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1. Introduction

In this part of the proceedings we attempt to review some topics on the Symmetric
Unitary One Matrix Models (UMM). These are statistical systems defined by partition

functions of the form
U N t
Zy = DUexp{—X TeV({U+U")}, (1)

where U is a 2N X 2N or a (2N + 1) X (2N + 1) unitary matrix, DU is the Haar measure
for the unitary group and the potential

V) =Y ", )
k>0

is a polynomial function in U. The interest in those models arose a long time ago when
Gross and Witten [1] showed that the partition function of two dimensional U(N) QCD
on a lattice is given by Zgcp = (ZU)aL2 and that the theory undergoes a third order
phase transition in the large N limit (V is the volume of the two dimensional world and
a is the lattice cutoff). The discovery of the double scaling limit [2-5] for the Hermitian
Matrix Models (HMM) and its relation to two dimensional theories of gravity coupled to
(possibly non-unitary) conformal matter raised the question of whether UMM describe a
similar continuum limit for some statistical model coupled to two dimensional gravity that
is relevant to string theory. The model was solved in the double scaling limit N — oo and
A= A with £ = (1 — %)N% and y = (1 — A—’;)N% held fixed in [6,7]. The scaling
function v, with v2 = —02 log Z, satisfies a 2k'" order differential equation in the variable
x = t+y, known as the string equation. It has solutions which in the weak coupling limit
x — oo are asymptotic to series that one would like to identify with the genus expansion of
a string theory. The identifications of those solutions with conformal field theories coupled
to two dimensional gravity or other interesting systems is still, however, an interesting open
problem [8,9]. Quite recently a world sheet interpretation of the UMM as an open-closed

string theory has been proposed in [10]. For another interesting suggestion see [11].
Several authors have pointed out in the past (see [8] and references therein) that one
obtains the same continuum theory from the double scaling limit of the double-cut HMM as
from the UMM. The reason is that the scaling behaviour of the density of eigenvalues near
the multicritical points is identical for the two models. In [8] a series of multicritical points

labeled by a positive integer £ is found and the continuum limit of the scaling operators
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is computed in the spirit of [12]. The dependence of the scaling function v on the sources
of the scaling operators, which are treated as perturbations, gives the NLS hierarchy. The
multicritical points of the symmetric UMM correspond to even k£ and the corresponding
flows are the mKdV hierarchy. In section 3 we prove this result directly from the UMM.
The calculation has never been presented written before. We have obtained similar results
for the odd order multicritical points but these will be presented elsewhere.

In section 4 we discuss aspects of the integrability of the UMM as related to the Sato
Grassmannian [13]. This was the main part of the talk delivered at this meeting. Due
to lack of space we summarize the results obtained in this work and refer the interested
reader to [13] for the details (see also [14] for a review). In [13] we used the result of [15]
that the string equation for the UMM can be written in the form [P, Q] = 1, where P and
Q are 2 x 2 matrices of differential operators of specific order, in order to compute the
points in the Universal Grassmannian that solve the string equation [16]. The operators P
and @ correspond to the continuum limits of operators acting on the space of orthonormal
functions used to solve the model. The solutions are found to correspond to a pair of
points V1 and V3 in the (big cell of the) Sato Grassmannian satisfying certain invariance
conditions. It is very important that the mKdV evolution of V; and V5 gives new solutions
to the string equation. The 7-functions that correspond to V; and V5 are shown to satisfy
the Virasoro constraints in this formalism [13], since the constraints are derived from the

same invariance conditions that solutions to the string equation satisfy [17-20].
2. The Symmetric Unitary Matrix Model

The first step in solving the symmetric UMM given by (1) and (2) is to reduce the
integral giving Z5 to an integral over the eigenvalues [1,21] z; = e® of U which lie on the

unit circle in the complex z plane.

7 = /{H i A PeR (=5 Vi 40)

27rzz

3
= [(TLdas} 15(@) Pexp{~ Y V(zeosan)}.

where [A(2)|?2 = [A(@)|? = ] |z — 7> = 42N [] sin? (%522) is the Vandermonde
k<j k<j
determinant.



