
Monte Carlo Simulations in Statistical Physics

In these notes I discuss Monte Carlo simulations for the study of classical models in
statistical mechanics. I include a simple and direct proof that the method converges to the
Boltzmann distribution. Usually, physics articles discuss this important point by just giving
a reference to the mathematical literature on “Markov chains”, where the proof is rather
abstract. In these notes I give a proof of convergence which is self contained and uses only
elementary algebra.

In statistical mechanics one computes averages of a quantity A from the Boltzmann
distribution, i.e.

〈A〉 =
∑

l

P eq
l Al, (1)

where l denotes a state, Al is the value of A in that state, and P eq
l is the equilibrium

(Boltzmann) probability distribution for the system to be in state l, i.e.

P eq
l =

e−βEl

∑

m e−βEm

, (2)

where El is the energy of state l and

β =
1

kBT
, (3)

with T the temperature and kB Boltzmann’s constant.
The number of states is exponentially large in the number of degrees of freedom, N , and so

it is quite impractical to perform the sum in Eq. (1) except if N is really tiny. However, we are
generally interested in large N , especially the thermodynamic limit, N →∞. Monte Carlo
simulations provide a means of studying large (though still not infinite) systems numerically.

In Monte Carlo methods, rather than summing over all the states in Eq. (1), one samples
a small fraction of these states. This leads to an estimate of the average, which will not
be exact but will have statistical errors. We generate states using an iterative procedure,
discussed below, which (after some initial transient) generates states with the Boltzmann
probability. Hence the estimate of the average is

〈A〉est =
1

t0

t0
∑

t=1

A(t), (4)

where t, which we shall think of as being like time, denotes a configuration generated by the
algorithm, A(t) is the value of A in the configuration at “time” t and t0 is the number of
measurements. From standard statistical arguments, the difference between the estimate,
〈A〉est in Eq. (4), and the exact value 〈A〉 in Eq. (1) is a random variable whose size is
proportional to n−1/2 where n is the number of statistically independent measurements.
The configurations generated by the algorithm will be correlated in general up to a certain
relaxation time, τ , and so n will be less than t0, generally n ≈ t0/τ .

An elementary introduction to the theory of Monte Carlo simulations is the article by
Binder and Stauffer1. A more advanced and thorough discussion is given in articles by
Sokal2.
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The simulation will begin with the system in some state, l0 say. We then generate
stochastically (i.e. in a random manner) a subsequent set of states, which to which we will
give a “time label” t, = 0, 1, 2, · · ·. As a simple example, consider the Ising model where we
have a set of N interacting “spins”, Si, which take values ±1. A typical way to generate a
subsequent state would be to pick a spin at random and then either flip it or leave it alone
with a certain probability (discussed below).

At t = 0 the system is definitely in state l0 but at later times it can be in different
states with non-zero probability Pl(t). We desire that at long times Pl(t) approaches the
equilibrium distribution P eq

l , i.e.

lim
t→∞

Pl(t) = P eq
l . (5)

Clearly the initial distribution is very different from this,

Pl(0) = δl,l0 . (6)

The initial distribution is made to converge to the equilibrium distribution after a certain
“time” by a judicious choice of the (non-negative) “transition rates”, wl→m , where wl→m is
the probability that, given the system is in state l at time t, then it will be in state m ( 6= l)
at time t + 1.

The evolution of the probabilities Pl(t) follows the “master equation”,

Pl(t + 1)− Pl(t) =
∑

m

[Pm(t) wm→l − Pl(t) wl→m ] . (7)

The first term on the right hand side describes transitions into state l from m (which therefore
increases Pl and so has a plus sign) while the second term describes transitions out of state
l, which decreases P (l). Note that only terms with m 6= l contribute We can also define
wl→l to be the probability that the system stays in state l, i.e. wl→l = 1 −

∑

m6=l wl→m, or
equivalently,

∑

m

wl→m = 1. (8)

Eq. (8) implies that the master equation can be written

Pl(t + 1) =
∑

m

Pm(t) wm→l, (9)

where the term m = l is now included.
Clearly the master equation, Eq. (7), preserves the normalization of probabilities

∑

l

Pl(t + 1) =
∑

l

Pl(t) = 1, (10)

since
∑

l,m Pm(t) wm→l =
∑

l,m Pl(t) wl→m. To see this, just interchange the dummy labels, l
and m, in one expression and you get the other.

