zzzsulzkxk , Wik =0, k>

k>0
0). W is then a pseudodifferential operator of order k. It is called monic if wg(z) = 1

and normalized if wg_1(z) = 0. The space ¥ forms an algebra. The space of monic,
zeroth-order pseudodifferential operators forms a group G.

There is a natural action of ¥ on H defined by

z"o" . H > H
d

b= (- .

Then it is well known [30] that every point V € Gr(®) can be uniquely represented in the
form V = SH, with § € G. This will imply that for every operator Q_ we can uniquely
associate a pair of points Vi, V5 € Gr(®.

Indeed, consider S; and Ss € G such that

where
& (S1 0 ~ (0 0
s_(o &>,Q__<ao>. (59)

S1(0+v)S;t =9,
S2(0 —v)ST =40

Then

(60)

S and S can be shown to exist and are unique up to a redefinition S; — S; R with
R=1+3%:5 r;0~% and r; constants.

Since V' C Gr(® is given uniquely by V = SH,, the operator Q_ determines two
spaces V1 = S1H, and Vo = S3H,. Conversely given spaces V7 and V, determine Q_

14



uniquely. The operator Q_, however, is a differential operator and V7, V5 cannot be arbi-

trary. Indeed, since every differential operator leaves H, invariant, we obtain
(8+ 'U) H+ C H+ @S;laSb H+ C H+
&0 Vo C Vi (61)

szVoC V)

Similarly, zV; C V5. Notice that these conditions are consistent with the second equation
in (57).

The transformation SQ_S-! = O_isa similarity transformation and the string equa-
tion will be left invariant if we define 75(k) = S’P(k)g —1. Then the solution to [ﬁ(k), Q_] =1

is easily found to be given by

k
. d .
Py = (jk %k> ,where A = 7 + gaizzz and «o; =const. (62)
The requirement that P be a differential operator is equivalent to the conditions
A Vi C Vo and A Vo C Vi. The space of solutions to the string equation is the space of
operators Q_ such that there exists Py with [Py, @_] = 1. We conclude that this space

is isomorphic to the set of elements Vi, Vo € Gr(® that satisfy the conditions:

zVicVy zVoC W

(63)
A Vi C Vo AgVoC Wy
for some Ay, = &£ + Ek: ;2%
The string equafcizc())n is left invariant by the flows (57). Indeed
z2y(z,t) V1 C y(t, 2)Va = 2 Vi(t) C Va(t) (64)
Ap(t) (2, 6)Vi C (1, 2)Va = A(t) Vi(t) C Va(t),
where

Ap(t) =y Ay ™ = Ay = > (2k + D)ty 27 (65)

k
and analogous equations with V; and V5, interchanged.

It is now easy to see that (63) implies the Virasoro constraints for the 7-functions.
Without going into the details (see [23]), we first notice that the operators I, = 22"+ A
leave V; invariant

2" AV, V. (66)
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Then using the correspondence (45), one can construct the corresponding fermion opera-
tors I,, and from them their bosonic counterparts Ly, [23]. These have the exact form as
equations (34)—(35). We can immediately see that they form a Virasoro algebra by noting
that I, ~ 22"T14 are the generators of the Virasoro algebra and by using lemma (45).
Since I, leave V; invariant, then using (46) we conclude that the operators L, annihilate
the 7-functions 7 and 72 and obtain equations (34) and (35).

We conclude this section by showing how conditions (63) can be used to calculate the
space of solutions to the string equation [22]. We will start by describing the spaces V1, Va.

First choose vectors ¢1(z), ¢2(2) € V1, such that

¢1(z) = 1 + lower order terms, ¢2(z) = z + lower order terms.

Then the condition 22 V; C Vi and 7wy (V) & H, shows that we can choose a basis for V;

b1, b2, 271,22, . ..

Since zV; C V3 and 7 (V2) & H, we can choose a basis for V5 to be

¢, z¢17 Z(ﬁz, 23(]51, 23(]52, s

where 1(z) = 1 + lower order terms. Using zV, C V; we have z¢p = ag; + Sd2. Choose
¢1, 2 such that z1) = ¢3. Then we obtain the following basis for V1, Va (¢ = ¢1):

Vl : ¢7 Z¢,22¢a Z3¢,. .

(67)
Z% wa Z¢, 2‘2% 23(]5, s

Then it is clear that ¢, specify the spaces Vi, Va. Using the conditions AV; C Vs and
AV, C Vi we obtain

(4 5206 = Puol2)d+ Pu(a "
(4 1) = Po@)é+ Puw.

Since a generic system of the form (68) will lead to exponential evolution of the
functions ¢ and v, the requirement that they keep their polynomial form puts severe

conditions on P;;(z). A detailed calculation shows that the space of solutions to the string
equation (25) is the two fold covering of the space of matrices (Pij (z)) with polynomial

entries in z such that Pp;(z) and Pio(z) are even polynomials having equal degree and

16



leading terms and Pyo(z) and P;1(z) are odd polynomials satisfying the conditions Pyo(z)+
Py1(z) = 0 and degPyo(z) < degPy:1(2).
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