It is well known [1] that the critical behaviour of the model in the large N limit is

governed by the stationary points of (3). The stationarity condition is given by

2N 2N
TV/@ cos ;) sin av; + ;cot % =0. (4)
i

The continuum version of (4) in the large N limit will be given by the replacements
o =a(k)=a@)i=1,...,2N,z € [0,1] and 5% > — Pfoldw, oo — foldx. We
i#j i

introduce the density of eigenvalues

27—,
pla) = Z—Z >0 such that / dop(a) = 1. (5)

Cc

Then condition (4) and the free energy are given by

2r—a. _
%V/(Q cosa(x))sina(z) = _P/ac dB p(8) cot o' . J¢] ©

and

27—, —
F=—5 [T dap@cosa+ P [ dadppla)p(@)in)sin S

3 | + const..  (7)

Cc

Therefore the stationary solutions will be completely determined by the solutions of (6). A
physical picture of the problem is obtained by realizing that (3) describes identical charged
particles distributed over the unit circle subject to their mutual Coulomb repulsion and an
external electric field given by V(2cosc). Therefore in the limit A — 400, the particles
will be distributed uniformly over the whole circle and as A — 07 they will be mostly
concentrated around o = w. As we will show shortly, as A — 1~ the two ends of the
support of the eigenvalues meet at @ = 0 and p(«) exhibits scaling behaviour at the end of
its support. Then the third derivative of (7) has a discontinuity at A = 1 obtaining a third
order phase transition. Tuning the potential (2) accordingly, one can change the critical
exponents of p(a) and F and reach a series of multicritical points labelled by an integer k.
In order to solve (6), we introduce the function [1]

Fe) = [ T ap(B)eot 0 ®)

Cc
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The function F(z) is periodic as z — z + 2nmw, real and analytic outside the real intervals
(2nm+ ¢, 2(n+1)7—a,) and, as a consequence of (5) and (6), when one approaches those
intervals

F(a+ie) = — ;V’(cos a) sina F 2wip(a) . (9)

Because of (5) and (6)
F(z) > Fi as z— 2z tic0. (10)

Solutions to the above conditions are given by

1
F(z) = —<V'(cos z) sin z F P(sin? E) sin E(cosz Z _ cos? %)% (11)
A 2 2 2 2
where F refers to Rez > 0 and Rez < 0 respectively. P(z) is a polynomial of degree
one less than V(z). The coefficients of P(z) and cos & as a function of the couplings is
obtained from (10). Then (9) implies that
2 & o]

o o
= P(sin? =) gin — 27¢ _cog?2 =2
pla) (sin 2)sm 5 (cos 5 —Cos 2)

=

(12)

The k" multicritical point is reached by tuning the couplings in the potential so that

P(z) ~ a*z*~1 and cos % — 1. In this case the critical density of eigenvalues is given by

pi(@) o sin® ., (13)
which for « close to its critical value o, = 0 gives
pr(@) ~ . (14)

Then we obtain a third order phase transition with F ~ (A, —A)2t%. We always normalize

the critical potential so that A, = 1. In this case the k** multicritical potential is given by

1

L8 (15)

—+ o=

Vi(4Z? — 2) = (1 — Z%)*1(1 —

where Z = cos § and we expand the square root around z = oc keeping only positive
powers of Z. In order to solve the model in the double scaling limit we use the method of
orthogonal polynomials. A convenient basis is given by [22]

imaw

ct(z)=2"+2" + Z ain_i( 2V T (16)

=1
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where for U(2N +1) n is a non-negative integer and imq, = n and for U(2N) n is a positive
half-integer and 4,4z = n— 5 . The polynomials cif(z) are orthogonal with respect to the

inner product

(chich) = o exp{= Vet 2} () ek ()

2miz

(1)
+
= ot g

Then the partition function of the model is given by the product of the norms of the

orthogonal polynomials
Z](\J, = He‘l’:e‘l’; = T](\,+)T](\,_) . (18)