Clearly a necessary condition for the method to work is that the Boltzmann distribution,
P eq, is a stationary distribution, i.e. if Pl(t) = P eq

l for all l then Pl(t+1) = P eq
l , which requires

from Eq. (7) that
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∑

m

(P eq
l wl→m − P eq

m wm→l) = 0 , (11)

or equivalently, from Eq. (8), that

P eq
l =

∑

m

P eq
m wm→l . (12)

In practice, stationarity is usually accomplished by making each term on in Eq. (11)
vanish, i.e.

P eq
l wl→m = P eq

m wm→l , (13)

which is known as the detailed balance condition. Because the equilibrium distribution is
given by Eq. (2), the detailed balance condition can be written

wl→m

wm→l

= e−β(Em−El). (14)

Notice that the detailed balance condition only determines a ratio of transition rates; there
are many possible choices for the wl→m which satisfy this condition.

A common way of implementing a Monte Carlo move is to first choose a “trial” state m
as the possible state for the system at time t+1. The probability that the trial state is m if
the state at time t was l, is given by a “proposal matrix” Ulm. This satisfies the condition
∑

m Ulm = 1, and is usually chosen to be symmetric. State m is then accepted as the state
at t + 1 with some probability al→m (explained below), i.e.

wl→m = Ulmal→m. (15)

Otherwise the state at t + 1 is the old state, l.
For example, in an Ising problem, state m is frequently chosen to be a state in which

one of the spins (chosen at random) in state l has been reversed. In this case Ulm = 1/N ,
where N is the number of sites, if l and m differ by a single spin flip, and 0 otherwise.
One generates a random number, r, with a uniform distribution between 0 and 1, and if
r < al→m the move is accepted, i.e. the state at time t + 1 is m, and otherwise the move
is rejected, i.e. the state at t + 1 is l, the same as at time t. After testing N spins we say
that a single Monte Carlo “sweep” of the lattice has been performed. A sweep is the natural
unit in which to describe the length of a simulation. It is also possible to pass sequentially
through the lattice (i.e. to test spins 1, 2, 3, · · · , N in that order) rather than to go through
the lattice in a random sequence. This saves the generation of a random number.

Going back to the general discussion, the energy difference is ∆E = Em − El and the
detailed balance condition for a is clearly

al→m

am→l

=
wl→m

wm→l

= e−β∆E, (16)

(for a symmetric proposal matrix). This is satisfied by

al→m = F
(

e−β∆E
)

, (17)
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where F is any function which satisfies 0 ≤ F (x) ≤ 1 (since probabilities cannot be negative
or greater than unity) and

F (x)

F (1/x)
= x for all x. (18)

Two possible choices are

1. The Metropolis algorithm,

F (x) = min(x, 1), (19)

In this approach one always accepts the move if it gains energy but only accepts it
with probability exp(−β∆E) if it costs energy, i.e. if ∆E > 0.

2.

F (x) =
x

1 + x
, (20)

which corresponds to an acceptance probability of

1

eβ∆E + 1
, (21)

irrespective of the sign of ∆E. For an Ising model, where each spin can only be in
one of two states, this is an example of the “heat-bath” method, where, after the
move, the probability of the variable being altered is independent of its value before
the move and just corresponds to a local thermal equilibrium for that variable in its
instantaneous environment.

It is not enough to show that P eq is a stationary distribution. We also need to show that
the probabilities converge to P eq starting from an arbitrary initial distribution. I give here a
direct, elementary proof, which presumably exists elsewhere in the literature though I have
been unable to find it (or a similar derivation). We assume the detailed balance condition,
though the standard derivations make clear that this is not essential, but only that P eq be
a stationary distribution2,3. For convergence, the algorithm must be “ergodic”, i.e. starting
from a given state at time t = 0 then, for any sufficiently large time t, the system can be in
any state. This prevents the system being trapped in a subset of states.

We start with the following quantity, which is a measure of the deviation from equilib-
rium,

G =
∑

l

1

P eq
l

(Pl − P eq
l )2 =

∑

l

(

P 2
l

P eq
l

)

− 1 (22)

evaluated at time t, where the last expression follows because P and P eq are normalized.
At time t + 1 we indicate (for compactness of notation) the probabilities by P ′

l and the
corresponding value of G by G′. We will show that G monotonically decreases, i.e.
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∆G ≡ G′ −G ≤ 0, (23)

where the equality only holds if G and G′ both vanish, so the system is in equilibrium.
This shows that the system will eventually approach arbitrarily close to the equilibrium
distribution.