The orthogonal basis of polynomials chosen is especially useful for constructing the
operator formalism of the theory. When acting on the basis of orthonormal functions
7 (2) = e~ %7 /2e~3x V(=) cE () the operators zp = z+1 and 20, give finite term recursion

relations
R4+ Ty ( ) Q(+)ii :I: \/ n+17Tn+1 - 77::,:(2)4- 7:!1:71-7::,:—1(2’4) s

Q:F
zZ_ 71'7::,: (z) = Q( ):I::Fﬂ':F \/ +17Tn+1 —RZ: 7T7T(Z) — 1/ 7:|7,:7T7T_1(Z) R
n

20,y (2) = Pyt (2) =

(19)
k
N OF N
= Y ey () + ) B = R prE ()
r=1 T
N F
+ I\ Z(U;t)n,n—rﬂ'r:f—r ()
r=1
+ + +
where RE = eﬁ—ﬁ_l Qi — etnti1, rt = %1;1, ¢ = Q1= Qr;i;nu R"), and
Inn—r = § 52 mt_ (2)* {20,V (24)} nE(z). Then the discrete string equation is given

by the relation [20,, zi] = z7.
3. The Double Scaling Limit

In the previous section we discussed the large N limit of UMM. It is possible to get

non trivial contributions to the scaling part of the free energy by carefully tuning the limits
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N —ooand A = A, witht = (1— 2)N#+T, y = (1— 2 )N+ held fixed. It was shown

in [15] that the operators QS;Z and P,,,, have a smooth continuum limit given by
QW w2+ N~ Q,, Q) - 2N Q.

) (20)
an—)Nm Pk:a

where Q4 are given by

Q, = ((8+v)(8—v) 0 ) (21)

and Py, by

Pr = (f?zt %’“) : (22)

2

Here 0 = % and x = t + y. The scaling function v® is proportional to the specific

heat —0? In Z of the model. The operators P;, are differential operators of order 2k.
The multicritical potentials V,,, perturb the multicritical densities such that px — pi+

Pm, Where p,, has the same scaling behaviour (14) and satisfies the normalization condition

d

1
[27=% bm(a) da = 0. Solutions for j,, are given by fy, (c) o a5 sin”™ (1 —cos® §)3 and

(e 7
correspond to multicritical potentials
1

Vi o (1= Z2)*(1 - )} (23)

where Z = cos 5. The scaling operators of the model are defined by < o241 >=<
trVi(U + U') >. Consider the expressions for the connected correlation functions [5]

< rF(U) >= Tr(F(U)y) and < trF(U)trG(U) >= Te(F(U)IING(U)(1 —y)), where tr
+

n

operator Iy = 22;07 4 |nEt >< £n| and F(U) and G(U) are operators acting on the

is the matrix trace and Tr is the trace over the states [n+ >= 7 (z). Il is the projection

states [n+ >. Then we obtain

dzy -~
< 02k41 >=% .+ Vk(Z+)TI‘{

Similarly the two point function < gax4+101 >= 0 < gak+1 > is given by
1

_ d2t ¢ (+)
<ompon > = = § V) Tl (1= T (e = Q)

s 2k 1.1 + 1 ++
Ocj{%riz_,_(l_z) (1_2) { RN+1(Z+_Q(+))NN+1 (25)

_ 1 -
+\/RN+1(m)NN+1}.

6
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In the double scaling limit zy = 2cosa — 2 — o? where o = N‘ﬁy, Q) - 2+
N™mF7Q,, /RE,, — 1+ LN"ZF (50 — ¢?) and [N+ >— NTF|z+ > and (25)

becomes

< 024101 > X ]{ d—]{V%+3(< +x| T+ > + < —2 = lz— >)
2miv —v? =0+ u -2 — 0% 4+ uy
AV opt3 Ry[u1] Ri[us]
. ]{ 271'7}VV (Z p2i+1 +Z V21+1)
l l
x Rg [ul] -+ Rk[uz] .
(26)

Ry [u] are the Gel’fand-Dikii potentials defined through the recursion relation d Rgy1[u] =

70% — 1(0u + u8)> Rilu], Rolu] = 3, u1 = v?> + v’ and uy = v? — v'. Therefore <

Oak410101 >0¢ ORyp[us]+0Ry[ug] = —vDRy[us], where D = 8+2v. Using < 095110101 >=
Otog 41 <0101 >=2v 6t(29:+1 we obtain
0 .
Otok+1