Using Eqs. (9) and (22), ∆G can be written as

∆G =
∑

l,m,n

[

wm→lwn→l
PmPn

P eq
l

]

−
∑

l

P 2
l

P eq
l

( = ∆G1 + ∆G2). (24)

For ∆G1, the first term on the right hand side of Eq. (24), we use the detailed balance
condition, Eq. (13), to replace wm→l by wl→mP eq

l /P eq
m , and similarly for wn→l, which gives

∆G1 =
∑

l,m,n

[

wl→mwl→nP eq
l

PmPn

P eq
m P eq

n

]

. (25)

In the second term in Eq. (24), ∆G2, we use Eq. (8) to insert a factor of
∑

m wl→m (and
interchange the indices l and m), which gives

∆G2 = −
∑

l,m

wm→l
P 2

m

P eq
m

= −
∑

l,m,n

wl→mwl→nP eq
l

(

Pm

P eq
m

)2

. (26)

where the second equality is obtained by applying the detailed balance relation again and
incorporating a factor of

∑

n wl→n (which is equal to unity). Taking the half the sum of the
last expression for ∆G2 and the same expression with m replaced by n, and including ∆G1,
we finally get

∆G = −
1

2

∑

l,m,n

wl→mwl→n P eq
l

(

Pm

P eq
m
−

Pn

P eq
n

)2

, (27)

where terms with m = l and n = l are included.
Eq. (27) is the main result. It shows that ∆G is definitely negative unless, for every state

l, all states which can be reached from l in a single move (and which will generically include
l itself) have probabilities proportional to the equilibrium probabilities. The most natural
scenario is that all states satisfy this with the same proportionality constant (which must
be unity) i.e. the system is in equilbrium. However, ∆G also vanishes if Pl = 0 for some
states which are “inaccessible” at time t and Pm ∝ P eq

m for the remaining states which are
“accessible” at time t. Hence, to achieve full equilibrium, limt→∞ Pl(t) = P eq

l , the algorithm
must also be ergodic, i.e. starting from a given state, after a sufficiently long time there is
non-zero probability, Pl(t), for the system to be in any state.

I conclude that if the algorithm is ergodic and satisfies detailed balance, then ∆G < 0
unless the system is in equilibrium. This shows that the system will eventually converge to
equilibrium, although no estimate is given for the time to converge.

I should mention that the condition of detailed balance, though generally used, is strictly
not necessary, and the more relaxed condition of “balance”, Eq. (11) is all that is needed.
However, I haven’t been able to find a simple derivation, using just elementary algebra, of
convergence if the transition probabilities satisfy balance but not detailed balance.
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Finally I give a brief discussion of sequential, rather than random, updating. For random
updating the probability of making a transition is the same for every move, i.e. writing

Pl(t + 1) =
∑

m

ΓlmPm(t), (28)

where Γ, the transition matrix, (related to w by Γlm = wm→l), is the same for each “time”
t. However, for sequential updating, the transition matrix depends on which site is being
updated, so, for a complete sweep, we have

Γ = Γ(1)Γ(2) · · ·Γ(N), (29)

where Γ(i) is the transition matrix for updating spin i. Although the Γ(i) individually satisfy
the detailed balance condition, the transition matrix for the whole sweep, Γ, does not,2

though it does preserve P eq as a stationary distribution. This is because the probability
of the reverse transition, m → l say, for a whole sweep, is related to the probability of
transition l → m in the desired way only if the spins are updated in the reverse order.

Despite lack of detailed balance, convergence to the equilibrium distribution is still ob-
tained. To see this note that it is trivial to generalize our proof of convergence to the case
where the transition probabilities depend on “time”. As long as each set of transition prob-
abilities, Γ(i) here, satisfies the detailed balance condition, convergence to equilibrium must
be obtained since G decreases at each step.

In the appendix I give the simplest “traditional” derivation of convergence based on the
theory of Markov chains that I have seen. It is taken from Ref. 3; I thank Onuttom Narayan
for bringing this reference to my attention. This does not require detailed balance, only that
the algorithm has P eq as a stationary distribution and is ergodic. It would be interesting to
try to generalize the proof of convergence given above so as to avoid making the assumption
of detailed balance.

This discussion of Monte Carlo simulations in statistical mechanics has been very brief.
To apply the Monte Carlo method usefully it is necessary to (i) understand the statistical
errors, see Ref. 2, and (ii) to ensure that enough Monte Carlo steps are done that the system
has come to thermal equilibrium. This is also discussed by Sokal2.

APPENDIX A

Here I give the simplest traditional derivation of convergence that I have been able to
find based on the the theory of Markov chains. It is that given in Sec. 4.1 of Ref. 3.

We focus on the transpose of the transition matrix Γ discussed above. Let us call this
W , so

Pl(t + 1) =
∑

m

WmlPm(t), (A1)

or, in other words, Wlm = wl→m. Because of the normalization condition, Eq. (8), it is
easy to see that W has an eigenvalue unity with a corresponding right eigenvector with all
elements equal. Note also that the corresponding left eigenvector is given by the values of
the equilibrium probability distribution, which follows immediately from Eq. (A1) and the
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requirement that P eq is a stationary distribution. The proof of convergence, which we now
give, consists of showing that this eigenvector dominates when Markov process in Eq. (A1)
is iterated.

Since we assume that the process is ergodic, then there is some non-zero value of t beyond
which all states have a finite probability for any initial state. In other words W (t) ≡ W t

has no zero elements for t sufficiently large. We will study W (t) for t sufficiently large that
this condition holds, and for compactness of notation we denote such a W (t) simply by W
from now on.

Let the smallest value of W be denoted by ε. We act with W on a column vector x for
which the largest element is M0 and the smallest is m0. Let x′ be the vector obtained from x
by replacing all components apart from the smallest by M0. Each component of the column
vector Wx′ is of the form

am0 + (1− a)M0

= M0 − a(M0 −m0), (A2)

since
∑

m Wlm = 1, where a is the element of W on the row in question and whose column
corresponds to m0. We have a ≥ ε so each component is less than or equal to M0−ε(M0−m0).
Since each component of x is less than or equal to the corresponding element of x′, each
component of Wx must also satisfy this inequality, including the largest one, which we
denote by M1, i.e.

M1 ≤ M0 − ε(M0 −m0), (A3)

which shows that M1 ≤ M0. Applying the same arguments to the vector −x, which involves
the replacements M0 → −m0,m0 → −M0,M1 → −m1 (where m1 is the smallest component
of Wx), gives

−m1 ≤ −m0 − ε(−m0 + M0), (A4)

which shows that m1 ≥ m0. Adding Eqs. (A3) and (A4) gives

M1 −m1 ≤ (1− 2ε)(M0 −m0), (A5)

which shows that the difference between the largest and smallest components of a vector
decreases when it is multiplied (on the left) by W . Iterating n times we have

Mn −mn ≤ (1− 2ε)n(M0 −m0), (A6)

which shows that Mn −mn tends to zero exponentially fast.
Hence for n →∞,W nx is a column vector with all components equal. Let us apply this

result to a vector x(j) with all elements zero except the j-th which is unity. Let the common
value of all components of the resulting vector be αj. Now W nx(j) is the j-th column of W n.
It follws that W n tends to a matrix with all elements in the j-th column equal to αj , i.e.

lim
n→∞

W n =



















α1 α2 · · · αj · · ·
α1 α2 · · · αj · · ·
...

...
. . .

...
. . .

α1 α2 · · · αj · · ·
...

...
. . .

...
. . .



















. (A7)
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Since the sum of the elements in a row of W is unity (and the same is true for W n), we
have

∑

i

αi = 1. (A8)

The matrix Γ which describes the evolution of the states according to Eq. (28) is the
transverse of W so

lim
n→∞

Γn =



















α1 α1 · · · α1 · · ·
α2 α2 · · · α2 · · ·
...

...
. . .

...
. . .

αj αj · · · αj · · ·
...

...
. . .

...
. . .



















. (A9)

Let us act with Γn on a column vector x representing the initial probabilities, so
∑

i xi = 1.
It is easy to see that

lim
n→∞

Γnx = α, (A10)

where the column vector α is given by

α =



















α1

α2
...

αj
...



















(A11)

Since Γnx = α for any sufficiently large n, it follows that Γα = α and so α is a stationary
distribution. Since Γ was constructed so that the equilibrium probabilities are stationary,
and it is easy to show that there cannot be more than one stationary distribution3, it follows
that

αi = P eq
i . (A12)

Hence we see that the probabilities converge to the equilibrium probabilites for suffi-
ciently large n assuming that the equilibrium probabilites are stationary and the algorithm
is ergodic.
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