The string equation in the presence of o1 is given by [13]
[P’ Q—] =1, (28)

where P = — 3 (20 + 1)t34.1P; — & with P; = Py + .
>1

4. Integrability and the Sato Grassmannian

As we already mentioned in the introduction, the analysis of the solutions of the string
equation in the Sato Grassmannian Gr depends crucially on the association of the mKdV
T-functions 7; and 7 to points V7 and V5 in the big cell of the Sato Grassmannian Gr©,
The 7-functions of the mKdV hierarchy are given by u; = —0%log;, i = 1, 2.

The Sato Grassmannian is an infinite generalization of the finite dimensional Grass-
mannians. The finite dimensional Grassmannian Gr(k, N) consists of all k-dimensional
linear subspaces of CN. A point V € Gr(k, N) is described by a basis {v;} withi =1,...,k
and a basis of the orthogonal complement of V' {w;} with i = k+1,..., N. In the infinite

dimensional case consider the space of formal Laurent series

Hz{Zanz", a, =0 for n>0}
n
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and its decomposition
H=H,oH_,

where Hy = {> anz"™, a, =0 for n > 0}. Then the big cell of the Sato Grass-
n>0

mannian Gr(® consists of all subspaces V € H comparable to H,, in the sense that the
natural projection 7y : V — H is an isomorphism. Then V admits a basis of the form
{¢i(2) }i>0 where ¢;(z) = 2* + lower order terms.

The spaces V; and V5 are associated to 7-functions 7 and 7 via the Pliicker embedding
and the fermion-boson equivalence in two dimensions. They correspond to solutions of the
mKdV hierarchy if and only if

%}m Vi(t) = 22 Vi) and 2% Vi) € Vi(d). (29)
Computing the space of solutions to the string equation is equivalent to determining op-
erators Q_ and P such that (28) is true and Q_ has the form (21). The problem is
a generalization of the Burchnall-Chaundy-Krichever (BCK) theory for non-commuting
operators. One can compute this space explicitly [13]. The set of operators @_ and P
correspond to a space of pairs of points V; and V; in Gr(®, invariant under the mKdV

flow (29), where V; and V2 must satisfy the conditions

zVicVy zVoC W

(30)
A Vi C Vo AgVoC Wy
k
for some Ay = &£ + 2_: o; 22
The Virasoro céﬂgtraints are a simple consequence, and in fact equivalent to, (30).
The algebra of a set of operators acting on the 7-functions is simply the central extension of
the algebra of the corresponding operators acting on the spaces V; and V. The operators
[, = 22™*1 A correspond to operators L,, acting on the 7-functions, which are the Virasoro
generators found long ago in [23,24]. Since operators leaving the spaces V; and V5 invariant
must annihilate the corresponding 7-function then as a simple consequence of 22"*t1 AV, C
V; it is easily concluded that the L,,’s annihilate 7 and 7
We conclude this presentation by mentioning that in [13] we solved for the space of

solutions to (28). We found that the space of solutions to the string equation (28) is the
two fold covering of the space of matrices (Pij (z)) with polynomial entries in z such

that Py1(z) and Pyo(z) are even polynomials having equal degree and leading terms and
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Pyo(z) and Pi1(z) are odd polynomials satisfying the conditions Pyo(2) + P11(2) = 0 and
degPyo(z) < degPo1(z).

Acknowledgements

The research of K.A. and M.B. was supported by the Outstanding Junior Investigator
Grant DOE DE-FG02-85ER40231, NSF grant PHY 89-04035 and a Syracuse University
Fellowship.



[10]
[11]
[12]

[13]

[14]

[15]
[16]

[17]

References

Gross, D. and Witten, E.: Possible Third-Order Phase Transition in the Large-N
Lattice Gauge Theory. Phys. Rev. D21, 446-453 (1980).

Brézin, E. and Kazakov, V.: Exactly Solvable Field Theories of Closed Strings. Phys.
Lett. B236, 144-149 (1990).

Douglas, M. and Shenker, S.: Strings in Less Than One Dimension. Nucl. Phys. B335,
635-654 (1990).

Gross, D. and Migdal, A.: Nonperturbative Two-Dimensional Quantum Gravity. Phys.
Rev. Lett. 64, 127-130 (1990).

Gross, D. and Migdal, A.: A Nonperturbative Treatment of Two-Dimensional Quan-
tum Gravity. Nucl. Phys. B340, 333-365 (1990).

Periwal, V. and Shevitz, D.: Unitary Matrix Models as Exactly Solvable String The-
ories. Phys. Rev. Lett. 64, 1326-1329 (1990).

Periwal, V. and Shevitz, D.: Exactly Solvable Unitary Matrix Models: Multicritical
Potentials and Correlations. Nucl. Phys. B344, 731-746 (1990).

Crnkovi¢, C., Douglas, M. and Moore, G.: Loop Equations and the Topological Struc-
ture of Multi-Cut Models. Preprint YCTP-P25-91 and RU-91-36.

Lafrance, R. and Myers, R. C.: What Unitary Matrix Models are not? Preprint McGill-
92-25.

Dalley, S., Johnson, C. V., Morris T. R. and Witterstam, A.: Unitary Matrix Models
and 2D Quantum Gravity. Preprint PUPT-1325 and SHEP 91/92-19.

Minahan, J. A.: Matrix Models With Boundary Terms and the Generalized Painlevé
IT Equation. Phys. Lett. B268 29-34 (1991).

Neuberger, H.: Regularized String and Flow Equations. Nucl. Phys. B 352, 689-722,
1991.

Anagnostopoulos K. N., Bowick M. J. and Schwarz A. S.: The Solution Space of the
Unitary Matrix Model String Equation and the Sato Grassmannian. Preprint SU-
4238-497 (to appear in Commun. Math. Phys.).

Anagnostopoulos K. N. and Bowick, M. J..: Unitary One Matrix Models: String Equa-
tion and Flows. Preprint SU-4238-504. To appear in the Proceedings of the V" Re-
gional Conference on Mathematical Physics, Edirne, Turkey; December 15-22, 1991.

Anagnostopoulos, K. N., Bowick, M. J. and Ishibashi, N.: An Operator Formalism for
Unitary Matrix Models. Mod. Phys. Lett. A6, 2727-2739 (1991).

Schwarz, A.: On Solutions to the String Equation. Mod. Phys. Lett. A6, 2713-2725
(1991).

Kac, V. and Schwarz, A.: Geometric Interpretation of the Partition Function of 2D
Gravity. Phys. Lett. B257, 329-334 (1991).

10



[18]
[19]
[20]
[21]
[22]

[23]

[24]

Fukuma, M., Kawai, H. and Nakayama, R.: Infinite-Dimensional Grassmannian Struc-
ture of Two-Dimensional Gravity. Commun. Math. Phys. 143 371-403 (1992).
Schwarz, A.: On Some Mathematical Problems of 2D-Gravity and Wp-Gravity. Mod.
Phys. Lett. A6, 611-616 (1991).

Fukuma, M., Kawai, H. and Nakayama, R.: Explicit Solution for p — ¢ Duality in Two
Dimensional Gravity. Preprint UT-582-TOKYO.

Brézin, E. Itzykson, C., Parisi, G. and Zuber, J.B.: Planar Diagrams. Commun. Math.
Phys. 59, 35-51 (1978).

Myers, R.C. and Periwal, V.: Exact Solutions of Critical Self Dual Unitary Matrix
Models Phys. Rev. Lett. 65, 1088-1091 (1990).

Fukuma, M. Kawai, H. and Nakayama, R.: Continuum Schwinger-Dyson Equations
and Universal Structures in Two-Dimensional Quantum Gravity. Int. J. Mod. Phys.
A6, 1385-1406 (1991).

Dijkgraaf, R., Verlinde, H. and Verlinde, E.: Loop Equations and Virasoro Constraints
in Non-Perturbative Two-Dimensional Quantum Gravity. Nucl. Phys. B348, 435-456
(1991).

11



